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Abstract. We investigate the effects of magnetic energy release by local magnetic dissipation processes in Poynting flux-
powered GRBs. For typical GRB parameters (energy and baryon loading) the dissipation takes place mainly outside the pho-
tosphere, producing non-thermal radiation. This process converts the total burst energy into prompt radiation at an efficiency
of 10–50%. At the same time the dissipation has the effect of accelerating the flow to a large Lorentz factor. For higher baryon
loading, the dissipation takes place mostly inside the photosphere, the efficiency of conversion of magnetic energy into radia-
tion is lower, and an X-ray flash results instead of a GRB. We demonstrate these effects with numerical one-dimensional steady
relativistic MHD calculations.
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1. Introduction

High luminosity outflows from γ-ray bursts (GRBs) must have
large Lorentz factor to overcome the compactness problem
(Piran e.g. 1999). To fulfil this requirement the mass load-
ing can only be small so that the total energy density exceeds
greatly the rest mass energy density. Poynting flux can carry
large energy amounts through vacuum which provides a mech-
anism to transport energy without the need of matter. The re-
lease of electromagnetic energy by the central engine of a GRB
is part of many models. E.g. tori in merger scenarios may by
highly magnetised due to the field amplification by the differ-
ential rotation (Narayan et al. 1992; Thompson 1994; Mészáros
& Rees 1997; Katz 1997). Alternative models involve highly
magnetised millisecond pulsars (Usov 1992; Spruit 1999). In
all cases the rotational energy of a compact object will be
tapped and the rotating magnetic field produces a Poynting
flux.

While Poynting flux is thus a plausible way of powering a
GRB, it is not a priori clear how this energy flux is converted
into the observed γ-rays. To accelerate the matter to the ob-
served high Lorentz factors, a part of the Poynting flux must
be converted into kinetic energy. This energy later powers the
afterglow when it is released in an external shock. Since the
prompt emission in most cases accounts for the bulk of the ob-
served radiation, a mechanism is needed to efficiently convert
a magnetic energy flux into non-thermal radiation.

For the acceleration of the flow one can think of mag-
netocentrifugal effects. But trying to explaining the flow
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acceleration by stationary ideal MHD processes is problematic.
For the purely radial magnetically driven stellar wind (mod-
elled originally by Weber & Davis 1967; Mestel 1968) the ra-
dial gradient of the magnetic pressure and the inward pointing
magnetic tension force act against each other. Especially in the
case where the flow is relativistic from the beginning there is
a balance between these forces so that such purely radial flows
are not accelerating. However, an acceleration takes place if
the flow lines diverges faster with radius than in the radial case
beyond the fast critical point. The tension and pressure gradi-
ent forces are out of balance and Poynting flux to kinetic en-
ergy flux conversion occurs (Begelman & Li 1994; Daigne &
Drenkhahn 2002). A magnetic acceleration model which uses
only ideal MHD thus has to provide just the right flow diver-
gence for acceleration to take place. As we show in this paper, a
better alternative is a flow in which part of the magnetic energy
density is dissipated locally. The decrease of magnetic energy
density with distance in such a model causes effective acceler-
ation (Lyubarsky & Kirk 2001; Drenkhahn 2002), while at the
same time providing an efficient energy source for the observed
γ-rays.

The currently most accepted model explaining the high en-
ergy prompt emission of GRBs is the internal shock model
(Rees & Mészáros 1992, 1994; Sari & Piran 1997). Variations
of the central engine luminosity produces flow shells with dif-
ferent Lorentz factors which collide. Through these collisions
a part of the kinetic energy is transfered into prompt radia-
tion. The energy conversion is only efficient if the spread in
Lorentz factors is large (Kumar 1999; Panaitescu et al. 1999;
Beloborodov 2000; Kobayashi & Sari 2001). The observed ra-
tio of afterglow and prompt emission indicates a high efficiency
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of energy conversion into prompt emission. While this obser-
vation does not rule out the internal shock model, it does put
strong constraints on it.

If one allows for non-ideal MHD processes magnetic en-
ergy can be transfered to the matter by dissipation through re-
connection. For this to happen, there must be small scale vari-
ations in the magnetic field. The energy that is released by
washing out these variations can be converted into radiation.
We call this the “free magnetic energy” in the flow. An exam-
ple of such small scale variations would be the “striped” wind
(Coroniti 1990) that results from the rotation of an inclined
magnetic dipole. The distance between neighbouring stripes of
different field direction in this case is πv/Ω, where v is the out-
flow speed and Ω is the dipole’s angular frequency. This scale
is of the order of the size of the central engine (assumed to be
a relativistic object). In general, all non-axisymmetric compo-
nents of the magnetic field of the central engine produce such
variations. If the magnetic configuration is predominantly non-
axisymmetric, almost all of the Poynting flux is in the form of
a field that changes sign on such a small length scale. This is
the model we will use for the quantitative calculations below.
We note, however, that even an axisymmetric rotating field can
in principle produce small length scales. The outflow near the
axis of an axisymmetric MHD flow is spiral-like. This config-
uration is kink unstable so that field components can reconnect
across the rotation axis. For a discussion of this point see Spruit
et al. (2001), hereafter Paper I. As we showed in Drenkhahn
(2002) (Paper II from here on), such kink-produced irregulari-
ties are somewhat less efficient at converting magnetic energy.
Since perfect axisymmetry is a special case we regard the non-
axisymmetric case in this study.

Fast reconnection leads to a decay of the magnetic field.
The flow accelerates since the field decay induces an additional
outward gradient in the magnetic pressure. In Paper II we ex-
plored the dynamical effects of the Poynting flux dissipation in
the outflow. We found there that for fiducial GRB parameters a
large amount of the Poynting flux energy is converted to kinetic
energy. Also, a great part of the dissipation happens in the op-
tically thin region so that a potentially large fraction could be
converted into non-thermal, prompt radiation. This model of-
fers an alternative to the internal shock model in explaining the
prompt emission by local dissipation of free magnetic energy.

The results presented in Paper II were based on an analytic
approximation for the flow. In the present paper, we relax this
approximation, and analyse a Poynting flux powered wind nu-
merically. The results confirm the main results from the analyt-
ical study, but in addition allow us to determine which fractions
of the Poynting flux are converted into thermal and non-thermal
radiation. In this way, we can also determine the conditions un-
der which a true GRB, as opposed to an “X-ray flash” (Heise
et al. 2001; Heise & in ’t Zand 2002) is produced by a magnet-
ically powered outflow.

2. The model

We consider a radial outflow of magnetised plasma with the
magnetic field being aligned transversal to the flow direction.
The field contains small scale variations in direction from

which energy is released. We parameterise the variation by in-
troducing a variation length scale λ ≈ 2πc/Ω on which the
direction of the field changes. Field variations in the outflow
are naturally produced by any non-axisymmetric component of
a rotating magnetic field.

