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Abstract

Non-uniform camera shake removal is a knotty problem

which plagues the researchers due to the huge computa-

tional cost of high-dimensional blur kernel estimation. To

address this problem, we propose an acceleration method to

compute the 3D projection of 2D local blur kernels fast, and

then derive the 3D kernel by interpolating from a minimal

set of local blur kernels. Under this scheme, a perpendic-

ular acquisition system is proposed to increase the projec-

tion variance for reducing the ill-posedness of 3D kernel

estimation. Finally, based on the minimal 3D kernel solver,

a RANSAC-based framework is developed to raise the ro-

bustness to estimation error of 2D local blur kernels. In

experiments, we validate the effectiveness and efficiency of

our approach on both synthetic and real captured data, and

promising results are obtained.

1. Introduction

Image blur caused by camera shake is a common degra-

dation in photography, and many deblurring methods have

been proposed in the past decades. Conventional deblurring

methods[2][3][5][15][22][23] assume a uniform blur kernel

and formulate the blur process as 2D convolution. How-

ever, this assumption rarely holds in real cases[19], and non-

uniform blur caused by camera shake is drawing increasing

attentions. Several models and deblurring algorithms are

proposed to formulate the non-uniformity and to solve the

problem as fast and robust as possible.

Some researchers[18][4] adopt a piecewise-uniform blur

model to reduce the computation burden of the problem.

These works are particularly suitable for dealing with blur

caused by object motion, since in such cases the same ob-

ject (part) shares similar motion patterns and thus similar

LBKs, i.e., locally invariant. However, these methods do

not work well for the non-uniform blur caused by camera

shake, because blur kernels may vary continuously and thus

cannot be described by the piecewise-uniform model well

enough.

Some other researchers attempt to use a unified camera

motion to constrain the spatially varying 2D blur kernels.

In these works, the blur kernels are unified in a subspace of

the 6D motion parameter space. Shan et al. [24] assume the

1D in-plane rotation and thus can only deal with the image

blur caused by camera rotation around z-axis. To remove

more general non-uniform blur, 3D motion blur models are

proposed. Whyte et al. [28] take all the 3 rotations into

consideration and Gupta et al. [7] use in-plane rotation and

x, y-translation as the Degree of Freedom (DoF) of the cam-

era motion, but these approaches suffer from the intensive

computation due to its the high dimensionality of parameter

space. To raise the efficiency, Hirsch et al. [9] propose effi-

cient filter flow, while Hu and Yang propose a back projec-

tion and intersection based method for fast kernel estima-

tion/initialization. However, both methods are not robust

enough and still needs to be incorporated in a time con-

suming iterative optimization framework. Differently, our

estimation eliminates iterative optimization due to superior

efficiency and robustness, and hence shortens the running

time significantly.

With the development of computational photography,

non-uniform deblurring benefits from the aid of non-

traditional imaging mechanisms. For example, Joshi et al.

[14] use inertial measurement sensors to capture the 6D

camera motion directly to assist deblurring, Tai et al. [26]

propose coded exposure imaging system to solve 6D motion

blur, Ezra et al. [1], Tai et al. [25] and Li et al. [20] use low-

rate high-resolution / high-rate low-resolution hybrid cam-

era systems to facilitate blur kernel estimation. There are

some limitations affecting the final performance in above

works, such as the drift and noise of observed signal in [14],

indispensable user interactions in [26], and potential inac-

curate optical flow in hybrid systems[1][25][20]. In spite of

the limitations in these works, introducing additional infor-

mation by computational photography systems is a worth

considering approach for camera shake removal.

This paper addresses the high computational cost of 3D

blur kernel estimation by intersecting the 3D projections of



a series of 2D Local Blur Kernels (LBKs) estimated from

image patches. By linearizing camera motion model around

the center of each local blur model, we propose a warp-

ing based-method to compute the 3D projection efficiently.

However, the performance of intersection may suffer from

ill-posedness caused by limited variance among LBKs (es-

pecially under a small field of view) and estimation error of

LBKs, these problems inspire us to propose two strategies

incorporated in a framework illustrated in Fig. 1.

Firstly, after analyzing the relation between angle of

view and ill-posedness, we design a binocular perpendic-

ular acquisition system to enlarge the angle. Then the 3D

camera motion is derived under a RANSAC based iteration

of two processes—projecting LBKs into 3D motion param-

eter space and performing computational efficient intersec-

tion. The RANSAC framework here raises the robustness to

estimation errors of LBKs. Finally, a non-blind deblurring

algorithm is applied to restore the latent sharp image.

