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Efficient Acoustic Echo Cancellation With
Reduced-Rank Adaptive Filtering Based on Selective

Decimation and Adaptive Interpolation
Masahiro Yukawa, Member, IEEE, Rodrigo C. de Lamare, Member, IEEE, and Raimundo Sampaio-Neto

Abstract—This paper presents a new approach to efficient
acoustic echo cancellation (AEC) based on reduced-rank adaptive
filtering equipped with selective-decimation and adaptive inter-
polation. We propose a novel structure of an AEC scheme that
jointly optimizes an interpolation filter, a decimation unit, and a
reduced-rank filter. With a practical choice of parameters in AEC,
the total computational complexity of the proposed reduced-rank
scheme with the normalized least mean square (NLMS) algorithm
is approximately half of that of the full-rank NLMS algorithm.
We discuss the convergence properties of the proposed scheme
and present a convergence condition. First, we examine the per-
formance of the proposed scheme in a single-talk situation with an
error-minimization criterion adopted in the decimation selection.
Second, we investigate the potential of the proposed scheme in a
double-talk situation by employing an ideal decimation selection.
In addition to mean squared error (MSE) and power spectrum
analysis of the echo estimation error, subjective assessments
based on absolute category rating are performed, and the results
demonstrate that the proposed structure provides significant
improvements compared to the full-rank NLMS algorithm.

Index Terms—Acoustic echo cancellation (AEC), reduced-rank
adaptive filtering.

I. INTRODUCTION

T
HE GOAL of this paper is to present a novel reduced-rank

adaptive filtering scheme for an efficient acoustic echo can-

cellation (AEC) and to investigate its potential. The major ad-

vantages of reduced-rank adaptive filters are their faster con-

vergence speed and better tracking performance over the full-

rank ones when dealing with a large number of filter weights.

Early reduced-rank methods and systems were based on prin-

cipal components analysis, in which a computationally expen-

sive singular value decomposition (SVD) to extract the signal

subspace is required [1], [2]. A problem with early SVD-based

methods is the selection of the adequate subspace for rank re-

duction, which was later solved with the cross-spectral (CS)
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method [3]. The multistage Wiener filter (MWF) has been de-

veloped in [4] and is based on orthogonal decompositions for

computation of its parameters. The MWF was shown to exhibit

better error-rate in DS/CDMA systems than the previously re-

ported methods when the order of reduced-rank filter is small

[5]. Another technique that resembles the MWF is the auxil-

iary-vector filtering (AVF) algorithm based on a finite number

of auxiliary vectors orthogonal to each other and to the steering

vector [6], [7]. The equivalence between the MWF and the AVF

with orthogonal auxiliary vectors has been established in [8]. An

AVF structure based on a sequence of (i.e., a infinite number

of) auxiliary vectors, orthogonal to the steering vector but not

necessarily to each other, has been proposed [9], which slightly

outperforms the MWF at the cost of higher computational com-

plexity. The major issue of these reduced-rank approaches is

their high complexity , where stands for the dimen-

sion of the reduced-rank filter and the dimension of the full-

rank covariance matrix (or the steering vector) used to compute

the subspace projection. A different class of flexible reduced-

rank methods is based on the use of interpolated finite-impulse

response (FIR) filters. A seminal work on interpolated FIR fil-

ters has been reported in [10], and the method has been applied

to the AEC problem in [11]. Further improvements have been

realized by means of a joint updating method of an interpolator

and an FIR filter [12]. The interpolation-based approach is com-

putationally simpler than the aforementioned approaches; how-

ever, its main drawback is that it is rank-limited, i.e., the de-

signer cannot significantly reduce the filter rank since the system

undergoes performance degradation.

In [13], preliminary results on a novel framework1 for

reduced-rank parameter estimation have been reported; the

scheme is based on the joint optimization of an interpolation

filter, a decimation unit, and a reduced-rank filter. In the

scheme, the number of elements for estimation is substantially

reduced, resulting in considerable computational savings and

efficient tracking ability of dynamic signals. A unique feature

of this reduced-rank scheme is that it does not rely on the

full-rank covariance matrix (whose sample-average estimation

may require a considerable amount of data) before projecting

the received data onto a reduced-rank subspace. The key

factor in this approach is the use of diversity techniques for

the decimation-matrix-selection and the adaptive interpolator,

which is inspired by diversity techniques developed in wireless

communications.

1USPTO Application No. 11/427.471—Patent Pending.
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In this paper, we propose an efficient reduced-rank AEC

scheme based on the framework reported in [13]. In the pro-

posed scheme, the reduced-rank transformation is constructed

by an adaptive interpolator and decimation matrix selected from

parallel branches so that the output error is minimized, thus the

transformation itself is time-varying. The total computational

complexity of the proposed scheme is presented herein in terms

of decimation factor, interpolation vector length, and diversity

factor (i.e., the number of parallel branches). The number of

adaptive elements in the reduced-rank filter is significantly

reduced in comparison with the original full-rank filter. It is

shown that a practical choice of those factors results in the com-

plexity of , which is approximately twice more efficient

than the normalized least mean square (NLMS) algorithm.

