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ABSTRACT
This paper proposes an efficient agent for competing in Cliff Edge
(CE) environments, such as sealed-bid auctions, dynamic pricing
and the ultimatum game. The agent competes in one-shot CE inter-
actions repeatedly, each time against a different human opponent,
and its performance is evaluated based on all the interactions in
which it participates. The agent, which learns the general pattern
of the population’s behavior, does not apply any examples of pre-
vious interactions in the environment , neither of other competitors
nor its own. We propose a generic approach which competes in
different CE environments under the same configuration, with no
knowledge about the specific rules of each environment. The un-
derlying mechanism of the proposed agent is a new meta-algorithm,
Deviated Virtual Learning (DVL), which extends existing methods
to efficiently cope with environments comprising a large number of
optional decisions at each decision point. Experiments comparing
the performance of the proposed algorithm with algorithms taken
from the literature, as well as another intuitive meta-algorithm, re-
veal a significant superiority of the former in the average payoff
and stability. In addition, the agent performed better than human
competitors executing the same task.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence ]: Learning

General Terms
Algorithms,Economics,Human Factors

Keywords
Reinforcement Learning, Opponent Modeling, Sealed-bid Auctions,
Ultimatum Game

1. INTRODUCTION
In many games and economic interactions agents are challenged

by the strive of maximizing their profits while preventing the en-
tire deal from falling through. Consider, for example, an agent in
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an online Web-store which needs to determine the price of a good:
Increasing the price would increase its profits as long as the price
it charges is not higher than the price the consumer is willing to
pay. A little greedier price would make it lose the whole deal [11].
Similarly, a bidder in a sealed-bid first-price auction [3] attempts
to bid exactly the amount that is slightly higher than others’ bid-
dings. The same goes for rational proposer in the ultimatum game
(UG) [9], which tries to offer exactly the amount which equals to
the acceptance threshold of his opponent. Higher offers would de-
crease self profits, while lower offers would yield no profits at all.
This situation is somehow similar to a person standing on the edge
of a cliff, trying to see the panoramic view. As closer as he gets
to the cliff edge, the better he can see the view. However, a one
step too many may cause him to fall off the cliff. Hence, this set of
interactions and games are refered as Cliff-Edge (CE) interactions.

We focus on one-shot CE interactions which are repeatedly com-
peted with different opponents. Such repeated interactions occur,
for example in the important application of dynamic pricing, i.e.
periodically changing prices according to the reactions of consumers
that change over time. This task becomes even more common in
the E-commerce world, where communication with the consumers
is restricted [11, 4]. Repeated periodically sealed-bid auctions with
the same goods are very popular, especially via the internet (see [3,
5]). Similarly, the sequential version of UG with different oppo-
nents is under thorough investigation [13, 2, 1]. Thus, designing
efficient agents for repeated CE environments is very important for
the daily commercial world.

Moreover, our research deals mainly with interactions between
humans and automated agents. This differs from conventional en-
vironments of pure computerized agents, where most competitors
have large amounts of computational power and act as rational ne-
gotiators. In particular, when interacting with humans, the theoreti-
cal equilibrium strategy is not necessarily the optimal strategy since
human subjects, inherently rationally bounded as well as computa-
tionally restricted, commonly do not behave according to perfect
equilibrium. Thus, this study joins an important growing research
field of interactions between humans and agents (e.g. [6, 12]).

Previous studies of automated agents interacting with humans
have been concerned mainly with agents who interact repeatedly
with a single human opponent (e.g. [12]). The general approach for
such a problem is to model the opponent’s behavior, and to adjust
a strategy which optimally reacts to the opponent’s predicted reac-
tion. In the current study, however, a specific opponent modeling
is not relevant, since the agent interacts with each opponent only
once. Alternatively, agents who interact with a series of different
people, should learn the general pattern of the opponent population.

