
University of South Florida

Scholar Commons

Graduate Theses and Dissertations Graduate School

June 2018

Efficient Adjacency Queries and Dynamic
Refinement for Meshfree Methods with
Applications to Explicit Fracture Modeling
James Olliff
University of South Florida, jjolliff@mail.usf.edu

Follow this and additional works at: https://scholarcommons.usf.edu/etd

Part of the Civil Engineering Commons, and the Other Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in

Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact

scholarcommons@usf.edu.

Scholar Commons Citation
Olliff, James, "Efficient Adjacency Queries and Dynamic Refinement for Meshfree Methods with Applications to Explicit Fracture
Modeling" (2018). Graduate Theses and Dissertations.

https://scholarcommons.usf.edu/etd/7344

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F7344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F7344&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F7344&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F7344&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F7344&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F7344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=scholarcommons.usf.edu%2Fetd%2F7344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/304?utm_source=scholarcommons.usf.edu%2Fetd%2F7344&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

Efficient Adjacency Queries and Dynamic Refinement for Meshfree Methods with

Applications to Explicit Fracture Modeling

by

James Olliff

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Department of Civil and Environmental Engineering

College of Engineering
University of South Florida

Major Professor: Daniel C. Simkins Jr., Ph.D.
Andrés Tejada-Martinez, Ph.D.

Stuart Wilkinson, Ph.D.
Nathan Crane, Ph.D.

Seung-Yeop Lee, Ph.D.

Date of Approval:
May 31, 2018

Keywords: laminated composites, nearest neighbor, particle placement

Copyright c© 2018, James Olliff

DEDICATION

To my loving mother and late father, who instilled in me the work ethic and drive

necessary to complete this journey.

ACKNOWLEDGMENTS

Someone once told me I was not “gifted”. I am a believer in the words of G.K. Nielson,

that successful people are not gifted; they just work hard, then succeed on purpose. The

following people have helped me achieve success beyond what I thought was possible. I

would like to express my appreciation to my advisor, Dr. Dan Simkins, for allowing me

to explore a variety of research topics, guiding me along the way, and teaching me more

than I could every give him credit for. I would also like to express my appreciation for Dr.

Stuart Wilkinson, for providing me with many opportunities outside my primary research

that helped me develop invaluable skills and knowledge beyond what can be taught in a

classroom. I would also like to thank my committee members: Dr. Andrés Tejada-Martinez,

Dr. Nathan Crane, Dr. Seung-Yeop Lee, and Dr. Craig Lusk for their insightful comments

and challenging questions pushing me to a better understanding. I would also like to thank

the CEE staff, especially Barbara Johnson for generous T.A. appointments when I needed

them. I would also like to thank Dr. Brad Alford, who brought me into this research group,

and upon graduation, has helped me embark on what is sure to be a rewarding career. Last

but not least, I would like to thank my family and friends for the endless encouragement and

support. I would like to especially thank my loving wife and best friend, Dr. Bailee Olliff.

Words cannot express how grateful I am to call you my wife. You are also likely one of the

only people to read every word of this dissertation, even if at times it was under duress.

TABLE OF CONTENTS

LIST OF TABLES . iv

LIST OF FIGURES . v

ABSTRACT . viii

CHAPTER 1: INTRODUCTION . 1
1.1 Motivation . 1
1.2 Objective . 3
1.3 Overview . 3

CHAPTER 2: MESHFREE METHODS . 5
2.1 Historical Development . 5
2.2 Reproducing Kernel Method . 7
2.3 Reproducing Kernel Particle Method . 11

2.3.1 Discretization Requirements . 14
2.4 Challenges of Meshfree Methods . 16

2.4.1 Application of Boundary Conditions 17
2.4.2 Numerical Integration . 18
2.4.3 Visualization . 20
2.4.4 Computational Efficiency . 23

CHAPTER 3: EFFICIENT SEARCH SCHEMES FOR PARTICLE METHODS . . . 26
3.1 Adjacency Information . 27

3.1.1 Relation Between Type 1 and Type 2 Adjacency 30
3.1.2 Example Uses of Adjacency . 31

3.2 Data Structures . 34
3.2.1 Spatial Partitioning . 35

3.2.1.1 Regular Grids . 36
3.2.1.1.1 Construction 36
3.2.1.1.2 Searching . 39

3.2.1.2 Kd-Tree . 40
3.2.1.2.1 Construction 40
3.2.1.2.2 Searching . 41

3.2.1.3 Octree . 42
3.2.1.3.1 Construction 44
3.2.1.3.2 Searching . 45

i

3.2.1.4 Meshfree Details . 46
3.2.2 Object Partitioning . 47

3.2.2.1 Bounding Volume Hierarchy 48
3.2.2.1.1 Construction 49
3.2.2.1.2 Searching . 49
3.2.2.1.3 Remarks . 51

3.2.2.2 A New Support Tree Structure 52
3.2.2.2.1 Construction 52
3.2.2.2.2 Searching . 55
3.2.2.2.3 Dynamic Insertion 56

3.3 Performance Comparison . 57
3.3.1 Memory Cost . 61
3.3.2 Construction Cost . 61
3.3.3 Search Cost . 62
3.3.4 Guide to Choosing a Search Structure 63

CHAPTER 4: DOMAIN DISCRETIZATION FOR PARTICLE METHODS 72
4.1 Particle Placement . 72

4.1.1 Physics Based Approach . 74
4.1.1.1 Initial Particle Distribution 74
4.1.1.2 Particle Motion . 77

4.1.1.2.1 Simulated Annealing 80
4.2 Computation of Particle Attributes . 84

4.2.1 Particle Volumes . 85
4.2.2 Support Domain . 86

4.2.2.1 Geometrical Representations 87
4.2.2.2 Construction . 88
4.2.2.3 Numerical Implications 91

4.3 Discretization Refinement . 93
4.3.1 Particle Placement . 93
4.3.2 Adaptive Integration . 94
4.3.3 Numerical Examples . 97

4.3.3.1 Cantilever Beam . 97
4.3.3.2 Plate with Hole . 100

CHAPTER 5: MECHANICS OF SOLIDS . 105
5.1 Formulation of Governing Equations . 105
5.2 Solution Methodology . 107
5.3 Mechanics of Laminated Composites . 115

CHAPTER 6: EXPLICIT FRACTURE MODELING 120
6.1 Meshfree Methods for Modeling Fracture 121

6.1.1 Visibility Method . 122
6.1.2 Enrichment Techniques . 123

6.2 Modeling Fracture of Laminated Composite 125

ii

6.2.1 Laminated Composite Failure Criteria 125
6.2.2 Particle Splitting Crack Algorithm 128
6.2.3 Physically Consistent Crack Propagation 129
6.2.4 Modified Particle Splitting Crack Algorithm 132

6.2.4.1 Initiation . 133
6.2.4.2 Propagation . 135

6.3 Numerical Examples . 137
6.3.1 0 Degree Lamina . 139
6.3.2 30 Degree Lamina . 139
6.3.3 90 Degree Lamina . 141

6.4 Discussion . 143

CHAPTER 7: CONCLUSION . 146
7.1 Recommendations for Future Research 148

REFERENCES . 149

APPENDIX A: COPYRIGHT PERMISSIONS . 156
A.1 Copyright Permission Chapter 3 . 156

iii

LIST OF TABLES

Table 4.1: Cantilever beam parameters . 99

Table 4.2: Plate with hole parameters . 102

Table 6.1: Material properties . 139

iv

LIST OF FIGURES

Figure 1.1: Engineering design flowchart . 2

Figure 2.1: Comparison of FEM and meshfree discretizations 6

Figure 2.2: Window function . 8

Figure 2.3: Domain coverage of particles’ supports 15

Figure 2.4: Comparison of FEM and meshfree shape functions 17

Figure 2.5: Visualization of a meshfree domain that has been meshed 21

Figure 2.6: Interpolation of field values across discontinuity 22

Figure 2.7: Visualization of meshfree domain as discrete point set 22

Figure 3.1: Graphical depiction of ΛI , an element in Type 2, particle - evaluation
point adjacency. 28

Figure 3.2: Graphical depiction of Type 3, particle-particle adjacency 29

Figure 3.3: Search domain . 39

Figure 3.4: Domain coverage . 53

Figure 3.5: Construction of data . 55

Figure 3.6: Particle distribution for example problems 58

Figure 3.7: Close-up view of the particle distribution of Scarlet Macaw skull 59

Figure 3.8: Memory requirements corresponding to Case 1 data structures. 64

Figure 3.9: Memory requirements corresponding to Case 2 data structures for Ex.
1 and 2 . 65

Figure 3.10: Construction time corresponding to Case 1 data structures. 66

Figure 3.11: Construction time corresponding to Case 2 data structures. 67

v

Figure 3.12: Search time vs number of evaluation points for Case 1 data structures
for the Scarlet Macaw and Stanford Bunny discretized with 122,334
and 1,284,920 particles respectively. 68

Figure 3.13: Search time vs number of evaluation points for Case 2 structures
the Scarlet Macaw and Stanford Bunny discretized with 122,334 and
1,284,920 particles respectively. 69

Figure 3.14: Search time vs number of particles for Case 1 structures for both
examples using 140,625 evaluation points for the Scarlet Macaw and
8,000,000 evaluation points for the Stanford Bunny. 70

Figure 3.15: Search time vs number of particles for Case 2 structures for both
examples using 140,625 evaluation points for the Scarlet Macaw and
8,000,000 evaluation points for the Stanford Bunny. 71

Figure 4.1: Two-dimensional domain to be discretized 76

Figure 4.2: Quadtree discretization of boundary and initial point distribution . . . 77

Figure 4.3: Lennard-Jones 12-6 potential schematic 79

Figure 4.4: Initial and final point distributions resulting from simulated annealing
process . 85

Figure 4.5: Characteristic length description for ellipsoidal and rectilinear support
domains . 88

Figure 4.6: Error vs scale factor . 92

Figure 4.7: Non-conforming integration grid . 95

Figure 4.8: Timoshenko Beam . 98

Figure 4.9: Particle configurations for beam example 99

Figure 4.10: L2 displacement error norm for cantilever beam 101

Figure 4.11: Plate with hole . 102

Figure 4.12: Plate with hole . 103

Figure 4.13: Particle configurations for plate with hole 103

Figure 4.14: L2 displacement error norm for quarter plate 104

Figure 5.1: Arbitrary domain . 105

vi

Figure 5.2: Laminated composite . 116

Figure 6.1: Shape function with visibility condition. 122

Figure 6.2: Polar coordinates used in enrichment terms 124

Figure 6.3: Critical points for single cell . 128

Figure 6.4: Particle splitting crack algorithm flowchart 130

Figure 6.5: Illustration of physcially consistent and inconsistent crack morphology. . 131

Figure 6.6: Propagation event with direction . 136

Figure 6.7: Propagation insertion event . 137

Figure 6.8: Propagation split event . 138

Figure 6.9: Open hole tension model for single ply lamina 138

Figure 6.10: Open hole tension example discretization 139

Figure 6.11: Damage prior to the onset of failure for the 0 degree lamina 140

Figure 6.12: Damage after failure for the 0 degree lamina 140

Figure 6.13: Damage prior to the onset of failure for the 30 degree lamina 141

Figure 6.14: Damage after failure for the 30 degree lamina 142

Figure 6.15: Damage prior to the onset of failure for the 90 degree lamina 142

Figure 6.16: Damage after failure for the 90 degree lamina 143

vii

ABSTRACT

Meshfree methods provide a more practical approach to solving problems involving large

deformation and modeling fracture compared to the Finite Element Method (FEM). However

meshfree methods are more computationally intensive compared to FEM, which can limit

their practicality in engineering. Meshfree methods also lack a clear boundary definition,

restricting available visualization techniques. Determining particle locations and attributes

such that a consistent approximation is ensured can be challenging in meshfree methods,

especially when employing h-refinement. The primary objective of this work is to address

the limitations associated with computational efficiency, meshfree domain discretization,

and h-refinement, including both placement of particles as well as determination of particle

attributes. To demonstrate the efficacy of these algorithms, a model predicting the failure

of laminated composite structures using a meshfree method will be presented.

viii

CHAPTER 1: INTRODUCTION

1.1 Motivation

Engineering design requires determination of geometric configuration, material proper-

ties, and knowledgeable selection of other parameters. Traditionally, this design process

consisted of a trial-and-error approach with the design engineer establishing the relevant

properties based on approximations and experience. The initial design would then be con-

structed into a physical prototype to be used in the testing phase, which determines if the

initial configuration is suitable. This process could be repeated many times until a satis-

factory solution is found. Depending upon the product, materials, and testing procedures,

design could be costly. In order to minimize the cost and inefficiency of constructing physical

prototypes for testing, virtual prototypes are desirable. Programs used for engineering anal-

ysis are commonly referred to as computer-aided engineering (CAE) software. CAE packages

are used in conjunction with computer-aided design (CAD) software. Together they allow

an engineer to create multiple configurations and subject them to various conditions without

the need for physical prototypes.

A well-established technique for conducting simulations is known as the Finite Element

Method (FEM). While FEM has achieved remarkable success, there are limitations that

reduce the efficacy of FEM for certain classes of problems. One of the limitations is the

need to construct and maintain a quality mesh, which has been stated to consume more

1

Conceptual Design

Modeling

Virtual Testing

Detailed Design

Prototyping

Physical Testing

Fabrication

Production

Figure 1.1: Engineering design flowchart

than 70 percent of the total computation time [31]. For certain problems, the construction

of a suitable mesh requires human intervention in the form of tedious removal of distorted

elements. In addition, a high level of refinement is often necessary to capture finer details of

a simulation.

Meshfree methods provide an alternative to mesh-based approximation techniques. In

contrast to FEM, where a function space is constructed on elements of a mesh, meshfree

methods construct a function space on a set of particles. Eliminating the need for a disjoint

polygonal or polyhedral decomposition makes meshfree methods well suited for handling

problems where generating and maintaining a mesh is difficult, such as the simulation of

large deformations and modeling arbitrary crack propagation. Despite its utility, meshfree

methods are more computationally intensive then FEM, which can limit their practicality

in engineering. Meshfree methods also lack a clear boundary definition, restricting available

visualization techniques. Determining particle locations and attributes such that a consistent

2

approximation is ensured can be challenging in meshfree methods, especially when employing

h-refinement.

1.2 Objective

The primary objective of this work is the development of algorithms to address several

limitations of meshfree methods which hinder their practical applicability. To demonstrate

the efficacy of these algorithms, a model predicting the failure of laminated composite struc-

tures using a meshfree method will be presented.

The tasks involved in achieving these objectives include:

• Development of efficient data structures and algorithms for handling inefficiencies as-

sociated with computing meshfree interpolants

• Development of algorithms for meshfree domain discretization and h-refinement, in-

cluding both placement of particles as well as determination of particle attributes

• Demonstration of the novel algorithms developed in this work to model fracture in

laminated composites

1.3 Overview

The formulation and fundamental challenges with meshfree methods will be reviewed,

with attention to challenges that limit the practical applicability of these methods. The

work will present solutions to efficient computation of meshfree interpolants, specifically as

it pertains to adjacency queries. The work will also present a method for determination of

suitable particle distributions in a truly meshfree approach. After presenting these solutions,

3

they will be used in a Galerkin formulation for approximating the governing partial differen-

tial equations (PDEs) of solid mechanics. In addition, a methodology for modeling explicit

fracture in laminated composites will be presented in order to demonstrate the utility of the

newly developed algorithms.

4

CHAPTER 2: MESHFREE METHODS

This chapter will introduce the numerical approximation scheme that is used in this

dissertation. As the approximation method is less well-known than its more established

counterpart FEM, the chapter will begin with a brief history of its development. Next the

formulation will be developed along with the requirements and limitations associated with

the numerical method will be discussed. Previously developed techniques to overcome these

deficiencies will be presented where applicable and outstanding issues will be emphasized.

2.1 Historical Development

For performing engineering analysis and the closely related topic of geometric model-

ing, meshfree methods provide an alternative to mesh-based approximation techniques. In

contrast to FEM, where a function space is constructed on elements of a mesh, meshfree

methods construct their function space on a set of particles. Typically, the shape functions

associated with a particle are compactly supported. This difference is illustrated in Figure

2.1. Obviating the need for a disjoint polygonal or polyhedral decomposition makes meshfree

methods ideal for handling problems where generating and maintaining an analysis-suitable

mesh is difficult. One scenario that makes maintaining a mesh difficult is when large de-

formations are present. Contrary to FEM, meshfree methods are not as susceptible to the

challenges of large deformation and have been used in a wide range of simulations.

5

(a) Finite Element Domain (b) Meshfree Domain

Figure 2.1: Comparison of FEM and meshfree discretizations

Smooth Particle Hydrodynamics was the first type of meshfree method developed in 1977

for solving problems in astrophysics [27, 47]. Since then numerous meshfree methods have

been developed, including the well-known Reproducing Kernel Particle Method (RKPM)

[44], Element Free Galerkin (EFG) method [8], Meshfree Local Petrov Galerkin (MLPG) [2],

HP-Clouds [21], and the Finite Point Method (FPM) [50]. A thorough review of meshfree

methods is given in [24, 39, 40, 43]. Within the context of modeling discontinuities in

solids, the most prominent meshfree methods used are the Reproducing Kernel Particle

Method (RKPM), and the Element Free Galerkin (EFG) method which uses the Moving

Least Squares (MLS) method for construction of the EFG approximation functions.

6

2.2 Reproducing Kernel Method

A class of operators that reproduce themselves through integration over a domain are

known as reproducing kernels and are of the form:

u (x) =

∞
∫

−∞

δ (x− s) u (s) ds, (2.1)

where δ (x) is the Dirac delta function. The reproducing kernel method is a meshfree method

that uses this class of operators to construct an approximation of a function.

While Equation 2.1 provides an exact representation of u (x), it is not feasible in a

practical application given the finite nature of the discretization. Therefore an approximation

of the Dirac delta function is made as:

δ (x− s) ≈ 1

ρ
φ

(

x− s

ρ

)

= φρ (x− s) . (2.2)

Here φ is a smooth compactly supported function commonly known as the kernel or window

function, and ρ is defined as the smoothing length which characterizes the size of the support

domain associated with a particle. Numerous choices exist for the window function [3]. A

popular choice that will be used in this study is the conical function defined as:

φ (x) =















(1− x2)
q |x| ≤ 1

0 |x| > 1

(2.3)

7

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

x

φ
(x
)

Figure 2.2: Window function

where q is the order of the conical function, for this study q = 3. A graphical depiction of the

conical window function is given in Figure 2.2. Substitution of the the delta approximation

from Equation 2.2 into Equation 2.1 leads to the SPH approximation,

uρ (x) =

∫

Ω

φρ (x− s) u (s) ds. (2.4)

Equation 2.4 will exactly reproduce the continuous function u when the kernel is con-

structed to satisfy certain requirements. However, a well-known issue with the SPH ap-

proximation is the lack of completeness when Equation 2.4 is discretized using a quadrature

formula. An approximation is n order complete if capable of exactly reproducing a polyno-

mial of degree n. In the context of this work, completeness, consistency, and reproducibility

are analogous and all refer to the previous definition. Correcting this issue has been the

topic of numerous works and has led to a variety of numerical methods referred to as cor-

rective SPH. An early approach to restoring consistency to the discrete SPH approximation

was proposed by Liu et al. [45], yielding the Reproducing Kernel Particle Method (RKPM).

8

Here a correction term is incorporated into the kernel approximation leading to the following

approximation:

uρ (x) =

∫

Ω

C (x; x− s)φρ (x− s) u (s) ds, (2.5)

where C (x; x− s) is the correction function and is represented by a polynomial of order N ,

that is

C (x; x− s) = PT (x− s)b (x) . (2.6)

Here P is a vector of monomial basis functions and b is a vector containing the set of unknown

functions to be determined in order to ensure consistency. Consistency of the approximation

can be evaluated by considering the Taylor series expansion of u evaluated at s about x given

as:

u (s) =
∞
∑

i=0

(−1)i
i!

u(i) (x) (x− s)i . (2.7)

This can be expressed in vector form as:

u (s) = PT (x− s)D (x) , (2.8)

with P representing a vector of monomial basis up to order N and D containing coefficient

terms, given as:

PT (x− s) =

[

1 x− s . . . (x− s)N
]

, (2.9)

and

DT (x) =

[

1 −1
1!

du
ds
|x . . . (−1)N

N !
dNu
dsN
|x
]

. (2.10)

9

Substituting Equation 2.8 into Equation 2.5 yields

uρ (x) =

∫

Ω

PT (x− s)b (x)φρ (x− s)PT (x− s)D (x) ds. (2.11)

For consistency Equation 2.11 must satisfy

PT (0)D (x) =

∫

Ω

PT (x− s)b (x)φρ (x− s)PT (x− s)D (x) ds (2.12)

which is obtained by replacing the right-hand side of Equation 2.11 with the Taylor series

in Equation 2.8 evaluated at s = x. Equation 2.12 must hold for all x and u is an arbitrary

function. Therefore, Equation 2.12 can be stated as:

{
∫

Ω

P (x− s)PT (x− s)φρ (x− s) ds
}

b (x) = P (0) (2.13)

or more succinctly as a linear system of equations,

M (x)b (x) = P (0) . (2.14)

Here M is commonly known as the moment matrix and is constructed from the integral term

in Equation 2.13. Solving for the unknown correction terms, b, and combining Equations

2.6 and 2.5 we arrive at the corrected kernel approximation given as:

uρ (x) =

{
∫

Ω

PT (x− s)φρ (x− s) u (s) ds
}

M−1 (x)P (0) . (2.15)

10

The generalization of the one-dimensional formulation to a higher dimension requires the

modification of the one-dimensional window function. This modification can be done by

taking the cartesian products of the one-dimensional window function:

φd
ρ =

d
∏

i=1

φρi (xi − si) . (2.16)

Alternatively, a radial support can be used:

φd
ρ =

1

ρd
φ

(‖x− s‖
ρ

)

. (2.17)

In Equation 2.16 the one-dimensional dilation parameter has also been modified from a

scalar to a vector, allowing for an anisotropic support domain. In Equation 2.17, the dilation

parameter remains a scalar resulting in an isotropic support domain. Further discussion on

the dilation parameter and support domain will be given in §4.2.2. The multi-dimensional

approximation is:

uρ (x) =

∫

Ω

PT (x− s)φd
ρ (x− s) u (s) ds M−1 (x)P (0) . (2.18)

Here the scalar arguments have been replaced with vectors of size corresponding to the

spatial dimension.

2.3 Reproducing Kernel Particle Method

The continuous integral in Equation 2.15 needs to be evaluated numerically, which leads

to the Reproducing Kernel Particle Method (RKPM). Let the domain be discretized by a

11

set of nodes X = {x1,x2, . . . ,xNp
}. Using the nodal locations as quadrature locations the

kernel approximation can be restated as:

uρ (x)

Np
∑

I=1

C (x;x− s)φρ (x− xI) uI∆VI , (2.19)

where uI is the function value at xI and ∆VI is the portion of the domain associated with

node I. The integration of the moment matrix in Equation 2.13 must also be discretized.

