ELECTRONIC SUPPORTING INFORMATION

Efficient Acceptor Groups for NLO Chromophores: Competing Inductive and Resonance Contributions in Heterocyclic Acceptors Derived from 2-

 Dicyanomethylidene-3-Cyano-4,5,5-Trimethyl-2,5-DihydrofuranKarin Schmidt, ${ }^{a}$ Stephen Barlow, ${ }^{a}$ Amalia Leclercq, ${ }^{a}$ Egbert Zojer, ${ }^{b, a}$ Sei-Hum Jang, ${ }^{c}$ Seth R. Marder, ${ }^{a}$ Alex K.-Y. Jen, ${ }^{c}$ and Jean-Luc Brédas ${ }^{a}$
${ }^{\mathrm{a}}$ School of Chemistry and Biochemistry and
Center for Organic Photonics and Electronics
Georgia Institute of Technology
Atlanta, Georgia 30332-0400, USA
${ }^{\mathrm{b}}$ Institute of Solid Physics Graz University of Technology, Petersgasse 16 8010 Graz, Austria
${ }^{\text {c }}$ Department of Materials Science and Engineering University of Washington

Seattle, Washington 98195-2120, USA

To ensure that the trends obtained by the SOS calculations are not methodological artifacts, we have also carried out Finite Field calculations. Here, we followed the local contribution formulation ${ }^{1,2}$ based on second derivatives of atomic charges. These were approximated by finite differences obtained from $\mathrm{INDO}^{3} / \mathrm{HF}$ Mulliken charges of molecules with applied electric fields between zero and $\pm 5.14 \times 10^{11}$ $\mathrm{V} / \mathrm{m}\left(10^{-3}\right.$ atomic units). A more detailed description of the applied methodology is given in Ref. [4].

1 P. Chopra, L. Carlacci, H. F. King, and P. N. Prasad, J. Phys. Chem., 1989, 93, 7120, 1989.
2 M. N. Nakano, I. Shigemoto, S. Yamada, and K. Yamaguchi, J. Chem. Phys., 1995, 103, 4175.
3 (a) V. M. Geskin and J. L. Brédas, J. Chem. Phys., 1998, 109, 6163; (b) V. M. Geskin, C. Lambert, and J.L. Brédas, J. Am. Chem. Soc., 2003, 125, 15651; (c) D. Jacquemin, D. Beljonne, B. Champagne, V. M. Geskin, J. L. Bredas, J. M. Andre, J. Chem. Phys., 2001, 115, 6766.

4 A. Leclercq, E. Zojer, S.-H. Jang, S. Barlow, V. Geskin, A. K.-Y. Jen, S.R. Marder, and J.L. Brédas, J. Chem. Phys., 2006, 124, 044510.

Supplementary material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2007

TABLES

Table S1: Orientationally averaged second-order polarizabilities $\left(<\beta>=\left\{\beta_{\mathrm{x}}{ }^{2}+\beta_{\mathrm{y}}{ }^{2}+\beta_{\mathrm{z}}{ }^{2}\right\}^{1 / 2}\right)$, long-axis components of the second-order polarizability $\left(\beta_{\mathrm{xxx}}\right)$ for both SOS and FF values, and the second-order molecular polarizabilities $\left(\beta_{\mathrm{xxx}}\right)$ calculated with the two-state model for chromophores $\mathbf{1}$ to $\mathbf{1 0}$.

chromophore	X	$<\beta>\left(10^{-30} \mathrm{esu}\right)$ 	$\beta_{\mathrm{xxx}}\left(10^{-30} \mathrm{esu}\right)$	$\beta_{\mathrm{xxx}}\left(10^{-30} \mathrm{esu}\right)$	$\beta_{\mathrm{xxx}}\left(10^{-30} \mathrm{esu}\right)$
1	$\mathrm{SCI} / \mathrm{SOS}$	$\mathrm{SCI} / \mathrm{SOS}$	FF	two-state	
2	SiH_{2}	310	301	336	model
3	CH_{2}	315	314	355	502
4	$\mathrm{C}=\mathrm{CH}_{2}$	352	350	387	520
5	NH	281	290	330	578
6	CO	467	443	487	471
7	S	323	321	362	755
8	O	316	320	368	532
9	$\mathrm{C}=\mathrm{CHNO}_{2}$	506	489	543	499
10	SO_{7}	SO_{2}	393	500	379