In summary, this paper contributes in following aspects:

(i) We propose an efficient method to accelerate the 3D pro-

jecting from LBKs. (ii) The minimal solution of 3D kernel

estimation from two LBKs by intersecting are proposed and

a RANSAC-based framework is introduced to increase the

robustness. (ii) A perpendicular camera system is proposed

to capture approximately perpendicular 2D projections of

3D camera motion to reduce the ill-posedness.

2. Efficient 3D projection of LBKs

We adopt the 3D rotation blur model proposed by Whyte

et al. [28], which is approximately depth independent. Ac-

cording to perspective geometry, the 2D blur kernels would

vary continuously in such cases, so we can approximate the

2D blur kernels within a patch by a uniform pattern, we

name which Local Blur Kernels (LBKs).

LBKs can be regarded as the 2D projections of a

high-dimensional camera motion, according to perspective

geometry[8] we define the mapping from a 3D rotation ker-

nel to its 2D LBK within a certain patch by

Kx

2 (m) =
∑

θ

1(m′(θ,x),m)K3(θ), (1)

where Kx

2 (m) is the 2D blur kernel at coordinate x, and

m indexes the position in Kx

2 ; K3(θ) denotes the 3D cam-

era motion, with θ = (θx, θy, θz) being the rotation around

x, y, z-axis; 1(·) is the indicator to label whether the map-

ping m
′ of pixel x with camera pose θ is equal to m. Here

m
′(·) is the mapping function (see [8, 28] for details).

To compute projection of K2 in 3D parameter space fast,

we extract a slice of K3 with constant θz and assume the

support region of 3D kernel is located on this slice, then

K3(θ)|θz = Kx

2 (m
′(θ)|θz ). (2)

Linearizing m
′(·) by Taylor’s expansion, Eq. 2 becomes

K3(θ)|θz = Kx

2 (m
′

0|θz +
∂m′

∂θx
· θx +

∂m′

∂θy
· θy). (3)

Here, ∂m′

∂θx
and ∂m′

∂θy
are the partial derivatives of m′(·) with

respect to θx and θy , and m
′

0|θz is the constant value with

θ = (0, 0, θz). When θz = 0, m′

0|θz equals to 0 and the

slice is a parallalogram deformation of K2 and can be com-

puted fast by resampling K2. When θz doesn’t equal 0, the

slice can be viewed as a translation version of slice K3|θz=0.

Therefore, we can compute slice K3|θz=0 first by resam-

pling K2 and translate the slice with vector m′

0|θz to derive

any slice of K3. Stacking all the slices in order, we can com-

pute the 3D projection of 2D LBK very fast, with a much

higher efficiency than [11].

Given several LBKs, we can compute two 3D projection

of the LBKs, and then the 3D camera motion can be derived

by intersecting these projections in parameter space under

the assumption of 1D manifold motion trace. Fig. 1 (2.2)

visualizes this procedure: If the motion trace lie on a 1D

manifold, the 3D projection of non-zero entries in a LBK

compose a surface in 3D space and the latent motion tra-

jectory slides across the surface from one side to another.

Naturally, the 3D camera motion is exactly the intersection

of these surfaces projected from different LBKs.

However, it is non-trivial to compute the 3D motion

accurately by intersecting these projections directly for

mainly two reasons: (1) Limited by the angle of view, the

angle between LBKs from a single image are quite small,

which means the two surfaces in 3D space intersact with a

small angle. It is well known that intersection with small

angle will introduce large ill-posedness. (2) Because of the

low quality or textureless-ness of some image patches, even

state-of-the-art uniform deblurring algorithms cannot avoid

incorrect or inaccurate LBKs, so that the result cannot avoid

suffering from outliers.

To address above two problems, this paper attempts to

obtain sufficiently dissimilar LBKs and keeps the problem

well-posed by the aid of a perpendicular camera system.

Accordingly, we propose the 2-LBK intersection based 3D

kernel solver, which will be discussed in details in Sec. 3.

Then a RANSAC based optimization framework is pro-

posed to get rid of LBK estimation errors in Sec. 4.

