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Abstract

A method for online global pose estimation of aerial im-

ages by alignment with a georeferenced 3D model is pre-

sented. Motion stereo is used to reconstruct a dense local

height patch from an image pair. The global pose is inferred

from the 3D transform between the local height patch and

the model. For efficiency, the sought 3D similarity trans-

form is found by least-squares minimizations of three 2D

subproblems. The method does not require any landmarks

or reference points in the 3D model, but an approximate

initialization of the global pose, in our case provided by

onboard navigation sensors, is assumed. Real aerial im-

ages from helicopter and aircraft flights are used to evalu-

ate the method. The results show that the accuracy of the

position and orientation estimates is significantly improved

compared to the initialization and our method is more ro-

bust than competing methods on similar datasets. The pro-

posed matching error computed between the transformed

patch and the map clearly indicates whether a reliable pose

estimate has been obtained.

1. Introduction

Automatically reconstructed large scale 3D models or

digital surface models (DSMs) have become commonly

available. The 3D reconstructions may be generated from

images captured from satellites [?], unmanned aerial ve-

hicles (UAVs) [?] or from a large number of public pho-

tographs [?]. Numerous applications making use of the 3D

models are conceivable, many of them involving geoloca-

tion of an airborne camera. Micro aerial vehicles (MAVs)

have become very popular as a remote sensing platform.

The MAVs often have GPS and navigation sensors, but to

achieve accurate geolocation over time, image based refine-

ment is required.

Our specific problem is to determine the absolute global

pose, fig.??(a), and the scale (7DoF) of aerial images where

a calibrated camera and an onboard inertial measurement

unit (IMU) are available. Since we are looking for a method

to be processed onboard a small UAV, and which supports

online guidance of the vehicle, a hard constraint is a com-

putationally inexpensive and memory efficient real-time so-

lution. Further, we avoid using GPS as input since this in-

formation is not always reliable in high-rise environments

and can make the method less robust in case of GPS out-

age or jamming. Lastly, we want the method to be season

invariant, i.e. the method should allow images captured in

one season to be aligned with a 3D model acquired in an-

other season when e.g. vegetation may look different. We

present a new method to estimate the global pose of aerial

images, where an IMU estimate of the global pose is used as

an initialization. Due to drift in the IMU, the accuracy of the

pose estimate will degrade with time unless supported with

other sensor data. A dense local height patch of the ground,

computed with motion stereo (MS), is aligned with a geo-

referenced 3D model of the corresponding area. Aligning

height information is assumed to be more robust to season

variations than a single-view based approach. The global

pose is inferred from the 3D similarity transform between

the local height patch and the 3D model. The main novelty

of the method is a framework that enables the 3D similarity

transform to be reliably and robustly estimated by solving

three 2D subproblems. The reason that this decomposition

(a) (b)
Figure 1. (a) Definition of world coordinate frame and vehicle

pose. X = north, Y = east, Z = down, ψ = yaw, θ = pitch, φ =

roll. (b) Aerial image from helicopter flight.



works is that the pitch and roll angle initialization errors

are relatively small, a few degrees at maximum. The pose

initialization errors are dominated by the translation, yaw

angle and scale errors, which are all considered in the first

2D subproblem. The method has been evaluated using real

aerial images from helicopter and aircraft flights over urban

areas, fig.??(b). A matching error indicating the reliability

of the pose estimate is proposed and analyzed.

2. Related work

Since we are only interested in methods that register im-

ages with a 3D model captured at a different time, we do

not consider methods like KinectFusion [?] or SLAM [?].

Pose estimation of an airborne camera by registration of

aerial images with a DSM is a well studied area. One group

of methods extract features in single images and register the

features with the 3D model, another group use multi-view

images and perform 3D-3D registration.

Ding et al. [?] use vertical vanishing points and naviga-

tion sensors to obtain a coarse registration of aerial images

with a 3D LiDAR model. The registration is then refined by

extracting 2D corners in the image and matching these with

3D corners in the model. The registration rate is 91% in a

downtown area but falls to 50% in a residential area.

Mastin et al. [?] use mutual information (MI) to register

aerial images with a 3D LiDAR model. They assume nav-

igation sensors to give a coarse camera pose. They project

the 3D model onto the image plane and maximize the MI

between optical and LiDAR features. The registration rate

is as high as 98.5% in an urban area. Processing time is in

the order of 10 s when using GPU for 3D rendering.