A possible approach to efficiently adjust to an unknown oppo-
nent population, is to simply observe previous samples of interac-



tions within this population. Several studies have successfully used
this approach in order to develop automated agents that can suc-
cessfully compete with human opponents (e.g. [6]). This approach
however, requires a large number of historical examples of human
behavior. Moreover, the option of using a historical database is not
always possible. For example, in a sealed-bid auction, a bidder usu-
ally cannot obtain information about the bids which were offered in
previous similar auctions. Therefore, we propose a mechanism to
develop an agent which does not depend on examples of previous
interactions. Our agent learns while interacting with others, and its
performance is evaluated from the first interaction.

Moreover, this study focuses on settings where in each interac-
tion the agent is required to choose an action from a large set of
possible options. Most of the previous studies on CE environments
focus on settings in which an agent has to choose from at most 10
options during each interaction [13, 11, 1]. A large scale of op-
tion settings more realistically reflects commercial environments,
where the number of decision options is commonly much higher
than 10 (e.g. [4, 5]). Unfortunately, as we show in this study, the
performance of the existing algorithms choosing from a large set
of options such as 100 options is insufficient. The existence of a
large set of options demands a construction of a fast and efficient
screening procedure. Furthermore, the importance of quickness is
emphasized, since we examine short term interactions with only
several dozens of opponents.

In this paper we propose a meta-algorithm which extends ex-
isting algorithms for efficiently competing in multi-interaction CE
environments that consist of a large set of decision options. The
general idea of the proposed algorithm is to reinforce options which
are slightly greedier than the currently considered optimal option.
Thus, in the conflict between exploration and exploitation of cur-
rent information, we compromise by a small deviation from the
current optimal option. A broad description of this method, named
Deviated Virtual Learning (DVL), is presented below.

Several approaches for automatically competing in CE environ-
ments have been previously proposed [17, 15, 11]. Those approaches
are broadly described below. In this paper, we experimentally show
that the extension of the DVL meta-algorithm over the basic Re-
inforcement Learning (RL) algorithm [14], performs significantly
better than previous algorithms when competing against human op-
ponents in various CE environments. Moreover, the DVL extension
of the RL algorithm (DVRL) is shown to perform better than an-
other intuitive meta-algorithm named Segment-Based, which ap-
pears here for the first time. We also found that the performance
of the DVRL algorithm is better than human competitors who face
the same task.

It is noteworthy that the algorithms being discussed here are all
generic and suitable to various CE environments, without knowing
the specific rules of each environment. Thus, the agent is not aware
of whether it competes in an auction or in UG. Moreover, in all the
simulations presented hereinafter, each algorithm was run with a
fixed configuration setting, that was not changed from environment
to environment.

In the next section, we formally describe the CE environment. In
section 3 we present the proposed DVL meta-algorithm. In section
4 we survey other relevant algorithms which appear in previous
studies, and present the Segment-based meta-algorithm. We then
compare the performance of the DVRL algorithm with the perfor-
mance of other relevant algorithms, and analyze the results. We
conclude and present directions for future work in section 5.

2. THE CE ENVIRONMENTS
The general pattern of one-shot CE interactions considers an

agent required to choose an offeri, which is an integer0 ≤ i ≤ N ,
whereN is the maximal optional choice. Then a positive rewardr
corresponding to the offeri is determined, depending on whether
the offer passed a certain acceptance threshold set by the oppo-
nent (in auctions we refer to the acceptance threshold of the auc-
tioneer, which is the second highest bid proposed). Since the CE
set includes various environments, we detail the model of each of
the three environments mentioned above: auction, UG and pricing.
Other CE environments can be similarly modeled.

• In the sealed-bid first-price auction model an amountN is
auctioned1. The agent is required to choose its bid which is
an integeri, 0 ≤ i ≤ N . Given the bid, a rewardr is deter-
mined according to the highest bidτ , among all the bidders
(two or more) in the current auction. Ifτ ≤ i, r = N − i
(the amount gained subtracted by the bidding amount), oth-
erwise r=02. In the all-pay version, where all the bidders
must pay their bids, even had they not won the auction [10]:
if τ ≤ i, r = N − i otherwiser = −i.