Numerical examples demonstrate that an increase of diversity

factor significantly improves the achievable mean squared

error (MSE) in practical noisy environments. Specifically, the

proposed reduced-rank AEC scheme with only three or four

taps significantly outperforms a full-rank AEC structure with

1024 taps.

The remaining of the paper is organized as follows. Following

brief descriptions of acoustic echo cancellation problem and re-

duced-rank adaptive filtering in Section II, the proposed echo

canceling scheme is presented in Section III. In Section IV, we

present the convergence properties of the scheme and discuss the

convergence conditions of the algorithms. In Sections V and VI,

numerical examples are presented in single-talk and double-talk

cases, respectively, followed by the conclusion in Section VII.

II. MOTIVATION AND PROBLEM STATEMENT

To motivate the current study, we first present a problem

formulation of acoustic echo cancellation. We then present a

general idea of the reduced-rank adaptive filtering problem.

Throughout the paper, and denote the sets of all real

numbers and nonnegative integers, respectively.

A. AEC Problem

A basic model of an AEC system with a full-rank adaptive

filter [14], [15] is illustrated in Fig. 1. We present the notation

used throughout paper below [ stands for transposition].

• : time index.

• : far-end speech signal sample (input to ).

• : near-end speech signal sample.

• : additive background noise sample.

• : echo impulse response.

• with

(1)

• : full-rank adaptive filter.

We let , , so that the vector can be defined

for all . As the distorted far-end speech signal is

transmitted back to the far-end talker’s room with delay, it is re-

ferred to as acoustic echo. The goal of the echo cancellation is

to remove (or cancel) the echo from by subtracting

the output of adaptive (linear) filter , as . The

adaptation of an echo canceler is mostly executed only when

the near-end speech is not active, i.e., , since most ap-

proaches attempt to minimize (or suppress) the error between

Fig. 1. Acoustic echo canceling scheme.� is the far-end talker’s speech signal
transmitted to the near-end talker’s room at time �. � is the microphone signal
generated by the near-end talker’s signal � , the ambient noise � , and the
distorted far-end talker’s signal ��� ��� , where ��� is the impulse response of the
echo path.

and filter output (adaptation in means that the adaptive

filter cancels the near-end speech together with the distorted

far-end speech ). Hence, in the following, we assume that

except for Section VI.

Because the required length of echo canceler is typically in

the order of 1000 [16], it is strongly desired to establish an echo

canceling scheme with low computational complexity, fast con-

vergence, and effective tracking capability. To this end, we high-

light the reduced-rank adaptive filtering in what follows.

B. Reduced-Rank Adaptive Filtering

The convergence and tracking speed of adaptive algorithm

becomes in general slower when the number of taps in-

creases [14]. The aim of reduced-rank adaptive filtering is

to attain faster convergence and better tracking capability by

reducing the number of filter taps and extracting the most

important features of the processed data. This dimensionality

reduction is accomplished by a linear mapping from to the

feature-extracting space with , where .

The reduced-dimensionality input vector is denoted as

(2)

In the following, the -dimensional vectors are denoted with

a “hat.” The -dimensional vector is the input to a tapped-

delay line filter represented by . The filter output at

time is represented as

(3)

The strategic and fundamental part in reduced-rank schemes is

the design of the operator , which should be designed in an

efficient (or optimal) way. In particular, the dimensionality re-

duction should be carried out such that the most important fea-

tures of the input data are extracted. In the following section,

we present an efficient and highly effective way to design that

changes dynamically in terms of .

III. PROPOSED AEC STRUCTURE

The proposed AEC scheme consists of an adaptive inter-

polator, adaptive decimation procedure, and a reduced-rank

adaptive FIR filter, as illustrated in Fig. 2. In Section III-A,
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Fig. 2. (a) Acoustic echo canceler with the proposed structure and (b) an ex-
ample of the decimation procedure. In (a), � denotes the residual echo, and the
vector ���� is compounded from the same signal as ��� with in general different
length. In (b), � � � � � � � denote the decimation matrices, and ��� the deci-
mated signal being the input to the FIR filter.

we describe the whole picture of the proposed scheme. In

Section III-B, we present NLMS-based algorithms to update

the interpolator and reduced-rank FIR filters, and an adaptive

control of the decimation procedure.

A. Echo Canceler Structure

First of all, we introduce the parameters employed in the re-

maining of the paper.

• : Length of the echo impulse response.

• : the number of parallel decimation-branches

(which we refer to as diversity factor).