Zhao et al. [?] register a dense 3D point cloud from video

motion stereo with 3D range LiDAR data using an iterative

closest point (ICP) algorithm to recover camera orientation.

The method proved successful but ICP is computationally

expensive and is not suitable for real-time solutions. Wen-

del et al. [?] used a MAV to collect images and their 3D

reconstruction of buildings is aligned with a DSM using a

coarse-to-fine correlation scheme over all unknown trans-

formation parameters. Their method yields accurate align-

ments but is not suited for real-time solutions.

Gruen and Akca [?] derive a Gauss-Markov model for

least-squares 3D surface matching. Their method gives ac-

curate results for good initializations but it is too computa-

tionally demanding for a real-time solution. Lerner et al. [?]

use a DSM to formulate a constraint between feature pairs

in successive images. They approximate the terrain with

the tangent plane of the DSM around the assumed feature

point position and solve for the camera pose and motion.

A computational advantage is that no 3D reconstruction is

needed. On a coarse grid lab model of a mountainous area

their method works fine as their model assumption applies,

which however is not the case in urban areas.

3. Pose estimation method

Our method needs to be season invariant, and we assume

that aligning a local height map with the 3D model will

be more robust than a single-view based method trying to

match an image with a projection from the 3D model. How-

ever, our method requires altitude differences in the scene.

Our approach to estimate the camera pose consists of two

main steps. First we compute a dense local height patch of

the ground from an image pair. The second step is to align

the local height patch with the 3D model. Due to initializa-

tion errors and as the scale is only roughly known, the local

height patch is distorted by a 3D similarity transform com-

pared to the 3D model. Our method estimates the transfor-

mation parameters to obtain a best match between the local

height patch and the 3D model. From this alignment pro-

cess, we can infer a more accurate estimate of the camera’s

global pose.

To generate a dense local height patch we use MS on two

images from the airborne camera, where the stereo baseline

is in the order of 1/10 of the height above the ground. We

make an assumption on the global pose for image 1. The in-

trinsic camera parameters are known from calibration. We

assume that the relative rotation between the images is ac-

curately given by the IMU. The translation vector direction

is estimated from the images. We compute the local height

patch with a stereo method which is based on [?] but has

been further developed and has proven to give state-of-the-

art results when generating 3D models from aerial imagery

[?]. The stereo output is a dense depth map which is ortho-

rectified and converted to a georeferenced local height patch

given the global pose assumption for image 1.

3.1. Translation vector direction estimate

To estimate the translation vector direction from an im-

age pair is a well known problem and in our case the rel-

ative rotation between the images is known with good ac-

curacy from IMU data. We estimate the translation vector

in three steps: (1) Determine feature points. (2) Match fea-

ture points. (3) Determine the translation vector using the

epipolar constraint.

Feature point detector. As we want to match airborne

images taken with a frame rate around 1 fps, we are not de-

pendent on scale and rotation invariance in the feature point

matching process. The rotation angle from one image to the

next is at most a few degrees. We use the FAST-12 detector

[?] to find feature points. As FAST tends to generate many

feature points along edges, we suppress these points by us-

ing the idea from [?] and employ a Harris corner measure

to only retain points with a large Harris score.

Matching feature points. Since we have an approxi-

mate estimate of the vehicle velocity, we have a rough idea

how the center pixel in image 1 has moved into image 2.

To refine this first rough guess on the overall optical flow



vector, we run a Lucas-Kanade tracker (KLT) [?] at coarse

scale. In the aerial image sequences used, the lighting con-

ditions are very similar from one image to the next and the

exposure parameters are set constant. Hence, KLT can be

used for matching. If the brightness constancy is expected

to be violated, normalized correlation methods may be more

appropriate.

For each feature point p in image 1 we search for po-

tential corresponding feature points q in image 2 within a

radius r such that the pixel distance d is less than a thresh-

old set to 30 pixels. For each potential corresponding point

qi within this disc, we run a back-and-forth KLT over an

11x11 patch between the points p and qi. If the back-and-

forth displacements deviate less than 0.25 pixels, we accept

them as corresponding points.

As the FAST detector only gives integer pixel values, we

use the displacement d from the KLT to obtain subpixel

accuracy. The feature points are converted to normalised

image coordinates x = [x y 1]T and x′ = [x′ y′ 1]T .