In [46] it is noted that the same integration technique employed for Equation 2.19 should

be used when discretizing the integration of the moment matrix. This leads to the discrete

moment matrix given as:

M =

Np
∑

I

P (x− xI)P
T (x− xI)φρ (x− xI)∆VI . (2.20)

Generally the integration weight will be combined with the corrected kernel to form the

RKPM shape functions. This allows the RKPM approximation to be stated as:

uρ (x) =

Np
∑

I=1

ΨI (x) uI (2.21)

where ΨI (x) are the RKPM approximation functions,

ΨI (x) = PT (x− xI)φ
d
ρ (x− xI)M

−1 (x)P (0)∆VI , (2.22)

and uI is the value to be approximated at node I. The summation is taken over the set of

particles that have non-zero shape functions at x.

12

When approximating the solution to a PDE the shape functions as well as their derivatives

are required. Before proceeding with the computation of the derivatives several comments

on the notation need to be made. To simplify the the following formulation the indicial

notation form of the approximation will be used and can be stated as:

ΨI (x) = Pi (x)φ
d
ρ (x− xI)Mij (x)

−1 Pj (0)∆VI . (2.23)

Differentiation will be denoted using comma subscript notation. For example the gradient

of some scalar function f is expressed as:

∇f (x) =
∂f

∂xi

= f,i, (2.24)

with the last form being adopted here. For detailed overview of indicial notation see [55].

Proceeding with differentiation of Equation 2.23 results in the following:

ΨI,i = C,iφρ∆VI + Cφρ,i∆VI . (2.25)

Differentiation of the correction term leads to:

C,i = Pk,iM
−1
kj Pj (0) + PkM

−1
kj,iPj (0) . (2.26)

The derivative of the inverse of the moment matrix can be computed by the formula:

M−1
kj,i = −M−1

kl Mlm,iM
−1
mj , (2.27)

13

and the derivative of the moment matrix by:

Mkj,i =
∑

I

Pk,iPjφρ∆VI + PkPj,iφρ∆VI + PkPjφρ,i∆VI . (2.28)

2.3.1 Discretization Requirements

While no mesh is necessary in the meshfree discretization, the distribution of particles

must satisfy certain requirements in order to guarantee a valid simulation. A distribution

satisfying these requirements is referred to as an admissible particle distribution [46]. Before

proceeding with the requirements several definitions will be introduced.

Definition 2.3.1. The support domain is the region associated with a particle in which

it has a non-zero shape function. The support domain is parameterized by the dilation

parameter ρ. Using set notation Ωρ
I = {y|‖y− x‖ ≤ ρ}

Definition 2.3.2. The influence domain is the region associated with any point in the

domain that is composed of the particles contributing at the point.

Every point in the domain is associated with an influence domain. The influence domain

in general is not of a simple geometry. However, a simple geometric approximation of the

region can be made with the minimum size of the influence domain associated with a point

being approximated by largest support domain of a particle contributing at the point the

influence domain is associated with. Since the particles are in the domain, they also asso-

ciate with an influence domain. The influence domain of a particle is not equivalent to the

support domain. To elaborate, if the surrounding particles have larger support domains,

then the domain of influence at xI will be larger than its compact support. Therefore, the

14

compact support is a subset of the influence domain. With these concepts established, the

requirements for an admissible particle discretization are as follows.

1. The union of all the support domains cover the domain.

2. The ratio of the largest support domain to the smallest support domain is finite.

3. For any point in the domain there should be Nc particles contributing, where Nc is in

the interval NL ≤ Nc ≤ NU . Where NL is the order of polynomial from Equation 2.9

and NU is an upper bound that is necessary for the accuracy of the approximation.

4. Particles should be capable of forming a non degenerate simplex.

The first requirement is illustrated in Figure 2.3. The domain Ω is depicted as a rectangle

and the particles’ support domains are the circles. From the figure it is clear that the domain

Ω

Figure 2.3: Domain coverage of particles’ supports

being discretized is a subset of the union of the support domains, that is

Ω ⊂
Np
⋃

I=1

Ωρ
I . (2.29)

15

In order for the approximation to be valid for any point in the domain, the first requirement

is necessary, but is not sufficient. The second requirement not only places an upper bounds

on the support of a particle, but also precludes the characteristic size of a particle from

being zero. The third requirement stems from the construction of the discrete moment

matrix in Equation 2.20. As the construction is performed by rank-one updates, a necessary

condition for the moment matrix to be invertible, is the existence of NL non-zero contributing

terms, where NL is the number of terms in the polynomial field from Equation 2.6. The

third requirement alone does not ensure the moment matrix is invertible. This situation

will arise when the particles within the influence domain of a point are oriented such that

the corresponding moment matrix does not span the space of the polynomial field. In a

two-dimensional problem with a linear polynomial, the second requirement specifies that a

minimum of three particles must contribute at each sampling point. The fourth requirement

dictates that these three particles must not be collinear, they must form a triangle with

a non-zero area. Therefore, the third and fourth requirements can be summarized as the

condition that the moment matrix must be invertible at any point in the domain.

While these conditions should hold for any point in the domain, the discrete nature of

the problem makes it more practical to require they hold at the particles. Approaches for

determining admissible particle distributions will be discussed in Chapter 4.

2.4 Challenges of Meshfree Methods

While the form of the approximation appears identical to the FEM function approxima-

tion, the meshfree approximation functions have several key differences.

16

2.4.1 Application of Boundary Conditions

The imposition of essential boundary conditions in meshfree Galerkin methods is prob-

lematic in general because the meshfree shape functions are not interpolating functions, that

is they do not satisfy the Kronecker-δ property [40] i.e.,

δij 6= Ψi (xj) . (2.30)

Hence, the nodal coefficients in Equation 2.21 do not correlate to the nodal displacements.

Thus, the prescribed values cannot be directly set in the global displacement vector in

Equation 5.28, which is the typical approach used in FEM where the shape functions are

interpolating. A plot of the one-dimensional meshfree shape functions is shown in Figure

2.4a plotted alongside the one-dimensional linear FEM shape functions, Figure 2.4b, which

do satisfy the Kronecker-δ property. An excellent overview of the various approaches to

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Spatial Location (x)

Ψ
 (

x
)

(a) Meshfree shape functions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Spatial Location (x)

N
(x

)

(b) Finite element shape functions

Figure 2.4: Comparison of FEM and meshfree shape functions

enforce essential boundary conditions is given in [22] and will be briefly summarized here.

17

Two general approaches have been taken to correctly enforce essential (Dirichlet) bound-

ary conditions in meshfree Galerkin methods. The first approach is based on a modified weak

form, which accounts for the lack of the approximation functions to meet the Kronecker-δ

property. Methods such as the Lagrange Multiplier method [8], Nitche’s method [30], and

the Penalty method [69] are based on the use of a modified weak form. The second approach

is based on the modification of the meshfree shape functions. A boundary kernel was pro-

posed that would allow the meshfree shape functions to be constructed with the Kronecker-δ

property. A transformation method that expresses the meshfree shape functions as a linear

combination of unknowns described in [40]. A method coupling meshfree and finite element

methods was proposed in [9, 32, 62]. A general approach to coupling the meshfree and finite

element shape functions coined the continuous blending method was developed by Huerta et

al. [32].

The meshfree approximation functions also differ from FEM when imposing natural (Neu-

mann) boundary conditions. In FEM, only vertices located on the surface need to be consid-

ered when integrating over the traction boundaries. The meshfree procedure has to not only

account for boundary particles, but also interior particles as they may have contributions at

the boundary.

2.4.2 Numerical Integration

In order to evaluate the integrals arising from a meshfree Galerkin approximation, a

numerical integration scheme is necessary. The purpose of a numerical integration scheme

18

is to replace a continuous integral with a discrete sum, i.e.,

∫

Ω

f (x) dx ≈
Nq
∑

I

f (x∗
I)wI (2.31)

where the sum is taken over Nq integration points located at x∗
I with weight wI . A variety of

numerical integration techniques exist, with the difference being in the number of quadrature

points, locations, and weights. In the context of FEM, a commonly used method is Gaussian

quadrature. Gaussian quadrature is developed such that one-dimensional polynomials of

degree 2Nq − 1 are integrated exactly with an integration rule of order Nq. While this

works well for the polynomial shape functions of FEM, the meshfree shape functions are

non-polynomial, requiring special techniques for conducting integration. In addition to the

complex form, the overlapping particle supports add further complexity to the integration.

If not properly addressed, a poor integration scheme can result in deterioration of accuracy

of nodal results and loss of convergence. Two general approaches are used when numerically

integrating the weak form with the function spaces constructed of meshfree shape functions.

The first is based on the construction of a background mesh [8]. In this approach, the

domain is subdivided into integration domains over which Gaussian quadrature is employed.

The problem of background meshes and cells is that an integration error arises from the

misalignment of the supports and the integration domains; this misalignment error can be

higher than the error associated with the non-polynomial form of the shape functions [19].

Consequently, a higher order quadrature rule, which would reduce the error associated with

the non-polynomial form, might not lead to better results due to the error associated with the

misalignment of integration cells [19]. To reduce the error associated with the misalignment,

19

a method to construct integration cells that align with the particle supports is given in [19].

This allows for the reduction of integration error with the addition of more integration cells.

Approaches that use the support of the shape functions as integration cells have also been

proposed [2, 18]. These approaches adopt special integration techniques depending on the

geometrical configuration used for the particles’ support domain. This method addresses

the issues associated with the background mesh but at an increased computational expense,

as integration points are evaluated numerous times. The second approach, referred to as

nodal integration, does not use integration points; instead, the integrals are evaluated at

nodal locations. This approach leads to a more efficient integration scheme compared to the

background mesh approach but can suffer from numerical instability [4, 40]. This instability

is the result of under-integration and the vanishing of the shape function derivatives at the

nodes. Beginning with the development of the Galerkin meshfree methods, an accurate nodal

integration scheme has been an area of active research with numerous techniques resulting.

An early technique stabilizes the nodal integration by adding a stabilization term in the

form of the residual of the equilibrium equations to the nodally-integrated potential energy

functional [4]. This approach comes at the cost of a higher order basis in the shape function

construction due to the second-order derivatives in the stabilization term, thus increasing the

size of the support domain and negatively impacting the overall computational performance

of the method.

2.4.3 Visualization

Another drawback of meshfree methods is the lack of a well defined description of the

boundary. This creates significant difficulty in providing an accurate graphical depiction of

20

the meshfree simulation results. A common approach to visualizing meshfree geometries is

done by constructing a mesh, which is then rendered by standard surface-based rendering

techniques such as rasterization, ray tracing, or radiosity. The mesh needed for visualization

does not need to meet the stringent requirements of the mesh needed for analysis. However,

the generation of this mesh may still not be a trivial task. Figure 2.5 depicts a domain

that has been meshed in order to provide a continuous graphical representation. In order

Figure 2.5: Visualization of a meshfree domain that has been meshed

to graphically depict the analysis results on the mesh, the data must be mapped from the

meshfree particles to the mesh vertices leading to the accruement of computational time

and memory. In addition to the computational expense associated with the interpolation,

the resulting image could portray incorrect information. The mesh-based approaches suffer

from their inability to capture small features such as cracks. Consider the case where a

discontinuity is modeled in the meshfree domain. Upon mesh generation, if this discontinuity

is not captured and enforced properly, the resulting mesh will display data that is continuous

across the discontinuity as shown in Figure 2.6. In order to capture the discontinuity, the

mesh must conform to the fracture. In two dimensions the description and meshing may

be feasible, the same cannot be said for three dimensions. Another approach commonly

21

Figure 2.6: Interpolation of field values across discontinuity

used to render meshfree analysis results is visualizing the particles themselves as points or

small spheres. This method does not require the extra computational burden associated

with creating a mesh, but the resulting image does not provide a detailed representation of

the boundary as illustrated by Figure 2.7. Visualization methods that do not operate on

Figure 2.7: Visualization of meshfree domain as discrete point set

geometric primitives, such as volumetric ray casting, are also used for rendering meshfree

geometries. The general process involves casting an eye ray through each pixel of the image

into the volume to be visualized, where the ray is sampled at a specified step size. At each

sample position, trilinear interpolation is used to determine the scalar value from the grid

of precomputed data values. This scalar value is then mapped to a color and opacity via

a transfer function. While volumetric ray casting does have promising results for rendering

22

meshfree geometries, complications with selecting transfer functions and the cloudy nature

of the resulting images need to be addressed. A challenge that the previously described

visualization techniques do not address is the ability to treat the meshfree domain as a

general geometric primitive. In the case where a combination of meshfree methods and

element based methods are used, a transformation must be performed to generate a data

type that can be rendered. In order to visualize a geometry, the geometric data must be

in the same form, either volumetric or represented as a standard geometric type such as

triangles.

2.4.4 Computational Efficiency

While meshfree methods offer some advantages over FEM, they also possess several disad-

vantages, including increased computational time and, depending on implementation, mem-

ory overhead. This cost is attributed to the increased complexity of both shape function

evaluation and determination of connectivity. There are three types of connectivity infor-

mation required in geometric modeling and analysis as enumerated below, and discussed in

detail in §3.

Type 1: Field point - particle, all the particles that contain a field point y in their support.

Type 2: Particle - field point, all the field points within the support of a given particle.

Type 3: Particle - particle, all particles whose support overlap a given particle’s support.

The first type of connectivity arises in evaluating quadrature points and problems involving

contact between bodies. The second type comes about when one has quantities at field points

and wishes to project those values to the particle locations, e.g. stress or strain values. The

23

third type is useful for determining the sparsity pattern and entries in the stiffness matrix of

a Galerkin solution to a partial differential equation (PDE). The various connectivities are

a type of graph and can be represented through an adjacency matrix [15].

In FEM, a common approach is to use the isoparametric concept where the shape func-

tions are formulated in a parent or natural coordinate system and then the geometric domain

values are computed by applying an affine transformation. The description of the mesh can

be used as a graph to provide the first two types of connectivity. Since Gauss quadrature is

an efficient method for integrating FEM shape functions, they are normally defined in the

parent domain, eliminating the need to find the reverse transformation from geometric to

parent coordinates and evaluating Type 1 connectivity directly. If one uses conforming shape

functions, Type 3 connectivity can also be quickly determined from the mesh. In the case

of stiffness matrix assembly using the element viewpoint, explicit Type 3 information is not

required. Since the parent element is fixed, the parent shape functions are fixed and simple

to compute. In contrast, meshfree shape functions are constructed for the current point of

interest based on the collection of surrounding particles that have a non-zero contribution

at the point. This collection of contributing particles varies with the spatial position of the

point to be evaluated and there is no predefined adjacency information, making the con-

struction of meshfree shape functions more involved compared to FEM. The computation of

the meshfree shape functions also require the computation of a correction term at each point

of interest in the domain. Computation of the correction term requires the inversion of the

moment matrix. While the moment matrix is not particularly large, the number of inversions

required for a practical problem may be significant. To alleviate the computational cost of

computing the inverse, a method to avoid the direct computation is given in [6]. Research

24

to reduce the cost of meshfree analysis by reducing the number of necessary shape function

evaluations by nodal integration has been published in [17] and [16].

To summarize, the increased cost of meshfree analysis over FEM is due to increased shape

function evaluation cost, increased number of shape function evaluations in quadrature when

using a background mesh, and evaluation of the various connectivities. This work will only

focus on the latter.

25

CHAPTER 3: EFFICIENT SEARCH SCHEMES FOR PARTICLE

METHODS

1 The first objective of this chapter is to provide a thorough review of the adjacency

information that is commonly required in geometric modeling and analysis when employing

a meshfree method, accomplished in §3.1. The second objective is to describe the various

approaches that can be used for determining the adjacency information. Since the reader

may not be familiar with data structure concepts from Computer Science, §3.2 is provided as

background for a new data structure for meshfree searches in §3.2.2.2. The final objective is

to demonstrate the effectiveness of the various approaches under a variety of circumstances,

in order to aid those using meshfree methods in selecting an appropriate search scheme

for their problem, presented in §3.3. While this work is focused on applications involving

meshfree methods, the primary algorithm discussed is essentially a nearest neighbor search

and therefore the data structures presented can be abstracted to any set of compact non-

disjoint or disjoint objects. The data structures are capable of operations such as ray-object

intersections, which occur in computer graphics, but are also of interest for meshfree methods

when enforcing visibility conditions.

1This chapter was published in the journal Computational Mechanics. James Olliff, Brad Alford,
and Daniel C. Simkins. Efficient searching in meshfree methods. Computational Mechanics, April 2018.
https://doi.org/10.1007/s00466-018-1574-9. Permission is included in Appendix A.

26

3.1 Adjacency Information

The finite set of particle locations discretizing the domain is denoted as X, which is

assumed to be indexed. The finite set of field points where shape functions will be computed

will be denoted as Y, which is also assumed to be indexed. The term evaluation point will

refer to points in Y, to distinguish them from the particle locations. These two sets are not

necessarily disjoint, as one may evaluate shape functions at particle locations. Given these

two sets, there are three connectivities which commonly arise when employing a meshfree

method. Any given type of connectivity is represented as a set of sets, indexed by either

a particle index, or an evaluation point index. Each entry I in the connectivity is a set of

indices of objects adjacent to I defined by the type of adjacency.

Type 1: Given an evaluation point, yJ ∈ Y define the index set, ΘJ , containing the indices

of those particles that have a non-zero shape function at yJ , which can be stated as

ΘJ = {I|xI ∈ X ∧ΨI (yJ) 6= 0} . (3.1)

Evaluation point - particle adjacency, denoted Θ, is defined to be the set whose elements

are the ΘJ .

Type 2: Given a particle, xI ∈ X, define the index set, ΛI , containing the indices of those

evaluation points that result in a non-zero shape function value with respect to particle

xI , or more formally

ΛI = {J |yJ ∈ Y ∧ΨI (yJ) 6= 0} . (3.2)

27

Particle - evaluation point adjacency, Λ, is the set whose elements are the ΛI . Figure

3.1 shows a graphical depiction of Equation 3.2. The circles and squares represent

points in Y. The particle of interest xI is shown as a triangle with its corresponding

support domain represented by the circle. The index set of evaluation points that

result in a non-zero shape function value with respect to particle xI are denoted by

the squares.

x1

Figure 3.1: Graphical depiction of ΛI , an element in Type 2, particle - evaluation point
adjacency.

Type 3: Given a particle, xI , determine the index set of particles, ΠI whose support domain

overlaps with the support of xI , specifically

ΠI = {K|xK ∈ X ∧ supp (xI) ∩ supp (xK) 6= ∅} . (3.3)

The particle-particle adjacency is given as the set Π whose elements are the ΠI .

28

The prescription in Equation 3.3 is applicable in a continuous setting. In the solution of

PDEs employing a numerical integration technique, the discretization will result in particle

to particle adjacencies that do not occur due to the discrete nature of the integration. This

situation can be seen in Figure 3.2. Here the lightly shaded symbols represent the integration

grid and the particles are denoted by dark triangles and labeled x1, x2, and x3. According to

Equation 3.3 all three particles are neighbors, but since particles x1 and x2 do not share an

evaluation point, their respective discrete adjacency is broken. The lightly shaded rectangles

and diamonds are the evaluation points in the overlapping supports yielding x1 and x3 as

neighbors and x2 and x3 as neighbors, respectively. Therefore, Equation 3.3 can be restated

x1 x2

x3

Figure 3.2: Graphical depiction of Type 3, particle-particle adjacency

to define the discrete particle-particle adjacency as

ΠI =
{

K|xK ∈ X ∧ ΛI ∩ ΛK 6= ∅
}

. (3.4)

29

3.1.1 Relation Between Type 1 and Type 2 Adjacency

The Type 1 and Type 2 adjacencies are not mutually independent. Given the evaluation

point to particle adjacency information, Θ, the particle to evaluation point information, ΛI ,

for particle I can be stated as

ΛI =
{

J |yJ ∈ Y ∧ I ∈ ΘJ
}

. (3.5)

Similarly, if the particle to evaluation point information, Λ, is known the evaluation point

to particle information, ΘJ , for evaluation point J is

ΘJ =
{

I|xI ∈ X ∧ J ∈ ΛI
}

. (3.6)

Note that since Equation 3.4 does not contain any information on evaluation points, it can-

not be used by itself to construct Type 1 or Type 2 adjacency, and alone is insufficient

for meshfree applications involving evaluation points. In a formulation in which exact inte-

gration over analytic geometric domains were used, this might not be the case. Given the

insufficiency of Type 3 adjacency and its construction through Equation 3.4, it will not be

further discussed.

The dual nature of Type 1 and Type 2 adjacency means that either adjacency can be

used to fulfill any role in which either type is required. However, some applications are

more naturally addressed by one type than the other. It should be noted that it is possible

to construct all three types of adjacency simultaneously. However, in a multi-threaded

computation, this will lead to race conditions impeding efficient shared-memory parallel

30

(SMP) performance. This work will focus on solutions that both work naturally for their

purpose and scale well in multi-threaded implementations.

3.1.2 Example Uses of Adjacency

In a finite-dimensional Galerkin solution of PDEs, the weak form of the governing equa-

tions needs to be integrated. This results in the formation of a system of algebraic equations;

this procedure is known as assembly. In the context of solid mechanics, the coefficient matrix

is known as the stiffness matrix, whose entries depict the interaction between the degrees of

freedom. Generally speaking, there are two approaches that can be used to perform assembly,

the evaluation point-wise or the particle-wise approach.

In the evaluation point-wise method, all contributions to the various matrix elements

from the single evaluation point are computed and accumulated. Successively considering

each evaluation point results in a complete stiffness matrix. This approach requires Type

1 adjacency, which is the information contained in Θ. The algorithm for the evaluation

point-wise assembly is given in Algorithm 1.

Algorithm 1: Evaluation point wise assembly of stiffness matrix
Input: Y & X

Output: KG

1 Initialize KG ;
2 for yI ∈ Y do

3 Determine ΘI ;
4 Evaluate shape functions and derivatives at yI ;
5 for xJ ∈ ΘI do

6 for xK ∈ ΘI && K ≥ J do

7 KG
JK+ = BT

JDBK

31

In this assembly procedure each evaluation point affects multiple degrees of freedom, which

means multiple entries in the global matrix will be affected by the same evaluation point.

This presents a race condition when parallelizing over the evaluation points, as multiple

evaluation points will need to write to the same location in memory.

Alternatively, the assembly procedure can be done on groups of evaluation points, as is

often done in FEM. The group of evaluation points used are those which affect the same

degrees of freedom. In finite elements this is simply the Gauss points contained within an

element with the nodes being those of the element. Instead of adding the contributions of

each evaluation point into the global matrix, a local or element matrix is created, which is

then added to the global matrix. Note this approach also has a race condition on an SMP.