The rate of magnetic energy dissipation is governed by
the reconnection rate between neighbouring regions of differ-
ent field line direction. For highly symmetric initial condi-
tions, the initial reconnection process is sensitive to the mi-
croscopic diffusion rate, but this situation is rarely relevant
in astrophysics. Instead, the field reconnects by “rapid recon-
nection” processes, in which the reconnection speed depends
only logarithmically on the microscopic transport coefficients
(Petschek 1964; Parker 1979; Priest & Forbes 2000). Since the
reconnection rate is an important factor influencing the results,
we keep track of its effect by a parameter study. For this pur-
pose we write the reconnection time scale τco across the vari-
ation length scale λco as τco = λco/vr, where the reconnection
speed vr is the velocity at which field lines of different direc-
tions are brought together by the dynamics of the reconnection
process. We regard this process in the comoving frame moving
with the bulk large-scale flow. The speed vr is known to scale
with the Alfvén speed vA, i.e. vr = εvA where ε is a numerical
factor <1. For rapid reconnection in 2 dimensions, for exam-
ple, numerical results (e.g. Biskamp 1986) show that ε can be
of the order 0.1. Since we do not know the density of reconnec-
tion centres the overall rate of field dissipation is still unknown.
By adjusting the parameter ε towards lower values we compen-
sate for this ignorance. Thus, we take ε as a measure for both,
the reconnection speed and the density of reconnection centres.

As a second parameter of less importance, we introduce the
fraction µ2 of the magnetic energy density that cannot be dis-
sipated by local reconnection. If the field is the result of the
winding-up of a completely non-axisymmetric field (i.e. with
vanishing azimuthal average), the direction of the field lines
changes completely over one variation length, and we have
µ = 0. If, on the other hand, the axisymmetric component does
not vanish, we have µ = B⇑/B, where B⇑ and B are the am-
plitudes of the axisymmetric component and the total field. In
most of our study, we will assume that the Poynting flux decays
completely which correspond to µ = 0.

The released magnetic energy is converted into thermal and
kinetic energy. The direct conversion into kinetic energy is pos-
sible because the field dissipation induces an additional out-
ward gradient in the magnetic pressure. So even if there is no
thermal pressure gradient (as in the cold approximation used
in Paper II) part of the released energy accelerates the flow
directly.

Though small scale structures in the flow are an essential
part of the model, we will only work with quantities which are
averaged over these small scales. One can consider the flow to
be stationary on large length scales so that we can do a time in-
dependent calculation to obtain general results. The adjustable
variable ε accounts for the unknown processes on small scales
and includes effects introduced by the averaging.

The dissipated magnetic energy initially takes the form of
internal (thermal) energy of the gas. If the cooling time is long
compared with the expansion time scale of the flow, the energy
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is mostly converted to kinetic energy, through adiabatic expan-
sion. This is the case in the optically thick part of a GRB flow,
inside its photosphere. The small fraction of the thermal energy
that remains when the flow passes through the photosphere then
shows up as thermal radiation emitted at the photosphere. In the
optically thin parts of the flow, the radiative cooling times are
typically quite short compared with the expansion time scale
as will be shown in Sect. 2.6. The medium stays cold, and all
thermal energy gets quickly converted into radiation. We as-
sume the radiation processes to be similar to those invoked in
the internal shock model, so that the radiation is non-thermal.
Thus, we can only estimate the spectrum of the (small) part that
is emitted as thermal radiation at the photosphere. We are able
to calculate the total amount of non-thermal radiation, however,
since this only depends on the rate of magnetic dissipation.

We make a two-zone approach with respect to the optical
thickness to simplify the treatment. The flow is optically thick
up to the photosphere and matter and radiation are treated as
one fluid in permanent thermal equilibrium. At the photosphere
the internal energy carried by the radiation decouples from the
matter and escapes as black-body radiation. From the photo-
sphere on, part of the Poynting flux produces non-thermal ra-
diation through the magnetic dissipation process, while the rest
still accelerates the flow.

2.1. Evolution of the magnetic field

We model the evolution of the magnetic field B in a Poynting
flux dominated outflow by a dissipation time scale τ which de-
pends on the Alfvén speed and a typical length scale of the
field geometry considered. The motivation and detailed deriva-
tion for this approach is given in Paper II. Since the dissipation
time scale τ depends on the local Alfvén speed in the flow it
is a function of the proper mass density ρ, the proper internal
energy e, the absolute value of the radial bulk 4-velocity u and
the magnetic field strength B: τ = τ(ρ, e, u, B). We consider
all thermodynamic quantities ρ, e, . . . in the comoving frame
while all other quantities B, u, τ, . . . refer to the lab frame, the
frame in which the central engine rests. We use the notation
Γ =

√
1 + u2 for the bulk Lorentz factor of the outflow and

β = u/Γ for the bulk velocity in units of the speed of light c.
The flow is assumed to be purely radial, and we are con-

sidering distances from the central engine that are sufficiently
far from the Alfvén radius. Thus any centrifugal acceleration of
the flow has already taken place, and the dominant field com-
ponent is Bφ ≡ B � Br, Bθ. Without internal dissipation, the
induction equation would thus yield ∂rβrB = 0. The evolution
equation for the magnetic field including dissipation is equal
to the induction equation for ideal MHD but with an additional
source term

∂rβrB = − rB
cτ

1 − µ2 (βrB)2
0

(βrB)2

 · (1)

The index 0 denotes quantities at some initial radius r0 where
the dissipation starts. The constant µ stands for the ratio be-
tween the magnetic field component which cannot dissipate
(described by the ideal MHD induction equation) and the to-
tal field strength at r = r0. Speaking in terms of Poynting flux

this means that µ2 is (almost) equal to the Poynting flux frac-
tion which does not dissipate. µ = 0 corresponds to a complete
decay of the magnetic field while µ = 1 means no dissipation
at all.

We derived the functional form of the dissipation time scale
τ in Paper II:

τ =
2πΓ2

εΩ

√
1 + u−2

A (2)

where

uA =
Bco√
4πw

=
B√

4πΓ2w
(3)

is the Alfvén 4-velocity in the comoving frame and w is the
proper enthalpy density. In regions where the magnetic energy
density dominates over the matter energy density the Alfvén
velocity is near the speed of light so that the square root in (2)
is close to 1. This approximation was used in Paper II to obtain
analytical results. In the present numerical study this approxi-
mation is not made.

2.2. Poynting flux and baryon loading

A very important parameter of our model is the ratio between
Poynting flux and kinetic energy flux at the initial radius r0

which we denote by

σ0 =
Lpf,0

Lkin,0
=
β0r2

0 B2
0

4πΓ0Ṁc
(4)

where Ṁ is the mass flux per sterad. The outflows of interest
for us are Poynting flux dominated so that σ0 � 1. The initial
Poynting flux ratio controls not only the initial velocity but also
the final velocity of the flow as explained below.

