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Abstract. Training robust deep learning (DL) systems for medical
image classification or segmentation is challenging due to limited images
covering different disease types and severity. We propose an active learn-
ing (AL) framework to select most informative samples and add to
the training data. We use conditional generative adversarial networks
(cGANs) to generate realistic chest xray images with different disease
characteristics by conditioning its generation on a real image sample.
Informative samples to add to the training set are identified using a
Bayesian neural network. Experiments show our proposed AL framework
is able to achieve state of the art performance by using about 35% of
the full dataset, thus saving significant time and effort over conventional
methods.

1 Introduction

Medical image classification and segmentation are essential building blocks of
computer aided diagnosis systems where deep learning (DL) approaches have
led to state of the art performance [13]. Robust DL approaches need large
labeled datasets which is difficult for medical images because of: (1) limited
expert availability; and (2) intensive manual effort required for curation. Active
learning (AL) approaches overcome data scarcity with existing models by incre-
mentally selecting the most informative unlabeled samples, querying their labels
and adding them to the labeled set [7]. AL in a DL framework poses the follow-
ing challenges: (1) labeled samples generated by current AL approaches are too
few to train or finetune convolution neural networks (CNNs); (2) AL methods
select informative samples using hand crafted features [9], while feature learning
and model training are jointly optimized in CNNs.
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Recent approaches to using AL in a DL setting include Bayesian deep neural
networks [1], leveraging separate unlabeled data with high classification uncer-
tainty and high confidence for computer vision applications [14], and fully con-
volution networks (FCN) for segmenting histopathology images [16]. We propose
to generate synthetic data by training a conditional generative adversarial net-
work (cGAN) that learns to generate realistic images by taking input masks of a
specific anatomy. Our model is used with chest xray images to generate realistic
images from input lung masks. This approach has the advantage of overcoming
limitations of small training datasets by generating truly informative samples.
We test the proposed AL approach for the key tasks of image classification and
segmentation, demonstrating its ability to yield models with high accuracy while
reducing the number of training samples.

2 Methods

Our proposed AL approach identifies informative unlabeled samples to improve
model performance. Most conventional AL approaches identify informative sam-
ples using uncertainty which could lead to bias as uncertainty values depend
on the model. We propose a novel approach to generate diverse samples that
can contribute meaningful information in training the model. Our framework
has three components for: (1) sample generation; (2) classification/segmentation
model; and (3) sample informativeness calculation. An initial small labeled
set is used to finetune a pre-trained V GG16 [12] (or any other classifica-
tion/segmentation model) using standard data augmentation (DA) through rota-
tion and translation. The sample generator takes a test image and a manually
segmented mask (and its variations) as input and generates realistic looking
images (details in Sect. 2.1). A Bayesian neural network (BNN) [6] calculates
generated images’ informativeness and highly informative samples are added to
the labeled image set. The new training images are used to fine-tune the previ-
ously trained classifier. The above steps are repeated till there is no change in
classifier performance.

2.1 Conditional Generative Adversarial Networks

GANs [3] learn a mapping from random noise vector z to output image y : G : z →
y. In contrast, conditional GANs (cGANs) [5] learn a mapping from observed
image x and random noise vector z, to y : G : {x, z} → y. The generator G is
trained to produce outputs that cannot be distinguished from“real” images by
an adversarially trained discriminator, D. The cGAN objective function is:

LcGAN = Ex,y pdata(x,y) [log D(x, y)]+Ex pdata(x),z pz(z) [log (1 − D(x, G(x, z)))] , (1)

where G tries to minimize this objective against D, that tries to maximize it,
i.e. G∗ = arg minG maxD LcGAN (G, D). Previous approaches have used an addi-
tional L2 loss [10] to encourage the generator output to be close to ground truth
in an L2 sense. We use L1 loss as it encourages less blurring [8], and defined as:

LL1(G) = E(x,y) pdata(x,y),z pz(z) [‖y − G(x, z)‖1] . (2)
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Thus the final objective function is :

G∗ = arg min
G

max
D

LcGAN (G, D) + λLL1(G), (3)

where λ = 10, set empirically, balances the two components’ contributions.

Synthetic Image Generation: The parameters of G, θG, are given by,

θ̂ = arg min
θG

1

N

N∑

n=1

l (GθG
(x, z), x, z) , (4)

N is the number of images. Loss function l combines content loss and adversarial
loss (Eqn. 1), and G(x, z) = y. Content loss (lcontent) encourages output image
y to have different appearance to x. z is the latent vector encoding (obtained
from a pre-trained autoencoder) of the segmentation mask. lcontent is,

lcontent = NMI(x, y) − V GG(x, y) − MSE(x, y). (5)