Epipolar constraint. The essential matrix E is defined

as in [?]

E = [t]xR (1)

where R and t are the relative rotation and the transla-

tion for the camera between images 1 and 2, and [·]x is the

cross-product operator. For corresponding points the epipo-

lar constraint

xT Ex′ = 0 , (2)

must be satisfied. If we expand this equation and remember
that the rotation matrix is known, we obtain a linear equa-
tion system for t, also found in [?].

2

4

(r12x+ r22y + r32) − y′(r13x+ r23y + r33)
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y′(r11x+ r21y + r31) − x′(r12x+ r22y + r32)
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3
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(3)

We use a RANSAC scheme to suppress outliers among the

feature point matches. In each iteration we randomly pick

two points from the matching point set. We solve for t

and given the resulting E we define the consensus set as

all points within 0.25 pixels from the epipolar lines. The

value on t giving the largest consensus set is taken as the

translation vector direction. Mathematically the solution is

ambiguous to the sign of the translation vector, but the sign

is evident from the forward direction of the vehicle.

3.2. Alignment of height patch with 3D model

To align the local height patch with the 3D model, we

use an approach similar to the tracking part in [?], but in

our case the images to be aligned represent height informa-

tion and not intensity values. We split the 3D alignment

process into three steps; first alignment in the ground plane

(XY), then in the XZ-plane and finally in the YZ-plane. Ac-

cording to [?, ?], a high dimensional least-squares problem

can be decomposed into several subspace problems or even

single coordinate descent without hampering convergence.

In general, this requires iterating between the coordinates

or selecting the subspace of maximal descent in an outer

loop and line-search in an inner loop. In our case the inner

loop is iterated from coarse to fine scale. The outer loop

is simplified by minimizing the subspace with dominating

errors (x, y, yaw and scale) first and then minimizing the

two subspaces with smaller errors (z, pitch and roll). Outer

minimization is only iterated for the first subspace (XY),

since further iterations on the other two subspaces did not

improve results further.

The reduction to 2D is also very memory efficient. The

full 3D volume to be aligned is often around 300 Mvoxels

whereas the 2D areas only require 1 Mpixels.

Preliminaries. The equation systems to be solved in the

three planes will all take the general form

∫

W

Uω(x) dx v =

∫

W

wω(x) dx (4)

where U is a model matrix, v is the sought parameter vector

and w is a residual. They will be derived for each plane.

For a p × q matrix A and an m × n matrix B, the Kro-

necker product A⊗B is a pm × qn block matrix

A ⊗ B =







a11B · · · a1qB
...

...

ap1B · · · apqB






(5)

Alignment in ground plane (XY-plane). Based on the

assumptions on XY position and heading of the vehicle, we

cut out a map from the 3D model with the same size as the

local height patch. We minimize the error function ǫXY , the

squared difference in height between the local height patch

hp(x) and the map hm(x),

ǫXY =

∫

W

[

hp((I + D)x + d) − hm(x)
]2

ω(x) dx

(6)

where A = I + D denotes a linear transformation, x is a

point in the image, d = [dx dy]T is a displacement and ω

is a window function. We use a separable Hanning window

in the x and y directions. Most important for the window

function is to suppress boundary interpolation effects. The

integration domain W is the whole patch area.

The error function in (??) is minimized by linearising the

integrand and finding a least-squares solution. We make a

Taylor expansion of the linear transformation and truncate

to the linear term

hp(Ax + d) ≈ hp(x) + gT u (7)

g =
[

∂hp

∂x

∂hp

∂y

]T

=
[

gx gy

]T
, u = Dx + d (8)



To minimize the residual ǫXY , we differentiate it with re-

spect to all unknowns in the deformation matrix D and the

displacement vector d and set the result to zero. The general

entities in (??) for the XY-plane alignment read

UXY =









x

y

1





[

x y 1
]



 ⊗

([

gx

gy

]

[

gx gy

]

)

(9)

vXY =
[

Dxx Dyx Dxy Dyy dx dy

]T
(10)

wXY =
[

hm − hp

]





x

y

1



 ⊗

[

gx

gy

]

(11)

The equation system is solved iteratively at coarse-to-fine

scales. For each scale we stop the iterations when the de-

crease in ǫXY is less than 1% or the max of 10 iterations is

reached. After each scale we update the XY position with

dx and dy , and the heading ψ with the angle between the y-

axis and the D-transformed y-axis. The deformation matrix

D allows for a more general linear transformation instead

of a 2D similarity transformation to cope with the errors in

the pitch and roll angles.