Supplementary material (ESI) for Journal of Materials Chemistry

 This journal is © The Royal Society of Chemistry 2007Table S2: Transition energies $\left(E_{\mathrm{ge}}\right)$, x-component of the dipole moments for the ground state $\left(\mu_{\mathrm{g}, \mathrm{x}}\right)$ and the dominant electronic excited state $\left(\mu_{\mathrm{e}, \mathrm{x}}\right)$, the change in state dipole moments $\left(\Delta \mu_{\mathrm{ge}, \mathrm{x}}\right)$, and the transition dipole moment ($\mu_{\mathrm{ge}, \mathrm{x}}$) values calculated with INDO/SCI/SOS method for chromophores 1 to 10.

chromophore	$E_{g e}(\mathrm{eV})$	$\mu_{g, x}(D)$	$\mu_{e, x}(D)$	$\Delta \mu_{g e, x}(D)$	$\mu_{g e, x}(D)$
1	2.50	6.1	15.4	9.3	12.0
2	2.49	7.7	16.8	9.1	12.3
3	2.48	7.0	17.2	10.2	12.2
4	2.52	8.6	17.2	8.6	12.2
5	2.37	11.2	23.1	11.9	12.4
6	2.49	9.8	19.3	9.5	12.2
7	2.48	11.1	19.8	8.7	12.1
8	2.34	10.7	23.9	13.3	12.1
10	2.43	13.5	24.3	10.8	12.2

Supplementary material (ESI) for Journal of Materials Chemistry
This journal is © The Royal Society of Chemistry 2007
Table S3: Orientationally averaged second-order polarizabilities $\left(<\beta>=\left\{\beta_{x}{ }^{2}+\beta_{y}{ }^{2}+\beta_{z}{ }^{2}\right\}^{1 / 2}\right)$, long-axis components of the second-order polarizability $\left(\beta_{\mathrm{xxx}}\right)$ for both SOS and FF values, and the second-order molecular polarizabilities (β_{xxx}) calculated with the two-state model for chromophores $\mathbf{1 1}$ to $\mathbf{2 0}$.

chromophore	X	$\begin{gathered} \left\langle\beta>\left(10^{-30} \mathrm{esu}\right)\right. \\ \mathrm{SCI} / \mathrm{SOS} \end{gathered}$	$\beta_{\mathrm{xxx}}\left(10^{-30} \mathrm{esu}\right)$ SCI/SOS	$\begin{gathered} \beta_{\mathrm{xxx}}\left(10^{-30} \mathrm{esu}\right) \\ \mathrm{FF} \end{gathered}$	$\beta_{\mathrm{xxx}}\left(10^{-30} \mathrm{esu}\right)$ two-state model
11	SiH_{2}	134	145	140	271
12	CH_{2}	130	140	140	257
13	$\mathrm{C}=\mathrm{CH}_{2}$	156	170	160	307
14	NH	107	116	117	183
15	CO	210	225	203	427
16	S	134	144	140	267
17	O	122	131	133	233
18	$\mathrm{C}=\mathrm{CHNO}_{2}$	191	205	187	339
19	SO	163	176	167	335
20	SO_{2}	212	226	209	404

Supplementary material (ESI) for Journal of Materials Chemistry

 This journal is © The Royal Society of Chemistry 2007Table S4: Transition energies $\left(E_{\mathrm{ge}}\right)$, x-component of the dipole moments for the ground state $\left(\mu_{\mathrm{g}, \mathrm{x}}\right)$ and the dominant electronic excited state $\left(\mu_{\mathrm{e}, \mathrm{x}}\right)$, the change in state dipole moments $\left(\Delta \mu_{\mathrm{ge}, \mathrm{x}}\right)$, and the transition dipole moment $\left(\mu_{\mathrm{ge}, \mathrm{x}}\right)$ values calculated with INDO/SCI/SOS method for chromophores 11 to 20.