• : the decimation factor.

• : the length (or rank) of the reduced-rank

adaptive FIR filter, where denotes the smallest integer

which is greater than or equal to .

• : the necessary length of data

samples for the proposed scheme at each iteration (Note:

).

• : the length of the interpolator.

The notation , , , and is the same as in

Section II-A. For the sake of rank-reduction, we define two

matrices as follows. The first one is the interpolation (Toeplitz)

matrix

...
...

. . .

(4)

with the adaptive interpolation vector . The

second one is the decimation matrix selected from,

(5)

where , , denotes

the unit vector having only one nonzero entry at the th position.

The decimation matrix in (5) picks up data every samples in

a uniform manner. (If , then the matrices pick up

different data from each other.) Although there are many other

possibilities in the design of presented in (5), the optimal

decimation approach is clearly inefficient from a computational

point of view as it results in extremely high computational com-

plexity due to its combinatorial nature. In [13], it is shown that

this simple design of matrices are effective in a block equaliza-

tion application. The input signal to the reduced-rank adaptive

FIR filter is given as

(6)

where

(7)

Roughly speaking, corresponds to the linear mapping

; we emphasize that it changes dynamically in terms of . Pre-

cisely speaking, if the dimension of is no greater than the

dimension of , i.e., if , then

(8)

where

(9)

Here, and denote the identity matrix and the

zero matrix, respectively. When , we need more data

than to represent . The FIR filter output and the estimation

error (residual error) are given as , , and

, , respectively.

B. Adaptive Algorithm

To derive an NLMS-based adaptive algorithm for two vectors

and , the following relation is useful:

(10)
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where

...
...

. . .
...

(11)

(12)

Note that can be rewritten as , where

. We formulate the problem as follows:

and (13)

Adopting the error minimization criterion for , and noting

that the problem in (13) is equivalent to finding the projections

onto hyperplanes in and , respectively for and , we

obtain the following equations [see Fig. 2(b)]:

(14)

(15)

(16)

where , , and .

The proposed AEC scheme is summarized below.

1) , .

2) , .

3) with .

4) , , .

5) with .

6) with .

The selective decimation in the step 3) and the adaptive inter-

polation in the step 5) are the key to improve the MSE perfor-

mance, as demonstrated in Sections V and VI. In the steps 5) and

6), it is also possible to employ a more efficient algorithm such

as the adaptive parallel subgradient projection (adaptive-PSP)

algorithm [17] or its accelerated version [18]; the efficacy of the

method in [18] has been demonstrated in the stereophonic AEC

problem [19].

C. Computational Complexity

The computational complexity of the proposed reduced-rank

scheme for AEC is treated in this part. Table I shows the com-

putational complexity required by the proposed and conven-

tional solutions, including the full-rank NLMS and RLS algo-

rithms. The proposed reduced-rank structure introduces the term

, which denotes the dimension of the reduced-rank filter, the

number of branches , which are used for improving the estima-

tion accuracy, and the decimation factor . Indeed, the decima-

tion factor is central to significantly reduce the complexity of

TABLE I
COMPUTATIONAL COMPLEXITY OF ALGORITHMS

Fig. 3. Comparison of the computational complexity (number of multiplica-
tions) of the proposed and conventional methods.

the overall scheme and should be chosen to be large enough. An

example of the value of corresponding to

and is given in Table II. The diversity factor should

be sufficiently large to ensure that the projection by the matrix

is able to extract the key features of the input vector. In our

studies, we noticed that the value has no significant impact

on the performance (a large , e.g., is sufficient) but

a large is extremely important to ensure a good and accurate

feature extraction of the input data. A drawback of the MWF

and AVF methods is that they require a complexity quadratic

with , which makes their adoption for the AEC problem an

impediment.

Another interesting and unique aspect of the proposed

scheme is that the computational burden of the algorithm can

naturally be divided by concurrent processors similarly to

the adaptive-PSP based algorithms [17]–[19]. Fig. 3 plots the

computational complexity (the number of multiplications) of

each algorithm for with respect to the dimension

of reduced-rank adaptive filter; for the proposed scheme, we

assume that and , as used in the following

section. Note that the comparisons in the step 3) are assumed

to require multiplications (due to storage similarly

to multiplications). From the figure, it is seen that the total

computational complexity of the proposed scheme for

is even less than that of the simple full-rank NLMS algorithm.

In particular, for (which is employed in the following
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TABLE II
DECIMATION FACTOR � FOR EACH � � ��� �� � � � � ���

section) with concurrent processors, the computational com-

plexity imposed on each processor is approximately .

We should mention that the proposed scheme has fault toler-

ance nature similarly to the methods in [17]–[19]. Namely,

when some of the engaged processors get out of order during

adaptation, we can discard the corresponding branches and

utilize the other branches, thus such a trouble does not cause

serious performance deterioration, as found in our studies.