Prior term in cost function. To constrain the unknown

parameters not to drift away in the search algorithm, we

introduce a prior term in the cost function, (i, j = x, y),

ǫXY,prior =
∑

i,j

(Dij −Dij0)
2

σ2

Dij

+
∑

i

(di − di0)
2

σ2

di

(12)

For each parameter, the prior term is the square of the de-

viation from the initial value normalized with the variance.

The total error function allows the parameters to be steered

based on the certainty of that parameter estimate. We mini-

mize ǫXY,tot given by

ǫXY,tot = (1 − λ)ǫXY + λǫXY,prior (13)

Note that maximizing exp(−ǫXY,tot) can be considered as

a maximum a posteriori probability (MAP) approach. By

using the prior term, we could save 2-3% of the runs that

otherwise drifted away from the true pose. However, the pa-

rameter λ must be set low (∼0.01) not to prevent the search

from reaching the true pose.

The output from the alignment in the ground plane is a

refined estimate of the XY position and the heading. We

also get a scale estimate but we found that the scale could

be estimated more accurately in the XZ-search.
Alignment in XZ-plane. Consider a cross-section Myi

(= Z - hm,yi
) of the map for a fixed value yi along the Y-

grid, where Z is the camera altitude. We assume that the
global pitch angle error is ∆θ and the relative scale error
(stereo baseline error) is s. For small errors, the approxi-
mate linear transform between the map Myi

and the height

patch Pyi
(= Zest - hp,yi

) in the XZ-plane is obtained by
Taylor expansion as

Myi

„

x

z

«

≈ Pyi

„»

1 + s ∆θ
−∆θ 1 + s

– »

x

z

–

+

»

dx

dz

–«

= Pyi

„

xp

zp

«

(14)

The equation also considers the error in absolute altitude

Z and the implicit drift in X due to the erroneous assump-

tion on the pitch angle by introducing the unknown trans-

lations dx and dz . Next we sample each cross-section Myi

and Pyi
bilinearly over a grid in the XZ-plane. In order to

compensate for roll errors, we sum over a stripe with the

central NYwidth (=100) cross-sections and denote the sums

M = ΣMyi
and P = ΣPyi

. 1 We minimize the error

function

ǫXZ =

∫

W

[

P

(

xp

zp

)

−M

(

x

z

)]2

ω(x) dx (15)

where the integration domain W is the total XZ-grid. We

expand P and truncate to the linear term. We differentiate

ǫXZ with respect to the unknowns and set the derivatives to

zero. The general entities in (??) for the XZ-plane read

UXZ =









xPx + zPz

zPx − xPz

Px

Pz

















xPx + zPz

zPx − xPz

Px

Pz









T

(16)

vXZ =
[

s ∆θ dx dz

]T
(17)

wXZ =
(

M − P
)









xPx + zPz

zPx − xPz

Px

Pz









(18)

We solve the equation system iteratively and use the es-

timated parameter vector in (??) to transform each cross-

section Pyi
of the height patch and denote this 3D matrix

Pmat(x, y, z).
Alignment in YZ-plane. The alignment in the YZ-plane

is very similar to the alignment in the XZ-plane. What re-
mains to be estimated in the YZ-plane is the roll angle and
the translation drift caused by a roll angle error ∆φ. Con-
sider a cross-section Mxi

of the map for a fixed value xi

along the X-grid. This cross-section is perceived as Pxi
if

the assumption on roll angle is erroneous. Assuming small
errors, an approximate transform between the mapMxi

and
the height patch Pxi

is obtained by Taylor expansion as

Mxi

„

y

z

«

≈ Pxi

„»

1 −∆φ
∆φ 1

– »

y

z

–

+

»

dy

dz

–«

= Pxi

„

yp

zp

«

(19)

1By doing so we assume that the non-overlapping areas are not corre-

lated.