chromophore	$E_{g e}(\mathrm{eV})$	$\mu_{g, x}(D)$	$\mu_{e, x}(D)$	$\Delta \mu_{g e, x}(D)$	$\mu_{g e, x}(D)$
11	3.04	9.4	17.7	8.3	11.4
12	3.03	10.6	18.0	7.4	11.7
13	2.98	10.2	19.2	9.1	11.4
14	3.08	11.8	17.4	5.7	11.5
15	2.83	12.5	23.9	11.4	11.3
16	3.03	12.2	20.2	8.0	11.5
17	3.04	11.0	17.2	6.2	12.0
18	2.84	14.7	26.3	11.6	9.6
19	2.96	14.3	24.1	9.8	11.3
20	2.85	15.8	26.4	10.6	11.5

Supplementary material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2007

Figure S1: Calculated values for β_{xxx} (a) derived from the two-state expression, considering only the first intense excited state, with the corresponding change in state dipole moment ($\Delta \mu_{\mathrm{ge}, \mathrm{x},}$, open squares) and the reciprocal of the square of the transition energy ($1 / E_{\mathrm{ge}}{ }^{2}$, solid squares) shown in (b), for chromophores 11 to 20.

Supplementary material (ESI) for Journal of Materials Chemistry
This journal is © The Royal Society of Chemistry 2007
Table S5: Orientationally averaged second-order polarizabilities $\left(<\beta>=\left\{\beta_{x}{ }^{2}+\beta_{y}{ }^{2}+\beta_{z}{ }^{2}\right\}^{1 / 2}\right)$, long-axis components of the second-order polarizability $\left(\beta_{\mathrm{xxx}}\right)$ for both SOS and FF values, and the second-order molecular polarizabilities (β_{xxx}) calculated with the two-state model for chromophores $\mathbf{2 1}$ to $\mathbf{3 0}$.

chromophore	X	$\begin{gathered} \hline<\beta>\left(10^{-30} \mathrm{esu}\right) \\ \mathrm{SCI} / \mathrm{SOS} \end{gathered}$	$\begin{gathered} \beta_{\mathrm{xxx}}\left(10^{-30} \mathrm{esu}\right) \\ \mathrm{SCI} / \mathrm{SOS} \end{gathered}$	$\begin{gathered} \beta_{\mathrm{xxx}}\left(10^{-30} \mathrm{esu}\right) \\ \mathrm{FF} \end{gathered}$	$\beta_{\mathrm{xxx}}\left(10^{-30} \mathrm{esu}\right)$ two-state model
21	SiH_{2}	278	293	263	605
22	CH_{2}	277	290	263	520
23	$\mathrm{C}=\mathrm{CH}_{2}$	279	288	264	487
24	NH	265	275	255	525
25	CO	364	375	327	443
26	S	308	323	286	558
27	O	296	307	277	569
28	$\mathrm{C}=\mathrm{CHNO}_{2}$	326	334	301	423
29	SO	370	389	339	162
30	SO_{2}	454	476	405	650

Table S6: Transition energies (E_{ge}), x-component of the dipole moments for the ground state $\left(\mu_{\mathrm{g}, \mathrm{x}}\right)$ and the dominant electronic excited state $\left(\mu_{\mathrm{e}, \mathrm{x}}\right)$, the change in state dipole moments $\left(\Delta \mu_{\mathrm{ge}, \mathrm{x}}\right)$, and the transition dipole moment ($\mu_{\mathrm{ge}, \mathrm{x}}$) values calculated with method for chromophores 21 to 30. In addition, the corresponding INDO/SCI/SOS calculated parameters $E_{\mathrm{ge}^{e},}, \mu_{\mathrm{e}^{\mathrm{e}}, \mathrm{x}}, \Delta \mu_{\mathrm{ge}^{e}, \mathrm{x}}$, and the transition dipole moments $\mu_{\mathrm{ge}^{\prime}, \mathrm{x}}$ and $\mu_{\mathrm{ee}, \mathrm{x}}$ (with their sign relative to $\mu_{\mathrm{ge}, \mathrm{x}}$) for the excited state e' are given for chromophores $\mathbf{2 5}$ and 28 to $\mathbf{3 0}$.