How the flow is accelerated from very low velocities near
the source is not possible to calculate with the approach pre-
sented since the azimuthal velocity and the radial field compo-
nents cannot be neglected there. We assume that magnetocen-
trifugal acceleration mechanisms work there accelerating the
flow up to the fast magnetosonic speed as it is the case in stel-
lar winds. For relativistic Poynting flux dominated winds we
know that the typical length scale for this acceleration is on
the order of the Alfvén radius which is in size similar to the
light radius. If the amount of initially injected thermal energy
is small (not much larger than the rest mass energy) it is con-
verted quickly into kinetic energy so that we can treat the flow
to be cold again at a few light radii. In the cold limit the fast
magnetosonic speed equals the Alfvén speed. The Alfvén 4-
velocity is a function of the initial Poynting flux ratio σ0 only
at r = r0: uA,0 =

√
σ0 (Paper II). We now take this value as ini-

tial 4-velocity for our numerical calculations u0 =
√
σ0 which

start at r0 ≈ a few × c/Ω.
In other GRB studies the baryon loading (mass flux) Ṁ

and the total energy flux L determine the Lorentz factor by
Γ = L/(Ṁc2). It is often assumed that all the available energy is
converted into kinetic energy at first. Under the same assump-
tion we showed in Paper II that the final Lorentz factor of a

dissipating Poynting flux outflow is Γ∞ =
√

1 + σ3
0 ≈ σ3/2

0 .
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Hence, the baryon loading Ṁ is determined from the total en-
ergy flux L and the Poynting flux ratio σ0 by Ṁ = σ−3/2

0 L/c2.
It is a matter of taste weather one describes an outflow by L, Ṁ
or L, σ0 but we use the latter to keep the notation of Paper II.

2.3. The role of electric fields in the flow

In our present study we use the dynamic equations for ideal
MHD flows and have to make sure that the ideal MHD approx-
imation is applicable. In ideal MHD, the electric field vanishes
in the frame moving with the fluid. But a non-vanishing co-
moving electric field must exist near the reconnection centres
for field annihilation to take place. We assume that the spatial
regions occupied by a non-vanishing electric field are small and
only restricted to the reconnection centres. Then we can neglect
its influence on the dynamic equations on larger scales (see
Sect. 2.4). But still, the field dissipation produces an extra mag-
netic field gradient also on large scales resulting in ∇2B , 0 in
the lab frame. We show in this section how the large scale elec-
tric field can be estimated and that it deviates only by a small
component δE from the electric field of ideal MHD. This com-
ponent can be neglected in the numerical calculations.

The following calculations are done in the lab frame for
quantities which vary only on large length scales. We start with
the induction equation with non-vanishing conductivity σc:

∂tB = curl (u × B) +
c2

4πσc
∇2B . (5)

Ohm’s law reads

j = σc (E + β × B) = σc · δE (6)

so that one can substitute σc by | j|/|δE| in the stationary (∂tB =
0) induction Eq. (5):

curl (u × B) = − c2

4π
|δE|
| j| ∇

2B. (7)

Using the stationary form of Ampère’s law j = c ·curlB/(4π) to
eliminate j and solving (7) for |δE| gives |δE| as function of u
and B only:

|δE| = |curlB| |curl (u × B)|
c|∇2B| · (8)

In spherical coordinates and for a radial flow where u ⊥ B this
reads

δE =

∣∣∣∣∣∣
(∂rrB)(∂rrβB)

r∂2
r (rB)

∣∣∣∣∣∣ · (9)

As fraction of the ideal MHD electric field Emhd = βB that is

δE
βB
=

∣∣∣∣∣ ∂r ln |rβB|
∂r ln |∂rrB|

∣∣∣∣∣ · (10)

This expression is a function of r, β, B and can be calculated
numerically. δE/(βB) takes its maximum at radii where the dis-
sipation ceases where it can be of the order 0.1 depending on
the chosen input parameters. For the largest part of the flow
δE/(βB)� 1 so that the use of the ideal MHD equation for the
evolution of the field is justified. The effect of small scale re-
connection processes is instead taken into account by the decay
term in (1).

2.4. Dynamic equations

The conservation equations for mass, energy, momentum to-
gether with Eq. (1) describing the evolution of the magnetic
field determine the proper mass density ρ, the proper internal
energy density (excluding the rest mass energy density) e, the
radial 4-velocity u and the magnetic field strength B as func-
tions of radius. In our model the mass, energy, and momentum
equations read

∂rr2ρu = 0 , (11)

∂rr
2

(
wΓu +

βB2

4π

)
= 0 , (12)

∂rr2

(
wu2 + p +

(
1 + β2

) B2

8π

)
= 2rp (13)

(cf. Königl & Granot 2002; Lyutikov 2001). The variable w
denotes the proper enthalpy density w = ρc2 + e+ p where p is
the thermal pressure. The thermodynamic quantities ρ, e, p, w
are defined in the comoving frame. We assume the gas (fully
ionised hydrogen) to be ideal with negligible heat conduction
and an equation of state p = (γ − 1)e (and w = γe) where γ is
the adiabatic index.

The continuity and energy Eqs. (11), (12) are integrated to
give the total mass loss per time and per sterad

Ṁ = r2uρc (14)

and the total luminosity per sterad

L =
w

ρc2
ΓṀc2 + βc

(rB)2

4π
(15)

where one identifies the kinetic energy flux per sterad Lmat =

w/(ρc2)ΓṀc2 and the Poynting luminosity per sterad Lpf =

βc(rB)2/(4π).

2.5. Below and beyond the photosphere

As long as the medium is optically thick, matter and radiation
can be considered to be in thermal equilibrium. In this case,
e includes both the thermal particle energy and the radiation
field energy. The pressure is dominated by the radiation so that
the adiabatic index is γ = 4/3. At the photosphere radius rph,
where the outflowing material becomes optically thin, the ra-
diation decouples from the matter and escapes as black body
radiation. The pressure and internal energy at radii r > rph is
only provided by the matter.

The transition from optically thick to optically thin condi-
tions is sharp, in practical flow models, and we simplify the
computations here by treating it as a discontinuity. Its location
is in principle found by integrating the optical depth into the
flow. As in stellar atmospheres and winds, a fair approximation
for its location is the point where the mean free path of a photon
equals the density scale height. In our case, this is of the order
of the distance r from the source. At the photospheric tempera-
tures encountered (a few keV) the dominant opacity is electron
scattering. Taking into account the Lorentz transformation of
the mean free path to the rest frame, the photospheric radius is
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thus given by rph = Γ/(κThρ) where κTh is the Thomson scatter-
ing opacity and ρ the density in the comoving frame.

For r > rph the thermal pressure is only supplied by the
plasma and the adiabatic index γ depends on the temperature.
For non-relativistic temperature kT � mec2 we have γ = 5/3
but for hotter medium the electrons become relativistic which
lowers γ. Since fast radiative cooling is a model assumption the
matter in the optically thin part stays cold enough so that γ =
5/3 is valid there. The validity is checked during the numerical
computations.