• In the UG, the agent should divide an amount ofN between
itself and its opponent. It is required to choose an integer
i, 0 ≤ i ≤ N , which is the amount proposed to the oppo-
nent. The rewardr is determined according to the opponent’s
acceptance thresholdτ . If τ ≤ i, r = N − i otherwiser=0.

• In the pricing task, an agent is required to select a pricei
for an item being sold to a certain consumer (i actually rep-
resents the profit of the seller, beyond the cost price). In our
model,i is an integer0 ≤ i ≤ N , whereN is the maximal
reasonable price of the item. After the decision on the price, a
reward,r, is determined according to the current consumer’s
acceptance thresholdτ . If τ ≥ i, r = i otherwiser=0.

In this paper, which considers environments with a large set of de-
cision options, we setN to be 100.

To demonstrate the challenge of a competitor in CE environ-
ments, letS(i) be the corresponding reward of offeri if the move
succeeds (if the offer is accepted by the consumer in the price set-
ting task, higher than the other bids in the case of an auction, or
accepted by the responder in the UG), letF(i) be the corresponding
reward of offeri if the move fails, and letP(i) be the probabil-
ity that an offeri would succeed. An efficient agent interacting in
multi-interaction CE environments with different opponents must
find the optimal offeri for the opponent population that maximizes
the accumulative utility function:

U(i) = S(i)*P(i) + F(i)*(1-P(i))

Obviously, there is a trade-off betweenSandP: choosing an offer
which increases the expected reward,S, decreases the probability of
success,P, and vice versa. Similarly, in the all-pay auction, which
is the only case whereF(i) values are negative and are not equal
to zero, choosing an offer which decreases the expected loss,F,
increases the probability of failure,(1-P).

The naive approach for such problems would be to apply the
Monte-Carlo (MC) method (see [14] chapter 5). According to this
method each optional proposal or bidding amount is examined many
times, in a serial or random order, and finally (the later the better)
a model for success probabilities (P) distribution of the opponent

1 In order to evade considerations of value estimations [5] the item auc-
tioned is an amount of money.
2For reasons of compatibility with other environment models, equal bid-
ding amounts yield a gain for the learning agent.



population is constructed. However, the learning process in this ap-
proach is extremely time consuming. Moreover, a large number of
actions made by the MC method are totally irrational. An efficient
agent should quickly realize, for example, that most responders in
UG would accept a share of 50 percent, and thus a proposal of more
than 50 percent, is not advised. Therefore, we would rather use a
less naive attitude, in which directed exploration is conducted.

Nevertheless, for a very large number of interactions, the MC
method may provide a more precise model of the real success prob-
abilities distribution in the population, than algorithms which use
directed exploration. However, in this study we are more concerned
with finding fast and efficient approaches for the first several dozens
of opponents. Handling the initial interactions, when almost noth-
ing is known about the environment is obviously the most difficult
stage. Moreover, considering a larger number of interactions, the
severity of the accuracy problem caused by directed exploration,
could be reduced by combining a sophisticated algorithm with a
naive one. A method such as MC, may replace a more sophisti-
cated algorithm in the progressive interactions, based on previous
interactions conducted by the latter.

3. THE PROPOSED APPROACH
In this section we present a detailed description of the proposed

meta-algorithm for competing in CE environments. As a meta-
algorithm, it extends basic algorithms and improves their perfor-
mance. We assume that the basic algorithms select their actions
according to an evaluation of the expected utility that each decision
option would yield, provided that it is chosen. The evaluation of the
expected utilities is determined according to the results of previous
interactions. Hereinafter, we will refer to the database which stores
the evaluations of each decision option as Q-vector3. Each algo-
rithm includes its own UPDATE procedure, which determines how
to update the Q-vector after observing the successfulness of the
latest action. It should be noted that the Q-values stored in those
Q-vectors, do not necessarily express the real evaluations of the ex-
pected utility, but rather the relative profitability of choosing each
option. In addition, we assume each algorithm includes its own SE-
LECT procedure, which determines how to select the next action
(apparently according to the current Q-vector). The SELECT pro-
cedure moves between exploiting the evaluations stored in the cur-
rent Q-vector and exploring options with lower current Q-values,
in order to improve the correctness of the Q-vector’s evaluations.
The first action is chosen randomly in all the algorithms presented
in this paper.