The equation also considers the implicit drift in Y due to

the erroneous roll angle. As before we sample each cross-

section bilinearly over the YZ-grid. We extract the central

NXwidth (=100) cross-sections from the map Pmat(x, y, z)
and define the sums M = ΣMxi

and P = ΣPxi
. We mini-

mize the error function

ǫY Z =

∫

W

[

P

(

yp

zp

)

−M

(

y

z

)]2

ω(x) dx (20)

where the integration domain W is the whole YZ-grid. As-

suming small angles, making a Taylor expansion to the lin-

ear term and differentiating with respect to the unknown

parameters yields the following entities in (??) for the YZ-

plane:

UYZ =





yPz − zPy

Py

Pz









yPz − zPy

Py

Pz





T

(21)

vYZ =
[

∆φ dy dz

]T
(22)

wYZ =
(

M − P
)





yPz − zPy

Py

Pz



 (23)

We use the estimated parameter vector to transform each

cross-section Pxi
of the height patch. We simply take the

maximum value along the Z-direction for each point on the

XY-grid to obtain the 3D transformed height patch hp,est.

Alignment in XY-plane. Finally we run the transformed

height patch hp,est through XY alignment with the map at

fine scale, yielding hp,xyz , to refine the estimates on the X

and Y positions and the heading ψ.

Scales and iterations. The scales and number of max

iterations used in the alignment for each plane are listed in

table ??. A student’s t-test at 95% significance level was

used to deduce that further alignment over the other two

planes (XZ and YZ) did not improve the pose estimates.

Table 1. Scales and max iterations in each plane.

Plane XY XZ YZ XY

Scales 6→1 6→1 4→1 3→1

Max iterations 10 10 8 6

Matching error. To indicate how well the transformed

height patch matches the map, we integrate over the whole

patch area to compute the matching error

ǫXY Z =

∫

W

[

hp,xyz(x) − hm(x)
]2

ω(x) dx (24)

Note that the matching error scales with the absolute height

of the structure.

4. Evaluation

The global pose estimation method has been evaluated

using images from helicopter and aircraft flights. The main

purpose of both flights was to scan an urban area and to

build a textured 3D model. The ground truth for the camera

pose used in the evaluation is the output from the bundle

adjustment step when building the 3D models.

A sequence of 51 helicopter images (50 consecutive im-

age pairs) when flying over a residential area has been used

in the evaluation. The images were taken in March when

there was still some snow on the ground and there were no

leaves on the trees. The aircraft images also consist of in

total 50 image pairs. They are taken from three image se-

quences, one from a downtown area and two from residen-

tial areas. The images were captured in late summer when

the trees were full of leaves. Flight and camera parameters

are listed in table ??. The 3D model used for alignment

in the evaluation was captured in summer time and had a

resolution of 25 cm on the ground.

4.1. Translation vector direction estimate

Assuming that the relative rotation between images is

obtained from the IMU, the translation vector direction was

estimated from corresponding image points as detailed in

section ??. For 75% of the image pairs, the error was less

than 3 mrad and the worst case was around 8 mrad (0.5◦).

In the downtown area all errors were less than 2 mrad. The

error in the direction estimate is mainly in the vertical com-

ponent of the translation vector which is reasonable as the

motion between images is mainly in the ground plane.

4.2. Pose estimate

To evaluate the pose estimation method, we added errors

to the ground truth pose as an initialization and measured

how well these errors could be estimated by our method.

By adding errors to the ground truth we simulate that we

have lost track of the absolute pose and due to drift in the

onboard IMU we only have an approximate pose estimate,

the error being dependent on the time since the last good

pose estimate and the type of IMU. As an example from the

evaluation, we use an image pair from the helicopter flight.

The local height patch computed with MS and the corre-

sponding area from the 3D model are shown in fig. ??. The

Table 2. Parameters for aircraft and helicopter images.

Parameter Aircraft images Helicopter images

Altitude 600 m 200 m

Field of View 38x26◦ 45x64◦

Image size, pixels 5616x3744 3248x4872

Optical axis Vertically down 20◦ left

Resolution on ground 12 cm 6 cm

Size, height patch ∼1250x800 ∼650x800



Figure 2. Local height patch from an image pair (left). Height map from model (middle). Convergence zone for starting position of point

in (left) is marked in map. Local height patch after transformation with estimated pose (right).

query patch is brighter (larger height values) to the left due

to an erroneous initial roll estimate. It is rotated clockwise

due to an error on the yaw estimate and a too long stereo

base assumption makes the houses too large. After pose es-

timation, the local height patch is transformed according to

the estimated parameters and it is now well aligned with the

3D model.