2.6. Radiative loss

In the optically thin regime energy and momentum from the
dissipating magnetic field is transfered into radiative form. The
radiation escapes and does not interact with the matter. Let Λ
be the emissivity of the medium in the comoving frame, that
is the energy which is radiated away per unit time and per unit
volume. If the emission is isotropic in the comoving frame the
energy and momentum Eqs. (12), (13) including the radiative
loss terms are

∂rr2

(
wΓu +

βB2

4π

)
= −r2Γ

Λ

c
, (16)

∂rr
2
(
wu2 + p +

(
1 + β2

) B2

8π

)
= 2rp − r2u

Λ

c
(17)

(Granot & Königl 2001).
The importance of the cooling term depends on the cool-

ing time scale. If it is short, the matter stays cold (gas pressure
negligible) during the dissipation process. In this limit, all the
dissipated energy is locally radiated away. Synchrotron emis-
sion is a plausible fast cooling process. It is particularly effec-
tive in our model, because the magnetic field strengths are high
in a Poynting flux dominated outflow. With (30) one derives a
typical field strength

B <∼ 7 × 107 G · L1/2
50 r−1

13 . (18)

In the comoving frame this is

Bco,3 <∼ 7 × 102 · L1/2
50 r−1

13 Γ
−1
2 . (19)

The distance travelled by the medium in one cooling time in
the lab frame is rcool = ctsynΓ. The synchrotron cooling time
scale in the comoving frame is tsyn = 6 s · Γ−1

e,2B−2
co,3 (Daigne

& Mochkovitch 1998) where Γe = 100 Γe,2 is the Lorentz fac-
tor of the radiating fast electrons and Bco = 1000 G · Bco,3 is
the comoving magnetic field strength. In units of the expansion
length scale of the flow, r, the cooling time is

rcool

r
≈ 4 × 10−6 · r13L−1

50Γ
3
2Γ
−1
e,2 � 1 . (20)

This shows that synchrotron cooling is fast for these fiducial
parameters. Though the simplifying assumption of fast cooling
in the optically thin regime is thus justified, we have kept an
ad hoc cooling term in the calculations to ease the numerical
treatment.

The form of this cooling term used is

Λ = k
ecu
r

(21)

where k is an adjustable cooling length parameter. The cooling
length is the distance by which the matter travels outward while
the internal energy e is lost. We have used k = 104 so that
the cooling length is the distance 10−4 r. This is only a small
fraction of the expansion length scale r and thus qualifies for
the description of a fast cooling flow.

Because of the fast cooling the temperature is always very
low (kT � mec2) and the equation of state of the gas is that of
a non-relativistic fully ionised gas, γ = 5/3 for r > rph.

2.7. Computational method

We choose

q =



r2ρc2

r2e
u
rB√
4π

 (22)

to be the vector of primitive variables. There are no principle
reasons against taking e.g. (ρ, e, u, B) instead but the use of (22)
simplifies the following analytical expressions a bit. The set of
Eqs. (11), (16), (17), (1) can be written in matrix form

A · ∂rq = s (23)

with the matrix

A =


u 0

uΓ γuΓ
u2 γΓ2 − 1
0 0

· · ·

· · ·

r2ρc2 0

r2wΓ
(
1 + β2

)
+ Γ−3

(
rB√
4π

)2
2β rB√

4π

2r2wu + β
Γ3

(rB)2

4π

(
1 + β2

)
rB√
4π

rB√
4π
Γ−3 β


(24)

and the source term vector

s =



0
−r2Γ

γΛ
c

2r(γ − 1)e − r2u γΛc
− 1

cτ
rB√
4π

[
1 − µ2 (βrB)2

0

(βrB)2

]


. (25)

The elements ofA and s are functions of r, q and the constant
model parameters σ0, µ, εΩ, r0. For the cooling term Λ we use
the expression

Λ =

{
0 for r ≤ rph

104 ecu/r for r > rph
, (26)

the dissipation time scale (2), and the adiabatic index

γ =

{
4/3 for r ≤ rph

5/3 for r > rph
. (27)
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2.7.1. Boundary conditions and solution process

To initialise the solver at the initial radius r0 we need to deter-
mine the vector of primitive variables q0 = q(r0). The flow
starts with Alfvén velocity q0,3 = u0 =

√
σ0 and is cold

q0,2 = r2
0e0 = 0. By solving (4), (14), (15) for Ṁ we obtain

r2ρuc = Ṁ =
L

c2 (σ0 + 1)3/2
(28)

and thus

q0,1 = r2
0ρ0c2 =

L/c√
σ0 (σ0 + 1)3/2

· (29)

These three equations can also be solved for r0B0 to give finally

q0,4 =
r0B0

4π
=

(
σ0

σ0 + 1

)1/4
√

L
c
· (30)

The initial vector depends only on the initial radius, the initial
Poynting flux ratio and the total luminosity: q0 = q(r0;σ0, L).
The value of r0 is unimportant for the flow at larger radii
(Paper II) and we set r0 = 3 × 107 cm for all our calcu-
lations without introducing an additional restriction. In to-
tal the model’s input parameter space is effectively made up
of σ0, L, µ, εΩ.

Equation (23) is an ordinary differential equation and can
be solved numerically with common software packages. The
integration proceeds stepwise from r = r0 until the photosphere
is reached, where the mean free path for the photons is equal
to the radius r. The photosphere must be treated in a special
way because it is a discontinuity where the radiation decouples
from the matter part.

2.7.2. Transition at the photosphere of the flow

At the photosphere, the equation of state changes from one
dominated by radiation to one dominated by the gas pressure.
To connect the two, the radiation emitted at the photosphere has
to be taken into account. The amount of energy involved can be
substantial, and appears as an (approximate) black body com-
ponent in the GRB spectrum. It depends on the temperature of
the photosphere.

The temperature at the photosphere is kT � mec2 for all
used parameter values so that pairs can be neglected. The pho-
tosphere is then simply determined by

Γ

rρκTh

∣∣∣∣∣
rph

= 1. (31)

At the photosphere one has to subtract the energy and mo-
mentum which is carried away by the decoupled radiation.
To calculate these quantities one needs the temperature at the
photosphere.

The dimensionless temperature θ = kT/(mec2) in the opti-
cally thick region is given by the solution of

e = 3
me

mp
ρc2θ +

π2

15
mec2

–λ3
e
θ4 (32)

where –λe is the electron Compton wave length.

At the photosphere we calculate the temperature θph and
subtract the radiation energy density of a black body

ebb =
π2

15
mec2

–λ3
e
θ4ph (33)

from the total energy density: e ≡ e − ebb. The integration pro-
ceeds with an adiabatic index of γ = 5/3. The temperature θph

is the temperature of the emitted black-body radiation which
has a luminosity per sterad of

Lbb =

{
0 for r < rph

r2
ph

4
3 ebbuphΓphc for r ≥ rph

. (34)

The integration continuous until the dissipation ceases. There,
the luminosity of emitted non-thermal radiation is determined
by

Lnt = L − Lpf − Lmat − Lbb . (35)

2.7.3. Modifications to the black-body radiation

We have assumed in the above that the radiation emitted at the
photosphere is perfect black body radiation which means that
the photons are created at the photosphere. But if scattering
dominates (scattering coefficient is of the same order or greater
than absorption coefficient) the photons from the photosphere
are produced at smaller radii (and at different temperatures) and
undergo many scatterings until they escape to infinity.