3. 3D Kernel Estimation by Perpendicular In-

tersection

3.1. Why Perpendicular Intersection?

Intuitively, multiple cameras (fastened together) tend to

provide more diverse projections compared to one single

camera and thus raise the robustness of blur kernel estima-

tion. This inspires us to build a camera-pair system for fast
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Figure 1. Diagram of our system.

camera shake removal. For a quantitative analysis, we com-

pute the condition numbers of the linear equation systems

built on camera pairs (composed by Eq. 1) with different

between-camera angles, as illustrated in Fig. 2. We can

see that the condition number is extremely huge for small

between-camera angle, and reduces rapidly as the angle in-

creases. In other words, Eq. 1 is better posed when the

between-manifold angle is larger. Unfortunately, due to the

limited angle of view and errors in LBK estimation, it is

often hard to find two well estimated LBKs within a single

image and with a large intersection angle between their 3D

projections. To keep the problem well-posed, we propose a

perpendicular camera system which tries to make the inter-

section angle approximately perpendicular and thus a cor-

responding 3D kernel solver.
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Figure 2. Condition number of linear system defined in Eq. 1

at different between-view angles.

Note that, although the perpendicular layout is recom-

mended, the approach can also be applied to single view

image or non-perpendicular biocular system, and gives rea-

sonable results, as shown in experiments in Sec. 5.

3.2. Perpendicular Acquisition System

Fig. 3 shows the prototype of our perpendicular camera

system and its light path. The system consists of two cam-

eras (Point Grey FL2-08S2C) and two reflecting mirrors.

As shown in Fig. 3(b), the green camera can be transformed

to the position of the dashed green camera, so the optical

centers of two cameras can be coincident exactly. To fa-

cilitate the description, the red camera is called reference

camera and the green one is called periscope-style camera.

To ensure that the two cameras are perpendicular and the

optical centers are coincident, we firstly turn the reference

camera 90° counterclockwise (can be controlled by rotation

base), so that the cameras are parallel with each other. Sec-

ondly, we fix the reference camera and capture a snapshot

without the reflecting mirrors, then we turn back the ref-

erence camera and tune the periscope-style camera and two

reflecting mirrors to make sure that the periscope-style cam-

era capture the same view with the snapshot taken by the

reference camera. During the adjustment, the optical base

of the system should be immovable.

It is worth noting that it is difficult to align two optical

centers exactly by above calibration, here we analyze quan-

titatively the affects from inaccurate alignment. Assuming

the camera offset causing misalignment lying on the rotat-

ing axis of the camera bases and the eccentric offset being

∆r, a rotation ∆θ will cause a translation ∆r∆θ. Conse-

quently, denoting focal length as f and scene depth as D,

the eccentric offset will result in movement ∆r∆θf/D (in

pixels) in CCD plane. Empirically, ∆θf includes dozens of

pixels (e.g., 30), we just need ∆r < D/30 to ensure that

the offset will not cause a movement larger than a pixel in

CCD plane. Considering the camera size, it is reasonable to

assume an offset no larger than 1cm, and it can be ignored

for scenes farther than 30cm.
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Figure 3. Our perpendicular camera system and its light path.

3.3. Perpendicular Intersection

Based on above acquisition system, we develop the cor-

responding axes-exchanging image blur model and propose

a 2-LBK intersection based estimator of 3D blur kernel.



Axes-exchanging blur model. The axes-exchanging

blur model exchanges the axes in turn to unify the parame-

ters of two perpendicular views into one space.

Under rotation motion assumption, the view taken by a

camera during a short exposure can be regarded as a ho-

mography transformation of the latent image. Since cam-

era intrinsics are supposed known, the homography H only

depends on the 3×3 rotation matrix R. For our perpendic-

ular camera system, the homography pair of corresponding

views can be respectively computed by

H = ARA
−1 (4)

H ′ = A
′
R

′
A

′−1
.

Here A and A
′ are intrinsics of two perpendicular cameras.