We will finally discuss why the proposed scheme can achieve

significant improvements of echo cancellation performance

with such low computational costs. The complexity

shown above, corresponding to the lowest curves in Fig. 3,

is a per-processor one, and can only be achieved when

parallel processors are available. Meanwhile, even in case that

such parallel processors are not available, the computational

complexity is , which is less than that of the simple

full-rank NLMS algorithm. We emphasize that this complexity

reduction is achieved by discarding an unnecessary part of

input data and utilizing only the remaining part that contains

the most important information to express the echo with the

adaptive interpolator and FIR filter; this is also the key to realize

significant improvements. Here, the “ unnecessary part” refers

to a portion of input data which has no significant contribution

in expressing the echo. We remark that the proposed scheme

can simply be implemented, and requires no extra hardware

overloads compared to the conventional approaches.

D. Comparisons With Conventional AEC Techniques

One of the most popular AEC techniques is the frequency-do-

main adaptive filtering (FDAF) invented by Dentino et al. in

1978 [20]. Its major advantages over the time-domain adap-

tive filtering approach are faster convergence and lower compu-

tational complexity. However, the frequency-domain approach

suffers in principle from block delay to perform the fast Fourier

transform (FFT). A great deal of effort has been devoted to im-

prove the performance of the FDAF, which is surveyed in [21]

and [22]. In particular, the multidelay block frequency domain

(MDF) adaptive filter using a small size FFT has been pro-

posed by Soo and Pang in 1990 [23], which moderates the delay

issue and achieves faster convergence and smaller memory re-

quirements than the standard FDAF algorithm (a generalization

has been done in [24]). Interesting modifications of the MDF

method, based on the trigonometric transforms discrete cosine

transform (DCT) and discrete sine transform (DST) and on the

discrete Hartley transform (DHT), have been proposed in [25].

A delay-less frequency-domain algorithm has been proposed

in [26], of which the performance is comparable to that of the

full-band NLMS algorithm with computational complexity as

low as the standard FDAF algorithms.

Another popular AEC technique is the subband structure, in-

vented independently by Furukawa [27] and Kellermann [28]

in 1984. The major advantages of the approach are its fast con-

vergence in the initial phase of adaptation and low computa-

tional complexity. The subband approach, unfortunately, suf-

fers from misalignment because 1) it is practically impossible

to let the response in the stopband be completely zero, resulting

in residual aliasing within the subband signals, and 2) the use

of FIR filter introduces the truncation of the impulse responses

[22]. Moreover, a major drawback of the approach is, simi-

larly to the frequency-domain approach, the delay introduced in

the analysis and synthesis filter banks (typically 20–40 ms for

round-trip). To eliminate this issue, a delay-less subband adap-

tive filter, employing the polyphase FFT technique as a way

of its implementation, has been proposed by Morgan and Thi

in 1995 [29]. The delay-less subband technique has been ana-

lyzed in [30]–[32], and some modifications have been proposed

in [33], [34]. Steady-state performance limitations of subband

adaptive filters have been analyzed in [35].

The proposed scheme enjoys two unique advantages over

the conventional techniques including the FDAF/subband and

full-band approaches. One is the significant improvements in

MSE due to the selective decimation and the joint optimization

of the adaptive interpolator and the FIR filter, as described in

the early part of this section (the achievable MSE is even less

than those of the conventional techniques). The other is that

its echo estimation error has a power spectrum uniformly dis-

tributing across the whole frequency band, which implies that

the proposed scheme requires no echo suppressor unlike the

conventional techniques (see Sections V and VI). Moreover, we

mention that the proposed scheme causes no block delay, unlike

the FDAF/subband approaches, because the scheme is based on

sample-by-sample updates.

IV. CONVERGENCE PROPERTIES AND CONDITIONS

In this section, we discuss the global convergence of the pro-

posed method and the convergence conditions in the form of

the trajectory of the mean tap vectors. Specifically, we study

the convergence properties of the proposed AEC scheme via the

computation of the Hessian of the cost function.

A. Global Convergence of the Method and Its Properties

Let us describe the MMSE filter design of the proposed

reduced-rank structure via the following cost function to be

optimized:

(17)

where stands for expectation. By fixing the interpolator

and minimizing (17) with respect to , the

suboptimal interpolated Wiener filter weight vector is

(18)
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where , , and

by fixing and minimizing (17) with respect to , the

suboptimal interpolator weight vector is

(19)

where , , and . The

associated MSE expressions are given as

(20)

(21)

where . Note that points of global minimum of (17)

can be obtained by and

or and . At

the minimum point, (20) coincides with (21) and the MMSE

for the proposed structure is achieved. We remark that (18) and

(19) are not closed-form solutions for and because (18) is

a function of and (19) depends on , and thus it is necessary

to iterate adaptive recursions to estimate and with an

initial guess.