The number density of the photons is determined at the ra-
dius where they are created. The relevant creation processes
are free-free and Synchrotron emission. Depending on the de-
gree of Comptonisation the emergent photon spectrum will be a
modified black body or a Wien spectrum (Rybicki & Lightman
1979). The typical photon energy is then given to the photons
by Comptonisation at some radius larger than the creation ra-
dius but smaller than the photospheric radius. We thus have
three characteristic radii for the radiation process: the photon
creation radius where the number density is determined, the
Comptonisation radius determining the typical photon energy
and the photosphere radius where the radiation decouples from
the matter.

We can speculate about the spectrum of the emergent radia-
tion if scattering processes are included. In thermal equilibrium
the radiative pressure-temperature relation reads p ∝ T 4. But if
the photon number does not depend on temperature any more
the relation changes to p ∝ T leading to an increase in tem-
perature (similar to the one seen at the photosphere in Fig. 1c).
The photon production rate also rises until some equilibrium
temperature is reached. Thus radiation and temperature can-
not be determined independently. Compared to the black body
temperatures at the photosphere as used in the model presented
the real temperatures may thus be somewhat higher. The num-
ber of photons might be less since they originate from a smaller
area. Because the absorption and emission processes are highly
frequency dependent photons of different energy might not be
produced at the same radius and with the same bulk Lorentz
factor. This could lead to a broader spectrum though reprocess-
ing by Comptonisation may also play a role.
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A detailed modelling of the emergent radiation at the pho-
tosphere requires a consistent but rather complicated extension
of the model presented here. We have to assume that the sim-
plified black body treatment at least give reasonable estimates
for the total energy though the spectral shape might differ in
reality. The task to determine the spectrum must be postponed
to a more detailed investigation in the future.

2.7.4. Another transition radius

The rate of dissipation of the magnetic free energy starts out
fast, but as the field strength decreases it become slower than
the expansion time scale. There is thus a characteristic radius,
which we call here the saturation radius rsr, beyond which
magnetic dissipation effectively stops. Since the acceleration
of the flow is intimately connected with the dissipation, this is
also the radius where the flow reaches its terminal speed. In
Paper II we have shown that rsr is of the order

rsr =
πcΓ2∞
3εΩ

· (36)

while the terminal Lorentz factor Γ∞ is of the order

Γ∞ =
(
1 − µ2

)
σ3/2

0 . (37)

A simple approximation for the dependence of the Lorentz fac-
tor on distance then turns out to be

Γ =

{
Γ∞ (r/rsr)1/3 for r ≤ rsr

Γ∞ for r > rsr
. (38)

2.7.5. Solution examples

As an example, Fig. 1 shows the result of a numerical integra-
tion. The result can be compared with the analytical approxi-
mation derived in Paper II. The analytic estimate gives a fair
representation of the full results, though it overestimates the
terminal Lorentz factor somewhat.

The luminosity carried by the medium Lmat = w/(ρc2)ΓṀc2

is made up of the kinetic Lkin = ΓṀc2 and the thermal part
Lth = (w/(ρc2) − 1)ΓṀc2. The fact that the fluid is dominated
by the pressure and energy density of the radiation in the opti-
cally thick region can be seen at the photosphere. Figure 1c dis-
plays that a major part of the thermal energy flux Lth is made up
from the radiation component which is released as black body
radiation at the photosphere. This explains why the thermal en-
ergy flux Lth in Fig. 1b nearly coincides with the black body
luminosity Lbb.

Outside the photosphere Γ (and therefore Lkin) becomes
smaller than the analytical estimate. The non-thermal radia-
tion flux component Lnt rises quickly and the dissipated energy
is efficiently converted into radiation. The fractions of the to-
tal luminosity converted to kinetic, thermal, and non-thermal
energy in this example are 54%, 5%, and 41%, respectively.
This demonstrates the high efficiency of the magnetic dissi-
pation process in accelerating the flow and the production of
non-thermal radiation.

In Paper II we neglected the thermal pressure and one could
argue that the acceleration obtained in the present study should

Fig. 1. Solution for L = 1050 erg s−1 sterad−1, σ0 = 100 (correspond-
ing to an initial Lorentz factor of 10), εΩ = 103 s−1, µ = 0. The
vertical dotted line indicates the photosphere radius. a) Lorentz fac-
tor where the dotted line represents the analytical approximation de-
rived in Paper II. b) Various energy fluxes per sterad as labelled in the
legend. Indices denote the Poynting flux (pf), kinetic, thermal, black-
body (bb) and non-thermal (nt) components. c) Normalised tempera-
ture θ = kT/(mec2). The matter is rather cold and pairs do not play a
role since θ � 1. The temperature jump at the photosphere is no real
discontinuity but rather a rapid but steady change. This is the result of
the abrupt change in the equation of state from a radiation dominated
to a matter dominated fluid. d) Ratio between the thermal pressure
gradient and the magnetic force density in the flow. The acceleration
is completely determined by the magnetic field at all radii.

be somewhat greater due to the additional effects of the finite
thermal pressure gradient of the matter and radiation compo-
nent. To compare the magnetic and thermal contribution to the
acceleration we regard the momentum Eq. (13) which reads in
non-conservative form

1
r2
∂rr2wu2 + ∂r p =

1
c

( j × B)r =
∂r(rB)2

8πr2
· (39)

The ratio between the thermal pressure gradient ∂r p and the
magnetic force density

[
∂r(rB)2

]
/
(
8πr2

)
is plotted in Fig. 1d

for our chosen example parameter set. At the photosphere the
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ratio decreases since the radiation component drops out. But
even if radiation is included the total thermal pressure gradi-
ent is not important compared to the magnetic force density
which determines the dynamics of the flow. Thus the radiation
pressure can be neglected above the photosphere without influ-
encing the dynamics of the flow.

3. Shortest time scales

Though the model presented here is stationary and thus does
not describe the variability of GRBs, we can check whether the
physical model on which it is based is compatible with the ob-
served millisecond variations. If the outflow contains inhomo-
geneities, say, regions where the reconnection proceeds faster
or unsteady the flow will show more ore less bright patches.
In this section we show that the emission time of these patches
will be short enough for GRBs.

The time it takes for the magnetic field to dissipate sets
the limit for the shortest emission duration of a single patch
in the flow. The time interval dt = dr/c in which a flow ele-
ment moves outward by dr is Doppler boosted to the observed
time interval dtobs = (1 − β) dt ≈ dr/(2cΓ2). Let us assume that
the more inhomogeneous flow can still be described approxi-
mately by the stationary solution. Using (38) and integrating
the observed time from r = 0 . . . rsr gives

tobs =
π

2εΩ
= 1.6 × 10−3 s · (ε−1Ω4)−1 . (40)

If the flow consists of shells with differently strong or fast re-
connection/emission it can produce observable variations on
time scales of the order of milliseconds.