The second assembly procedure is based on the particle viewpoint. In this approach the

particle to particle, Π, and particle to evaluation point, Λ, adjacencies are needed. The

procedure is to iterate over the particles and for each particle, xI , determine the particle to

particle adjacency ΠI . Then for each particle in ΠI determine the evaluation points that

are common between each particle pair and compute the entry in the global matrix. The

algorithm for the particle-wise assembly is given in Algorithm 2.

Algorithm 2: Particle wise assembly of stiffness matrix
Input: Y & X

Output: KG

1 Initialize KG ;
2 for xI ∈ X do

3 Determine ΛI ;
4 for yJ ∈ ΛI with corresponding ΘJ do

5 for xK ∈ ΘJ && K ≥ I do

6 KG
IK+ = BT

I DBK ;

32

This approach allows for straightforward parallelization over the particles. However, if the

shape functions are not pre-computed and stored, a large number of redundant calculations

will occur, since the same evaluation point will be in multiple particles’ support domain. To

avoid this, the evaluation point to particle adjacency information Θ can be pre-computed

and stored along with shape function values. Depending on the size of the problem this

memory overhead could result in a large payoff in run time since the shape function values

are needed not only during assembly, but often during post-processing.

The matrix assembly example assumes that all of the quadrature points and particles are

known, and either Type 1 or Type 2 adjacency can easily be used. On the other hand, one

may have a problem in which either the evaluation points or the particles are known only at

run-time. Such applications would be contact problems, where additional quadrature points

along boundaries in contact are determined during the course of the simulation. Another

example would be dynamic refinement by particle insertion. Depending on how adjacency

is stored and constructed, one type may be easier than the other.

A naive approach to determining the adjacency information contained in Θ or Λ would

involve checking all the particles against all the evaluation points. This would result in

an O (Ne ∗Np) algorithm, and the particle to particle interactions would have complexity

O
(

Np(Np+1)

2

)

. These naive approaches are very inefficient as they have not exploited the

fact that particles are compactly supported. In order to reduce this cost, a data structure

that excludes most of the objects from the search can be utilized. Data structures of this

type are of fundamental importance in many fields of computer science, such as computer

graphics. The construction of this type of data structure requires either the space in which

the objects reside to be partitioned or the set of objects themselves to be partitioned.

33

3.2 Data Structures

A data structure is simply a method for organizing, storing, and retrieving data. All data

structures inherently balance a number of attributes: memory overhead, search times, access,

retrieval, and dynamic size. Depending upon the application, one of these attributes may

take precedence over the others, and data structures focused on optimizing that attribute

can be developed. In the context of meshfree methods, there are two options for data to be

stored. One can store evaluation points, or one can store particles. The former have zero

extent, but the latter carry volume information in the form of the size of their support. Both

Type 1 and Type 2 queries must account for the support size of the particles. Note that

particle extent can be accounted for either in the construction of the data structure, when

storing particles, or during a search. Therefore, three different viewpoints can be taken when

developing a data structure for conducting adjacency queries in meshfree methods, described

in the enumeration below.

Case 1: Use particles for construction and search per evaluation point.

Case 1a: account for particle support size during data structure construction

Case 1b: account for particle support size during search.

Case 2: Use the evaluation points for construction and search per particle.

The key to efficient searching of a data structure is to reduce the number of potentially

expensive detailed evaluations of the search condition. In meshfree methods, the search

condition typically entails determining whether a given point is within the support of a

particle. Given that evaluation points and particles are distributed in space, a natural

34

approach to reduce the number of detailed support checks is to organize the data so that

points and particles that are far from each other are excluded from detailed checks. The

following sections will describe the two basic approaches to partitioning the data, spatial

partitioning and object partitioning. The data structures and associated algorithms will be

presented in an abstract manor. The purpose of this is not to obfuscate the implementation

details, but to provide the reader with a generic algorithm that could be applicable to

problems outside the context of meshfree methods. In addition, the spatial partitioning data

structures can be used to determine both Type 1 and Type 2 adjacency with only minor

changes to the algorithm. For brevity these subtleties have been abstracted, allowing for a

single algorithm associated with each data structure for both searching and construction.

The specifics of applying these algorithms for answering the adjacency questions that arise

in meshfree methods will be given in §3.2.1.4.

3.2.1 Spatial Partitioning

Spatial partitioning data structures decompose the space in which the objects reside into

disjoint regions and distribute the objects into the resulting partitions. A drawback to this

type of structure arises for objects that have a non-zero spatial extent, or size. Often this

results in an object overlapping multiple partitions, leading to multiple references to the

same object. Pursuing the goal of using the data structure to reduce the candidate sets of

objects to be checked, a relatively fine subdivision results, relative to the support size of the

particles, and thus many particles have multiple references in nearby subdivisions. For a large

collection of objects these references may result in a sizable memory footprint. In the context

of meshfree methods, the particle supports are required to overlap, thereby guaranteeing that

35

each spatial subdivision intersects multiple particle supports. To circumvent the memory

issue while still using a spatial partitioning data structure two options exist. The first is

to construct the data structure on the particles, but not account for their supports. The

second is to construct the data structure on the evaluation points, which have zero volume.

Three spatial partitioning structures will be discussed: grids, kd-trees, and the well-known

octree/quadtrees. Further discussion on spatial partitioning data structures can be found in

[11, 65].

3.2.1.1 Regular Grids

The grid spatial subdivision was proposed as an acceleration method for generating im-

ages using ray tracing by Fujimoto and Iwata in 1985 [26]. The concept of a grid is to

subdivide an axis aligned space into equal sized rectilinear regions or cells. Each cell stores

references to the objects that overlap it or are contained within it. While the grid data struc-

ture was originally designed to accelerate ray-object intersections, it can also be used during

query operations occurring in meshfree methods, discussed in the following two sections.

3.2.1.1.1 Construction

The algorithm for constructing a grid is given in Algorithm 3. The construction routine

operates on the a set of geometric objects, Y, with bounding box B. The result of the

construction is an array of grid cells C, where each cell contains a set of references to

those objects associated with the cell. The first task of the construction routine, Line 1,

is to determine the resolution of the grid. The resolution of the grid can be a prescribed

value by the user, but determining an optimal setting for this value is non-trivial and some

36

choices can result in a subdivision that is either too coarse, causing poor performance, or

an overly refined grid that results in a large memory footprint. To address this issue we use

the approach to determine the resolution such that the total number of cells in the grid is

linearly proportional to the number of objects in the grid and the cells are approximately

cuboidal in three-dimensions or square in two-dimensions [63]. Using these conditions the

resolution of the grid can be computed as shown by Equation 3.7.

ni =









∆yi

(

γNp
∏d

j ∆yj

)
1

d









i = 1, . . . , d (3.7)

Here ni is the number of cells along direction i, ∆yi is the ith extent of the grid, Np is the

total number of objects in the grid, d is the spatial dimension, and γ is a proportionality

constant that linearly relates the number of objects to the total number of grid cells, i.e.,

Ncells = γNp. Choosing an appropriate value of γ requires experimentation and will vary

from problem to problem. The authors have found values ranging from one to ten to be a

good choice for most problems. Choosing a larger value will result in a more refined grid,

which could reduce the number of objects residing in a single cell. Given the resolution, Line

2 allocates an array of empty cells corresponding to the resolution. Determining the indices

of a cell containing a specific coordinate is a linear interpolation problem along each spatial

dimension as shown in Equation 3.8.

ij − imin
j

imax
j − imin

j

=
yj − ymin

j

ymax
j − ymin

j

j = 1, . . . , d (3.8)

37

The upper and lower cell indices along the jth direction are defined by imax
j and imin

j respec-

tively. The upper and lower limits of the grid are defined as ymax
j and ymin

j and yj representing

the jth component of the known coordinate. Assuming a zero based indexing scheme for the

cell numbering and solving for the unknown cell number ij leads to the following expression,

ij =

⌊(

yj − ymin
j

∆yj

)

nj

⌋

j = 1, . . . , d (3.9)

Equation 3.9 does suffer from one pitfall in practical applications, which is the scenario where

yj is greater than or equal ymax
j . This will result in ij = nj, but the cells are numbered such

that ij ∈ [0, nj − 1]. To handle this situation a simple routine to clamp the values to the

interval [0, nj − 1] is used. With the ability to compute the indices of a cell associated with a

single coordinate the cell numbers pertaining to those cells intersecting the geometric object

can be determined by considering an axis aligned bounding box (AABB) encompassing the

domain of y, which provides two spatial locations that define the range of cells the particle

intersects. The cells in this range are updated with a reference to y.

Algorithm 3: ConstructGrid(Y,B)
Input: Set Y of geometric objects and Bounding Box B

Output: Array of grid cells C

1 [nx, ny, nz]← Determine grid resolution ;
2 C← Create nx x ny x nz array of grid cells ;
3 for y ∈ Y do

4 I← Compute indices into C of grid cells intersecting supp(y) ;
5 for i ∈ I do

6 Insert y into C[i] ;

7 return C ;

38

3.2.1.1.2 Searching

The regular grid search algorithm, given in Algorithm 4, seeks to determine those objects

that intersect the search domain, S, defined here by a location and radial vector as shown

in Figure 3.3. The algorithm begins with an intersection test against the search domain and

r

x

Figure 3.3: Search domain

the bounding box of the grid. If no intersection occurs the search is terminated. Given an

intersection does occur the cells that have a non-zero intersection with the search domain

are determined and the objects residing in these cells are then queried to determine those

that intersect the search domain.

Algorithm 4: SearchGrid(C,S)
Input: Array of grid cells C and search region S

Output: Set of objects Θ intersecting S

1 I← Compute indices into C of grid cells intersecting S ;
2 for i ∈ I do

3 for x ∈ C[i] do

4 if S ∩ x then

5 Insert x in Θ ;

6 return Θ ;

39

3.2.1.2 Kd-Tree

The kd-tree [10] is a popular variant of the more general Binary Space Partitioning (BSP)

tree [25]. The kd-tree adaptively decomposes a space into disjoint rectilinear partitions.

This differs from the uniform grid decomposition of the space in that it adapts to irregularly

distributed objects. A kd-tree restricts the splitting plane to be orthogonal to one of the

coordinate axes. This restriction allows for efficient construction with the sacrifice of how

the space is divided.

3.2.1.2.1 Construction

The general procedure for constructing a kd-tree is given in Algorithm 5. The input to

the construction routine is a set of geometric objects, Y, with associated bounding box B.

The output of the construction algorithm is a kd-tree τ . The routine begins by checking

if the termination criteria has been met. Several options exist for the termination criteria.

The first possibility uses a preset limit on the number of objects that a single kd-tree node

is allowed to contain, commonly referred to as the bin size. Another possibility for the

termination condition is restricting the height of the tree. In addition, the volume of the half

space that a tree node represents could be restricted, this termination condition is useful

when the geometric objects the tree is constructed upon are of a non-zero volume. Once the

termination condition is satisfied the splitting of the tree node is stopped and a single leaf

node is constructed and updated with references to the objects that are contained within

the node. If the termination criteria is not met the algorithm proceeds to Line 4 where a

40

splitting plane, P , is determined. Several options for determining a split plane are shown

below.

• Median splitting The splitting dimension is the dimension with the greatest variation.

The splitting location is taken as the median of the coordinates along this dimension.

• Cyclic splitting Similar to the median splitting rules except the splitting axis is chosen

in a cyclic manner. That is the root will start with the split axis being along the x-axis,

the next level of the tree will then use the y-axis as the split directions and the next

level using the z-axis.

• Midpoint splitting Similar to the median splitting rule, the split direction is determined

by the the greatest variation in the bounding box of the tree node being split. The

split location is then taken as the mid-point of this side.

Given P , the left and right half spaces can be defined. Line 7 computes the intersection of

Y with HL resulting in the subset Y
L = {yj ∈ HL}. The ConstructKDTree function is

then called recursively at Line 8 with Y
L as the input, resulting in the left kd-tree node τL.

A similar procedure is conducted for the right half space. Line 11 creates a single tree node

and with references to the left and right child nodes.

3.2.1.2.2 Searching

The kd-tree search algorithm is given in Algorithm 6. The inputs to the search routine

are the constructed kd-tree, τ , from Algorithm 5 that is rooted at tree node r and a search

domain. The result of Algorithm 6 is the set of objects, Θ ∈ τ , that have a non-zero

intersection with the search domain S. The search begins by checking if the root of the input

kd-tree is a leaf node. If this condition is true the algorithm queries each item associated with

41

Algorithm 5: ConstructKDTree(Y,B)
Input: Set Y of geometric objects and Bounding Box B

Output: A kd-tree τ

1 if termination criteria is met then

2 τ ← KDNode(Y) ;

3 else

4 Choose splitting plane P ;
5 HL ← left half space with upper bound P ;
6 HR ← right half space with lower bound P ;
7 Y

L ← Y ∩HL 6= ∅ ;
8 τL ← ConstructKDTree(YL,BL) ;
9 Y

R ← Y ∩HR 6= ∅ ;
10 τR ← ConstructKDTree(YR,BR) ;
11 τ ← KDTree(τL, τR) ;

12 return τ ;

the given leaf to determine those that intersect S appending them to the set Θ. Provided

the root of the input kd-tree is not a leaf node the algorithm proceeds to Line 6, where the

split plane associated with the given node is retrieved. The split plane, P is then used to

define the left half space in Line 7. An intersection test between the search region, and the

left half space HL is performed. Since the search region is capable of intersecting both left

and right half spaces each must be tested independently of the other. If either intersection

occurs the respective child node is used as the input to a recursive call to Algorithm 6. The

resulting sets from Lines 11 and 14 are combined as shown by the union operation at Line

15.

3.2.1.3 Octree

An octree is a three-dimensional space partioning data structure that uses three mutu-

ally orthogonal planes to recursively decompose the space into eight axis-aligned boxes, or

octants, at each step. The quad-tree is the two-dimensional analog to the octree, where

42

Algorithm 6: SearchKDTree(τ ,S)
Input: Kd-tree τ with root r and search region S

Output: Set of objects Θ intersecting S

1 if r is a leaf node then

2 for x ∈ r do

3 if S ∩ x then

4 Insert x in Θ ;

5 else

6 P ← Retrieve split plane or r ;
7 HL ← left half space with upper bound P ;
8 HR ← right half space with lower bound P ;
9 if S ∩HL then

10 τL ← left child of r ;
11 ΘL ← SearchKDTree(τL,S) ;

12 if S ∩HR then

13 τR ← right child of r ;
14 ΘR ← SearchKDTree(τR,S) ;

15 Θ← ΘL ∪ΘR ;

16 return Θ ;

instead of the eight axis-aligned boxes used by the octree, the quad-tree recursively parti-

tions the space into four rectilinear regions or quadrants. An octree differs from a kd-tree

in several ways. The kd-tree is a binary partitioning data structure in that at each level the

space is decomposed into two sub-regions, where as the octree decomposes the space into

eight sub-regions at each level. In general, an expression for the size of a kd-tree node is

not possible due to the varying nature of the split location and direction. The extents of an

octree node can be expressed as

∆xs
i =

∆x0
i

2s
i = 1, . . . , d. (3.10)

43

Here ∆xs
i represents the extents of the octree node at level s of the tree with ∆x0 representing

the bounds of the root node. In Equation 3.10 the depth value, s, is an identifier on the left

side of the equals sign, but is the power when appearing on the right hand side.

3.2.1.3.1 Construction

The general procedure for constructing an octree is given in Algorithm 7. The inputs

to the construction routine are the set of geometric objects, Y, and the bounding box, B,

encompassing Y. The output of the construction algorithm is an octree τ . The routine

begins by checking if the termination criteria has been met. Several options exist for the

termination criteria. Possible termination conditions include:

• if the number of objects within a leaf falls below a prescribed value

• if the number of subdivisions exceeds a prescribed value

• if the extents of the leaf reaches a minimum size, which is another form of the max

subdivision criteria as the size of a tree node can be determined at each level of the

tree provided the root node’s extents using Equation 3.10.

Once the termination condition is satisfied a leaf node is constructed and updated with

references to the objects that intersect it. If the termination criteria is not met the algorithm

proceeds to Line 5 where three splitting planes, P1, P2, and P3, which partition the current

tree node into eight equal sized octants. The partitioning is performed around the current

tree node’s centroid. The next step involves partitioning the set of objects Y into eight

subsets where the ith subset contains those objects that intersect child i of the current node.

Following this partitioning the construction routine is recursively called as shown in Line

44

9. Once the recursion routine returns the constructed sub-tree is added to the current tree

node.

Algorithm 7: ConstructOctree(Y,B)
Input: Set Y of geometric objects and bounding box B

Output: An Octree τ

1 if termination criteria is met then

2 Create octree with one leaf node τ ;
3 Store data from Y in τ ;

4 else

5 Compute planes P1,P2,P3 orthogonal to the coordinate axes ;
6 Decompose B into eight octants,{b0,b1, . . . ,b7}, using splitting planes ;
7 for i← 0 to 7 do

8 Y
i ← Y ∩ bi 6= ∅ ;

9 τ i ← ConstructOctree(Yi,bi) ;
10 τ ← AddSubTree(τ, τ i) ;

11 return τ ;

3.2.1.3.2 Searching

The octree search algorithm is given in Algorithm 8. The inputs to the search routine

are the constructed octree, τ , from Algorithm 7 that is rooted at tree node r and the search

region. The result of Algorithm 8 is the set of objects, Θ, in τ , that intersect the search

domain. The search begins by checking if the root of the input octree is a leaf node. If this

condition is true the algorithm queries each object associated with the given leaf to determine

those objects that intersect S, appending those that intersect to the set Θ. Provided the root

of the input octree is not a leaf node the algorithm proceeds to Line 6, where the child nodes

that the search region intersects are determined. This determination is based on the three

planes used to partition the current node r into octants. This child node is then retrieved

and used as first argument to a recursive call to Algorithm 8.

45

Algorithm 8: SearchOctree(τ ,S)
Input: Octree τ with root r and search region S

Output: Set of objects Θ intersecting S

1 if r is a leaf node then

2 for x ∈ r do

3 if S ∩ x then

4 Insert x in Θ ;

5 else

6 I ← determine indices of child nodes that intersect S ;
7 for i ∈ I do

8 Θi ← SearchOctree(τ i,S) ;
9 Θ← Θ ∪Θi ;

10 return Θ ;

3.2.1.4 Meshfree Details

The above algorithms can be used to answer the adjacency questions arising in meshfree

methods. Each of the three data structures described can be used to determine either Type

1 or Type 2 adjacencies.

Using a spatial partitioning data structure for determining evaluation point to particle,

Type 1, adjacency information the Case 1a or Case 1b viewpoint is taken with the space

containing the particles being partitioned. For Case 1a the space encompassing the particle

locations and their supports are used and only the particle locations for Case 1b are used.

The concept of an intersection between the particles and a cell or node is utilized in each

construction algorithm. For the Case 1a this intersection accounts for the support of the

particle, where in Case 1b this intersection only considers the spatial position of the particle.

Therefore, the intersection used in the Case 1b construction results in a single intersection,

46

i.e., a particle can associate with at most one cell or tree node. This differs from Case 1a

where a particle support can intersect multiple cells or tree nodes.

The search is then conducted per evaluation point resulting in those particles that con-

tribute at the given evaluation point. Each of the search algorithms requires a search domain.

The search region for the Case 1a is the evaluation point location or a region with zero ex-

tent. The search method in Case 1b requires a search domain be assigned to the evaluation

point. In general the particles are associated with a support size, and the evaluation point is

not. A method to choose a bounds for the search must be applied. A solution that is guar-

anteed to work is to choose the supremum of the particle supports. However, this approach

could result in a large number of particles needing to query the evaluation point if particle

distribution is graded.

When determining the particle to evaluation point, Type 2, adjacency information, the

spatial partitioning data structures decompose the space containing the evaluation points

and search per particle as described by Case 2. The only aspects that differentiate this case

from Case 1 are the input arguments and the results. Here the construction is done on the

evaluation point locations instead of on the particle locations. The search for Case 2 is done

per particle with the search region being the particle’s support domain.

3.2.2 Object Partitioning

Object partitioning structures recursively subdivide the collection of primitives into dis-

joint sets. Therefore, object hierarchies do not suffer from the additional memory require-

ment associated with multiple references to the same object, since the object is at most

referenced once. Data structures of this type have received little attention in the context

47

of meshfree methods. This could be due to the fact that querying a single point is not a

common operation; instead, all of the points of interest are evaluated at once, making the

spatial partitioning data structures constructed of evaluation points feasible. However, a

spatial partitioning data structure is not feasible if all the evaluation points are not known

a priori. This case may arise, for example, in problems involving contact, where the points

of contact are part of the problem to be solved [41]. Another disadvantage of determining

adjacency information on a per particle basis is the race conditions that are present, which

requires special attention to allow for parallelization. The race condition potentially arises

when storing the shape functions from multiple particles at the same evaluation point. A

final disadvantage to using a Case 2 structure for shape function computations occurs when

one prefers to compute shape functions on the fly, rather than pre-compute and store them.

In the former case, one would have to evaluate the set ΘJ from Equation 3.6. This could

be very costly. Alternatively, a spatial partitioning data structure following the Case 1a or

Case 1b mantra can be used as described in the previous sections. While these structures

do address the challenges associated with the Case 2 variants, they do present their own

challenges.

3.2.2.1 Bounding Volume Hierarchy

A well-known object partitioning data structure is the Bounding Volume Hierarchy

(BVH). As object partitioning data structures are designed to partition objects with non-zero

volume, they naturally address the adjacency query corresponding with Case 1a. Bound-

ing Volume Hierarchies, introduced in [53], partition the set of objects into a hierarchy of

48

non-disjoint sets. References to the objects are stored in the leaves and each node stores a

bounding box of the primitives in the nodes beneath it.

3.2.2.1.1 Construction

The construction of a BVH is performed on the particles accounting for their support

domains. The BVH construction shown in Algorithm 9 resembles the construction of the kd-

tree in Algorithm 5. Comparison of the two algorithms shows the only apparent difference

being the computation of the bounding-box at Line 1 of Algorithm 9. However, another

significant difference exists that is masked by the abstract intersection between the particles

in X and the half spaces. These intersections for the Case 1a kd-tree were between the

support of the particles and the half spaces, but the intersections shown in Algorithm 9 are

between the coordinates of the particles and the half spaces. Since the classification is based

on a spatial position, not on a volume, there are no repeated references as in the Case 1a

spatial partitioning structures. Once the set of particles have been placed in their respective

tree node the newly created leaves must recompute their bounding boxes accounting for

the support of the particle. In contrast to spatial partitioning data structures, where the

splitting plane defines one of the extents of a tree node’s bounding box, the extents of the

bounding box for tree nodes can span across this plane overlapping one another.