Robustness. An essential property of the pose estima-

tion method is that it is robust and converges for a wide

range of initializations. We compare our method with

Mastin et al. [?] since we have found no other method with

as high registration rates as theirs. We used the same range

of initialization errors as they did, shown in table ??. We

picked independent errors from rectangular distributions for

the different pose parameters. Note that our vehicle yaw (ψ)

corresponds to their camera roll (γ). Their FOV error 0.5◦

corresponds to a scale error around 0.3%. We used ±2%

to add some margin for uncertainty in the vehicle velocity

affecting the stereo baseline and thus the scale.

For each image pair, we randomly selected five initial-

izations and ran our pose estimation method. We thus have

data for 250 initializations for helicopter and aircraft image

pairs respectively. First, we determine the rate of correct

registrations, i.e. if the pose estimate is close to the ground

truth. We do this by analyzing the pose estimation errors

and, as in [?], by visual inspection, i.e. if the 3D model and

the transformed local height patch after the pose estimation

are well aligned. It is very evident if the search method di-

verges and is trapped in a local minimum.

Table 3. Nominal errors used for initializations in evaluation.
Parameter X Y Z scale

Errors ±10m ±10m ±10m ±2%

Parameter ψ θ φ

Errors ±2.5◦
±0.25◦

±0.25◦

Since all 500 image pairs were well registered, we in-

creased the range of all orientation errors (yaw, pitch, roll)

simultaneously by a factor n, (n = 2..9) compared to table

??. The position errors and the scale error had the same

range as before. For each n we evaluated the correct reg-

istration rate for 250 image pair initializations each for he-

licopter and aircraft images. The results are shown in fig.

??(a).

For aircraft images, the correct registration rate is higher

than 99% for n≤6, which means a 6-fold improvement

compared to [?]. Note that the images for both methods

have roughly the same FOV and are captured at similar alti-

tudes. For helicopter images, we have a 3-fold improvement

compared to [?], with a correct registration rate higher than

98.5% for n ≤3. The helicopter images are taken at consid-

erably lower altitude and the footprint on the ground for the

local height patch is roughly 1/2 compared to the aircraft

images.

Next, we evaluate the robustness of the pose estimation

method for initialization errors in the XY position. The ini-
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Figure 3. (a) Correct registration rate vs initialization errors. Re-

sults for n=1 for three methods from Mastin et al. and for our

method with helicopter and aircraft images. (b) XY position esti-

mate error vs XY starting position around ground truth. The cen-

tral white zone is the convergence zone. The bar indicates XY

position error in meters.



tial orientation errors are picked from ranges with a factor

of n=2 compared to table ??. We then varied the starting

position in XY within ±25 meters around the ground truth

over a 5 m grid. For each XY starting position we made 9

runs, randomly selecting the other parameters, and recorded

the median XY position estimate error. Fig. ??(b) shows

that the pose estimation method converges towards the cor-

rect solution within an area that is roughly 30x30 meters

wide (white central area). For starting positions further out,

the method is trapped in a local minimum and results in a

large XY position error. 2 The convergence zone has been

marked in fig. ?? which indicates that the size of the conver-

gence zone is scene dependent. The size agrees well with

the distance between the houses in the height map.

There is a strong correlation between the matching error

(??) and the XY position estimate error. The correlation

coefficient computed over the data points in fig. ??(b) is

ρ=0.87, indicating that the matching error can be used as an

indicator whether a good pose estimate has been obtained.

Accuracy. It is essential to have a robust pose estima-

tion method but for navigation purposes it is of utmost im-

portance also to have accurate unbiased estimates with low

variance. As a measure of the accuracy, we compute the

mean and standard deviation for all pose estimates where

the registrations were classified as correct. We show re-

sults for three cases; when starting in the ground truth pose,

for initialization errors as per table ?? and for n=6, the

largest factor when the correct registration rate was still

above 98.5%. The results when starting at the ground truth

give an indication of the pose estimation errors induced by

the stereo method to compute the local height patch. Results

are shown for aircraft images from the downtown area, fig.

??. Similar results were obtained for aircraft and helicopter

images from the residential areas. Results are presented as

the mean error for each parameter and the error bars indicate

±1σ values.