To see if small patches can contribute a significant variabil-
ity, we note that their lateral size (perpendicular to the flow)
is likely to be of the same order as λ = 2πc/Ω. This is the
typical size of the small scale field inhomogeneities and the re-
connection centres. Due to the short cooling time the emitted
radiation originates from close to the reconnection centres so
that λ is also the lateral size of the bright patches. The overall
expansion in the flow does not change the size of the patches
if the expansion speed in the comoving frame is always small
compared to the Alfvén speed ≈c which is the typical speed
with which the magnetic field can reorganise itself. This is the
case for λ < r/Γ being always true at the radii of interest.
Thus these patches will stay of the same size λ = const. and
do not scale with radius. λ is quite small compared with the
radius of the photosphere. The solid angle from which the ob-
served radiation is emitted is of the order 1/Γ2. Hence there are
n = (r/λΓ)2 = 3 × 1011 · Ω2

4Γ
−2
2 r2

13 reconnection patches con-
tributing at any moment to the observed radiation, and the max-
imum variability amplitude expected is thus

√
n/n ≈ 2 × 10−6.

The observed time scales are not produced locally in the flow
but must be due to a variability of the central engine.

4. Parameter study

The parameters of the model are the initial Poynting flux to
kinetic energy flux ratio σ0, the total luminosity per sterad L,
the fraction of non-dissipatable magnetic field µ, and the mea-
sure for the reconnection rate εΩ. In this section we explore

Fig. 2. Some physical quantities at the photosphere of the flow as func-
tion of the initial Poynting flux ratio σ0 for different values of the total
luminosity per sterad. The values εΩ = 10−3 s−1, µ = 0 where used.
a) Temperature in the comoving frame. b) Lorentz factor at the pho-
tosphere. c) Radius of the photosphere. Straight lines in panel b)+c)
at 200 < σ0 < 1000 indicate the analytical solutions from (41), (42).
Thick dots correspond to σ0 = σ0,br defined in (43).

the dependence of the solutions on these parameters, by plot-
ting values of the physical quantities at the photosphere and
their asymptotic values at large distances.

4.1. The photosphere

Figure 2 shows the temperature, Lorentz factor and radius of
the flow at the photosphere as functions of the initial Poynting
flux ration σ0. In all plots of the three quantities one can
identify a break at a certain value of σ0. This break can be
understood in terms of the saturation radius rsr mentioned
in Sect. 2.7.5. The reconnection yields only little energy be-
yond rsr since the largest part of the free magnetic energy is
already used up before. The location of this radius relative to
the photosphere determines the basic properties of the results.
In order to interpret the numerical results, we recall here some
results of the analytic model derived in Paper II. In this model
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the radius of the photosphere rph and the Lorentz factor at the
photosphere are given by

rph = 1.05 × 1011 cm ×
[
ε−1Ω4

(
1 − µ2

0.5

)]−2/5

L3/5
50 σ

−3/2
0,2 , (41)

Γph ≈ uph = 119 ×
[
ε−1Ω4

(
1 − µ2

0.5

)
L50

]1/5

. (42)

By equating rph and rsr of (41), (36), we find the value of σ0

where the break in the parameter dependences occurs:

σ0,br = 39 × (ε−1Ω4L50)2/15

(
1 − µ2

0.5

)−8/15

· (43)

At this value of the baryon loading, the dissipation of magnetic
energy ceases around the photosphere. For σ0 < σ0,br dissipa-
tion occurs mostly inside the photosphere, and the radiation is
dominated by a black body component.

We note that the analytic expression (41) for rph has been
derived under the assumption that most of the dissipation oc-
curs outside the photosphere. It is still accurate enough, how-
ever, for the estimate (43) that we use to interpret the numerical
results. The asymptotic validity of the analytic value (42) of the
terminal Lorentz factor Γ∞ for large σ0 is shown in Fig. 2b.

4.2. Limits on thermal and non-thermal radiation

The model yields the luminosity per sterad for both the black-
body radiation from the photosphere and the non-thermal ra-
diation. In this section we investigate how these radiation
components behave as function of the model parameters and
what observed temperatures are expected for the black-body
component.

Figure 3b displays the luminosities of the thermal and non-
thermal radiation components Lbb and Lnt as fraction of the to-
tal luminosity L. At very low σ0-values both components are
very small. In that case the energy is released far below the pho-
tosphere and is converted into kinetic energy. The same hap-
pens in “dirty fireball” models where the central engine injects
thermal energy into the matter near the source (Shemi & Piran
1990; Paczyński 1990). This also leads to an almost complete
conversion into kinetic energy.

The black-body radiation shows its maximum if the dissi-
pation ceases right at the photosphere so that rph = rsr. This
corresponds to σ0 = σ0,br from (43). This analytical estimate
for σ0,br might be not coincide exactly with the maximum of
the numerically obtained Lbb/L-curves in Fig. 3b since some
simplifications were used in the derivation of (43). Though, we
take Lbb,max = Lbb(σ0,br) to be the maximal black-body lumi-
nosity to simplify the treatment in the following.

From the graphs in Fig. 3b one might guess that the max-
imal value of Lbb/L does not depend on L. Indeed, it turns
out that the maximal fraction of the black-body luminosity
to the dissipatable luminosity is almost a constant. In the
Poynting flux dominated wind the initial Poynting flux lumi-
nosity is almost equal to the total luminosity Lpf,0 ≈ L. The
fraction of Poynting flux which cannot dissipate by reconnec-
tion was parameterised by µ2 so that dissipatable luminosity is

Fig. 3. Terminal Lorentz factor and radiation flux ratios as function
of the initial Poynting flux ratio σ0 for different values of the total
luminosity per sterad. The values εΩ = 10−3 s−1 and µ = 0 where
used. a) Terminal Lorentz factor Γ∞. The dotted line correspond to
the analytical estimates from Paper II where σ0 � 1 and no radiative
losses were assumed. b) Ratio between black-body and total luminos-
ity Lbb/L and ratio between non-thermal and total luminosity Lnt/L.
At the location of the thick dots, the model parameters are such that
the magnetic dissipation ceases to be effective near the photosphere
(cf. (43)).

(1 − µ2)Lpf,0 ≈ (1 − µ2)L. If we plot Lbb,max/[(1 − µ2)L] as a
function of the two other model parameters µ, εΩ we see that
its value is around 0.17±0.03 as displayed in Fig. 4a. Thus, the
energy in black-body radiation is always less than 20% of the
total releasable magnetic energy.

Figure 3b shows that the fraction of the total luminosity
emitted as non-thermal radiation has a maximum value for
large σ0 of about 50%, independent of the luminosity itself.
In this limit almost all the dissipation takes place outside the
photosphere and Lbb/L is negligible.

Figure 4b shows that Lnt,max/[(1 − µ2)L] is always very
close to 0.5. The maximal radiation efficiency occurs in the ex-
treme Poynting flux dominated limit. A fast radiation mecha-
nism converts half of the free magnetic energy into non-thermal
radiation.