We further note that, if is a global minimizer (a point

achieving the global minimum) of , then is also a global

minimizer for any , since . Therefore, we

can assume without any loss of generality that , and in

this case global minimizers (optimum interpolator filters) can

be obtained by . Since the existence of

at least one global minimizer of the continuous function

for is guaranteed by the theorem of Weierstrass [36],

then the existence of (infinitely many) global minimizers is also

guaranteed for the cost function in (17). It should be mentioned

that the global minimizers are invariant if the impulse response

is invariant; this is exemplified in Section V-E, in which the fil-

ters converge to global minimizers.

In the context of global convergence, a sufficient but not nec-

essary condition is convexity of the function , which is

verified if its Hessian matrix is positive semi-definite; i.e.,

, for any vector in the space considered. First, let

us consider the minimization, in terms of , of in

(17) with the FIR filter fixed. The Hessian matrix is computed

as

(22)

which is positive semi-definite, and thus ensures the convexity

of the cost function in the case of fixed FIR filter.

Let us now consider the joint optimization of the interpolator

and the reduced-rank filter through an equivalent cost func-

tion to (17):

(23)

where and

. In this case, the Hessian matrix with

respect to is given as

(24)

By examining , we see that the first term is positive semidef-

inite, whereas the second one is indefinite. Hence, we cannot

classify the optimization problem as convex. However, for a gra-

dient-based algorithm, a desirable property of the cost function

is that it has no points of local minimum, i.e., every point of min-

imum is a point of global minimum (convexity is a sufficient,

but not necessary, condition for this property to hold) and our

studies and experiments indicate that (23) has this property (see

[37]). An important feature that advocates the nonexistence of

local minima is that the algorithm always converges to the same

minimum value, for a given experiment, independently of any

interpolator initialization (except for that eliminates the

signal) for a wide range of signal-to-noise ratio (SNR) values

and environments.

B. Convergence Conditions of the Algorithms

This part is devoted to the analysis of the trajectory of the

mean tap vectors of the proposed AEC structure with the NLMS

algorithm. In our analysis, we assume that the problem has no

local minima and we employ the so-called independence theory

[14]. To proceed, let us define the tap error vectors and

as

(25)

where and are the optimum tap vectors that achieve

the MMSE for the proposed structure. By (14), (16), and (25),

we can verify

(26)

(27)

where and . By

taking expectations on both sides, under the independence as-

sumption, we have

(28)

(29)

where and . We re-

mark that the two error vectors have to be considered together

because of the joint optimization of the interpolator filter and

the reduced-rank filter. Rewriting the terms and

with (25) and taking into account the indepen-

dence theory [14], we obtain

(30)
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Fig. 4. The echo impulse response that is used in all the simulations.

(31)

By combining (28)–(31), the trajectory of the error vectors is

given as

(32)

where

(33)

(34)

(35)

(36)

(37)

(38)

Equation (32) implies that the stability of the algorithms in

the proposed structure depends on the matrix . For stability, the

convergence factors should be chosen so that all the eigenvalues

of are less than unity. The simulations with the proposed

scheme corroborate this analysis with respect to the tuning of

step sizes.

V. NUMERICAL EXAMPLES—SINGLE-TALK SITUATIONS

In this section, we examine the performance of the proposed

echo canceling scheme in single-talk situations; i.e., we assume

, . We use a recorded speech input sampled at

8 kHz, an echo impulse response (see Fig. 4) recorded in a small

room with its length 128 ms (i.e., ) and white noise

with the signal to noise ratio (SNR) 10 dB, where the SNR is

defined as with

. The results are discussed in Section V-D.

A. Proposed Scheme With Different and

We investigate the performance of the proposed AEC scheme

for different values of the diversity factor and for different

Fig. 5. Average MSE versus (a) rank of reduced-rank adaptive filter � and
(b) number of parallel branches �.

ranks of reduced-rank adaptive filter, which is dominated

by the decimation factor . For numerical stability against the

poorly excited inputs, the algorithm is regularized with a factor

[14]. In the adaptation of and , we employ

, , , and . The

MSE at iteration is defined as [38], [39]

MSE
LPF

LPF
(39)

where LPF denotes a low-pass filter with a single pole at 0.999

[38]; recall that and

for all . We run 300 independent simulations; in each

run, we average the MSE over 8000th to 10 000th iterations,

and then average over 300 independent runs the averaged MSEs.