NMI denotes the normalized mutual information (NMI) between x and y, and
is used to determine similarity of multimodal images. V GG is the L2 distance
between two images using all 512 feature maps of Relu 4 − 1 layer of a pre-
trained V GG16 network [12]. The VGG loss improves robustness by capturing
information at different scales from multiple feature maps. MSE is the intensity
mean square error. For similar images, NMI gives higher value while V GG and
MSE give lower values. In practice lcontent is measuring the similarity (instead of
dissimilarity in traditional loss functions) between two images, and takes higher
values for similar images. Since we are minimizing the total loss function, lcontent

encourages the generated image y to be different from input x.
The generator G (Fig. 1(a)) employs residual blocks having two convolution

layers with 3 × 3 filters and 64 feature maps, followed by batch normalization
and ReLU activation. It takes as input the test Xray image and the latent vector
encoding of a mask (either original or altered) and outputs a realistic Xray
image whose label class is the same as the original image. The discriminator D

(Fig. 1(b)) has eight convolution layers with the kernels increasing by a factor of
2 from 64 to 512. Leaky ReLU is used and strided convolutions reduce the image
dimension when the number of features is doubled. The resulting 512 feature
maps are followed by two dense layers and a final sigmoid activation to obtain
a probability map. D evaluates similarity between x and y. To generate images
with a wide variety of information we modify the segmentation masks of the test
images by adopting one or more of the following steps:

1. Boundary Displacement: The boundary contours of the mask are displaced
to change its shape. We select 25 continuous points at multiple boundary
locations, randomly displace each one of them by ±[1, 15] pixels and fit a
b-spline to change the boundary shape. The intensity of pixels outside the
original mask are assigned by linear interpolation, or by generating intensity
values from a distribution identical to that of the original mask.
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Fig. 1. (a) Generator Network; (b) Discriminator network. n64s1 denotes 64 feature
maps (n) and stride (s) 1 for each convolutional layer.

2. The intensity values of the lung region are changed by generating values
from a uniform distribution modeled as αµ + βσ, where µ is the original
distribution’s mean, σ is its standard deviation, and α = [1, 5], β = [2, 10]
(varied in steps of 0.2).

3. Other conventional augmentation techniques like flipping, rotation and trans-
lation are also used.

For every test image we obtain up to 200 synthetic images with their modified
masks. Figure 2 (a) shows an original normal image (bottom row) and its mask
(top row), and Figs. 2 (b, c) show generated ‘normal’ images. Figure 2 (d) shows
the corresponding image mask for an image with nodules, and Figs. 2 (e, f) show
generated ‘nodule’ images. Although the nodules are very difficult to observe
with the naked eye, we highlight its position using yellow boxes. It is quite
obvious that the generated images are realistic and suitable for training.

2.2 Sample Informativeness Using Uncertainty Form Bayesian

Neural Networks

Each generated image’s uncertainty is calculated using the method described in
[6]. Two types of uncertainty measures can be calculated from a Bayesian neural
network (BNN). Aleotaric uncertainty models the noise in the observation while
epistemic uncertainty models the uncertainty of model parameters. We adopt [6]
to calculate uncertainty by combining the above two types. A brief description is
given below and refer the reader to [6] for details. For a BNN model f mapping
an input image x, to a unary output ŷ ∈ R, the predictive uncertainty for pixel
y is approximated using:

V ar(y) ≈
1

T

T∑

t=1

ŷ2
t −

(
1

T

T∑

t=1

ŷt

)2

+
1

T

T∑

t=1

σ̂2
t (6)

σ̂2
t is the BNN output for the predicted variance for pixel yt, and ŷt, σ̂

2
t

T

t=1 being
a set of T sampled outputs.
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Fig. 2. Mask (Top Row 1) and corresponding informative xray image (Bottom Row);
(a)–(c) non-diseased cases; (d)–(f) images with nodules of different severity at the
center of yellow box. (a), (d) are the original images while others are synthetic images
generated by altering the mask characteristics.

2.3 Implementation Details

Our initial network is a V GG16 network [12] or ResNet18 [4] pre-trained on
the Imagenet dataset. Our entire dataset had 93 normal images and 154 nodule
images. We chose an initially labeled dataset of 16 (chosen empirically) images
from each class, augment it 200 times using standard data augmentation like
rotation and translation, and use them to fine tune the last classification layer of
the V GG16. The remaining test images and their masks were used to generate
multiple images using our proposed cGAN approach (200 synthetic images for
every test image as described earlier), and each generated image’s uncertainty
was calculated as described in Sect. 2.2. We ranked the images with highest
uncertainty score and the top 16 images from each class were augmented 200
times (rotation and translation) and used to further fine-tune the classifier. This
ensures equal representation of normal and diseased samples in the samples to
add to the training data. This sequence of steps is repeated till there is no
further improvement of classifier accuracy when tested on a separate test set
of 400 images (200 images each of nodule and normal class). Our knowledge of
image label allows quantitative analysis of model performance.