The dissipatable energy flux (1−µ2)L, not the total Poynting
flux Lpf ≈ L in general, is the energy reservoir from which the
radiation and kinetic energy is fed. Nevertheless, one needs to
know the total Poynting flux in order to determine the absolute
magnetic field strength in the medium to investigate the phys-
ical emission process. Since this is not needed here we could
restrict our study to the case µ = 0 in the largest part of this pa-
per. For any combination of µ, L one finds µ′ = 0, L′ = (1−µ2)L
which yield an outflow of equal dissipatable Poynting flux and
thus equal emission and kinetic energy. Therefore, the setting
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Fig. 4. Maximal thermal and non-thermal emission as function of εΩ
(a measure for the dissipation rate). a) Ratio of maximal thermal emis-
sion to dissipatable luminosity Lbb,max/[(1−µ2)L]. The used values for
Lbb,max correspond to the thick dots in Fig. 3b. b) Ratio of maximal
non-thermal emission to dissipatable luminosity Lnt,max/[(1−µ2)L] de-
termined at σ0 = 103.

µ = 0 has not introduced an additional limitation in the gener-
ality of our investigation.

4.3. Limits on the terminal Lorentz factor

In Paper II we derived the terminal Lorentz factor for a com-
plete conversion of Poynting flux into kinetic energy flux. For
a Poynting flux dominated flow this terminal Lorentz factor is
Γ∞ = (1− µ2)σ3/2

0 . Since we found that the radiative losses can
be as large as 50% of the total luminosity we can now deter-
mine upper and lower limits for the terminal Lorentz factor:

1
2

(
1 − µ2

)
σ3/2

0 < Γ∞ <
(
1 − µ2

)
σ3/2

0 . (44)

4.4. Possible variability

The stationary treatment in our study does not yield any vari-
ability by definition. But we can speculate about the outcome
of quasi-stationary changes in one or more model parameters.
The non-thermal luminosity Lnt depends most strongest on σ0

at moderate values. This is seen in Fig. 3b where the Lnt/L
graphs rise quickly to the maximal values in an values around
20 <∼ σ0 <∼ 100. A variation of σ0 in this moderately large
interval might produce some kind of on-off behaviour of the
non-thermal luminosity and the large variability in GRB light
curves. Extending the model to include time dependence re-
mains an interesting investigation for the future.

Fig. 5. Thermal to non-thermal flux ratio Lbb/Lnt and redshift cor-
rected temperature of thermal radiation for various model parameters.
Calculations for each panel are done for fixed values of µ = 0 and εΩ
as indicated. Solid lines correspond to parameter sets with equal total
luminosity L while dotted lines correspond to equal initial Poynting
flux ratio σ0.

4.5. Observable quantities

The results show that a thermal component in the emission is
expected at higher baryon loading values. In a limited range of
baryon loading (10 <∼ σ0 <∼ 70), the model predicts a GRB with
a significant thermal component. This property can be used ob-
servationally as a test of the model, or as a diagnostic of the
GRB outflow.

Our model GRBs can be represented in a diagram of show-
ing the ratio Lbb/Lnt as a function of the black body tempera-
ture. This is shown in Fig. 5. The photospheric (black body)
temperature Tobs shown is the value as observed in the rest
frame of the GRB host. It is related to the temperature in a
comoving frame Tbb by Tobs = ΓphTbb.

The single panels of Fig. 5 show lines for which 3 of
the 4 model parameters are fixed while L or σ0 is varied.
An increase in the initial Poynting flux ratio σ0 increases the
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temperature but decreases the black-body component due to a
smaller photosphere radius (see Fig. 2c). An increase of the
total luminosity L results in a larger photosphere temperature
and a larger black-body component though the dependence
of Lbb/Lnt and kTobs on L is much weaker than on σ0.

From Fig. 5 one finds that only low Poynting flux ratios
σ0 <∼ 200 lead to a significant fraction of thermal radiation
Lbb/Lnt >∼ 0.1. The predicted black body temperatures can
range all the way from about 5 to 100 keV. These are the
temperatures as observed in the frame of the GRB host, so
a redshift has to be known in order to use these predictions
diagnostically.

Thermal components have indeed been observed in GRB
spectra. Preece (2002) reports on a thermal component in the
spectra of GRB 970111 within the first ≈10 s after the trigger.
In this time interval the temperature of the black body compo-
nent was observed to vary between 45 and 75 keV, and the ratio
of thermal to non-thermal flux was of the order unity. After this
initial phase the non-thermal component started to dominate. In
terms of our model, these observations indicate that this GRB
started with a moderate baryon loading, which then decreased
in the course of the burst. Since a redshift of this burst has not
been determined, a more detailed comparison with the model
can not be made.

4.6. Connection with X-ray flashes

X-ray flashes are fast X-ray transients which are not detected in
the γ-ray band 40–700 keV of BeppoSAX (Heise et al. 2001;
Heise & in ’t Zand 2002). In our model this spectral charac-
teristic can be explained by an outflow of low σ0 where the
thermal radiation dominates over the non-thermal component.
The relevant region in Fig. 5 would be at Lbb/Lnt >∼ 1. The
temperatures predicted by the model for this range of black
body luminosity is <∼30 keV, which is quite compatible with the
observations.

5. Summary and discussion

A magnetised and rotating central engine of a GRB produces a
Poynting flux outflow. Any non-axisymmetry of the magnetic
field leads to small scale (wave-like) variations in the elec-
tromagnetic field carrying energy outward. We have assumed
there that these small scale irregularities are subject to rapid re-
connection, governed by the Alfvén speed, as observed in other
astrophysical settings and in numerical simulations. Thus, the
magnetic field can rearrange itself to a energetically favourable
configuration and releases its free energy stored in the small
scale field variations.

The release of free magnetic energy proceeds with a rate
determined by the length scale of the field variation and the
local Alfvén speed of the plasma. The magnetic field acts as
energy reservoir carried with the matter which transfers its en-
ergy to the matter continously. The decay of the magnetic field
at the same time causes an outward gradient of the magnetic
pressure. This causes a significant part of the Poynting flux to
be converted into kinetic energy. The other part of the free en-
ergy is converted into heat. In the optically thick region of the

flow a thermal energy gradient promotes adiabatic expansion
and the conversion of thermal energy to kinetic energy. Thus,
at small radii in the optically thick region, almost all of the dis-
sipated magnetic energy gets converted into kinetic energy.

When the flow becomes optically thin at the photosphere
the thermal radiation energy escapes to infinity. This radiation
resembles a black body spectrum if the photons are created near
the photosphere. But if scattering dominates the spectral shape
will differ and might look like e.g. a modified black body or a
Wien spectrum (Rybicki & Lightman 1979). A much more de-
tailed treatment is necessary to determine the radius at which
the radiation is produced and what spectral shape it has. At this
stage we are only interested in the total energetics and the char-
acteristic radiation temperature and we assume that the simpli-
fied black body treatment give sufficiently precise estimates.