Taking a careful look at (39), we see that the denominator will be

small while the far-end speech is silent, whereas the numerator

will be almost constant provided that the echo is reduced suf-

ficiently. This means that, during silence, the MSE value will

be increased even if the echo is canceled successfully. Hence,

to avoid misleading, we use some small MSE values during the

silent periods in all the experiments presented. The flat-periods

in the MSE curves slightly longer than the silent periods and

unstable-looking behavior (note: not unstable from system and

filter theory points of view) observed in all the MSE figures are
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Fig. 6. (a) Input (far-end talker’s) speech signal, (b) proposed schemes with
different � versus NLMS; and proposed scheme versus the conventional algo-
rithms with (c) linear and (d) logarithmic �-axes.

due to the low-pass filter, thus never being an essential problem

(as supported by subjective tests in Section VI-B).

The results are drawn in Fig. 5. In Fig. 5(a), we set 5,

20, 60, and 100 and change from 3 to 20. In Fig. 5(b), we set

Fig. 7. (a) Input speech signal and (b) MSE curves.

100, 300, 500, and 20 60 100 300. The speech

signal employed in this section is depicted in Fig. 6(a).

B. Proposed Scheme Versus Conventional Schemes

We compare the convergence behavior of the proposed

scheme with the NLMS algorithm to the full-rank NLMS,

full-rank RLS, MWF, and AVF algorithms (note that the

computational complexity of full-rank RLS, MWF, and AVF

is prohibitively high as presented in Fig. 3). For the pro-

posed scheme, we employ exactly the same parameters as

in Fig. 5; ( ) is selected [ in

Fig. 6(c) and (d)]; in this case, the dimension of in (7) is

.

For the full-rank NLMS algorithm, we set . For the

full-rank RLS algorithm, we use the forgetting factor

(as it showed the best performance in our experiments), and

the initial covariance matrix with . For the MWF

algorithm, since the computational complexity to obtain the

matrix tridiagonalizing the covariance matrix is prohibitively

high, we use the following simple matrix [5]:

where , and

( ) with ( ) and . For the AVF

algorithm, we use the following matrix [8]:
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Fig. 8. MSE curves in (a) the early phase, (b) the intermediate phase, and
(c) the late phase of adaptation.

where , and

The outputs of the MWF and AVF algorithms are, respectively,

given as

(40)

(41)

For the adaptation of the MWF reduced-rank adaptive filter

, we adopt the NLMS algorithm with the step size

as in the proposed scheme. For the AVF scheme,

since the weights pre-

sented in [9] does not perform well due to the nonstationarity

of speech, we instead employ the NLMS algorithm with the

step size to update the weights.

Fig. 6(b) draws the comparison among the proposed scheme

with different values of diversity factor and the full-rank NLMS

algorithm. Fig. 6(c) draws the comparison among the proposed

scheme and the conventional algorithms. To clarify the behavior

in the initial phase of adaptation, we adopt a logarithmic scale

for the -axis in Fig. 6(d).

C. Analysis of Echo Estimation Error

To demonstrate further the advantages of the proposed

scheme, we perform another simulation with a larger number

of speech samples, as depicted in Fig. 7(a). The employed

algorithms and their parameters are exactly the same as in

Fig. 6(c) and (d). The MSE curves are depicted in Fig. 7(b).

To clarify how the behavior of each algorithm changes due to

the progress of adaptation, we focus on three phases: (a) early

phase 20 000–50 000, (b) intermediate phase 240 000–270 000,

and (c) late phase 340 000–370 000; Fig. 8 depicts the MSE

curves in each phase. Next, to examine how much the echo

estimation error2

(42)

sounds similar to the original speech, we present their

power spectrums. Fig. 9 depicts the power spectrum of the

original signal in each phase of adaptation; the power

spectrums are respectively calculated over 10 000 samples

as follows3: (a) 21 000–31000, (b) 245 000–255 000, and

(c) 350 000–360 000. Fig. 10 depicts the power spectrum of the

echo estimation error of the proposed, full-rank NLMS, MVF,

and AVF algorithms in each phase. The power spectrums are

calculated in the same way as the ones of the original speech.

D. Discussion for Single-Talk Case

From Fig. 5(a), we observe for 5, 20 significant im-

provements in the achievable MSE due to an increase of ,

while negligible improvements for 60, 100. We see that,

for a relatively large number of diversity factor (e.g., 60,

100), is a reasonable choice. From Fig. 5(b), on the other

hand, we see that an increase of yields significant improve-

ments. The diversity factor can be designed at user-requests.

Referring to Figs. 6–8, we see that the proposed algorithm

with only four taps exhibits drastically faster convergence and

even lower MSE in the steady state than the full-rank NLMS

and RLS algorithms with 1024 taps. We stress again that the

observed improvements in MSE come from the selective deci-

mation and the adaptive interpolator. Moreover, an increase of

2This quantity is referred to as undistorted error signal in [40].

3The periods are selected so that the peak magnitude level is comparable
among the three phases.
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Fig. 9. Power spectrums of original speech in (a) the early phase, (b) the intermediate phase, and (c) the late phase of adaptation.