3.2.2.1.2 Searching

As the BVH is constructed of particles, the goal of the search algorithm is to query

the BVH with an evaluation point and determine Type 1 adjacency. The search process

shown in Algorithm 10 begins with a point inside test between the root’s bounding box

49

Algorithm 9: ConstructBVH(X)
Input: Set of particles X

Output: A BVH τ

1 B← ComputeBoundingBoxSupports(X) ;
2 if Termination criteria is met then

3 τ ← BVH(B,X) ;

4 else

5 Choose splitting plane P ;
6 HL ← left half space with upper bound P ;
7 HR ← right half space with lower bound P ;
8 X

L ← X ∩HL 6= ∅ ;
9 τL ← ConstructBVH(XL) ;

10 X
R ← X ∩HR 6= ∅ ;

11 τR ← ConstructBVH(XR) ;
12 τ ← BVH(B, τL, τR) ;

13 return τ ;

and the evaluation point. If the point is not inside the root’s bounds, then the search is

terminated. Provided the evaluation point is inside the root’s bounding box, the search

proceeds by determining if the root is a leaf node. If the node is a leaf, the algorithm iterates

through the particles associated with the node and performs a containment query between

the evaluation point and each particle. If the root has children, then each child node of r

is retrieved and a point inside test is used to determine if the search should proceed with a

recursive search using that node. Once each child node has been processed, the resulting sets

are combined and returned. While the BVH search routine shown in Algorithm 10 follows

a similar procedure to that of the kd-tree search routine previously discussed, several key

differences exist. The first is the determination of whether a child node should be processed.

This selection is done using a splitting plane in the kd-tree. This differs from the BVH,

which conducts a point inside bounding box test. Another difference is the combining of

results from each subtree search. For the BVH these results are guaranteed to be disjoint

50

allowing for a simple structure to be used for combining these results. However, for the Case

1a kd-tree variant, the results are not necessarily disjoint requiring a more sophisticated data

structure or algorithm for combining the results.

Algorithm 10: SearchBVH(τ ,y)
Input: BVH τ rooted at r, Evaluation point y

Output: Set of particles Θ with y in their support

1 if r is a leaf node then

2 for x ∈ r do

3 if y ∈ supp(x) then

4 Insert x in Θ ;

5 else

6 BL ← Retrieve left child’s bounding box ;
7 BR ← Retrieve right child’s bounding box ;
8 if y ∩ BL then

9 τL ← left child of r ;
10 ΘL ← SearchBVH(τL,y) ;

11 if y ∩ BR then

12 τR ← right child of r ;
13 ΘR ← SearchBVH(τR,y) ;

14 Θ← ΘL ∪ΘR ;

15 return Θ

3.2.2.1.3 Remarks

Unlike the spatial partitioning data structures, the BVH partitions the set of particles

and treats them as individual bounding boxes. Therefore, the BVH falls under the Case

1a description and is best suited for determining Type 1 adjacency. If the BVH were to be

constructed of objects with no extents, it would be identical to the kd-tree.

51

3.2.2.2 A New Support Tree Structure

A new data structure is now introduced that can be classified as an object partitioning

structure with a tree-type hierarchy. This data structure will be composed of a root node,

collection of internal nodes, and leaf nodes. The root node and internal nodes are identical

in that they are composed of three child nodes, a split plane, and a bounding box. The leaf

nodes are similar, but instead of a split plane and child nodes, they contain references to the

data that is contained within them.

3.2.2.2.1 Construction

The construction uses a divide-and-conquer algorithm, also referred to as top-down,

that groups the objects according to a splitting heuristic. The algorithm begins with all

the particles at the top level or root as illustrated in Figure 3.4. The bounding box of

the root node is taken as the minimum box that contains the particles and their supports.

Construction proceeds with the determination of the location and direction to be used for

the splitting of the objects. The current approach employs a mid-point splitting heuristic,

where the split direction is determined by computing the largest deviation along the current

node’s bounding box. The location is then taken to be the mid-point along this direction.

Considering the domain coverage in Figure 3.5a and the greatest deviation to be along the

horizontal or x-direction, the split plane is shown as the blue vertical line.

With the split plane determined, the particles are classified as either strictly left, inter-

secting the split plane, or strictly right. This classification is done by determining whether

the given particle’s support bounding box overlaps the split plane. If the bounding box does

52

Figure 3.4: Domain coverage

overlap, the particle is classified as belonging to child one; if the bounding box does not over-

lap, then the particle is classified as belonging to child zero or two. This depends on which

side of the split plane the support bounding box lies, with child zero corresponding to the

left of the split plane and child two corresponding to the right. In Figure 3.5b the magenta

boxes represent the supports of the particles that belong to child one, those particles with

dashed lines that are left of the blue line belong to child zero, and the remaining particles

belong to child two. As the objects are partitioned and distributed to the appropriate child

nodes, the bounding box for each new child node is updated to enclose the particles and

their supports. This procedure is repeated for each child node until a termination criteria

is met. The termination criteria used in this work occurs when all the particles’ supports

overlap the splitting plane. Pseudo code for the construction is given in Algorithm 11.

53

Algorithm 11: ConstructSupportTree(X)
Input: Set of particles X

Output: A Support Tree τ

1 Choose splitting plane P ;
2 HL ← left half space with upper bound P ;
3 HR ← right half space with lower bound P ;
4 for x ∈ X do

5 if supp(x) ∩HL 6= ∅ && supp(x) ∩HR == ∅ then

6 Insert x into X
L

7 else if supp(x) ∩HL 6= ∅ && supp(x) ∩HR 6= ∅ then

8 Insert x into X
C

9 else

10 Insert x into X
R

11 if Cardinality(XL) == 0 && Cardinality(XR) == 0 then

12 Create Support Tree with center leaf node τ ;
13 Store data from X into τ ;

14 else

15 if Cardinality(XL) 6= 0 then

16 τL ← ConstructSupportTree(XL) ;
17 τ ← AddSubTree(τL) ;

18 if Cardinality(XC) 6= 0 then

19 τC ← ConstructSupportTree(XC) ;
20 τ ← AddSubTree(τC) ;

21 if Cardinality(XR) 6= 0 then

22 τR ← ConstructSupportTree(XR) ;
23 τ ← AddSubTree(τR) ;

24 return τ ;

54

(a) Splitting plane location for root node (b) Partitioning of root into child leaves

Figure 3.5: Construction of data

3.2.2.2.2 Searching

Given a spatial location, the objective of the search algorithm is to determine the particles

that contribute at the given point. The search begins with a containment check between the

root’s bounding box and the provided point. If the containment inquiry returns false then

the search is terminated. If the point is within the root’s bounding box, then a check is

done to determine if the root is a leaf node. If the node is a leaf node, the algorithm iterates

through the particles associated with the node and performs a containment query between

the point of interest and each particle. If the root has children nodes, then the search point

is checked against the root’s split plane to determine the side on which it lies and the child

node corresponding to that side is tested for existence along with child node one. Each of

55

these nodes if they exist is processed following the same procedure used on the root of the

tree.

Algorithm 12: SearchSupportTree(τ ,y)
Input: SupportTree τ rooted at r, Evaluation point y

Output: Set of particles Θ with y in their support

1 if r is a leaf node then

2 for x ∈ r do

3 if y ∈ supp(x) then

4 Insert x in Θ ;

5 else

6 BL ← Retrieve left child’s bounding box ;
7 BC ← Retrieve center child’s bounding box ;
8 BR ← Retrieve right child’s bounding box ;
9 if y ∩ BL then

10 τL ← left child of r ;
11 ΘL ← SearchSupportTree(τL,y) ;

12 if y ∩ BC then

13 τC ← center child of r ;
14 ΘC ← SearchSupportTree(τC ,y) ;

15 if y ∩ BR then

16 τR ← right child of r ;
17 ΘR ← SearchSupportTree(τR,y) ;

18 Θ← ΘL ∪ΘC ∪ΘR ;

19 return Θ

3.2.2.2.3 Dynamic Insertion

In order for the data structure to be applicable for analysis that employs refinement based

on insertion of new particles, i.e. h-refinement, a dynamic insertion algorithm is necessary.

To add a particle to an existing tree, the algorithm follows a similar procedure to that of the

construction algorithm. The particle must first traverse down the tree using the particle’s

support bounding box and the current node’s split plane to determine which child node to

56

proceed to next. For each interior node traversed, the bounding box must be updated to

enclose the support of the particle. Upon reaching a leaf, a reference to the particle is added

to the existing list of references and the bounding box for the leaf is updated. The leaf is

then processed to test whether a split needs to occur following the procedure described in

the construction algorithm. To avoid splitting prematurely, a minimum split requirement

can be enforced.

3.3 Performance Comparison

In this section, the performance of the previously discussed data structures will be pre-

sented. A complete comparison of all the methods under a wide range of the various user-

supplied parameters or algorithm choices is too cumbersome. Rather, similar choices for each

of the methods are selected so that a fair comparison can be made. A study of how memory

cost, search times, and construction times scale with the number of particles or evaluation

points is presented. For any given data set, any of the methods may be significantly improved

by optimizing the selection of parameters.

Two meshfree domains are used to measure the construction time, search time, and

memory footprint for each method on both structured and unstructured arrangements of

particles. All of the data structures were implemented in C++ and run on an Intel Xeon

CPU E5-2680 v2 @ 2.80GHz with 64GB of RAM. The unstructured data is two-dimensional

and comes from the micro-CT scan of a Scarlet Macaw skull, shown in Figure 3.6a, with

discretizations ranging from 31,139 to 157,317 particles. Figure 3.7 shows a close up view of

the particles and their distribution. Clearly, this particle distribution is graded and shows

large regions with no particles, and small regions with varying particle density. It should

57

provide a good test for both spatial and object partitioning data structures and their ability

to handle a wide variation in particle distribution and spacing. The structured data example

is a particle distribution of the Stanford Bunny2, with discretizations ranging from 196,017

to 3,793,349 particles as shown in Figure 3.6b. It is worth recapping that the approaches

(a) Scarlet Macaw (b) Stanford Bunny

Figure 3.6: Particle distribution for example problems

of Case 1a and Case 1b seek to solve the same problem, namely determining which particles

have a non-zero contribution at a given evaluation point i.e., Type 1 connectivity. Case 2 is

different, in that it is best suited for determining what evaluation points lie in the support of

a given particle i.e., Type 2 connectivity. Recall that all the construction routines required

some user defined parameters, which can have significant impacts on the performance of the

data structures. In addition to these parameters, the actual implementation of these data

structures can have drastic effects on performance. In all of the implementations used, an

2Available at https://graphics.stanford.edu/data/3Dscanrep/

58

Figure 3.7: Close-up view of the particle distribution of Scarlet Macaw skull

effort to program the best version of each method was made. The grid data structure required

a method to determine the grid resolution. The numerical studies conducted determined the

resolution with Equation 3.7. The build factor γ, used to determine the grid resolution,

was set to one, resulting in the total number of grid cells being approximately equal to the

number of particles. While using a larger value for γ would result in a more refined grid

and potentially better search times, this would also result in a larger memory footprint. A

smaller value of γ could be used to yield slower search times, but the memory costs would

be reduced.

59

The kd-tree requires a splitting rule and termination criteria be defined. The kd-trees in

this study used a mid-point splitting rule with the split axis corresponding to the dimension

with the greatest deviation of a tree node’s bounding box. The termination criteria was

satisfied when the number of objects associated within a tree node fell below a user defined

threshold or if the volume of the node’s bounding box became less than the volume of the

largest support size. While it is true that the first termination criteria will eventually be

satisfied, the Case 1a kd-tree requires objects that overlap the splitting plane be associated

with each child node. This requires numerous references to the same object resulting in a

large memory footprint as will be discussed in the next section. The Case 1b and Case 2

data structures do not suffer from this ailment and a bin size of one was used for both kd-tree

variants. As with the kd-tree, the BVH requires a splitting rule and termination criteria. The

same splitting rule and similar termination conditions used for the kd-tree were employed for

the BVH in this study. Differing from the Case 1a kd-tree, the BVH partitions the objects

and therefore does not require multiple references to the same object. Therefore, the BVH

cannot create tree nodes of a size that is significantly smaller than particles’ support sizes,

reducing the potential growth in memory. No restriction on the volume of a tree node was

necessary. Several bin sizes were tested and from these trials a bin size of one was chosen, as

it provided the best performance in regards to searching at a higher memory cost, but this

cost was not considered substantial.

Depending on the splitting rule used, the proposed data structure may not need a termi-

nation criteria. By using a mid-point splitting rule, the termination criteria is defined once

all the objects overlap the splitting plane. This removes an element of user interaction and

the potential for a poorly chosen value that could result in an ill-performing data structure.

60

However, the use of a different splitting rule may require a different termination criteria.

The implementation used in this work employed a mid-point splitting rule and therefore did

not require a user defined termination criteria.

3.3.1 Memory Cost

The memory usage for those data structures constructed based on Case 2 are independent

of the number of particles, as they are constructed of evaluation points. The memory usage

for the tree based data structures is dependent on the termination criteria; for the BVH,

Kd-tree, and Support tree, the splitting method is also a factor. The memory for the Case 1a

and Case 1b data structures are plotted on the same graph for each example in Figures 3.8a

and 3.8b, respectively. From the figures, it is clear that among the Case 1a implementations,

the grid, depicted by the green line, exhibits the worst memory usage. However, for the

Case 1b approaches, the grid appears to have the lowest memory footprint, which is due to

the fact that the particle support size is not taken into account. Considering only the Case

1a data structures, the proposed Support Tree data structure shown here by the grey line,

has the lowest memory impact for the second example, as seen in Figure 3.8b. It is nearly

identical to the kd-tree and octree for the first example with all three contending for the

lowest memory impact. The grid data structure has the lowest memory footprint for Case 2

searches as shown in Figures 3.9a and 3.9b.

3.3.2 Construction Cost

Here, the time required to construct the various data structures is analyzed. A direct

comparison of the two cases is not feasible, as the data structures associated with Case 1a

61

and Case 1b are constructed on the set of particles, where as those data structures associated

with Case 2 are constructed on the set of evaluation points. The construction times for Case

1b approaches are significantly lower than Case 1a approaches, since accounting for particle

support size is not necessary. For a mechanics problem using a meshfree approximation

method, the construction routines will generally occur once at the beginning of the simulation

and could be conducted as a pre-processing step, obviating the time from the main processing

step entirely. However, if a refinement method is being used or evolving topologies are of

interest, the ability to quickly reconstruct the data structures could become important. The

time required to construct the data structures is represented graphically in Figures 3.10 and

3.11.

3.3.3 Search Cost

In this section, the time it takes to search the various structures for computing the

connectivities used in meshfree methods is reported. Note that construction costs are one-

time costs for a given problem, whereas the search times are accumulated over many calls.

In general, many searches will be performed over the course of a computation. In some cases,

for example constructing a stiffness matrix, the number of searches is known a priori. In

other cases, for example contact, the number of searches is not known. Figures 3.12-3.15

show the time required to search the data structures for the given number of particles and

evaluation points. For both examples, the most efficient data structure is the regular grid

constructed on the particles accounting for their support size.

62

3.3.4 Guide to Choosing a Search Structure

As previously mentioned, one can fine tune any of these methods to improve search times

or reduce memory cost, so it is not possible to recommend a single ’best’ data structure.

As demonstrated, when determining Type 1 adjacency, in general, a grid structure or the

support-tree structure will be ideal. The grid, in one of the Case 1 scenarios, will substan-

tially sacrifice memory for speed, or speed for memory. While it is not usually optimal in

either speed or memory, the Support Tree does perform well in regards to the two examples

presented. If a single structure is needed to perform well in most situations without user

interaction, the support tree may be the best choice. Furthermore, the Support Tree scales

well with the number of particles stored and with the number of evaluation points searched.

If either speed or memory are paramount, a properly tuned grid will likely be the best choice.

From the numerical results, it is clear that when tasked with determining Type 2 adjacency,

the Case 2 grid is the best choice.

63

20000 40000 60000 80000 100000 120000 140000 160000
0

2

4

6

8

10

12

14

Number of Particles

M
e
m

o
ry

 (
M

b
)

quadtree
1a

grid
1a

kdtree
1a

bvh

support tree

quadtree
1b

grid
1b

kdtree
1b

(a) Memory vs number of particles for Scarlet Macaw.

0 1e+06 2e+06 3e+06 4e+06
0

100

200

300

400

500

600

Number of Particles

M
e
m

o
ry

 (
M

b
)

octree
1a

grid
1a

kdtree
1a

bvh

support tree

octree
1b

grid
1b

kdtree
1b

(b) Memory vs number of particles for Stanford Bunny.

Figure 3.8: Memory requirements corresponding to Case 1 data structures.

64

60000 80000 100000 120000 140000 160000
0

2

4

6

8

10

12

Number of Evaluation Points

M
e

m
o

ry
 (

M
b

)

quadtree

grid

kdtree

(a) Memory vs number of evaluation points for Scarlet Macaw.

(b) Memory vs number of evaluation points for Stanford Bunny.

Figure 3.9: Memory requirements corresponding to Case 2 data structures for Ex. 1 and 2

65

20000 40000 60000 80000 100000 120000 140000 160000
0

0.05

0.1

0.15

0.2

Number of Particles

T
im

e
 (

s
)

quadtree
1a

grid
1a

kdtree
1a

bvh

support tree

quadtree
1b

grid
1b

kdtree
1b

(a) Construction time vs number of particles for Scarlet Macaw.

0 1e+06 2e+06 3e+06 4e+06
0

1

2

3

4

5

6

7

Number of Particles

T
im

e
 (

s
)

octree
1a

grid
1a

kdtree
1a

bvh

support tree

octree
1b

grid
1b

kdtree
1b

(b) Construction time vs number of particles for Stanford Bunny.

Figure 3.10: Construction time corresponding to Case 1 data structures.

66

60000 80000 100000 120000 140000 160000
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Number of Evaluation Points

T
im

e
 (

s
)

quadtree

grid

kdtree

(a) Construction time vs number of evaluation points for Scarlet Macaw.

(b) Construction time vs number of evaluation points for Stanford Bunny.

Figure 3.11: Construction time corresponding to Case 2 data structures.

67

60000 80000 100000 120000 140000 160000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of Evaluation Points

T
im

e
 (

s
)

quadtree
1a

grid
1a

kdtree
1a

bvh

support tree

quadtree
1b

grid
1b

kdtree
1b

(a) Scarlet Macaw

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07
0

1

2

3

4

5

6

Number of Evaluation Points

T
im

e
 (

s
)

octree
1a

grid
1a

kdtree
1a

bvh

support tree

octree
1b

grid
1b

kdtree
1b

(b) Stanford Bunny

Figure 3.12: Search time vs number of evaluation points for Case 1 data structures for
the Scarlet Macaw and Stanford Bunny discretized with 122,334 and 1,284,920 particles
respectively.

68

60000 80000 100000 120000 140000 160000
0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of Evaluation Points

T
im

e
 (

s
)

quadtree

grid

kdtree

(a) Scarlet Macaw

(b) Stanford Bunny

Figure 3.13: Search time vs number of evaluation points for Case 2 structures the Scarlet
Macaw and Stanford Bunny discretized with 122,334 and 1,284,920 particles respectively.

69

20000 40000 60000 80000 100000 120000 140000 160000
0

0.05

0.1

0.15

0.2

Number of Particles

T
im

e
 (

s
)

quadtree
1a

grid
1a

kdtree
1a

bvh

support tree

quadtree
1b

grid
1b

kdtree
1b

(a) Scarlet Macaw

0 1e+06 2e+06 3e+06 4e+06
0

2

4

6

8

10

Number of Particles

T
im

e
 (

s
)

octree
1a

grid
1a

kdtree
1a

bvh

support tree

octree
1b

grid
1b

kdtree
1b

(b) Stanford Bunny

Figure 3.14: Search time vs number of particles for Case 1 structures for both examples
using 140,625 evaluation points for the Scarlet Macaw and 8,000,000 evaluation points for
the Stanford Bunny.

70

20000 40000 60000 80000 100000 120000 140000 160000
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of Particles

T
im

e
 (

s
)

quadtree

grid

kdtree

(a) Scarlet Macaw

(b) Stanford Bunny

Figure 3.15: Search time vs number of particles for Case 2 structures for both examples
using 140,625 evaluation points for the Scarlet Macaw and 8,000,000 evaluation points for
the Stanford Bunny.

71

CHAPTER 4: DOMAIN DISCRETIZATION FOR PARTICLE METHODS

Meshfree methods and the formulation of the Reproducing Kernel Particle Method have

been introduced. While meshfree methods do not require the computation of a mesh, they

do require the domain be discretized by particles. The transformation of the continuous

domain into a discrete set of particles is analogous with the mesh generation step of FEM.

Triangularization or tetrahedralization of the domain is a common approach for deter-

mining the spatial positions of particles, support domains, and nodal volumes [43]. The

concept of using a mesh to determine the meshfree discretization may seem to violate one

of the key benefits of using meshfree methods. To some degree this is true, but aspects that

plague finite elements, such as the low order differentiability, can be overcome with meshfree

methods with the particle discretization constructed from a low order finite element mesh.

This chapter will introduce the methodology used to construct a meshfree discretization of

the domain in such a way that the quality of the meshfree approximation is not compromised.

Approaches for determining the attributes associated with a particle, such as the nodal

volume and support domain, will be discussed.

4.1 Particle Placement

The concept of placing nodes in a domain is not limited to meshfree methods and may

also be necessary for tessellation. The nodes can be considered the lowest level geometric

72

entity, the construction of higher level entities, such as edges and faces, is impossible with-

out knowledge of the nodes. Similarly the particles used in meshfree methods cannot be

constructed without knowledge of their spatial positions.

Determining the optimal point distribution is the fundamental problem for spatial dis-

cretization and many approaches have been considered. This work will ultimately employ

a physics-based approach for point distribution, and shares similarities with several existing

techniques that are used for meshing. One approach for distributing points in some finite

domain is to model the geometric problem as a particle simulation, in which the motion of

the particles is dictated by physical laws or some stochastic set of rules. This approach was

originally developed for automating triangular mesh generation and is commonly referred to

as Bubble Meshing [57]. In [68], an approach for node placement by molecular dynamics

is proposed. This approach is similar to that of Shimada et al., with the main difference

being in the form of the interaction between particles. Another approach by Persson et al.

models the discretization as a structural analysis problem, in which the mesh is modeled as

a truss, with the truss joints being the vertices of the mesh [49]. The vertices are moved

to what is considered the optimal location by an incremental procedure, which involves an

edge determination process followed by force equilibrium. The system is then updated by

the displacements and the process is repeated. A similar approach to that of [57] is given

in [67], but instead of modeling the motion of the particles using Newtonian mechanics, the

authors minimize the potential energy of the system using a Monte Carlo simulation.