To compute the radiation spectrum from the optically thin
region more detailed physics is needed which is beyond the
scope of this paper. We have instead assumed that the recon-
nection process under optically thin conditions maintains a sig-
nificant population of energetic electrons, which then radiate
synchrotron radiation in much the same way as in the standard
internal shock model. An advantage of our model is that the
magnetic field needed for the synchrotron radiation is a natu-
ral part of the flow model itself (see also Paper I). The central
difference of the model presented to standard internal shock
models for GRBs is that radiation stems from the local dissi-
pation of magnetic energy and not from shock conversion of
kinetic energy. Therefore, one does not need an extremely vari-
able central engine to obtain an acceptable radiation efficiency
(Beloborodov 2000; Kobayashi & Sari 2001).

The continuous character of the energy release leads to a
slower acceleration of the flow compared to the classical fire-
ball scenario. In a fireball the energy is injected abruptly as
thermal energy. This leads to an rapid acceleration where the
Lorentz factor is linear to the source distance Γ ∝ r. In our
model the release of magnetic energy leads to Γ ∝ r1/3 in the
optically thick region.

An important model parameter is the ratio between
Poynting flux and kinetic energy flux σ0 at some initial ra-
dius r0. This parameter controls the baryon loading parameter
in a sense that high values correspond to a low baryon load-
ing. The value of σ0 decides how much of the Poynting flux
energy gets converted into kinetic energy, black-body radiation
and non-thermal radiation. The three other parameters of the
model are the total luminosity per sterad, the fraction of dis-
sipatable Poynting flux and the reconnection speed. There are
three intervals of σ0 values in which the characteristics of the
flow is significantly different. At very low values (σ0 <∼ 10)
most of the energy gets converted into kinetic energy. The mag-
netic energy gets released in the optically thick part. This case
is similar to dirty fireball models in which the central engine
injects thermal energy into the matter near the central engine
(Shemi & Piran 1990; Paczyński 1990). The matter is already
cold when it reaches the photosphere at large radii and there
is no more free magnetic energy available to power the non-
thermal radiation. The burst energy can only power an after-
glow by an external shock.



1152 G. Drenkhahn and H. C. Spruit: Efficient acceleration and radiation in Poynting flux powered GRB outflows

An intermediate Poynting flux ratio of σ0 ≈ 100 causes
the release of a considerable amount of energy near the photo-
sphere and the thermal emission is non-negligible. The black-
body component becomes maximal if the radius where the dis-
sipation ceases coincides with the photosphere. Then, ≈17%
of the dissipatable magnetic energy gets converted into black-
body radiation while the rest ends up in kinetic energy.

At very high σ0 <∼ 300 values the radius of the photo-
sphere is small and almost all of the dissipation takes place
in the optically thin region. The dissipated energy gets equally
distributed among the non-thermal radiation and the kinetic lu-
minosity of the flow. At low baryon loading, and for a purely
non-axisymmetric magnetic field, almost exactly 50% of the
the Poynting is converted into kinetic energy and 50% into
non-thermal radiation. If a substantial part of the magnetic
field is axisymmetric, the Poynting flux associated with it does
not dissipate, and instead is expected to show up as afterglow
emission.

Assuming that regular GRBs have large σ0 this finding pre-
dicts that the energy of the afterglow (fed by the kinetic energy
of the flow) is comparable to the energy of the the prompt emis-
sion. Beaming effects change this picture if the outflow con-
sists of a sufficiently narrow jet. The energy in the afterglow
will be weaker because after the flow has decelerated the radi-
ation is spread over a larger solid angle compared to the highly
beamed initial radiation (cf. the light curve break discussion in
e.g. Ghisellini 2001). Therefore the prompt emission might be
more luminous than the afterglow luminosity if the jets points
towards us.

Besides the luminosity of the black-body radiation the
model yields the temperature of this radiation. We find that
the unredshifted observable temperature is 5 keV <∼ kTobs <∼
100 keV for our fiducial GRB/X-ray burst parameters. The
model produces a rather constant Lorentz factor at the pho-
tosphere so that large variations of model parameters result
in only a small temperature spread. We cannot make a clear
statement about the contribution of the non-thermal compo-
nent to emission in the quoted energy range because we do
not know the radiation mechanism. If the thermal component
at its maximum is of the same order or greater than the non-
thermal component a feature should be present in the spec-
trum. In fact, there exist observations of excess emission in
the low energy range (≈1–5 keV) for some GRBs (Strohmayer
et al. 1998; Preece et al. 1996). Recent investigations by Preece
(2002) show clearly a strong thermal component in the during
the first 10 s of GRB 970111 with temperatures of 45–75 keV.
These numbers are in agreement with some of our fiducial
GRB model parameter values. Observations of this kind will
enable us to determine the model parameters and even their
time-dependence during the burst.

For initial ratios between Poynting flux and kinetic energy
flux σ0 ≈ 40 the black-body radiation component dominates
over the non-thermal component. The radiation efficiency is
lower than in the σ0 >∼ 300 case because only <∼17% of the to-
tal luminosity can be converted into radiation. We speculated in
Paper II about the possibility that these low-σ0 outflows could
be identified with X-ray flashes observed by BeppoSAX (Heise
et al. 2001; Heise & in ’t Zand 2002). Because no dissipation

takes place outside of the photosphere there is no non-thermal
emission in the γ-ray range>40 keV. The present study showed
that the thermal emission has an (unredshifted) observable tem-
perature of <∼30 keV which agrees with the observations of
X-ray flashes. Heise et al. (2001) speculated that X-ray flashes
are bursts with high mass loading. This is also true in our model
since high mass loading corresponds to low σ0 values.

The hypothesis that the thermal radiation from a low-σ0

outflow produces a X-ray flash may be checked by future ob-
servation. The model predicts a lower radiation efficiency of
<∼17% so that most of the dissipated energy in the outflow goes
into kinetic form. It will be converted into radiation in the ex-
ternal shock of the afterglow. The afterglow of an X-ray flash
should be more luminous than the prompt emission if jet-effects
do not interfere too much.

A stationary approximation for the flow is used in this pa-
per. If the central engine operates intermittently internal shocks
could occur in the magnetised outflow. One could also imagine
that not the total luminosity changes with time but that the other
wind parameters like the mass loading and with it σ0 varies. σ0

has a strong influence on the non-thermal luminosity Lnt and
the black-body luminosity Lbb. A time-varyingσ0 around inter-
mediate values leads certainly to large modulations in the non-
thermal light curve. The physical model should be extended to
include time dependent model parameters to investigate their
effect on the light curve.

The minimal observed variability of GRBs is around a mil-
lisecond. Any process producing the emission must therefore
be fast enough to account for this limit. The stationary model
predicts that the reconnection in the comoving frame lasts for
approximately 1 millisecond. The effects for Doppler shift and
relativistic time dilation almost cancel so that one observes al-
most the time in the comoving frame. The millisecond variabil-
ity is therefore compatible with the reconnection model. If the
reconnection in the flow is not smoothly distributed but patchy
we would expect to see a peak for the emission coming from
one of the patches where reconnection takes place. Our model
is nevertheless applicable because we only need the overall re-
connection rate, the average over small length scales, which is
responsible for the global flow dynamics.
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