When starting at the ground truth, the pose estimation

orientation errors are a few mrad, fig. ??(a). Note that a

2.5 mrad pitch error corresponds to a 1.5 m error in x (ve-

hicle forward direction) at 600 m altitude. Similarly, a 1.5

mrad roll error corresponds to a 0.9 m error in y. The small

orientation errors are thus compensated for by translational

XY errors to give a good registration of the local height

patch with the 3D model. The remaining X and Y errors

are within the XY resolution of the 3D model used. The

yaw estimate error is induced by the house boundaries be-

ing less distinct in the local height patch compared with the

3D model. As can be seen in fig. ??, the houses in the local

height patch are also slightly over-sized due to stereo shad-

owing effects at remote house boundaries. This will give a

small bias in the scale estimate and will also affect the Z es-

2The original 3D transformation problem would also be trapped in a

local minimum in these cases.

timate. A 0.19% scale error agrees well with a 1.2 m error

in Z at 600 m. Adding initialization errors as per table ??

and using the translation vector estimates, the yaw and pitch

errors increase slightly, fig. ??(b). As the error on the trans-

lation vector is mainly in the XZ plane, it is natural that the

errors increase in X, Z and pitch. When increasing the ini-

tial orientation errors to a factor n=6, there is no significant

change in the pose estimate error, fig. ??(c). This means

e.g. that a yaw initialization error with σ = 150 mrad has

been reduced to an error with σ = 5 mrad by our method.

Sensor system. We consider our visual method and the

IMU to constitute an onboard sensor system for pose es-

timation. The filtered pose and speed estimates will be

used to initialize the visual method with the global pose

and stereo baseline length (scale). The visual method needs

to support the IMU with global pose estimates frequently

enough to prevent IMU drift to give initializations outside

the convergence zone of the visual method. The support fre-

quency required depends on the type of IMU and the scene

which affects the size of the convergence zone for the visual

method.

A limited amount of outliers in the stereo method will

degrade the pose estimate marginally in our dense match-

ing method. A large amount of stereo outliers is likely to

result in a poor pose estimate, but this will be indicated by

a large matching error. The sensor fusion process taking the

individual pose estimates and their corresponding matching

errors as inputs, to qualitatively evaluate how stereo outliers

affect the filtered pose relative to the convergence zone, is

still to be developed.

Since our visual pose estimation method is based on

alignment with a global reference, pose estimation errors

will not accumulate along the flight path as in SLAM.

Processing time. The processing time for generation of

the local height patch for 16 Mpixel images with a C imple-

mentation of the stereo algorithm is around 1.5 s. The pose

estimation method is a non-optimized Matlab implementa-

tion and takes as an average 13 s for the helicopter images

and 25 s for the aircraft images. All runs were made on a

standard PC, an Intel Xeon CPU x5690 @ 3.47 GHz.

Our processing times compare well with Mastin et al.

who report registration times around 13 s for their dual

method when implemented on a graphics card.

5. Concluding Remarks and Future Work

A method for online global pose estimation of aerial im-

ages by alignment with a georeferenced 3D model is pre-

sented. Motion stereo is used to reconstruct a dense local

height patch from an image pair. The global pose is inferred

from the 3D transform between the local height patch and

the model. For efficiency, the sought 3D similarity trans-

form is found by least-squares minimizations of three 2D

subproblems. The method does not require any reference
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Figure 4. Estimated pose errors averaged over image sequence for aircraft images taken at 600 m altitude. Bars indicate ±1σ. Initialization

errors: (a) no errors, (b) n=1, (c) n=6.

points in the 3D model, but an approximate initialization of

the global pose, in our case provided by an onboard IMU,

is assumed. Real aerial images from helicopter and aircraft

flights are used to evaluate the method. The results show

that the accuracy of the position and orientation estimates

is significantly improved compared to the initialization and

our method is more robust than competing methods on sim-

ilar datasets. The proposed matching error computed be-

tween the transformed patch and the map clearly indicates

whether a reliable pose estimate has been obtained.

Experience from runs in different urban areas motivates

future work on the matching error. Especially if there

are repetitive height structures in the environment, local

minima may give low matching errors as well. The absolute

values for the matching error for a good estimate may be

substantially higher in an area where there are mainly taller

buildings. The matching error must thus be related to the

local height structure in the map. Depending on the season,

vegetation may look very different in a height map. Pose

estimates may improve if vegetation areas are segmented in

the map and given low weight in the alignment process.
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