While the aforementioned approaches were originally conceived for mesh generation, the

actual tessellation is performed as a post processing step using methods such as those pro-

posed by [12, 37, 64], which operate on an existing point distribution to generate a triangu-

73

lation. Meshfree discretization techniques can be adapted from those used for meshing by

omitting the tessellation step. Alternatively, several methods have been developed that focus

directly on meshfree discretization. An octree based approach is given in [34]. The Biting

Method [42], originally developed for mesh generation, is adapted for generating meshfree

particle distributions [66].

4.1.1 Physics Based Approach

The physics-based approach to point distribution models a collection of points as a set of

interacting particles. Differing from the advancing front and Delaunay insertion algorithms,

which insert points in the domain incrementally, the physics-based approach determines an

initial placement for all the nodes first and then optimizes their positions. A compromise

between computational effort used in the initial placement of the nodes and the relocation of

the nodes has to be made. The closer the initial configuration is to the optimal configuration,

the less time spent in the simulation step. However, if obtaining the initial configuration is

computationally expensive in and of itself, then little is gained by the physics-based approach.

4.1.1.1 Initial Particle Distribution

An approach to generating the initial point distribution is through spatial partitioning

data structures. Alternatively, uniform discretization of the bounding box and rejection

sampling can be used to generate initial node distribution. In order to generate an analysis-

suitable particle distribution, a description of the geometry is needed. For this work, it

will be assumed this description is in the form of a PSLG (2D) or PLC (3D). Given this

collection of primitives denoting the boundary, an initial guess at the particle configuration

74

is needed. There are several attributes of the initial configuration needed to ensure suitable

quality of the resulting particle distribution after the simulation procedure. First, the initial

set of particles should cover the entire region. This is especially important for regions of the

domain with finer details. If these regions of finer detail are not sufficiently sampled, the

simulation may take an unreasonable amount of time to move particles there, or may not

place particles in these areas at all. Second, the initial particle configuration should only

locate points within the boundary to be discretized. This eliminates the need to incorporate

a removal step in the actual simulation. Third, the spacing field should be determined such

that no regions are vacant of particles.

The first two attributes can be achieved by employing a quad-tree in 2D or octree in 3D

for the initial point placement. Alternative to the versions discussed in §3.2.1.3, the version

used here is not for accelerating search queries. Instead it is used as a type of pseudo-

mesh, identifying sharp features which require a more refined discretization and preventing

unnecessarily fine discretizations in regions where sharp features are not present. Given an

octree, the leaf nodes are used to generate the particles. The manner in which the particles

are generated in each leaf node can vary, but a simple approach is to locate a single particle

at the leaf node’s center.

Recall from the discussion in §3.2.1.3, the octree requires a termination condition. The

versions of the octree used for adjacency queries utilized heuristics based on the tree node

size, tree depth, or bin size. Here these stopping conditions are inadequate, as small features

may not be resolved. Consider the boundary given in Figure 4.1a, with eight vertices and

edges. If a bin-size termination criterion based on the vertices of the boundary is used,

the resulting quad-tree leaves contain large amounts of void space as seen in Figure 4.1b.

75

(a) Boundary (b) Quadtree using bin size termination condition

Figure 4.1: Two-dimensional domain to be discretized

Using the center of these leaf nodes as the particle locations results in an inadequate particle

distribution. Therefore, a new termination criterion is needed to allow finer details of the

domain to be resolved, which given in Algorithm 13. The algorithm takes in a single tree

node τ and the region to be discretized Γ. The algorithm returns a boolean that is true if the

tree node should be subdivided and false if the tree node should be marked as a leaf. The

first conditional checks if the tree node is the root of the tree, and if so, returns true. This

check is necessary, as the bounding-box of the root will encompass the domain resulting

in no intersection between the edges of the root’s bounding box and the domain. If the

tree node is not the root node, the algorithm proceeds to the second conditional. Here an

intersection between each edge of the quadrilateral (2D) or hexahedron (3D) representing

the tree node and the boundary is performed. If an intersection does occur, the tree node is

to be subdivided with the algorithm returning true. If no intersection occurs, the tree node

is either completely inside the domain and will be used in the generation of particles or the

tree node is completely outside the domain and will not be used.

76

Algorithm 13: TerminationCondition(τ ,S)
Input: Tree node τ and region Γ
Output: Boolean stating if τ should be subdivided

1 if τ is root then

2 return true ;

3 if Intersection(τ ,Γ) then

4 return true ;

5 return false ;

Figure 4.2a shows the quadtree constructed on the boundary (red dashed line) in Figure

4.1a using Algorithm 13.

(a) Quadtree termination condition in Algorithm 13 (b) Initial point distribution from quadtree

Figure 4.2: Quadtree discretization of boundary and initial point distribution

4.1.1.2 Particle Motion

After the initial node distribution is determined, the next step is to move the nodes to

their optimal locations. The optimal location can be considered as one where the particles are

well-distributed and cover the entire domain. In the physics-based approach, this corresponds

to a state of mechanical equilibrium, which is achieved when the resultant force on each

particle is zero. For a conservative system, equilibrium can be classified as a state where the

potential energy is minimum. Therefore, the optimal locations are given by the following

77

constrained optimization problem:

argmin
x∈Ω

U (x1,x2, . . . ,xN) . (4.1)

The assumption is made that the region to be discretized is known. If the region is the result

of a CAD system, the boundary defining the limits of the domain is generally given as a

piecewise linear complex or nurbs surface.

The force-based approach for seeking equilibrium is the fundamental concept behind

bubble meshing. Pairwise forces are generally used and are constructed to be repulsive when

two particles are closer than some equilibrium spacing and attractive when the distance

exceeds the equilibrium spacing. In molecular dynamics these forces are derived from an

energy potential. A popular potential is the (12-6) Lennard-Jones [38] given in Equation 4.2

with graphical depiction in Figure 4.3.

V (r) = 4ε

(

(σ

r

)12

−
(σ

r

)6
)

(4.2)

The parameters σ and ε in Equation 4.2 are user-defined parameters and depicted in Figure

4.3. The separation distance is computed as the Euclidean norm of the vector from particle

I to particle J ,

rIJ = xJ − xI . (4.3)

The total energy of a system composed of N particles can be computed as

U =
N−1
∑

i=1

N
∑

j=i+1

V (rij) . (4.4)

78

r0

σ

ε

r

V (r)

Repulsive (r < r0)

Attractive (r > r0)

Figure 4.3: Lennard-Jones 12-6 potential schematic

From the conservation of energy and the work-energy theorem, the force on particle I due

to particle J can be determined as the negative gradient of the potential:

FIJ = −∇VIJ = −24ε
(

2
(σ

r

)12

−
(σ

r

)6
)

rIJ

r
. (4.5)

Simple in theory, this approach proves challenging in practice. Since mechanical equilib-

rium is not a state of zero motion, the particles can still have velocity, and determining the

equilibrium configuration numerically is challenging. Particles might move past equilibrium

without taking on the position such that force equilibrium is satisfied; the particles oscillate

about their equilibrium position at some frequency. To mitigate the challenge of oscillatory

79

behavior, a velocity-dependent drag force is added, which dissipates energy from the system,

allowing the particle to settle into an equilibrium state.

The force-based approach described above resembles that of a gradient descent type

optimization method. In gradient descent optimization, the next probable solution is found

by moving along the negative gradient of the potential, which is the definition of the force.

Both of these approaches can be classified as deterministic approaches to the minimization

problem. During simulation, these deterministic approaches move all particles in a system

at once, which makes it challenging to keep particles inside the boundary. In addition, it

can be difficult to determine suitable parameters such that a stable calculation is ensured.

An alternative to the deterministic approach for locating an equilibrium configuration is to

minimize the potential energy of the system using the concept of stochastic optimization.

Stochastic optimization refers to a collection of numerical minimization techniques that

include some form of randomness. The manifestation of the randomness varies, but in

general refers to randomness in the objective function, search direction, or in both. Numerous

stochastic optimization techniques have been proposed, but this work will utilize the method

referred to as Simulated Annealing.

4.1.1.2.1 Simulated Annealing

Annealing is a metallurgical process where a material is heated above its melting point

followed by a gradual cooling, allowing the atomic structure to rearrange itself into a crys-

talline structure. In simulated annealing, this crystalline structure is analogous to the mini-

mum of some cost function. Simulated annealing is a variant of the Metropolis Monte Carlo

method (MMC), where a cooling schedule is added to control the temperature. Simulated

80

annealing is a descent algorithm where lower energy states are preferred. Differing from

deterministic methods, such as steepest descent, simulated annealing uses random moves to

explore the solution space. A change that results in a lower energy is always accepted. This

alone could easily result in the algorithm becoming trapped at some local minima. To escape

these local minima, higher energy states are accepted based on some acceptance probability.

From statistical thermodynamics, the probability of a system being in state A with energy

UA at temperature T is given by the Boltzmann distribution:

PA =
1

Z
e

−UA
kT , (4.6)

with k being the Boltzmann constant and Z being the canonical partition function defined

as

Z =
∑

I

e
−UI
kT . (4.7)

Here the sum is taken over all the available states a system could occupy. To see how this

is useful in the simulated annealing algorithm, consider a particle at some location xA with

energy UA. Now consider the same particle system except the particle previously at xA is now

at a different location xB with energy UB. The general idea is that configurations at lower

energy states are always accepted and transitions to higher energy states are conditionally

accepted dependent on the probability of occurrence. These conditions are given as:

PA→B =



















true if PB ≥ PA,

maybe otherwise.

(4.8)

81

This can be recast as a ratio of the probabilities of state A and B given as:

PA→B =
PB

PA

= e
(UA−UB)

kT . (4.9)

If the ratio in Equation 4.9 is greater than one, then state B is always preferred. If the

probability of state B is lower than the probability of state A, the transition is conditionally

accepted. For a state of lower energy A to transition to a state of higher energy B, the

following condition needs to be satisfied:

PA→B > R, R ∈ (0, 1) , (4.10)

where R is a random number. The probability is dependent not only on the change in energy

between two states, but also the temperature. A high temperature results in a greater likeli-

hood of accepting transitions from lower states of energy to higher ones. The starting value

for the temperature should be chosen such that each particle has a probability of moving. As

the simulation proceeds, the temperature should gradually decrease. The way in which the

temperature is controlled is referred to as an annealing schedule. The simulated annealing

algorithm is given in Algorithm 14. The simulated annealing algorithm provides a straight-

forward approach for determining particle locations but does result in a computationally

expensive approach. This expense comes from the evaluation of the objective function at

the current state and perturbed state as shown in Lines 1 and 3 of Algorithm 14. A change in

state involves moving an individual particle. The objective function evaluation at any given

particle requires the summation of all the interaction potentials between the given particle

82

Algorithm 14: SimulatedAnnealing(A)
Input: Initial configuration A

Output: Final configuration B

1 UA ← Evaluate objective function of current state;
2 B← Apply random perturbation to current state ;
3 UB ← Evaluate objective function of candidate state ;
4 if UA < UB then

5 A← B ;

6 else if P (UA, UB, T) > random[0, 1) then

7 A← B ;

8 Reduce temperature T ;
9 return B ;

and all other particles in the domain. The particle is then perturbed and the evaluation

of the objective function performed, again requiring the interaction between the perturbed

particle and all other particles in the domain to be computed. For a given particle I in a

domain with N particles, the change in potential from states A and B is computed as:

∆U I
AB =

N
∑

i=1,i 6=I

V (r̄Ii)−
N
∑

i=1,i 6=I

V (rIi) . (4.11)

The first summation evaluates the potential with respect to the modified location of particle

I, therefore the linearity of the summation operator cannot be exploited. This 2N operation

is performed for each particle at every step of the annealing simulation, resulting in a po-

tentially expensive operation. To reduce this cost, several optimizations can be performed.

The weak attractive potential generated by particles at large distances from one another can

be exploited. This can be done by only evaluating the contributions to the potential energy

at a given particle at nearby particles since the contribution from distant particles can be

assumed to be negligible. This requires the determination of all the particles within some

83

specified radius of a given point. This type of search is easily handled by any of the spatial

partitioning data structures discussed in §3.2.1. Those data structures were assumed to be

static with regard to particle motion, and for the simulated annealing, the particles need

to be moved. While each one of the structures can be used to handle dynamically evolving

particle positions, the grid data structure will be used here. The construction of the grid

follows the same procedure described in §3.2.1.1 with the particles treated as points with zero

extents. The evaluation of the potential energy at a given particle can then be computed by

searching the grid given the spatial location of the particle and cutoff radius. The result of

the search will be the set of particles to be used for evaluating the potential energy. This

procedure is outlined in Algorithm 15.

Algorithm 15: EvaluatePotentialGrid(C,P ,rc)
Input: Grid C, Particle P , Cutoff radius rc
Output: Potential energy V

1 I← Compute indices into C of grid cells intersecting P with search radius rc ;
2 V ← 0 ;
3 for i ∈ I do

4 for x ∈ C[i] do

5 V += EvaluatePotential(P ,x) ;

6 return V ;

Figure 4.4 illustrates the simulated annealing process applied to the bracket from Figure

4.1a.

4.2 Computation of Particle Attributes

Provided the spatial locations of the meshfree nodes, the next step is to determine two

attributes associated with each node, the nodal volume and support domain.

84

(a) Initial distribution (b) Final point distribution quadtree

Figure 4.4: Initial and final point distributions resulting from simulated annealing process

4.2.1 Particle Volumes

In general the nodal weights should be chosen such that the following is true:

∑

I

∆VI = meas(Ω). (4.12)

Given a uniform discretization, the computation of the particle volumes such that Equation

4.12 holds is straightforward. Consider a 1D domain [0, L] that is uniformly discretized by

Np particles. The spacing between particles is determined by,

∆x =
L

(Np − 1)
. (4.13)

The associated volume for each interior particle is ∆x with the two boundary particles

having a nodal volume of 1
2
∆x. This can be easily expanded to higher dimensions, but is

only applicable for uniform discretizations of rectilinear domains. A study on the effects of

particle volumes on the approximation functions is carried out in [1] with particle volumes

85

set to unity, random values, and exact values. Here the authors find that the consistency of

the approximation is obtained for all three cases. The correction function is guaranteed to

enforce the reproducing requirements and any error in the nodal volumes will be absorbed

by the correction function coefficients. However, the use of random values is discouraged as

the accuracy of the numerical method does show deterioration. The computation of nodal

volumes is also addressed in [24], where the authors note the nodal volume appears in the

integration of the kernel as well as in the integration of the moment matrix. Since the

moment matrix is later inverted, any constant value for the integration weight will result in

the same approximation functions. If the integration weight is set to one, the Moving Least

Squares (MLS) approximation functions are recovered [46].

4.2.2 Support Domain

The support domain of a particle dictates the region of the domain where that particle

contributes. The support domain is centered at a particle and generally has symmetries

with respect to each direction. The shape of the support is generally taken to be a simple

geometric object such as a sphere or rectilinear region, however this is not a requirement.

The concept of a support domain is not exclusive to meshfree methods. In FEM, each node

also has a support and is the union of the elements that the node belongs to. The support

of a node in FEM is generally an n-sided polygon (2D) or an n-faceted polyhedron (3D).

86

4.2.2.1 Geometrical Representations

Recall Definition 2.3.1 for the support domain,

Ωρ
I = {y|‖y− x‖ ≤ ρ}. (4.14)

The definition for the norm ‖ · ‖ and ρ are dependent on the geometrical configuration. For

spherical support domains the Euclidean norm is used, with the Euclidean norm defined as:

‖x‖2 =
√

x2
1 + x2

2 + . . .+ x2
n. (4.15)

If the support is rectilinear, then the infinity norm is used, with the infinity norm defined

as:

‖x‖∞ = max{|x1|, |x2|, . . . , |xn|}. (4.16)

A modified version of Equation 4.14 that allows for the characteristic length, ρ, to vary in

each direction is given as:

Ωρ
I = {r|‖r‖ ≤ 1}. (4.17)

Here r is defined as:

ri =
yi − xi

ρi
i = 1, . . . , d. (4.18)

This allows for the extension of the definition of the support domain to include ellipsoidal

domains when the Euclidean norm is used and ρ is a vector containing the lengths along

the principal minor and major axes as shown in Figure 4.5a. Cartesian support domains

87

ρ1

ρ2

(a) Ellipse support domain

ρ1

ρ2

(b) Rectilinear support domain

Figure 4.5: Characteristic length description for ellipsoidal and rectilinear support domains

with varying lengths in each dimension can be obtained by employing the infinity norm and

modifying ρ as shown in Figure 4.5b.

4.2.2.2 Construction

Once a geometrical representation for the support domain is chosen, the characteristic

lengths for each particle’s support needs to be determined such that the requirements for an

admissible particle distribution are met. These requirements were introduced in §2.3.1.

Several approaches for determining the support size have been developed. An approach

that relies on the triangulation of the domain is presented in [43], where each particle is

taken as a vertex of a mesh. The support domain of a particle is then based on a heuristic

using the average area of those elements connected to the vertex. In an alternative approach,

particles are not directly associated with a support domain, but the integration points are.

Here the selection of the nodes contributing at a point are determined by what are referred

to as T-Schemes [43]. Again this technique relies on the tessellation of the domain. In

[29, 31], an approach to determine the support size is proposed where additional points

88

are introduced to ensure the union of the supports completely covers the domain. These

points are acquired from a coarse mesh and only serve to ensure the coverage requirement

is met; they are not introduced as additional degrees of freedom and have no associated

support domain themselves. In [20], a probabilistic algorithm for determining the size of the

support domains is proposed. This approach is similar to [29, 31], but instead of using the

vertices of a mesh, the domain is randomly sampled. Both of these approaches seek to find

the characteristic lengths for each particle’s support domain, with the difference being how

additional points are introduced. The introduction of these additional points is warranted by

the requirements for an admissible particle to hold for any point in the domain, not only at

the particles themselves. This work will utilize a similar approach with the general procedure

given in Algorithm 16. The inputs are the set of particles used to discretize the domain and

an additional set of sample points.

The consequences of increasing the support sizes have not been discussed. If the support

of a particle were to encompass the entire domain, the first three requirements for an admis-

sible particle distribution are trivially satisfied. Assuming the particles are distributed in a

manner such that the fourth requirement is satisfied, the requirements for a suitable approx-

imation have been met. However, over sizing the support domains has ramifications. The

sparsity pattern of the stiffness matrix is a direct consequence of the particles’ support sizes.

As the supports are expanded, the number of particles interacting increases. The increased

number of interactions causes an increase in memory, as the number of non-zero entries in

the stiffness matrix is increased. This also has a negative impact on the computational time

for assembling and solving the sparse linear system. Excessively large supports result in the

loss of the local character of the approximation, as will be demonstrated next.

89

Algorithm 16: DetermineSupportSizes(X,Y)
Input: Lower bound on number of particles contributing NL, Particles X, sample

points Y

Output: Support domain of each particle in X

1 X← initialize support domains to zero size ;
2 Z← X ∪Y ;
3 τ ← Partition(X) ;
4 r ← initialize search radius ;
5 neighbors← initialize empty neighbor list ;
6 for z ∈ Z do

7 neighbors← Search(τ ,z,r) ;
8 while card(neigbors) < NL do

9 r ← increase search radius ;
10 neighbors← neighbors ∪ Search(τ, z, r)) ;

11 neighbors← sort by distance to z ;
12 c← 0 ;
13 while x ∈ neighbors && c < NL do

14 if IsV isble(x, z) then

15 IncreaseSupport(x, z) ;
16 c← c+ 1 ;

90

4.2.2.3 Numerical Implications

This section will study the impact of the support size on the accuracy of the approxi-

mation. In the first part of this section, the implications of the increased support will be

demonstrated with three one-dimensional curve fitting functions. For the one-dimensional

curve fitting, consider the following set of functions:

f (x) = 1
1000

x3,

g (x) = e−x,

h (x) = x sin(x)
1+x2 ,

(4.19)

to be approximated by ten equally spaced nodes in the interval [0, 10]. The support domain

of each particle is the same and is a scaled multiple of the particle spacing determined

by ρ = α∆x, where α is the scale factor and ∆x is computed using Equation 4.13. The

approximation is performed using 100 evaluation points equally distributed over the domain.

The approximation will be constructed as detailed in §2 with both linear and quadratic

polynomial fields used. A total of 15 scale factors are used with the jth scale factor for the

linear polynomial computed as:

αj = (0.1j + 1.0) j = 1, 2, . . . , 15. (4.20)

When using the quadratic polynomial field for the reconstruction, the scale values are in-

creased by a factor of two. This is necessary to ensure enough particles cover every evaluation

point such that the moment matrix is invertible. The error in the approximation for the jth

91

1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.2

0.4

0.6

0.8

1

α

E
rr
o
r

f

g

h

(a) Linear polynomial field

2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

α

E
rr
o
r

f

g

h

(b) Quadratic polynomial field

Figure 4.6: Error vs scale factor

scale factor is computed as:

ej =
100
∑

i

(

fi − f̂ j
i

)

. (4.21)

Here fi represents the exact value of the function at the ith evaluation point, and f̂ j
i repre-

sents the approximated value at the ith evaluation point using the jth scale factor. In the

graphical representation of the errors given in Figure 4.6, the error for each function is scaled

by the reciprocal of the max error associated with that function. This is done to normalize

the error values to be on the same order of magnitude. Figure 4.6a depicts the normalized

error in the function reconstruction with linearly consistent shape functions. Figure 4.6b

shows the error in the approximation for quadratically consistent shape functions. In both

cases it is clear that increasing the size of the support domain can have negative impacts on

the quality of the approximation. Based on these results, the support domain should be cho-

sen to be as small as possible, while still satisfying the requirements for an admissible particle

distribution when using the meshfree approximation functions for function reconstruction.

92

4.3 Discretization Refinement

The primary focus of the previous discussion was on domain discretization. However,

the same concepts apply when refining an existing discretization. This type of refinement

is typically referred to as h-refinement, where h refers to the characteristic length of the

discretization. The concept of h-refinement is a technique used to improve the accuracy of a

discrete approximation by increasing the resolution of the discretization. Within the context

of FEM, this is done by sub-dividing elements. This generally requires the incorporation of

simplexes into the mesh, thereby reducing a quadrilateral element to a triangular element or a

hexahedron to a tetrahedron, as examples. Due to the lower order interpolation capabilities

of the simplex elements, this reduction in element type could result in loss of accuracy.

Contrary to FEM, meshfree methods have no concept of element types, making them well-

suited for adaptive refinement.

4.3.1 Particle Placement

Assuming some indicator exists for determining a region where refinement should occur,

the next step is the insertion of new particles. Given the number of particles and region

to refine, the particles are inserted using a simple rejection sampling method, followed by

execution of the simulated annealing algorithm previously discussed. The particles used in

the simulated annealing algorithm require an associated radius and constraint value. An

ideal radius associated with each particle in the simulated annealing algorithm is difficult to

obtain. From the previous discussion on using the simulated annealing algorithm in the do-

main discretization process, the particles’ radii were determined based on the size of the tree

93

node used to generate the particle. In the context of local refinement, no tree is necessary.