3 Experiments

Dataset Description: Our algorithm is trained on the SCR chest XRay
database [2] which has Xrays of 247 (93 normal and 154 nodule images, resized
to 512 × 512 pixels) patients along with manual segmentations of the clavicles,
lungs and heart. The dataset is augmented 500 times using rotation, transla-
tion, scaling and flipping. We take a separate test set of 400 images from the
NIH dataset [15] with 200 normal images and 200 images with nodules.
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3.1 Classification Results

Here we show results for classifying different images using different amounts of
labeled data and demonstrate our method’s ability to optimize the amount of
labeled data necessary to attain a given performance, as compared to conven-
tional approaches where no sample selection is performed. In one set of exper-
iments we used the entire training set of 247 images and augmentation to fine
tune the V GG16 classifier, and test it on the separate set of 400 images. We call
this the fully supervised learning (FSL) setting. Subsequently, in other experi-
ments for AL we used different number of initial training samples in each update
of the training data. The batch size is the same as the initial number of samples.

The results are summarized in Table 1 where the classification performance in
terms of sensitivity (Sens), specificity (Spec) and area under the curve (AUC)
are reported for different settings using V GG16 and ResNet18 [4] classifiers.
Under FSL, 5–fold indicates normal 5 fold cross validation; and 35% indicates the
scenario when 35% of training data was randomly chosen to train the classifier
and measure performance on test data (the average of 10 such runs). We ensure
that all samples were part of the training and test set atleast once. In all cases
AL classification performance reaches almost the same level as FSL when the
number of training samples is approximately 35% of the dataset. Subsequently
increasing the number of samples does not lead to significant performance gain.
This trend is observed for both classifiers, indicating it is not dependent upon
classifier choice.

Table 1. Classification and Segmentation results for active learning framework of Xray
images. DM-Dice metric and HD- Hausdorff distance

Active learning (% labeled + Classifier) FSL

10% 15% 25% 30% 35% 5-fold 35%

VGG16 [12] ResNet18 [4] [12] [4] [12] [4] [12] [4] [12] [4] [12] [4] [12] [4]

Sens 70.8 71.3 75.3 76.2 89.2 89.7 91.5 91.8 91.7 91.9 92.1 92.4 78.1 78.5

Spec 71.1 71.9 76.0 76.8 89.9 90.5 92.1 92.4 92.4 92.5 92.9 93.1 78.4 78.7

AUC 74.3 75.0 78.7 79.4 92.5 93.0 94.9 95.1 95.2 95.3 95.7 95.9 80.6 81.0

DM 68.2 74.1 86.4 90.4 91.0 91.3 79.3

HD 18.7 14.3 9.3 8.1 7.9 7.5 15.1

3.2 Segmentation Performance

Using the labeled datasets at different stages we train a UNet [11] for segmenting
both lungs. The trained model is then evaluated on the separate set of 400
images from the NIH database on which we manually segment both lungs. The
segmentation performance for FSL and different AL settings is summarized in
Table 1 in terms of Dice Metric (DM) and Hausdorff Distance (HD). We observe
that the segmentation performance reaches the same level as FSL at a fraction of
the full dataset - in this case between 30−35%, which is similar for classification.
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Figure 3 shows the segmentation results for different training models. When the
number of training samples are less than 10% the segmentation performance
is quite bad in the most challenging cases. However the performance improves
steadily till it stabilizes at the 35% threshold.

Fig. 3. Segmentation (top row) and uncertainty map (bottom row) results for different
numbers of labeled examples in the training data (a) 5%; (b) 10%; (c) 20%; (d) 30%;
(e) 35%; (f) 40%. Red contour is manual segmentation and green contour is the UNet
generated segmentation.

3.3 Savings in Annotation Effort

Segmentation and classification results demonstrate that with the most infor-
mative samples, optimum performance can be achieved using a fraction of the
dataset. This translates into significant savings in annotation cost as it reduces
the number of images and pixels that need to be annotated by an expert. We
calculate the number of pixels in the images that were part of the AL based
training set at different stages for both classification and segmentation. At the
point of optimum performance the number of annotated pixels in the training
images is 33%. These numbers clearly suggest that using our AL framework can
lead to savings of nearly 67% in terms of time and effort put in by the experts.

4 Conclusion

We have proposed a method to generate chest Xray images for active learn-
ing based model training by modifying the original masks of associated images.
A generated image’s informativeness is calculated using a bayesian neural net-
work, and the most informative samples are added to the training set. These
sequence of steps are continued till there is no additional information provided
by the labeled samples. Our experiments demonstrate that, with about 33−35%
labeled samples we can achieve almost equal classification and segmentation
performance as obtained when using the full dataset. This is made possible by
selecting the most informative samples for training. Thus the model sees all the
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informative samples first, and achieves optimal performance in fewer iterations.
The performance of the proposed AL based model translates into significant sav-
ings in annotation effort and clinicians’ time. In future work we aim to further
investigate the realism of the generated images.
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9. Mahapatra, D., Schüffler, P.J., Tielbeek, J.A.W., Vos, F.M., Buhmann, J.M.: Semi-
supervised and active learning for automatic segmentation of Crohn’s disease. In:
Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS,
vol. 8150, pp. 214–221. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40763-5 27
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