A reasonable approach for the UPDATE procedure in CE envi-
ronments isVirtual Learning(VL) [16]. According to the VL prin-
ciple, the agent in UG, for example, treats all the offers (not actually
proposed) higher than a successful offer as if they were (virtually)
successfully proposed as well. Similarly, it considers all the offers
lower than an unsuccessful offer as unsuccessfully proposed. The
rationale behind this principle is that the higher the amount pro-
posed to the opponent - the higher the probability of the proposal
being accepted4. Thus, we should reinforce the Q-values of all
the offers higher than the actual offer, provided it was successful,
and we should reduce the Q-values of all the offers lower than the
actual offer, provided it was unsuccessful. A crucial problem with

3It is noteworthy that despite the name, this paper does not concern the
Q-learning algorithm, which handles situations in which the state may be
changed at each interaction (see [14] chapter 6.5).
4 The same rationale stands behind the auctions environment. However,
in the pricing environment the opposite is true: all the offers lower than a
successful offer are considered successful, since the lower the price of an
item the higher the probability of it being purchased by the consumer.

this approach is aninformation asymmetry[16], which causes an
intensified reinforcement of Q-values higher than the optimal op-
tion’s Q-value. The reason for this phenomenon, as demonstrated
in [16], is that whenever the optimal offer is successfully chosen,
offers which are higher than the optimal offer are reinforced as
well. However, when the optimal offer fails it is punished, while
the offers just above suffer no penalty, giving them the appearance
of having a much higher probability of success.

In order to overcome this information asymmetry problem, we
propose theDeviated Virtual Learningprinciple. This principle
can be implemented in various basic algorithms, thus produce a
general meta-algorithm, as presented inAlgorithm 1 . According
to the DVL principle, we should deviate from the strict rationale
underlying the VL principle, and extend the range of offers up-
dated after each interaction. Thus, after a successful interaction,
we would raise the Q-values of all the offers higher than the actual
offer, as well as a few offers under the actual offer, as described in
line 8 inAlgorithm 1 . Similarly, after an offer has failed, we would
reduce the Q-values of all the offers lower than the actual offer, as
well as a few offers above the actual offer, as described in line 65.

Algorithm 1 THE DVL M ETA-ALGORITHM

Notation: α, β are two integers 0≤ α < β ¿ N, (where N is the upper
bound of possible offers), which denote the deviation rate. The valuesα
andβ gradually decrease during the learning process.

1: For j=0 to N,Do Q(j)=1
2: For each interaction,Do
3: Select offer i according to a SELECT procedure
4: Observing opponent’s move, calculate reward
5: if offer i has failedthen
6: For j=0 to (i +α), Do

reduce Q(j) according to an UPDATE procedure
7: else
8: For j=(i - β) to N,Do raise Q(j) according to an UPDATE procedure

As mentioned above, the DVL meta-algorithm can extend any
basic algorithm, according to its SELECT and UPDATE proce-
dures. However, we claim that the best algorithm for human en-
vironments, as we will demonstrate, is the DVL extension of the
Reinforcement Learning [14] algorithm (DVRL), as presented in
Algorithm 2 . The SELECT procedure of the RL version we have
used, was to select the offer with the current maximal Q-value (line
3). The UPDATE procedure was to divide the accumulated reward
of each offer by the number of previous interactions where offer i
was actually or virtually (according to the DVL principle) proposed
(lines 6 and 8).

It is important to note that in this study DVRL was run in all the
environments with the same configuration ofα andβ as detailed in
Algorithm 2 (lines 1 and 10).