chromophore	$E_{g e}$	$\mu_{g, x}$	$\mu_{e, x}$	$\Delta \mu_{g e, x}$	$\mu_{g e, x}$	$E_{g e^{\prime}}$	$\mu_{e e^{\prime}, x}$	$\mu_{e^{\prime}, x}$	$\Delta \mu_{g e^{\prime}, x}$	$\mu_{g e^{\prime}, x}$
	(eV)	(D)	(D)	(D)	(D)	$(e V)$	(D)	(D)	(D)	(D)
21	2.63	6.6	18.9	12.3	10.9					
22	2.66	8.2	20.4	12.2	11.4					
23	2.67	7.5	19.8	12.3	11.0					
24	2.62	8.7	21.5	12.8	11.0					
25	2.57	10.5	22.0	11.5	10.4	2.85	-2.9	22.7	12.2	-5.6
26	2.57	9.4	22.5	13.1	11.0					
27	2.63	11.0	23.5	12.5	11.6					
28	2.61	12.2	24.0	11.7	10.2	2.89	1.4	25.9	13.7	-3.6
29	2.44	11.5	17.6	6.1	8.2	2.51	-7.9	16.3	4.9	-7.1
30	2.33	13.1	26.5	13.5	10.6	3.43	-8.0	15.4	2.3	-3.6

Figure S3: Evolution of β_{xxx} as a function of intermediate states normalized to the converged β_{xxx} value for chromophores $\mathbf{1}$ to 30. ${ }^{\text {a) }}$

a) The convergence plots for 21, 25, and 28-30 (lower right panel) have been separated from the rest of the series $\mathbf{2 2}$ 24, 26, 27 (lower left panel) to illustrate their distinctively different convergence behavior.

We note that the convergence pattern is similar in 1-10 (upper left panel); the first excited state e gives rise to the largest contribution to β which is partially compensated by a higher-lying state e^{\prime}. The ratio between the e - and the e^{\prime}-related β contributions essentially remains constant in $\mathbf{1 - 1 0}$. In 11-20 (upper right panel), again the first (or the second in $\mathbf{1 5}$ and 18) excited state e gives rise to the largest contribution to $\beta_{\text {initial. }}$. This initial $\beta_{\text {initial }}$ value is partially compensated by either one or multiple higher-lying excited states; however, the combined contribution of the latter relative to $\beta_{\text {initial }}$ is constant. However, not all compounds in 21-30 (lower panels) share a convergence behavior similar to the one observed in 1-20. While in 21-24, 26 and 27 the initial $\beta_{\text {initial }}$ value is essentially built up by one excited state e, at least two low-lying excited states with large μ_{ge} contribute to $\beta_{\text {initial }}$ in $\mathbf{2 5}$ and 28-30 (see also Figure S4). As a consequence, a two-state model cannot

Supplementary material (ESI) for Journal of Materials Chemistry
This journal is © The Royal Society of Chemistry 2007
account for the evolution of the converged β in 21-30, since it would not consider one of these two strongly participating states in 25 and 28-30.

Supplementary material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2007

Figure S4: Evolution of β_{xxx} (normalized to the converged β_{xxx}) as a function of intermediate states for chromophore 25.

Figure S5: Calculated values for β_{xxx} derived from the two-state (solid squares) and three-state (opensquare) expression, considering only the lowest (two) excited state(s) with significantly large oscillator strength for chromophores 21 to 30.