However, a simple method based on the number of particles that can fit within the refine-

ment region may be used. The constraint value is dependent on the necessity of particles

retaining their original positions. Nodes located along the boundary are likely candidates to

be constrained. Another set of particles that might be constrained are those particles not

within the refinement region. This allows those newly inserted particles and the existing

particles within the refinement region to move, but restricts movement of other particles

in the domain. The reason for including the particles from outside the refinement region

is to allow their contributions to the unconstrained particles’ potentials, which restricts an

unconstrained particle from becoming too close to another particle in the domain. The use

of constraints also allows for a more expedient simulation, as the potential at the constrained

particles does not need to be calculated, only their contribution to the unconstrained parti-

cles’ potentials.

4.3.2 Adaptive Integration

In FEM, the additional integration points are obtained from the newly added elements.

In meshfree methods, the newly added nodes do not come with additional integration points.

This presents a challenge when performing refinement in meshfree methods, as the increased

number of nodes discretizing the domain might result in larger integration errors. This

integration error could offset the increased accuracy coming from the resolution of the dis-

cretization. This work will use a grid approach similar to [8]. The general idea is to use

a non-conforming mesh, which facilitates easy construction, then use Gauss Quadrature on

each element. This can be done by using the regular grid concept presented in §3.2.1.1.

94

Figure 4.7: Non-conforming integration grid

Figure 4.7 illustrates the concept for the integration over some arbitrary domain. The con-

struction routine requires the bounds of the domain, grid resolution, and the quadrature

rule. In [8], the grid is composed of Nc x Nc, where the number of cells, Nc, is computed as

Nc =
√

Nn, (4.22)

with Nn being the number of nodes discretizing the domain. Each cell is then used to

generate an Ng x Ng set of quadrature points with the the number of quadrature points

determined by the following expression:

Ng =
√
m+ 2. (4.23)

Here m is the number of particles residing within a cell. These particles within a cell are

determined based strictly on their spatial location and do not account for their support

95

domain. Therefore, those cells that do not have a particle may still be within the domain

and necessary for integration, requiring the addition of the constant of two in Equation 4.23.

Deviating from the work in [8], this work will use a grid with resolution Ncx x Ncy, where

the resolution in each spatial dimension is computed from Equation 3.7. This ensures that

the grid cells are approximately square (2D) or cuboidal (3D) and eliminates issues with

mapping of integration weights, which occur for cells with high aspect ratios. These high

aspect ratios may result if Equation 4.22 is used. The quadrature rule to use within each

cell is based on the number of particles within the cell, but determining whether a particle is

within a cell is based upon whether the particle’s support overlaps the cell. The resulting grid

is identical to the Case 1 grid data structure described in §3.2.1.1. In contrast to increasing

the quadrature rule as in [8] with Equation 4.23, the quadrature rule is kept constant and

the cell is subdivided. The number of subdivisions is based upon the number of particles

and is computed as Nsub =
√
m, with m being the number of particles intersecting the grid

cell. Increasing the subdivision allows for problems with integration points not aligning with

supports to be addressed with a relatively coarse initial grid and low order quadrature rule.

This approach allows for a straightforward integration scheme when additional particles are

added to the domain, or the particle locations are modified during the simulation. For

the case of additional particles being added to the domain, the particles simply need to be

added to the integration grid, and the integration points within those cells intersected by

the particles can be recomputed if necessary.

96

4.3.3 Numerical Examples

To study the efficacy of the particle placement algorithm with regard to domain refine-

ment for boundary value problems, two solid mechanics problems will be used. For both

examples the RKPM approximation functions are constructed with linear consistency. The

approximation functions are used as a basis for the Galerkin weak form discussed in §5.

As previously discussed, the meshfree shape functions do not possess the kronecker delta

property, therefore the imposition of essential boundary conditions is done using a modified

weak form approach. The integration of the weak form is performed using the grid method

previously discussed.

The measure of error used is the L2 norm of the displacement error given as

‖uh − uexact‖ =
(
∫

Ω

(

uh − uexact

)T (
uh − uexact

)

dΩ

)1/2

. (4.24)

Here uh is the numerical results and uexact is the analytic solution. The integration is done

using the same background grid and quadrature as used for the weak form.

4.3.3.1 Cantilever Beam

The first example is the cantilever beam as shown in Figure 4.8. This example is com-

monly used in numerical studies of integration techniques [4] and boundary condition en-

forcement for meshfree methods. The goal here, however, is to investigate the effectiveness of

the domain refinement and support domain determination discussed earlier in this chapter.

97

L

X

Y

Ph

Figure 4.8: Timoshenko Beam

The exact solution can be found in [61] and for plane stress is

ux =
−Py

6EI

(

(6L− 3x) x+ (2 + ν)

(

y2 − 1

4
h2

))

,

uy =
P

6EI

(

3νy2 (L− x) + 1/4 (4 + 5ν)h2x+ (3L− x) x2
)

,

(4.25)

and

σxx =
P

I
(L− x) y,

σyy = 0,

σxy =
P

2I

(

h2

4
− y2

)

,

(4.26)

where E and ν represent the elastic modulus and Poisson’s ratio, respectively. The second

moment of area is denoted by I and for a unit width rectangular cross section is computed

via

I =
h3

12
, (4.27)

where h denotes the height of the beam as shown in Figure 4.8. The length of the beam is

denoted by L and is subjected to a parabolic traction at x = L using the exact solution from

Equation 4.26 with the magnitude of the force represented as P . The essential boundary

98

Table 4.1: Cantilever beam parameters

E (Pa) ν L (m) h (m) P (N)
3 x 106 0.3 48 12 1000

conditions are applied along the boundary x = 0 using the exact solution from Equation

4.25. The parameters used for this study are given in Table 4.1.

Four discretizations were considered and are shown in Figure 4.9, with the particles’

support domain shape being rectilinear. The particles are colored according to the norm of

their support radius. The determination of the support domains was done using Algorithm

16. For the linear basis, the lower bound on the number of particles contributing at a point

is three.

(a) 75 particles (b) 95 particles

(c) 115 particles (d) 135 particles

Figure 4.9: Particle configurations for beam example

Figure 4.10 depicts the error computed using Equation 4.24 as a function of the dis-

cretizations characteristic length. The characteristic length is taken as the largest support

99

radius magnitude i.e.,

h = max(‖ρI‖2). (4.28)

The slope of the line is 2.5, which is below the result obtained in [4] for the same model, but

greater than the optimal rate of two. This deviation can be attributed to different techniques

used to enforce boundary conditions, integration, and particle distribution. The authors in

[4] employed the Lagrange Multipliers technique for enforcing boundary conditions, where

this work used Nitsche’s method. A two point quadrature rule in conjunction with the

hierarchical grid technique described earlier was used here. Beissel et al., used a regular grid

technique with higher order quadrature rule within each cell. The most notable difference

between the two approaches is in the particle distribution. Here the particle distribution is

quasi-uniform compared to the perfectly uniform distribution applied in [4]. The simplicity

of the geometry makes generating a uniform discretization straightforward. The goal of this

work was to investigate the viability of the stochastic approach for h-refinement, which in

general will not result in perfectly uniform discretizations, but is applicable to geometries

where perfectly uniform configurations are unobtainable, at least by the way of an automatic

procedure.

4.3.3.2 Plate with Hole

The second example is the classical infinite plate with a circular hole as shown in Figure

4.11a. Utilizing symmetry, only the upper right corner of the plate is modeled as shown in

Figure 4.11b.

100

1.15 1.2 1.25 1.3 1.35

-3.3

-3.2

-3.1

-3

-2.9

-2.8

log(h)

lo
g
(L

2
)

Figure 4.10: L2 displacement error norm for cantilever beam

The exact solution for the stress is

σxx = T − T
a2

r2

(

3

2
cos (2θ) + cos (4θ)

)

+ T
3

2

(a

r

)4

cos (4θ) ,

σyy = −T
a2

r2

(

1

2
cos (2θ)− cos (4θ)

)

− T
3

2

(a

r

)4

cos (4θ) ,

σxy = −T
a2

r2

(

1

2
sin (2θ) + sin (4θ)

)

+ T
3

2

(a

r

)4

sin (4θ) ,

(4.29)

where r is the radial distance as measured from the center of the hole and θ is the angle

measured with respect to the positive x-axis in the counterclockwise direction. The exact

solution for the displacement field is given as

ux =
Ta

8µ

(

r

a
(κ+ 1) cos θ + 2

a

r
((κ+ 1) cos θ + cos 3θ)− 2

a3

r3
cos 3θ

)

,

uy =
Ta

8µ

(

r

a
(κ− 3) sin θ + 2

a

r
((1− κ) sin θ + sin 3θ)− 2

a3

r3
sin 3θ

)

.

(4.30)

101

X

Y

a

TT

(a) Plate with hole

X

Y

a

b

tx

tyθ
r

(b) Quarter plate model

Figure 4.11: Plate with hole

Table 4.2: Plate with hole parameters

E (Pa) ν b (m) a (m) T (N)
3 x 106 0.3 5 1 1000

The parameters used for this study are given in Table 4.2. Four discretizations were consid-

ered and are shown in Figure 4.13, with the particles’ support domain shape being rectilinear.

The particles are colored according to the norm of their support size. The determination of

the support domains was done using Algorithm 16 and the shape functions are constructed

to be linearly consistent.

Figure 4.14 depicts the error computed using Equation 4.24 as a function of the discretiza-

tions’ characteristic length given by Equation 4.28. The slope of the line is 2.5, indicating a

convergence rate slightly greater than the optimal rate of two.

102

1.6 2 2.4 2.8 3.2

Support Radius

1.46 3.24

(a) 68 particles (b) 96 particles

Figure 4.12: Plate with hole

(a) 124 particles (b) 152 particles

Figure 4.13: Particle configurations for plate with hole

103

0.45 0.5 0.55 0.6 0.65 0.7

-5.4

-5.2

-5

-4.8

log(h)

lo
g
(L

2
)

Figure 4.14: L2 displacement error norm for quarter plate

104

CHAPTER 5: MECHANICS OF SOLIDS

5.1 Formulation of Governing Equations

Following the standard textbook formulations, such as [7], the formulation of solid me-

chanics is reviewed. Consider a domain, as shown in Figure 5.1, Ω bounded by Γ, where Γ is

composed of traction (Γt) and displacement (Γu) boundaries. The traction and displacement

Ω
Γu Γt

Figure 5.1: Arbitrary domain

boundaries are disjoint i.e.,

Γ = Γu ∪ Γt

∅ = Γu ∩ Γt.

The governing PDE for static equilibrium or elastostatics is given as

σji,j + bi = 0, in Ω (5.1)

105

subject to the following boundary conditions

ui = ūi, on Γu

njσji = t̄i, on Γt

(5.2)

where σji is the Cauchy stress tensor, bi is the body force per unit volume, ūi is the prescribed

displacement on the displacement boundary Γu, and nj is the outward normal defined on

the traction boundary Γt.

The remainder of the work will be restricted to the assumptions of linear elasticity as

they pertain to the research conducted. For linear elasticity, the stress and the strain are

related by Hooke’s law,

σij = Cijklεkl, (5.3)

where Cijkl is the elasticity tensor and εkl is the strain tensor. The term linear elasticity

corresponds the relationship between the stress and strain. This does not preclude the

use of a non-linear strain measure, that is, a non-linear relationship between the strains and

displacements. However, this work will employ the infinitesimal strain measure, as the failure

theory used in the next chapter relies on the linear kinematic relationship. The kinematic

relationship between the strains and displacements is given as the symmetric part of the

displacement gradient i.e.,

εkl =
1

2
(uk,l + ul,k) . (5.4)

106

5.2 Solution Methodology

Equation 5.1 represents the Conservation of Linear Momentum in the strong form. While

numerical methods such as the Finite Difference Method and Collocation Method seek to

solve the strong form directly, the consistency requirement of the trial solution must be

equivalent to the order of the PDE. Differing from the strong form where the solution must

satisfy equilibrium at every point in the domain as well as adhere to the boundary condition,

the weak form only requires the solution to satisfy the equilibrium in an averaged sense.

There are two approaches to develop the weak form. The first approach is referred to as

the weighted residual method. Notable variants of the weighted residual method include the

point collocation method, subdomain collocation method, and the Galerkin method. The

second approach is based on variational principles that seek to find a solution that minimizes

a functional. The two approaches can be shown to result in the same weak form provided the

Euler equations of the variational principle are the same as the original problem’s governing

equations [70], which is the case for elasticity problems.

To develop the weak form using the Galerkin method, the strong form in Equation 5.1 is

multiplied with an arbitrary test function δui (x) and integrated over the domain resulting

in:
∫

Ω

σji,jδuidΩ +

∫

Ω

biδuidΩ = 0. (5.5)

107

Performing integration by parts on the first integral in Equation 5.5 and applying the Di-

vergence Theorem leads to,

∫

Ω

σjiδui,jdΩ−
∫

Γt

δuiσjinjdΓt −
∫

Γu

δuiσjinjdΓu −
∫

Ω

biδuidΩ = 0, (5.6)

where the integration over the boundary was separated into the summation of integrals over

the traction and displacement boundaries. To complete the derivation of the weak form the

trial and test functions must be defined. In the Galerkin method the trial and test functions

are chosen as:

U = {ui|ui = ūi, ∀x ∈ Γu; ui ∈ H
1 (Ω)}

V = {δui|δui = 0, ∀x ∈ Γu; δui ∈ H
1
0 (Ω)}

(5.7)

where U is the set of trial functions in the Sobolev space, H1 (Ω), that take on the prescribed

values on the displacement boundary Γu. The test functions space, V , is defined as the set

of functions in the Sobolev space, H1
0 (Ω), which vanish on Γu. Here the Sobolev space is a

collection of functions that are square integrable and whose first derivatives are also square

integrable i.e.,

H
1 (Ω) =

{

v|
(
∫

Ω

|v|2dΩ
)

1

2

<∞;

(
∫

Ω

|∂v/∂xi|2dΩ
)

1

2

<∞, i = 1, . . . , d

}

(5.8)

Applying the definitions of the test and trial functions the weak form of Equation 5.1 becomes

∫

Ω

σijδui,jdΩ +

∫

Ω

biδuidΩ−
∫

Γt

δuitidΓ = 0, (5.9)

108

where the integration over the traction integral was recast in terms of the traction boundary

condition. The gradient of the test function, δui,j, from Equation 5.9 can be restated as

δui,j = δεij =
1

2
(δui,j + δui,j) . (5.10)

The symmetrization of δui,j comes from the fact that the stress tensor, σji, is symmetric

and the double contraction of a skew symmetric tensor with a symmetric tensor is zero.

Substitution of Equations 5.3, 5.4, and 5.10 into Equation 5.9 results in the following:

∫

Ω

δεijCijklεkldΩ =

∫

Ω

biδuidΩ +

∫

Γt

δuitidΓ. (5.11)

Equation 5.11 is the weak form of the governing equations. During the formulation of the

weak form an assumption on the kinematic admissibility of the test functions was used,

but this assumption is not valid for meshfree approximation functions due to the lack of

the kronecker delta property. Furthermore, since the trial functions are not interpolants,

the imposition of essential boundary conditions is less straightforward when compared to

approximation schemes equipped with the kronecker delta property. The penalty method is

an approach to enforce the essential boundary conditions for meshfree methods that will be

used in this work.

As the end goal of discretizing the weak form is to develop a formulation applicable

for computer implementation, Voigt notation will be used instead of indicial notation. The

stress tensor is composed of nine components uniquely defining the stress at any point in

the domain. From the Conservation of Angular Momentum the Cauchy stress tensor is

109

symmetric thereby resulting in 1
2
n (n+ 1) unique stress components allowing for the second

rank tensor to be recast as a one-dimensional vector given as:

σ =

{

σxx σyy σzz σyz σxz σxy

}T

. (5.12)

This transformation of a higher order tensor to a column matrix is referred to as Voigt

notation [7]. Similar to the conversion of the stress tensor in Equation 5.12, the tensorial

strain εij can be recast as a column matrix through the kinematic Voigt rule resulting in the

following expression:

ε =

{

εxx εyy εzz 2εyz 2εxz 2εxy

}T

. (5.13)

The factor of two applied to the shear strains stems from the requirement that the strain

energy be equivalent in indicial notation and Voigt notation. The tensorial shear strains

in Equation 5.13 are commonly replaced with engineering shear strains resulting in the

following:

ε =

{

εxx εyy εzz γyz γxz γxy

}T

. (5.14)

The constitutive relationship in Equation 5.3 is expressed in Voigt notation as:

σ = Dε, (5.15)

where the 6 x 6 matrix D is the Voigt form of Cijkl and is commonly referred to as the

elasticity matrix of moduli. Further discussion on the form of D will occur in the next

section and for now the only information needed is the matrix is symmetric. Continuing

110

with transformation of the indicial notation to matrix notation, the engineering strain is

related to the displacements by the following equation:

ε = Lu, (5.16)

where u is the the displacement vector,

u =

{

u1 u2 u3

}T

, (5.17)

and where L is the matrix defined as:

L =









































∂/∂x1 0 0

0 ∂/∂x2 0

0 0 ∂/∂x3

0 ∂/∂x3 ∂/∂x2

∂/∂x3 0 ∂/∂x1

∂/∂x2 ∂/∂x1 0









































. (5.18)

The approximation to the displacement field can be expressed as,

u (x) =

card(Λ)
∑

I

NI (x) ûI , (5.19)

111

where the summation is taken over all the particles that contribution at x. N is the matrix

of shape functions defined as:

NI (x) = ΨI (x) I =

















ΨI (x) 0 0

0 ΨI (x) 0

0 0 ΨI (x)

















, (5.20)

and û is the vector of nodal coefficients expressed as:

û =

{

û1I û2I û3I

}T

. (5.21)

Substitution of Equation 5.19 into Equation 5.16 leads to the following expression for the

strain:

ε =

card(Λ)
∑

I

BI ûI , (5.22)

where BI is commonly referred to as the strain displacement matrix and is given as

BI =









































ΨI,1 0 0

0 ΨI,2 0

0 0 ΨI,3

0 ΨI,1 ΨI,2

ΨI,2 ΨI,3 0

ΨI,1 0 ΨI,3









































. (5.23)

112

The Galerkin weak form from Equation 5.11 can be recast using Voigt notation as:

∫

Ω

δ (Lu)T D (Lu) dΩ−
∫

Ω

δuT · bdΩ−
∫

Γt

δuT · tΓdΓ−
∫

Γ

(u− ū)T ·α
∫

Γ

(u− ū) dΓ = 0.

(5.24)

The last integral in Equation 5.24 is the penalty term used to enforce the essential boundary

conditions, with α representing the diagonal matrix of penalty parameters i.e.,

α =

















α1 0 0

0 α2 0

0 0 α3

















. (5.25)

The penalty parameters can vary with position and in direction, but are generally kept

constant in terms of spatial location. The ability to modify the penalty parameter with

direction is necessary for boundary conditions applied along an edge in one direction, but

not another. Therefore Equation 5.25 will be rewritten as,

α = α

















s1 0 0

0 s2 0

0 0 s3

















, (5.26)

where

si =



















1 if ui is prescribed on Γu,

0 if ui is not prescribed on Γu,

, i = 1, . . . , d. (5.27)

113

Substitution of Equation 5.19 into Equation 5.24 and noting δûI is arbitrary leads to the

following linear system:

(

K + Kpenalty
)

û = F + Fpenalty, (5.28)

where K is the global stiffness matrix, Kpenalty is the global penalty matrix, F is the global

force vector, and Fpenalty is the global penalty force vector. The nodal contributions to the

global matrices are computed as follows:

KIJ =

∫

Ω

BT
I DBJdΩ, (5.29)

and

K
penalty
IJ =

∫

Γu

NT
I αNJdΓ. (5.30)

The global contributions to the forcing vectors are:

FI =

∫

Γt

NI t̄dΓ +

∫

Ω

NIbdΩ, (5.31)

and

F
penalty
I =

∫

Γu

NIαūdΓ. (5.32)

These final equations are the fundamental equations with the assumptions of small strains or

more specifically small rotations and a linear relationship between the stress and strain. In

the context of FEM, the penalty terms in Equation 5.28 are not common as the finite element

shape functions possess the kronecker delta property so imposition of boundary conditions

114

are straightforward using methods such as static condensation. The next section will discuss

the constitutive relationship.

5.3 Mechanics of Laminated Composites

A composite material is composed of at least two constituents that are combined at the

macroscopic level and are insoluble in one another. The first component is the reinforcement

phase, which is embedded in the second component known as a matrix phase. In laminated

composites, fibers are a common form of the reinforcement phase. The fiber reinforcements

are characterized as long unidirectional structural elements exhibiting a high modulus of

elasticity. The matrix is generally composed of a continuous material which surrounds the

fibers and serves as a mechanism to distribute the loads amongst the fibers. A single layer

of unidirectional or woven fibers embedded in a matrix is referred to as a lamina. An

oriented stack of lamina where each layer can vary in orientation and material properties is

a laminate [33]. Figure 5.2 shows three individual lamina with varying fiber orientation that

are combined to form a single laminate.

Until now there have been no assumptions or restrictions on the formulation to laminate

composites. The only assumptions are of linear elasticity and infinitesimal strain. Both

of these are common practice when conducting an analysis of a variety of materials. This

section will specialize the governing equations developed in the last section for laminated

composites. This specialization will occur in the constitutive relationship.

The elastic material parameters for orthotropic materials are defined in terms of their

Young’s moduli, shear moduli, and Poissons’ ratios. The form of the elasticity matrix can

115

Laminate
WEIGHT:

A1

SHEET 1 OF 1SCALE:2:1

DWG NO.