As mentioned in Sec. 2, rotation matrix R can be rep-

resented by matrix exponential R = e[θ]× , where θ is the

angle-axis rotation vector (θx, θy, θz)
T. For the counterpart

matrix R
′, the angle-axis rotation vector θ′ can be derived

by exchanging x− and z-axis and inverting the sign of the

last element, i.e. θ′ = (θz, θy,−θx).
Then, for two image patches sampled from a blurry im-

age pair with center coordinates being x and x
′ respectively,

the mapping from 3D kernel to the 2D LBKs are:







Kx

2 (m) =
∑

θ
1(H(θ)x,m)K3(θ)

K ′x
′

2 (n) =
∑

θ
1(H ′(θ)x′,n)K3(θ)

. (5)

2-LBK intersection based 3D kernel estimation. Gener-

ally, above equation system is severely ill-posed, so we need

to introduce reasonable priors as additional constraints. The

sparsity of blur kernel has already been used in previous

works [5][2][17][29], but most of which introduce the prior

into an objective function as the regularization term, which

alleviates the ill-posedness, but significantly increases the

computational complexity of interactive optimization.

Instead, our method assumes the 3D kernel to be a high-

dimensional curve which can be derived by intersecting 3D

projections of LBKs. As a matter of fact, the widely used

sparsity prior of the blur kernel is implied here. After deter-

mining the 3D trace of the camera motion, we further set a

value to each 3D kernel element to represent the time elapse

during exposure, which is exactly the same as the intensity

of its projection in LBKs. In addition, due to the inaccuracy

of LBKs estimation and the discretization error, we use the

average intensity of the projection points on the LBK pair

as the estimation value of the 3D kernel point.

We first compute 3D projections of LBK pair at positions

randomly selected from perpendicular blurred image pair by

our fast 3D projecting method. Then, the support region of

the 3D kernel can be computed by thresholded binarization

to the product of 3D projections of the LBK pair as

SKσ = {θ : PKx

2
(θ)P

K′x′

2

(θ) ≥ σ} (6)

where σ is the threshold determined by the minimum ele-

ment in 3D kernel, and is set to be 0.001 here. Finally, each

non-zero element of the 3D kernel are estimated by

K3(θ) = (PKx

2
(θ) + P

K′x′

2

(θ))/2 ∀θ ∈ SKσ. (7)

Note that the intersection approach implies that there

does not exist any self-intersection in a LBK. In spite

that this does not hold sometimes, the number of self-

intersection points is extremely small compared to the size

of blur kernel, so it does not affect the performance. The

similar property is also utilized for motion segmentation

from motion blurring[21].

4. RANSAC Based Estimation Framework

Because the LBKs estimated from textureless regions

may be inaccurate or even wrong, we apply a RANSAC

based framework to raise the robustness of 3D kernel esti-

mation. Furthermore, to adjust our framework towards non-

uniform deblurring, we modify the traditional RANSAC

framework by introducing a novel assessment function for

candidate solutions. Generally, RANSAC evaluates the

quality of candidate solutions by the size of inlier set,

which is unsuitable for deblurring since the difference

among image regions are neglected. Considering that dif-

ferent patches have varying saliency and their correspond-

ing LBKs have different confidences, we propose an assess-

ment function considering both factors.

Confidence. Because the LBKs estimated from local

patches suffer from errors and inaccuracy, we define a mea-

surement to assign a confidence weight to each LBK in the

assessment function. As discussed by Gupta et al. [7], the

most important factor affecting the quality of deblurred re-

sults is the texture richness of the patches, so we use the

same metric as Gupta et al. do (i.e. the average of Harris

corner metric of all the pixels in the patch).

Saliency. Since our ultimate goal is to restore the latent

sharp image instead of deriving the real 3D kernel, we pre-

fer a 3D kernel working better in the important regions of

an image. It is known that human eyes are sensitive to edges

with high contrast or salient regions distinctive from its sur-

roundings, and there are plenty of models for computing im-

age saliency map, e.g., [6], [10], [13] and [27]. Considering

the computational cost, we select Guo et al.’s [6] method

which computes the saliency fast in frequency domain.

Combing above two factors, our assessment function for

each patch turns into:

f(K3) =
∑

i∈Ω

w(x)d(Kx
2 , P (K3, x)) (8)

Ω = {x|d(Kx
2 , P (K3)) > thr}

w(x) = C(x)S(x).