Fig. 10. (a)–(c) depict the power spectrums of echo estimation error for MWF in (a) the early phase, (b) the intermediate phase, and (c) the late phase of adaptation.
In the same way, the figures (d)–(f) depict the ones for AVF, (g)–(i) the ones for full-rank NLMS, (j)–(l) the ones for the proposed method.

the diversity factor improves the steady-state MSE perfor-

mance by 10–15 dB compared to the full-rank NLMS and RLS

algorithms without any loss in the initial speed of convergence.

From Fig. 10, we see that the power spectrum of the echo

estimation error of the proposed scheme spreads over whole

frequency, while the ones of NLMS, MWF, and AVF are

concentrated in low frequency (as like the one of the original

speech signal). This observation suggests that the residual echo

of the proposed scheme performs as like noise unlike the ones

of NLMS, MWF, and AVF; this is verified in our audio tests.

As a result, the proposed scheme does not require an echo

suppressor, which reduces the overall system complexity; we

stress that this is not a common property of the reduced-rank

filter but a unique property of the proposed scheme.

We remark that the total energy of the echo estimation error

of the proposed scheme, which is directly related to echo return

loss enhancement (ERLE) [15], could be more than that of the

full-rank NLMS algorithm, as understood from Fig. 10. How-
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Fig. 11. (a) MSE curves, and the progress in time of (b) the inter-

polator ��� �� �� ���� � ���� � ���� , and (c) the FIR filter ��� ��
�� ���� � ���� � ���� � ���� .

ever, the point is that the error of the proposed scheme has equal

energy over whole frequency, and it is less annoying for human

auditory perception than the error of the other methods, which

will be verified by subjective assessment in Section VI-B. One

may think that the residual error would be noisy, but it should

be remarked that the residual error and the echo esti-

mation error [see (42)] are different quantities and the energy of

the former one is directly related to MSE. Therefore, the residual

error of the proposed scheme is significantly small, as seen from

Figs. 6–8. We thus provide no comparison in ERLE to avoid

confusion.

E. Behavior of Interpolator and FIR Filter for White Input

Finally, we present the progress of the adaptive interpolator

and the FIR filter for white input signals and how it de-

creases the MSE. To clarify the actions, we use the following

definition (adopting no low-pass filter) rather than the one in

(39):

MSE (43)

which is an average over independent runs and

, , and denote, respectively, , , and at

th realization. The parameters and conditions are the same as

in Section V-B. All coefficients of the vectors and

are initialized to a random number close to zero with

its variance . The results are depicted in Fig. 11. Since

the steady-state solution of and changes from a simu-

lation to another, it makes no sense to take an average, and

thus the filter coefficients shown in the figure are taken from

one of the 1000 realizations; the behavior is nearly the same

in all the realizations. In this example, the steady-state solu-

tion is approximately and

.

In the simulation, we suppose that the impulse response

of an echo path is time-invariant and the input signal is sta-

tionary, thus the steady-state solution of the two vectors is

time-invariant. Otherwise, the algorithm can dynamically track

an optimal solution. The key point is that we can model the

reduced-rank filtering problem by introducing a projection

matrix [see (8)] that performs dimensionality reduction on

the original data vector followed by a reduced-rank filter .

In particular, the matrix is a function of the interpolator

and the decimation matrix , which is time-varying and has

a special structure, leading to a low-complexity scheme with

extremely fast convergence and excellent tracking capability.

In a situation where the proposed system reaches steady state,

the filters can be frozen, and the decimation process can be

halted provided the designer estimates . In such a case, the

operation in steady state would only involve the dimensionality

reduction of the original input data vector with followed by

filtering with the frozen coefficients of .

VI. NUMERICAL EXAMPLES—DOUBLE-TALK SITUATIONS

In this section, we study the performance in double-talk situ-

ations; we concentrate here on the full-rank NLMS, full-rank

RLS and proposed schemes. To cope with double-talk situa-

tions, we have two strategies:

1) construct a time-invariant that can extract the key fea-

tures of the input vector by means of the update informa-

tion [e.g., and ];

2) develop an effective selection criterion working also in the

double-talk situations to realize a time-variant .

The strategy 1) would be possible only if the system reaches

steady state. In the current study, we focus on 2) and examine the

potential of the proposed reduced-rank adaptive filtering scheme
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Fig. 12. (a) Far-end talker’s speech signal. (b) Near-end talker’s speech signal.
(c) MSE curves.

in the AEC problem with an ideal selection criterion; i.e., we

assume that the filter selects the decimation matrix which min-

imizes . A cost-effective selection criterion

for double-talk situations is an interesting open problem to be

investigated in the future. For simplicity, we also assume for all

the employed algorithms the perfect double-talk detection. For

the proposed scheme, during the double-talk, we freeze the in-

terpolator and the FIR filter , while keeping the decimation

matrix selection. For the full-rank NLMS and RLS schemes,

during the double-talk, we freeze the updates of the filter co-

efficients; we keep updating the estimate of the autocorrelation

matrix used in RLS whenever the far-end speech is active.