There are two additional motivations for the deviation principle
underlying the DVL approach. First, from the statistical aspect it
is not necessarily a mistake to consider an offer which is slightly
lower than a successful offer, as successful as well. Using UG ter-
minology, it is quite reasonable to assume that if proposali was
accepted (rejected) by an opponent, she would have also accept
(reject) a slightly lower (higher) proposal. The chance that the pro-
posal would exactly hit the acceptance threshold of the opponent
is not high, especially for a large set of options. Second, and even
more important, the deviation principle actually outlines a direction

5It is worth noting that all the VL-based algorithms in this paper are pre-
sented in a version suitable for auctions and for the UG. In the pricing en-
vironment, where increasing the price decreases the acceptance probability,
the update ranges in lines 6 and 8 should be swapped.



Algorithm 2 THE DVRL A LGORITHM

Notation: n(j) denotes the number of previous interactions where offer j
was actually or virtually proposed, s(j) is the corresponding reward for a
successful offer j and f(j) is the corresponding reward for offer j when it
fails. α, β denote the deviation rate.
We present here the configuration used in our environment. However,
the initial values of parameters N,α andβ (line 1) as well as the update
function ofα andβ (line 10) can be adjusted to other environments as well.

1: N=100,α=10,β=15, t=0 For j=0 to N,Do Q(j)=1, n(j)=0
2: For each interaction t,Do
3: offer i=arg maxj Q(j)
4: Observing opponent’s move, calculate reward
5: if offer i has failedthen
6: For j=0 to (i +α), Do n(j)=n(j)+1, Q(j) =

Q(j)(n(j)−1)+f(j)
n(j)

7: else
8: For j=(i - β) to N, Do n(j)=n(j)+1, Q(j) =

Q(j)(n(j)−1)+s(j)
n(j)

9: t = t+1
10: α = 10

bt/10c+1
β = 15

bt/10c+1

of the optimal solution searching, rather than the random trial-and-
error approach that underlies conventional methods, such as RL. A
DVRL agent that offered 70% of the cake (N) to his UG opponent
in the first interaction, and his offer was accepted, would offer 55%
(according to our configuration ofβ) in the next interaction. The
agent continues to decrease the offer until it is rejected. A similar
pattern of this directed searching was observed in human learning,
and is compatible with the directional learning theory (see [8]). Ac-
cording to this theory, if an offeri is rejected at interactiont, then at
interactiont+1 the proposer will offer his opponent a higher offer,
while if offer i is accepted at interactiont, then at interactiont+1
the offer will be decreased. This simple method, which was sim-
ulated by [2] without yielding any impressive performance, lacks
all the data experienced before the previous interaction.6 In our al-
gorithm, on the other hand, all the previous interactions are taken
into account, and the model comes closer to the real distribution of
the opponents’ population, during the learning process. This is the
reason for the gradual decrease ofα andβ values. Another advan-
tage of our approach over the naive directional learning is achieved
by settingα < β, asymmetrically. This property enables fast con-
verging to the optimal solution, by speedily decreasing the proposal
amount, and slowly increasing it to the optimal amount.

4. EXPERIMENTAL DESIGN AND ANALY-
SIS

In this section we examine the performance of the proposed DVRL
algorithm competing in various CE environments with human op-
ponents, and compare it to other algorithms’ performance. A broad
survey of the algorithms examined is presented, followed by a de-
scription of the experiment process and the results. After analyzing
the results, we compare the performance of DVRL to human nego-
tiators’ performance. At the end of this section, we briefly discuss
the situation of a small set of decision options’ environments.

4.1 Comparative Algorithms description
Here we survey several algorithms which can be used in repeated

CE environments. Subsections 4.1.1-4.1.4 describe previously pub-
6Simulations of the directional learning method in our environment also
does not yield an impressive performance. A similar approach, namely
the Derivative-Following strategy, was proposed for the dynamic pricing
problem [4]. However, each round (one commerce day) was considered as
a set of several interactions with a number of opponents, which is totally
summed up by thousands of interactions.

lished algorithms, while in 4.1.5 we present a new intuitive meta-
algorithm for a large set of options environments.