TITLE:

REVISIONDO NOT SCALE DRAWING

MATERIAL:

DATESIGNATURENAME

DEBUR AND
BREAK SHARP
EDGES

FINISH:UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

Q.A

MFG

APPV'D

CHK'D

DRAWN

Figure 5.2: Laminated composite

be expressed in terms of the parameters as:

D′ =









































1
E

1′
−ν

1′2′

E
2′
−ν

1′3′

E
3′

0 0 0

−ν
2′1′

E
1′

1
E

2′
−ν

2′3′

E
3′

0 0 0

−ν
3′1′

E
1′
−ν

3′2′

E
2′

1
E

3′
0 0 0

0 0 0 1
G

2′3′
0 0

0 0 0 0 1
G

1′3′
0

0 0 0 0 0 1
G

1′2′









































, (5.33)

where the prime indicates these material parameters are measured with respect to the three

axes of material symmetry. Symmetry of the elasticity matrix reduces the number of in-

dependent material parameters to nine. The relationship between stress and strain in the

116

primed coordinate system is simply:

σ
′ = D′

ε
′. (5.34)

The relationship in the global basis is:

σ = Dε. (5.35)

To develop the relationship between D′ and D a formulation for the transformation tensors

is needed. A tensor is transformed by the following equation:

σ′
ij = QkiQmjσkm, (5.36)

where Qki is an orthogonal transformation tensor. Equation 5.36 can be expressed in matrix

form as:

σ
′ = Tσ (5.37)

117

where T denotes the transformation matrix from the unprimed to primed coordinate system

and is given as

T =









































Q2
11 Q2

12 Q2
33 2Q12Q13 2Q11Q13 2Q11Q12

Q2
21 Q2

22 Q2
33 2Q22Q23 2Q21Q23 2Q21Q22

Q2
31 Q2

32 Q2
33 2Q32Q33 2Q31Q33 2Q31Q32

Q21Q31 Q22Q32 Q23Q33 Q22Q33 +Q23Q32 Q21Q33 +Q23Q31 Q21Q32 +Q22Q31

Q11Q31 Q12Q32 Q13Q33 Q12Q33 +Q13Q32 Q11Q33 +Q13Q31 Q11Q32 +Q12Q31

Q31Q31 Q12Q22 Q13Q23 Q12Q23 +Q13Q22 Q11Q23 +Q13Q21 Q11Q22 +Q12Q21









































.

(5.38)

This transformation is valid for the Voigt form of the stress tensor, but the relationship does

not hold for the Voigt form of the strain tensor. This is due to the kinematic Voigt rule used

to transform the strain tensor i.e., the factor of two applied to the shear strains. However,

if the same Voigt rule is applied to the strain tensor as done for the stress tensor or,

ǫ =

{

ε11 ε22 ε33 ε23 ε13 ε12

}

, (5.39)

then the same transformation applied to the stress in Equation 5.37 can be applied to ǫ.

The two forms of the strain tensor in Voigt notation can then be cast as:

ε = Rǫ, (5.40)

118

where R is

R =









































1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2









































. (5.41)

The relationship between the strain in the primed and unprimed basis can be stated as:

ε
′ = RTR−1

ε (5.42)

Substitution of Equations 5.42 and 5.37 into 5.34 and simplifying yields:

σ = T−1D′RTR−1
ε. (5.43)

The elasticity matrix in Equation 5.29 can be expressed as

D = T−1D′RTR−1
ε, (5.44)

allowing for the mechanics of laminated composites with any fiber orientation to be ana-

lyzed.

119

CHAPTER 6: EXPLICIT FRACTURE MODELING

Modeling a crack in a continuum model requires embedding some form of discontinuity

into the continuous formulation. Models not based on a continuum approach, such as molec-

ular dynamics, are able to naturally evolve to open discontinuities in a material. However,

the number of molecules required for molecular dynamics simulations capable of modeling

practical engineering fracture problems results in an intractable problem with high computa-

tional expense. Analytical solutions, such as the Westergaard’s solution, have been developed

for analyzing the mechanics of fracture, but these models are limited by assumptions in the

geometry, constitutive model, loading conditions, and description of the crack. In order

to understand the effect fracture has on a general specimen, computational techniques are

employed.

Early efforts to employ numerical techniques to model fracture relied on mesh-based

methods such as the Finite Element Method. FEM treats discontinuities in the topology as

internal boundaries that must conform to element edges. For problems where the topological

structure of the system evolves, such as crack propagation, this requires the mesh to be

recomputed at each step of the simulation and the field values to be interpolated to the

new mesh [56]. While much work has been done on mesh generation, the procedure is

computationally inefficient and depending upon complexity of the domain, requires manual

120

correction of the mesh. The problem of updating the field values to the new mesh has

potential loss of information from step to step and is an additional computational burden.

To reduce the burden of re-meshing and eliminate the requirement of the mesh conforming

to the boundaries of the discontinuities, Belytschko and Black [5] and Moës [48] developed the

extended finite element method (XFEM). The fundamental idea behind XFEM is that the

displacement field is enriched with additional terms to model discontinuity. This enrichment

is incorporated into the displacement field upon the nucleation or propagation of a crack.

The topology of the domain remains fixed, with discontinuities captured by the displacement.

Meshfree methods do not require a topological map as in FEM, making them well-suited

for the simulations involving fracture. In addition to not needing the connectivity information

a priori, meshfree methods allow for increased continuity of the approximation functions.

This work employs a meshfree method for discretizing the governing PDEs, so the approaches

for incorporating discontinuity into the approximation will be elaborated on.

6.1 Meshfree Methods for Modeling Fracture

Two general techniques have been developed for incorporating discontinuity into the for-

mulation. The first approach approach referred to as the visibility criterion [8], incorporates

the discontinuity by modifying the topology of the domain, but maintains a continuous

displacement field. The second approach incorporates the discontinuity by enriching the

displacement field with special functions that incorporate discontinuities into the function

approximation.

121

6.1.1 Visibility Method

The visibility method truncates the support domain of the meshfree shape functions. In

the visibility method, a point x is in the support of node xi if φ (x− xi) > 0 and if the point

is visible from node xi when the boundaries are opaque. Figure 6.1 illustrates the effect the

visibility condition has on a shape function. The visibility method has been successfully used

for incorporating a discontinuity in the displacement field [8, 58, 59]. However, additional

discontinuities in the meshfree shape functions covering the crack tip occur. Despite these

unintended discontinuities, it has been shown that the Galerkin approximation using moving

least squares interpolants based on the visibility criterion is convergent [35]. For certain

problems, the visibility approach produces better results than conforming shape functions

[36]. In order to restore continuity to the shape functions near the crack tip, the transparency

and diffraction methods were developed [51]. While these methods removed the discontinuity

of the shape functions near the crack tip, their implementation is not easily extended to three

dimensions.

0

0.2

0.4

0.6

0.8

1

0.6

0.8

0.6
0.8

0.2
0.4

0.2

0.4

Figure 6.1: Shape function with visibility condition.

122

6.1.2 Enrichment Techniques

Meshfree Galerkin methods offer the ability to enrich the function space approximation.

The standard approach uses monomials, but the approximation space can be enriched by

embedding near-tip asymptotic functions in the displacement field [6, 23]. This enrichment

comes in two forms, either extrinsic or intrinsic.

Extrinsic enrichment augments the meshfree shape functions to include the terms of the

near-tip asymptotic expansion for the displacement field at a crack tip:

uρ (x) =
∑

I

ΨI (x) dI +
Nc
∑

K

N
∑

i=1

ΦiΨKeiK , (6.1)

where Ψ are the meshfree shape functions, N is the number of enrichment functions added

to the approximation space, Nc correspond to the number of cracks, eiK are unknown pa-

rameters associated with crack K. Generally four enrichment functions are added given

as

Φ (x) =

[

√
r sin

(

θ
2

) √
r cos

(

θ
2

) √
r sin (θ) cos

(

θ
2

) √
r sin (θ) sin

(

θ
2

)

]

, (6.2)

where r and θ are the polar coordinates associated with a basis centered at the crack tip

depicted in Figure 6.2. The extrinsic approximation requires the finding of the unknown

nodal parameters as well as eiK , which are the unknowns associated with the enrichment.

In Equation 6.2, the enrichment field around the crack tip is introduced only for particles

whose support covers the crack tip. In practice, this means that the enriched region gets

smaller and smaller as the discretization is refined, yielding suboptimal convergence rates. In

theory it is desirable to keep the size of the enriched region constant as the discretization is

123

x

y

θ

r

Figure 6.2: Polar coordinates used in enrichment terms

refined. This would lead to optimal convergence, but can cause severe ill-conditioning of the

global stiffness matrix [54]. A specifically designed local preconditioner can be constructed

to alleviate this issue [54], but this induces a non-negligible computational cost.

Intrinsic enrichment augments the monomial basis terms in the meshfree function ap-

proximation with trigonometric functions extracted from the asymptotic field around the

crack tip:

P (x) =

[

1 x y
√
r cos

(

θ
2

) √
r sin

(

θ
2

) √
r sin (θ) cos

(

θ
2

) √
r sin (θ) sin

(

θ
2

)

]

(6.3)

with r and θ corresponding to the Figure 6.2. While this approach does not involve additional

unknowns as in the extrinsic enrichment method, the increased size of the basis requires

greater computational effort in the inversion of the moment matrix. The approximation

functions generally must be the same throughout the domain. Otherwise, discontinuities at

the subdomain interfaces can occur, thereby requiring the shape function calculation to be

performed using the trigonometric basis throughout the entire domain. This results in a high

computational cost and ill-conditioning of the moment matrix. Belytschko et al. introduced

a ramp function at the subdomain interfaces to handle the discontinuity [23]. This allows

124

for subdomains near the crack tip to use the enriched basis and those subdomains not near

the crack tip use a revert back to the monomial basis.

6.2 Modeling Fracture of Laminated Composite

In laminated composites the failure can be categorized as intra-lamina or inter-lamina.

Intra-lamina failures, such as matrix failure, fiber failure, and failure at the interface between

the matrix and fibers, occur strictly inside a single lamina. Inter-lamina failure occurs at the

interface of two lamina, i.e. delamination. The complexity of modeling fracture is further

increased by the orientation of the fibers, which dictates the trajectory of the crack. This

effect may result in unphysical crack orientations in mesh-based analysis, as the orientation

of the mesh can influence the crack propagation direction. A method known as the Particle

Splitting Crack Algorithm (PSCA) [58, 59] explicitly models cracks and changing topology

and is formulated to reduce or eliminate any bias from the domain discretization. While the

PSCA was able to reduce the effects the discretization has on the solution, certain cases still

prove challenging. This work will expand upon the PSCA using techniques discussed in §4

and eliminate the domain decomposition from having any significant impact on the solution.

6.2.1 Laminated Composite Failure Criteria

The objective of a damage model is to provide a means for predicting the failure of a

material. Within the context of solid mechanics a multitude of failure theories have been

proposed. Failure theories for composite materials are not as mature as those for isotropic

materials. As this work is focused on composite materials, those failure models that are not

applicable will not be discussed. For composite materials, the failure is difficult to model

125

due to the micro-mechanical structure. At a microscopic level, the strength of the material

is dictated by both constituents as well as the strength of the bond between the two. This

makes modeling failure a multi-scale problem. Multi-scale modeling uses knowledge from a

more refined level to better predict the coarser model’s behavior. At the continuum scale,

the effects of the fibers in the lamina are accounted for in the material properties of a linear

elastic model. At the microscopic level, the fiber and matrix are resolved, but the fibers are

of a size much smaller than the part itself. In order to resolve the fibers within parts of

practical dimension, the number of degrees of freedom introduced would result in a system

that is impractical to solve. Furthermore, the true locations of the fibers in the composite

are not known, only the orientation of the fibers. The homogenization of the fibers into

the material properties works well prior to cracking. However, due to the absence of the

explicit fibers, the continuum model is presented with a significant challenge of predicting

the correct crack morphology. In order to use continuum mechanics to model the physical

crack propagation in laminate fibrous composites, the physical constraints pertaining to the

micro fiber-matrix system must be accounted for, resulting in a multi-scale problem.

Failure theories such as the Maximum Stress, Maximum Strain, Tsai-Hill, and Tsai-Wu

are highly dependent on the fiber orientation. Therefore, these methods are not applicable

to an arbitrary configuration. This work will employ the Onset Theory, previously coined

the Strain Invariant Failure Theory (SIFT), originally proposed by Gosse [28] for predicting

the onset of failure for composite systems. The key component of the Onset Theory is

the dehomogenization of the matrix and fiber phases. This allows for the computation of

the strain field within each constituent separately. Given these strain fields the failure can

be classified based on which constituent failed. The Onset Theory is restricted to linear

126

elasticity, hence the measure of strain used is the engineering strain defined in §5. The

Onset Theory relies on strain as opposed to stress for determining the onset of failure. This

is because the stress varies significantly for determining the failure of polymers depending

on whether the failure is due to dilatation or distortion [14].

To properly account for the local effects of the fibers, fiber-matrix interface, and the

internal thermally induced strain, the states of strain are micro-mechanically enhanced using

the methods described in [13, 28, 60] and is given by,

ε = M (εapplied − α∆T) + A∆T + α∆T. (6.4)

The superscript k represents kth point of interest in the representative volume element

(RVE), ε is the micro-mechanical strain, and α is the thermal expansion coefficient vector of

fiber or matrix medium. M is the strain amplification matrix, ε̄ is the external applied strain,

and ᾱ is the effective thermal expansion coefficient. A is the thermal enhancement vector

and ∆T is the temperature difference between the temperature at curing and operating

temperature. Two common configurations for the representative volume element denoting

the points of interest are given in Figure 6.3. This enhancement takes place at each evaluation

point used to integrate the weak form.

The micro-mechanically enhanced strains are used to compute two scalar values, which

are compared to critical values determined from laboratory experiments or molecular models.

The two scalar values are invariants of the enhanced strain. The first invariant characterizes

127

F9

F1

F2

F3

F4

F5

F6

F7

F8

ISIF1

IF2

(a) Square cell

F9

F1

F2

F3

F4

F5

F6

F7

F8

ISIF1

IF2

(b) Hexagonal cell

Figure 6.3: Critical points for single cell

the failure associated with changes in volume or dilatational failures and is defined as

J1 = ε1 + ε2 + ε3, (6.5)

where εi are the principal strains. The second characterizes failures associated with shear

deformation or distortional failures is defined as

J2 =
1

6

(

(ε1 − ε2)
2 + (ε2 − ε3)

2 + (ε1 − ε3)
2) . (6.6)

6.2.2 Particle Splitting Crack Algorithm

The (PSCA) was developed in two dimensions and used to simulate thermo-mechanical

ductile fracture under finite deformations [58]. The method was later expanded to directed

surfaces in three dimensions and used to model fracture in laminated composites [59].

128

The algorithm begins by decomposing the domain with a set of particles through the

thickness. Each set of particles through the thickness is referred to as a filament. The

algorithm proceeds by conducting a linear elastic analysis. The results of this analysis

are used to compute a scalar damage value, described in §6.2.1 for each particle in the

system. With the scalar damage value for each particle, the overall damage of the filament

is determined. If the filament exceeds the allowable damage, then the filament is split and

the crack propagated. In order to propagate the crack, a search is conducted to locate the

filament with the next highest damage level. This filament is assumed to be the next crack

tip. The failed filament is then split by splitting each particle in the filament. Once particles

have split, a visibility condition is enforced by inserting a crack panel along the direction

from the failed filament to the next crack tip. The visibility criteria described earlier is then

used to update the topology. This procedure is illustrated in Figure 6.4.

6.2.3 Physically Consistent Crack Propagation

The micro-mechanical enhancement allows the determination of material failure and

whether it is matrix or fiber at the continuum level. However, the use of an external dam-

age model does not preclude unnatural crack propagation; therefore one must incorporate

external knowledge to prevent unphysical crack formation from occurring. If a failure is in

the matrix phase, the crack should be restricted from crossing fibers. Consider the lamina in

Figure 6.5 with fibers represented by the gray areas and matrix as the white area. Since the

morphology of the crack is guided by a scalar value that does not provide information about

the physical orientation of the fibers, an unnatural crack trajectory can occur as shown in

Figure 6.5a. To prevent this, Simkins et al. [59] proposed a discrimination on candidate

129

Partition Domain

Perform Analysis Step

Evaluate Damage Model

Did Failure

Occur?
Locate New Crack Tip

Split Failed Filament

Apply Visibility

Update Topology

Increment load

Termination

Condition

Met?

Max Load

Step

Reached?

End

No

No

Yes

Yes No

Yes

Figure 6.4: Particle splitting crack algorithm flowchart

crack tip particles that lead to unphysical cracking. The remaining potential new crack

tips lead to a crack path shown in Figure 6.5b. For a single ply laminate or lamina there

is no failure due to delamination. Generally, parts are constructed of multiple lamina and

therefore the failure due to delamination should be accounted for. In a multi-ply laminate,

an intra-lamina crack does not propagate from one laminate to another. Upon reaching the

130

(a) Unphysical correct crack path (b) Physically correct crack path

Figure 6.5: Illustration of physcially consistent and inconsistent crack morphology.

inter-ply interface, the crack results in a delamination. In the PSCA this is handled by

restricting the meshfree particles to which a crack may propagate. Once a crack reaches this

interface, the crack may only propagate in such a way as to cause delamination. Within

the original PSCA the candidate particles are chosen from the existing particles and used as

crack initiates and maintained as it propagates. As the crack propagates and searches for

new crack directions, particles which were not in the candidate subset determined when the

crack was initiated are ignored. An unnatural crack propagation can occur if the damage

model is restricted to choose candidates for the new crack tip from existing particles. The

proposed work is to develop a robust method to determine the crack direction that is con-

sistent with the material constraints. In order to provide crack path directions that adhere

to the physical constraints of the material dictated by the fiber orientation, the set of rules

developed by Simkins et al. will be expanded upon. These heuristics will need to account

for the failure mode, matrix or fiber, as well as the fiber orientation. In the case of intra-ply

matrix failure, which is the most likely scenario, the crack path is restricted to form along

the fiber direction and not cross fibers. A challenge with enforcement of this rule is that the

particle discretization might not lend itself to locating a particle along the fiber direction.

131

To address this issue, a method that adapts the discretization through particle insertion is

presented. This method will adapt the discretization refinement method presented in §4.3.

6.2.4 Modified Particle Splitting Crack Algorithm

Following a similar process as the original PSCA, the modified algorithm begins by parti-

tioning the domain and conducting an analysis for the initial load step. The damage model is

then evaluated at each filament, with those filaments exceeding the prescribed max damage

value tagged as failed. These filaments are sorted with respect to their utilization deter-

mined as the max ratio of their damage with respect to the critical value for the respective

failure mode. The state of the filament with the highest damage that has failed is then de-

termined. The filament state is an identifier dictating how a filament is treated upon failure

and whether an initiation or propagation event should occur. The possible states are listed

below.

• Undeformed The undeformed state refers to filaments that have not failed and have

no crack associated with them. This is the state that all filaments are initialized to at

the start of the simulation.The filaments are further classified as to whether they are

located on a boundary of the domain.

• Crack tip A crack tip filament refers to a filament that a crack has terminated at.

The filament has not necessarily failed, but is associated with a crack resulting from

a nearby filament that has failed. All crack-tip filaments are considered as boundary

filaments.

132

• Crack face A crack-face filament is a filament that has failed and is the result of splitting

a failed filament that was either a crack tip or located on the boundary. All crack-face

filaments are considered as boundary filaments.

Given the filament state the algorithm continues with either an initiation event or propaga-

tion event. Initiation occurs when either there are no cracks currently formed or when the

failure occurred away from existing crack tips.

6.2.4.1 Initiation

If the state of the failed filament with the largest utilization is undeformed and located

on the boundary the algorithm may proceed in one of two ways depending upon whether the

failure occurred in the matrix phase or fiber phase. If the failure was in the fiber phase, a

similar procedure to the original PSCA is followed. This procedure finds a set of candidate

filaments to form the next crack tip. This set of candidates is composed of filaments that

interact with the failed filament through their particles’ support domains expressed as,

C =
Npf
⋃

I

ΠI (6.7)

where C denotes the set of candidate filaments, Npf is the number of particles in the failed

filament, and ΠI is the set of particles interacting with particle I as defined in Equation 3.4.

The set of candidate particles is then filtered to remove and candidates that result in un-

physical cracks. The first filter removes candidates that are undeformed boundary filaments.

This allows for cracks to merge, but prevents cracks forming along exterior boundaries of

the domain i.e., along an edge. The second filter removes crack face filaments from the

133

candidate list. The third filter detects those filaments that are not directly visible from

the failed filament. This filter differs from the initial determination of the candidate set as

two set filaments may have particles sharing evaluation points, but themselves are visible to

one another. From the remaining candidates the filament with the highest damage corre-

sponding to the same failure modes as the current filament is selected as the next crack tip

with its associated state updated. The failed filament is then split and a crack is initiated

from the failed filament to the new crack tip. For failure occurring in the matrix phase the

algorithm begins by determining the same filter candidate set used in the fiber failure case.

Instead of choosing a candidate from the set as the new crack tip, the candidate with the

largest damage value in the same mode as the failed filament is used to determine whether

to propagate along the positive fiber direction or negative fiber direction. This is done by

computing the signed projection of the vector from the failed filament located at xI to the

candidate candidate filament located at xJ along the fiber direction. The expression for the

end point of the crack and subsequent new crack tip is given as:

xnew = xI + sgn
(

rIJ · d̂f

)

λdf , (6.8)

where sgn(·) is the sign function defined as follows:

sgn (x) =







































−1 if x < 0,

0 if x = 0,

1 if x > 0.

(6.9)

134

The vector from the failed filament location to the candidate filament is rIJ = xJ −xI . The

fiber direction is denoted as b̂df , which is assumed to be normalized. The distance from

the failed filament location, xI , along the fiber direction, d̂f , is represented here as λ. This

distance is chosen to be the shortest distance from the failed filament to any other filament

in the candidate set C. This prevents excessively large cracks from forming at once, but

may result in a longer run time for the simulation. Given the location of the new crack

tip and end point of the crack, a new crack tip filament is created and inserted into the

discretization. The failed filament is then split forming two crack face filaments followed by

the insertion of a crack from the failed filament to the new crack tip. Following the initiation,

the stochastic particle evolution algorithm described in §4.1 is used to ensure the quality of

the discretization is maintained. The only particles not constrained in the particle evolution

algorithm are those particles associated with undeformed non-boundary filaments within a

given proximity to the new crack tip. Following the particle placement, the support domains

for those particles affected by the motion are updated using Algorithm 16. Handling failure

occurring at undeformed non-boundary filaments is done using the same approach as the

undeformed boundary case except the failed filament is marked as a crack tip and not split.

6.2.4.2 Propagation

If the failed filament is an existing crack tip or in close proximity to an existing tip a

propagation event is triggered. The propagation can be modeled in the same manner as

the initiation event occurring at a crack tip. The only alterations to the initiation method

an additional filter to be applied to the set of candidates and the splitting of the crack tip.

The additional filter removes those candidates that would result in a crack propagating back

135

on itself. The splitting of the crack tip for propagation differs from the filament splitting

performed for an initiation event with respect to the split direction. In the initiation scenario

the splitting direction was taken to be the vector perpendicular to the crack direction. Here

the split direction is the weighted sum of the perpendicular vectors associated with the

previous crack that terminated at the failed crack tip and the new crack being formed. The

weight associated with each perpendicular vector is taken to be the crack size. For the

case of matrix failure the split direction is the same for initiation and propagation. An

illustration of this process is illustrated in Figures 6.6-6.8. In Figure 6.6 the crack tip has

been determined as the failed filament with the failure in the matrix phase. The dashed line

indicates the allowed crack direction i.e., fiber direction. Here there are no filaments along

Crack Direction

Figure 6.6: Propagation event with direction

this direction, therefore a new filament is inserted and the surrounding particles distributed

136

using the stochastic approach with the result shown in Figure 6.7. The crack tip is then split

Figure 6.7: Propagation insertion event

and the visibility condition enforced as shown in Figure 6.8.