In the above equations, K3 is the 3D blur kernel and P (·)
is the function defined by Eq. 1 which maps a 3D kernel to

its 2D projections; Kx
2 is the 2D blur kernel estimated at

pixel x; d(Kx
2 , P (K3)) is the distance between 2D projec-

tion of K3 and the estimated 2D LBK Kx
2 at position x. To

increase robustness, LBK at pixel x is given a weight w(x)
to penalize bad LBK estimation, with S(x) and C(x) re-

spectively denoting saliency and confidence of patch x; Ω
is the inlier set in RANSAC strategy and thr is the thresh-

old for inlier selection; d(·) is defined by normalized cross-

correlation as Hu et al. [12]’s,

d(Ki
2, P (K3)) = maxλ

Ki
2(m) · P (K3,m+ λ)

||Ki
2|| · ||P (K3)||

. (9)

Here, || · || is l2 norm, λ denotes a slight shift used to elim-

inate the translation ambiguity of 2D LBKs.

Different from the framework used by Gupta [7], our

method prefers to process the blur kernel rather than the de-

blurred patches. The 3D kernel is directly computed from

the inlier set of LBKs, so we do not do the EM-style it-

eration which optimizes the latent image L and 3D kernel

K3 iteratively. In addition, since the perpendicular cam-

era system is used to capture image pairs, we can solve

the 3D kernel with a minimum number of LBKs, i.e. we

adopt the minimal solution (2 patches, one from each cam-

era) as basic solver. Therefore, our method can be more

error-tolerant, since selecting a small data set without out-

liers is much easier. Profiting from the above properties, our

RANSAC based framework could be efficient and effective

for 3D kernel estimation.

In our experience, Cho and Lee [3]’s program can give

pretty good results from 1202̃00 pixels wide square patches

with proper textures in less than 0.5s. We select the patches

uniformly and make sure each patch is overlapped with

its neighbors. Therefore, about less than 200 patches are

needed for a 1024×768 image, and about 100s for comput-

ing the LBKs from this patch.

5. Experimental Results and Analysis

We conduct a series of experiments to validate the pro-

posed fast shake removal approach on both synthetic and

real captured data. Theoretically any uniform deblurring

can be applied in LBKs estimation and any non-uniform

deblurring can be used in final restoration, considering the

computation complexity, we use Cho and Lee [3]’s method

to estimate the LBKs and Hirsch et al.’s[9] efficient filter

flow based method (a non-uniform variant of Krishnan and

Fergus [16]’s algorithm) to do the final deblurring.

Experiment on Synthetic Data. We first test the per-

formance of our approach on synthetic data. To verify

the effectiveness of our kernel estimator, we test the algo-

rithm on the synthetic LBKs of two perpendicular views and

(a)

(b)

Figure 4. Kernel estimation on synthetic data. Top row: two

views’ ground truth kernels. Bottom row: estimated kernels from

each single view.

with large spatially-variance in each single view. The 3D-

rotation camera motion are generated randomly and with

large spatially-variation, and Fig. 4 shows the ground truth

blur kernel maps and our estimated results respectively. The

results shows that our perpendicular intersection based ker-

nel solver can give exact results for the error free data.

Experiment on Real Captured Data. Here we give an

example of shake removal on a real captured image pair by

our prototype to verify the effectiveness and robustness of

the whole system. From the captured blurry image pair in

Fig. 5(a) we can see that there exist apparent difference be-

tween the blur effects in two views, which provide two 2D

projections of the latent 3D blur kernel along two different

directions, and help intersection algorithm. The estimated

blur kernels of two views are shown in Fig. 5(b) and also

validate the difference between two 2D projections of the

3D blur kernel. The final deblurring result of our proposed

method is shown in Fig. 5(c), which shows that our algo-

rithm achieves good performance in both views while at low

computational cost.

6. Summary and Future Work

We present an intersection based approach and a perpen-

dicular acquisition system for estimating 3D blur kernels

efficiently and effectively. These advantages are attributed

to largely different 2D projection directions of the 3D kernel

and the RANSAC framework.

The algorithm is limited in two aspects: (i) cannot deal



(a) (b) (c)

Figure 5. Deblurring result on real captured data. (a) Blurry image pair. (b) Blur kernels estimated by perpendicular intersection. (c)

Final deblurred results.

with the translation caused image blur which is depth de-

pendent; (ii) to a certain extent, the performance of our al-

gorithm depends on LBK estimation. Therefore, we will

try to take depth information into consideration and further

raise the accuracy of LBKs estimation. In the future, we

will try to extend our system for handling all the 6 DoFs of

camera motion. It is worth noting that extension to a higher

DoF is feasible due to high efficiency.
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