A. Comparisons in MSE and Power Spectrum

The employed far-end and near-end talker’s speech is drawn

in Fig. 12(a) and (b), respectively. Referring to both figures, we

observe that the period is divided into five stages as depicted

in Fig. 12(a): A) only far-end talker active, B) both far-end and

near-end talkers active, C) only near-end talker active, D) both

far-end and near-end talkers active as in the stage B, and (E)

only far-end talker active as in the stage A. As the performance

in the double-talk stages B and D and after-double-talk stage E

are of our interest, we focus on three periods: (a) 50 000–80 000

in the stage B, (b) 120 000–150 000 in the stage D, and (c)

Fig. 13. MSE curves in a double-talk situation (a) in stage B, (b) in stage D,
and (c) in stage E.

150 000–180 000 in the stage E. The employed parameters in

each scheme are exactly the same as in Section V-C. Fig. 13 de-

picts the MSE in each period. The power spectrums are depicted

in Fig. 14; the power spectrums in each period are respectively

calculated over 10 000 samples as follows: (a) 55 000–65 000,

(b) 125 000–135 000, and (c) 155 000–165 000. In addition to

the objective evaluation, we present a subjective evaluation by

means of listening tests in the following subsection.

B. Subjective Assessment

We conduct subjective tests to verify the advantage of the pro-

posed scheme in a perceptive aspect over the full-rank NLMS

algorithm. We prepare four pairs of near-end and far-end Eng-

lish speech samples, and each pair consists of (near-end speech,

far-end speech) = (male, male), (male, female), (female, male),

(female, female), respectively. After a training period (i.e., only

far-end talker is active) for 5 s in which the adaptive filter is

updated, we put a double-talk period for another 5 s in which
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Fig. 14. (a)–(c) depict the power spectrums, in a double-talk case, of original speech in (a) the early phase, (b) the intermediate phase, and (c) the late phase of
adaptation. In the same way, (d)–(f) depict the power spectrums of echo estimation error for full-rank NLMS, (g)–(i) the ones for the proposed method.

the adaptive filter is frozen and the far-end speech is canceled

by the trained filter. We gather 25 English-native volunteers, in-

cluding both male and female equally, with no knowledge about

the current study for fairness. The volunteers listen to three types

of speech, which are presented in a shuffled manner for unbi-

asedness: (a) the original (clean) near-end speech, (b) the one

processed by the proposed scheme, and (c) the one processed

by NLMS. The volunteers are asked to grade the quality of each

speech according to the absolute category rating procedure [41]

with a five grade scale: the minimum score is 1 corresponding

to “bad” and the maximum is 5 corresponding to “excellent.”

Fig. 15 illustrates the results, where the vertical axis expresses

mean opinion score (MOS), and the bar on each graph indicates

the 99% confidence interval. It is seen that there is a signifi-

cant difference between the proposed scheme and the full-rank

NLMS algorithm.

C. Discussion for Double-Talk Case

From Figs. 12 and 13, we see that the proposed scheme sub-

stantially outperforms the full-rank methods all over the itera-

tions. In particular, Fig. 13(c) demonstrates that the proposed

scheme enjoys drastically fast tracking ability after the double-

talk phases finish. Moreover, the results shown in the figures

suggest that with an ideal criterion for decimation matrix se-

lection the proposed scheme attains up to 15-dB gain in MSE

compared to the full-rank approaches. Fig. 14 verifies that the

echo estimation error of the proposed scheme in the double-talk

Fig. 15. MOS in the listening subjective tests. The bars indicate 99% confi-
dence intervals.

situations spreads over whole frequency as in the single-talk sit-

uations. This implies a great benefit of the proposed scheme that

the residual signal processed by the proposed scheme has no

longer a characteristic of speech and thus the signal does not

need to be postprocessed by echo suppressor any more unlike

the conventional approaches. Fig. 15 verifies the advantage of

the proposed scheme in human perception over the full-rank

NLMS algorithm.

VII. CONCLUSION

This paper has proposed a new approach to an efficient echo

cancellation based on reduced-rank adaptive filtering with adap-

tive interpolator and decimation-matrix-selection. The conver-

gence properties of the proposed scheme and the convergence

conditions have been discussed. The numerical examples have
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demonstrated that the joint optimization approach will drasti-

cally improve the echo canceling ability with low computational

complexity. This study has proven a substantial potential of the

proposed approach. It would be an interesting future work to

consider the strategies mentioned at the beginning of Section VI.

From a wider point of view, this study has defined a new goal

of efficient echo cancellation as finding a novel decimation se-

lection criterion.
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