6.3 Numerical Examples

The following section will demonstrate the ability to model fracture patterns that are

physically consistent with the material constraints. The model problem will be a plate

with a hole in the center as shown by Figure 6.9. The material will be orthotropic and

the properties are given in Table 6.1. As the goal of this work is to demonstrate that the

modified particle splitting crack algorithm can be used to model the fracture of laminated

composites in a physically consistent manner, no attempts were made to ensure the material

parameters align perfectly with experiments. The initial discretization is shown in Figure

6.10. Three different fiber orientations will be considered, with fibers aligned at 0, 30, and 90

137

Figure 6.8: Propagation split event

degrees measured with respect to the x axis as shown in Figure 6.9. The plate is subjected

to an applied displacement at x = L/2 and is constrained along the x-direction along the

edge located at x = −L/2. To constrain the model against the remaining two remaining

rigid body modes the corner at (−L/2,−H/2) is fixed as shown in Figure 6.9. The applied

displacement is incrementally increased for each simulation step until the specimen can no

longer carry any load.

L

W

R θ
U

Figure 6.9: Open hole tension model for single ply lamina

138

Table 6.1: Material properties

E1 E2 ν12 G12

2.13 x 107 1.13 x 107 0.3 580 x 103

Figure 6.10: Open hole tension example discretization

6.3.1 0 Degree Lamina

For the zero degree configuration with the failure occurring in the matrix phase the

fracture is restricted to propagate along the x- axis. This is in contrast to the result that

would be expected for an isotropic material where the highest damage should occur at the

top and bottom of the hole and propagate along the y-axis. The distortional and dilatational

damage is depicted prior to the first failure occurring in Figures 6.11a and 6.11b respectively.

Since the failure is in the matrix phase the crack is force to propagate along the fiber direction.

The resulting crack path and for both distortional and dilatational is shown in Figures 6.12a

and 6.12b respectively.

6.3.2 30 Degree Lamina

For the configuration with the thirty degree fiber orientation, the failure predicted by

Onset theory states the failure occurs in the matrix phase. The distortional and dilatational

damage is depicted prior to the first failure occurring in Figures 6.13a and 6.13b respectively.

139

(a) Distortional strain invariant

(b) Dilatational strain invariant

Figure 6.11: Damage prior to the onset of failure for the 0 degree lamina

(a) Distortional strain invariant

(b) Dilatational strain invariant

Figure 6.12: Damage after failure for the 0 degree lamina

140

(a) Distortional strain invariant

(b) Dilatational strain invariant

Figure 6.13: Damage prior to the onset of failure for the 30 degree lamina

Since the failure is in the matrix phase the crack is force to propagate along the fiber direction.

The resulting crack path and for both distortional and dilatational is shown in Figures 6.14a

and 6.14b respectively.

6.3.3 90 Degree Lamina

For the configuration with the ninety degree fiber orientation, the failure predicted by

Onset theory states the failure occurs in the matrix phase. The distortional and dilatational

damage is depicted prior to the first failure occurring in Figures 6.15a and 6.15b respectively.

Since the failure is in the matrix phase the crack is force to propagate along the fiber

direction, which in this case corresponds the vertical axis. The resulting crack path and for

both distortional and dilatational is shown in Figures 6.16a and 6.16b respectively.

141

(a) Distortional strain invariant

(b) Dilatational strain invariant

Figure 6.14: Damage after failure for the 30 degree lamina

(a) Distortional strain invariant

(b) Dilatational strain invariant

Figure 6.15: Damage prior to the onset of failure for the 90 degree lamina

142

(a) Distortional strain invariant

(b) Dilatational strain invariant

Figure 6.16: Damage after failure for the 90 degree lamina

6.4 Discussion

The objective of this chapter is to illustrate the application of the simulated anneal-

ing algorithm in the context of modeling fracture in laminated composites in a physically

consistent manner. Using the approach in [59] as a foundation, a modified version of the

original PSCA was developed. Unlike the original PSCA where existing particles were moved

to align with the fiber direction, the modified version creates new filaments at the desired

location. This eliminates the need for dense discretizations. This is made possible with

the simulated annealing algorithm and ability to determine particle attributes, such as the

size of the support domains. The effectiveness of this approach was illustrated with three

examples. The correctness of these results with respect to experimental data was beyond the

143

scope of this work. However, the results do agree with previous numerical studies performed

by Simkins et al. Further validation with experimental results would require tuning of the

material properties and failure parameters in accordance with laboratory tests. It should be

noted that the actual positions of the cracks are impossible to accurately determine, at least

in a continuum model, so the goal of modeling fracture is not to state the exact geometry of

the fracture. Instead, the numerically generated fracture paths should capture the complex

physical phenomena occurring at the sub-macroscopic level. While this section focused solely

on modeling fracture in laminated composites, the applicability of the approach presented is

not limited to these materials. For an isotropic material where there is no need to restrict

fracture paths along specific directions, the ability to insert new particles such that the qual-

ity of the discretization is not compromised could be advantageous. For instance, fracture

algorithms such as those described in [52, 58, 59] which restrict the crack paths to existing

particles require fine discretizations. This is necessary to avoid a single crack resulting in

cascading failure occurring due to the creation of an excessively large crack. However, us-

ing techniques presented here, the coarse discretization could be used by introducing new

particles via the simulated annealing algorithm to control the crack size while still maintain-

ing the crack path to coincide with particles. The ability to introduce new particles to the

discretization could also be used to better exploit failure models. Many failure models de-

pend upon derived quantities such as stresses or strains to dictate when failure has occurred.

These values are not directly available at the particles, instead they are computed at the

integration points and projected to the particles. Instead of projecting these quantities to

the particles to determine failure, the integration points themselves can be used to form new

cracks. To adapt this to existing fracture algorithms requiring cracks to coincide with parti-

144

cles, new particles could be introduced at the location corresponding to the highest damage

using the techniques presented here, such that an admissible discretization is maintained.

145

CHAPTER 7: CONCLUSION

While FEM has proven to be an invaluable tool for engineers, certain classes of problems

prove challenging and may be better addressed using a meshfree method. However, the

use of meshfree methods is hindered by several practical limitations. The computational

inefficienies of meshfree methods related to determining adjacency information and meshfree

domain discretization were addressed in this work.

The formulation of the Reproducing Kernel Particle meshfree method was reviewed.

Following this development, challenges stemming from unique characteristics of the approx-

imation functions were discussed along with existing techniques to address them.

The computational expense associated with determining adjacency information presents a

performance bottleneck for meshfree methods. The present work defined the three adjacency

queries that commonly arise when employing a meshfree method. An overview of several data

structures was provided and the approaches to applying these within the context of meshfree

methods were discussed. In addition to the discussion on existing data structures, a new

data structure was presented with the associated algorithms for construction, searching,

and dynamic insertion. The numerical results show the grid data structure is best both in

memory and speed for Case 2 searches. Alternatively, of the Case 1 structures, the newly

proposed Support Tree demonstrated strong performance in both memory usage and search

speed, and scaled well with increasing problem sizes.

146

An approach to address the challenge of constructing a particle distribution that is suit-

able for use with a meshfree method was developed. This included techniques for determining

the spatial positions of the particles as well as particle attributes necessary for constructing

the meshfree approximation functions. The spatial positions of the particles were determined

by a two step procedure. The first stage involved transforming the boundary representation

into a volumetric set of points. The use of the tree structure allowed for sharp features to

be captured without requiring the entire domain to be highly refined. Following the ini-

tial point generation, the second stage involved moving the points such that the points are

well-distributed and cover the entire domain. This optimal distribution is determined as the

configuration that minimizes the total potential energy of the system while constraining the

points to stay within the boundary. This constrained optimization problem was solved using

a stochastic approach known as simulated annealing. The simulated annealing algorithm

allowed for easy application of the constraints at the cost of a high computational expense.

To alleviate this computational expense, the spatial partitioning structures were utilized.

The concept of domain discretization was applied to refinement of an existing discretiza-

tion. Employing the discretization technique with meshfree approximants in the solution of a

boundary value problem presented an integration challenge. In meshfree methods, the newly

added nodes do not come with additional integration points as the newly added elements

do in FEM. This integration challenge was addressed with a hierarchical grid technique.

This technique allowed for an adaptive integration scheme that also reduces the integration

error that occurs due to support domain and integration cell misalignment. The domain

refinement paired with the hierarchical grid integration technique was shown to perform

well in convergence studies. In addition to the application of the discretization technique

147

to h-refinement, its application towards modeling physically consistent fracture of laminated

composites was demonstrated. A modified version of the Particle Splitting Crack Algorithm

was proposed. The difficulties associated with aligning particles along fiber directions were

eliminated by a dynamic insertion routine. This routine proved effective in simulations of

fracture in laminated composites.

7.1 Recommendations for Future Research

While this work addresses several deficiencies of meshfree methods, there remains op-

portunity for improvement. With regard to the computational expense associated with the

adjacency queries in meshfree methods, the study of heuristics and build factors in the con-

struction of the acceleration data structures warrants further work. The stochastic particle

placement algorithm used in the domain discretization, h-refinement, and fracture modeling

could be enhanced. In order to develop a more robust algorithm, a thorough investigation

into the termination condition, particle attributes, and cooling schedule as they pertain to

the stochastic particle placement algorithm is an opportunity for further research.

148

REFERENCES

[1] N. R. Aluru. A point collocation method based on reproducing kernel approximations.
International Journal for Numerical Methods in Engineering, 47(6):1083–1121, 2000.

[2] S. N. Atluri and T. Zhu. A new meshless local petrov-galerkin (mlpg) approach in
computational mechanics. Computational Mechanics, 22(2):117–127, 1998.

[3] I. BABUSKA and J. M. MELENK. The partition of unity method. International
Journal for Numerical Methods in Engineering, 40(4):727–758, 1997.

[4] Stephen Beissel and Ted Belytschko. Nodal integration of the element-free galerkin
method. Computer Methods in Applied Mechanics and Engineering, 139(1):49 – 74,
1996.

[5] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal
remeshing. International Journal for Numerical Methods in Engineering, 45:601 – 620,
1999.

[6] T. Belytschko, Y. Krongauz, M. Fleming, D. Organ, and W.K. Liu. Smoothing and
accelerated computations in the element free galerkin method. Journal of computational
and applied mathematics, 74:111–126, 1996.

[7] T. Belytschko, W.K. Liu, and B. Moran. Nonlinear Finite Elements for Continua and
Structures. Nonlinear Finite Elements for Continua and Structures. Wiley, 2000.

[8] T Belytschko, Y.Y. Liu, and L. Gu. Element-free galerkin methods. International
Journal for Numerical Methods in Engineering, 37:229–256, 1994.

[9] T. Belytschko, D. Organ, and Y. Krongauz. A coupled finite element-element-free
galerkin method. Computational Mechanics, 17(3):186–195, 1995.

[10] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Commun. ACM, 18(9):509–517, September 1975.

149

[11] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry. Springer-Verlag Berlin Heidelberg, 2008.

[12] A. Bowyer. Computing dirichlet tessellations*. The Computer Journal, 24(2):162–166,
1981.

[13] David L. Buchanan, Jonathan H. Gosse, Jeffrey A. Wollschlager, Andrew Ritchey, and
R. Byron Pipes. Micromechanical enhancement of the macroscopic strain state for
advanced composite materials. Composites Science and Technology, 69(Experimental
Techniques and Design in Composite Materials (ETDCM8) with Regular Papers):1974
– 1978, 2009.

[14] J.M. Caruthers and G.A. Medvedev. Nonlinear viscoelastic behavior of glassy polymers
and its effect on the onset of irreversible deformation of the matrix resin in continuous
fiber composites. In ICCM International Conferences on Composite Materials, 01 2009.

[15] Gary Chartrand. Introductory Graph Theory. Dover, New York, 1985.

[16] Jiun-Shyan Chen, Michael Hillman, and Marcus Rüter. An arbitrary order variation-
ally consistent integration for galerkin meshfree methods. International Journal for
Numerical Methods in Engineering, 95(5):387–418, 2013.

[17] Jiun-Shyan Chen, Cheng-Tang Wu, Sangpil Yoon, and Yang You. A stabilized con-
forming nodal integration for galerkin mesh-free methods. International Journal for
Numerical Methods in Engineering, 50:435–466, 2001.

[18] S. De and K. J. Bathe. The method of finite spheres. Computational Mechanics,
25(4):329–345, Apr 2000.

[19] J. Dolbow and T. Belytschko. Numerical integration of the Galerkin weak from in
meshfree methods. Computational mechanics, 23, 1999.

[20] Qiang Du, Max Gunzburger, and Lili Ju. Meshfree, probabilistic determination of
point sets and support regions for meshless computing. Computer Methods in Applied
Mechanics and Engineering, 191(13-14):1349 – 1366, 2002.

[21] C.Armando Duarte and J.Tinsley Oden. An h-p adaptive method using clouds. Com-
puter Methods in Applied Mechanics and Engineering, 139(1-4):237 – 262, 1996.

150

[22] Sonia Fernández-Méndez and Antonio Huerta. Imposing essential boundary condi-
tions in mesh-free methods. Computer methods in applied mechanics and engineering,
193(12):1257–1275, 2004.

[23] M. Fleming, Y. A. Chu, B. Moran, and T. Belytschko. Enriched element-free galerkin
methods for crack tip fields. International Journal for Numerical Methods in Engineer-
ing, 40:1483 – 1504, 1997.

[24] Hermann G. Fries, Thomas-Peterand Matthies. Classification and overview of mesh-
free methods. Informatik-Berichte der Technischen Universität Braunschweig, 2003-03,
2004.

[25] Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor. On visible surface generation by a
priori tree structures. SIGGRAPH Comput. Graph., 14(3):124–133, July 1980.

[26] Akira Fujimoto and Kansei Iwata. Accelerated Ray Tracing, pages 41–65. Springer
Japan, Tokyo, 1985.

[27] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: theory and
application to non-spherical stars. Monthly Notices of the Royal Astronomical Society,
181(3):375–389, 1977.

[28] Jonathan H. Gosse and Stephen Christenson. Strain invariant failure criteria for poly-
mers in compostie materials. AIAA-2001-1184, 2001.

[29] M. Griebel and M. A. Schweitzer. A particle-partition of unity method-part ii: Efficient
cover construction and reliable integration. SIAM Journal of Scientific Computation,
23:1655–1682, 2002.

[30] M. A. Griebel, M.and Schweitzer. Geometric Analysis and Nonlinear Partial Differential
Equations. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[31] Michael Griebel and Marc Alexander Schweitzer. A particle-partition of unity method
for the solution of elliptic, parabolic, and hyperbolic pdes. SIAM Journal on Scientific
Computing, 22(3):853 – 890, 2000.

[32] Antonio Huerta and Sonia Fernández-Méndez. Enrichment and coupling of the finite
element and meshless methods. International Journal for Numerical Methods in Engi-
neering, 48(11):1615–1636, 2000.

[33] Autar K. Kaw. Mechanics of Composite Materials. CRC Press, November 2005.

151

[34] M. S. Klaas, O.and Shephard. Automatic generation of octree-based three-dimensional
discretizations for partition of unity methods. Computational Mechanics, 25(2):296–304,
Mar 2000.

[35] P. Krysl and T. Belytschko. Element-free Galerkin method: convergence of the contin-
uous and discontinuous shape function. Computer Methods in Applied Mechanics and
Engineering, 148:257–277, 1996.

[36] Petr Krysl and Ted Belytschko. Esflib: A library to compute the element free galerkin
shape functions, 1999.

[37] C.L. Lawson. Software for {C1} surface interpolation. In John R. Rice, editor, Mathe-
matical Software, pages 161 – 194. Academic Press, 1977.

[38] J.E. Lennard-Jones. On the determination of molecular fields. —ii. from the equation
of state of a gas. Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, 106(738):463–477, 1924.

[39] Shaofan Li and Wing Kam Liu. Meshfree and particle methods and their applications.
Applied Mechanics Review, 55(1):1–34, 2002.

[40] Shaofan Li and Wing Kam Liu. Meshfree particle methods. Springer, 2004.

[41] Shaofan Li, Dong Qian, Wing kam Liu, and Ted Belytschko. A meshfree contact-
detection algorithm. Computer Methods in Applied Mechanics and Engineering, 190:3271–
3292, 2001.

[42] Xiang-Yang Li, Shang-Hua Teng, and Alper ÃĲngÃűr. Biting: advancing front meets
sphere packing. International Journal for Numerical Methods in Engineering, 49(1-
2):61–81, 2000.

[43] G.R. Liu. Meshfree methods Moving beyond the finite element method. CRC press, 2009.

[44] W.K. Liu, S. Jun, S. Li, J. Adee, and T. Belytschko. Reproducing kernel particle
methods for structural dynamics. International Journal for Numerical Methods in En-
gineering, 38:1655–1679, 1995.

[45] W.K. Liu, S. Jun, and Y.F. Zhang. Reproducing kernel particle methods. International
Journal for Numerical Methods in Fluids, 20:1081–1106, 1995.

152

[46] W.K. Liu, S. Li, and T. Belytschko. Moving least square reproducing kernel method.
part i: Methodology and convergence. Computer Methods in Applied Mechanics and
Engineering, 143:422–453, 1997.

[47] L. B. Lucy. A numerical approach to the testing of the fission hypothesis. The astro-
nomical journal, 82:1013–1024, dec 1977.

[48] N. Moes, J. Dolbow, and T. Belytschko. A finite element method for crack growth with-
out remeshing. International Journal for Numerical Methods in Engineering, 46:131–
150, 1999.

[49] Per olof Persson and Gilbert Strang. A simple mesh generator in matlab. SIAM Review,
46:2004, 2004.

[50] E. ONATE, S. IDELSOHN, O. C. ZIENKIEWICZ, and R. L. TAYLOR. A finite point
method in computational mechanics. applications to convective transport and fluid flow.
International Journal for Numerical Methods in Engineering, 39(22):3839–3866, 1996.

[51] D. Organ, M. Fleming, T. Terry, and T. Belytschko. Continuous meshless approxima-
tions for nonconvex bodies by diffraction and transparency. Computational Mechanics,
pages 225 – 235, 1996.

[52] Bo Ren and Shaofan Li. Modeling and simulation of large-scale ductile fracture in plates
and shells. International Journal of Solids and Structures, 49(18):2373 – 2393, 2012.

[53] Steven M. Rubin and Turner Whitted. A 3-dimensional representation for fast rendering
of complex scenes. SIGGRAPH Comput. Graph., 14(3):110–116, July 1980.

[54] Marc Alexander Schweitzer. Stable enrichment and local preconditioning in the particle-
partition of unity method. Numerische Mathematik, 118(1):137–170, 2011.

[55] Irving H. Shames and Francis A. Cozzarelli. Elastic and inelastic stress analysis. Taylor
& Francis, 1997.

[56] Mark S Shephard, Nabil AB Yehia, Gary S Burd, and Theodore J Weidner. Automatic
crack propagation tracking. Computers & Structures, 20(1):211–223, 1985.

[57] Kenji Shimada and David C. Gossard. Bubble mesh: Automated triangular meshing of
non-manifold geometry by sphere packing. In Proceedings of the Third ACM Symposium
on Solid Modeling and Applications, SMA ’95, pages 409–419, New York, NY, USA,
1995. ACM.

153

[58] D. C. Simkins and S Li. Meshfree simulations of thermo-mechanical ductile fracture.
Computational Mechanics, 38:235–249, 2006.

[59] Jr. Simkins, Daniel C., Nathan Collier, and Joseph B. Alford. Meshfree modeling in
laminated composites. In Michael Griebel and Marc Alexander Schweitzer, editors,
Meshfree Methods for Partial Differential Equations VI, volume 89 of Lecture Notes
in Computational Science and Engineering, pages 221–233. Springer Berlin Heidelberg,
2013.

[60] T.E. Tay, S. H. N. Tan, V. B.c C. Tan, and Jonathan H. Gosse. Damage progres-
sion by the element-failure method (EFM) and strain invariant failure theory (SIFT).
Composties Science and Technology, 65:935–944, 2005.

[61] S. Timoshenko and J.N. Goodier. Theory of Elasticity, by S. Timoshenko and J.N.
Goodier, ... 2nd Edition. McGraw-Hill Book Company, 1951.

[62] Gregory J. Wagner and Wing Kam Liu. Hierarchical enrichment for bridging scales
and mesh-free boundary conditions. International Journal for Numerical Methods in
Engineering, 50(3):507–524, 1 2001.

[63] Ingo Wald, Thiago Ize, Andrew Kensler, Aaron Knoll, and Steven G. Parker. Ray tracing
animated scenes using coherent grid traversal. ACM Trans. Graph., 25(3):485–493, July
2006.

[64] D. F. Watson. Computing the n-dimensional delaunay tessellation with application to
voronoi polytopes*. The Computer Journal, 24(2):167–172, 1981.

[65] Holger Wendland. Scattered data approximation, volume 17. Cambridge university press,
2004.

[66] Xiang yang Li, Shang-Hua Teng, Alper Ungor, and Alper Ungor. Point placement for
meshless methods using sphere packing and advancing front methods. In International
conference on Computational Engineering Science, 2000.

[67] Hanzhou Zhang and Andrei V. Smirnov. Node placement for triangular mesh generation
by monte carlo simulation. International Journal for Numerical Methods in Engineering,
64(7):973–989, 2005.

[68] A. L. Zheleznyakova and S. T. Surzhikov. Molecular dynamics-based unstructured grid
generation method for aerodynamic applications. Computer Physics Communications,
184:2711–2727, December 2013.

154

[69] T. Zhu and S. N. Atluri. A modified collocation method and a penalty formulation
for enforcing the essential boundary conditions in the element free galerkin method.
Computational Mechanics, 21(3):211–222, 1998.

[70] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method, volume 1. Butterworth-
Heinemann, Oxford, 5 edition, 2000.

155

APPENDIX A: COPYRIGHT PERMISSIONS

A.1 Copyright Permission Chapter 3

Reprinted by permission from Springer Customer Service Centre GmbH: Springer Nature

Computational Mechanics Efficient searching in meshfree methods, James Olliff, Brad Alford,

Daniel C. Simkins, 2018, advance online publication, 1 January 2018 https://doi.org/10.1007/

s00466-018-1574-9

156

	University of South Florida
	Scholar Commons
	June 2018

	Efficient Adjacency Queries and Dynamic Refinement for Meshfree Methods with Applications to Explicit Fracture Modeling
	James Olliff
	Scholar Commons Citation

	tmp.1545323057.pdf.oW8yE