4.1.1 Roth and Erev’s Algorithm (R&E)
Concerning the UG, Roth and Erev [13] designed human pro-

poser model which is based upon basic RL [14]. The general idea
of the RL method is that each offer is chosen with a probability
according to its current Q-value - the larger an offer’s Q-value, the
higher the probability it will be chosen. After each interaction,
provided that the latest offer has succeeded, its probability to be
chosen again is increased by increasing its Q-value by the reward
this offer yields. Roth and Erev showed that despite the fact that
UG is characterized by having a significant gap between empirical
human behavior and subgame perfect equilibrium predictions, the
RL algorithm with a few additional modifications can successfully
model typical human empirical behavior in UG. The most notice-
able modification, which was based on the Persistent Local En-
vironment principle, used a ”generalization” parameter which pre-
vents the probability of an option from going to zero if it is adjacent
to a successful option. The criterion of adjacency was configured in
[13] to be +-1, and thus, if an offer of 4 out of 10 is accepted by the
opponent, the agent would reinforce the Q-values of offers 3,4 and
5. Their assumption, which is valid in all of the CE environments,
was that an adjacent of an optimal solution cannot be an extremely
bad solution. The detailed algorithm can be found in [13].

4.1.2 Modified version of Zhong, Wu and Kimbrough’s
(ZWK) RL algorithm

Zhong et al.[17] developed an agent which played UG against
various simulated opponents, using a version of RL which is dif-
ferent from R&E’s. The UG agent designed by these authors used
an ε-greedy selection procedure, in which the agent selects, with
a probability of (1-ε), the offer with the current maximal Q-value,
and with a probability ofε it uniformly selects an offer for explo-
ration purposes. The advantage of this selection procedure over
a selection according to the Q-value’s distribution as in R&E, is
that it mainly chooses the best option. The disadvantage is that the
exploration is not weighted by the estimation of expected utility
considerations, as in R&E, but is rather completely random. In or-
der to decrease the effect of this disadvantage, we have modified
the selection procedure in our experiment, to take into account the
generalization principle of R&E. Thus, when not selecting the offer
with the current maximal Q-value, our ZWK algorithm selects an
offer giving higher priority to offers which are adjacent to the of-
fer with the current maximal Q-value (Algorithm 3 , state 4), rather
than selecting them uniformly. In addition, since the exploration
is much more important in the initial interactions, we decreased
the probability for random selection gradually during the learning
process. These two modifications were examined and were found
to be significantly efficient in our environment. The UPDATE pro-
cedure in ZWK’s algorithm was also different from that of R&E,
by taking into account the previous failures of offeri, rather than
merely the positive previous rewards (line 6).

4.1.3 Virtual Reinforcement learning (VRL)
Despite the information asymmetry in VL found by [16], Todd

and Borgers [15], have shown that the addition of a virtual learning
mechanism to the RL algorithm when playing UG, may be very
efficient. However, the efficiency is dependent on several configu-
rations of the learning procedure, such as the selection procedure
(R&E’s or ZWK’s) and the Q-values update procedure (reinforce-
ment of a successful offer by a unit payoff, or by the real amount
gained, or rather by the virtual amounts the agent would keep if he



Algorithm 3 THE ZWK A LGORITHM

Notation: ε denotes the probability for random selection,γ is the proba-
bility for selecting an offer which is adjacent to the offer with the current
maximal Q-value (ε + γ < 1), andδ determines the adjacency range (δ ¿
N). The valuesε andγ are gradually decreased during the learning process.

1: For j=0 to N,Do Q(j)=1, n(j)=0
2: For each interaction,Do
3: m = arg maxj Q(j)
4: With a probability of (1-ε- γ), offer i = m

With a probability ofγ, select offer i uniformly, for i’s such that
max(0, m -δ) ≤ i ≤ min(N, m +δ)

With a probability ofε, select offer i uniformly, for i’s such that
0≤ i ≤ N

5: Observing opponent’s move, calculate reward r

6: n(i)=n(i)+1, Q(i) = Q(i)(n(i)−1)+r
n(i)

hypothetically offered different proposals).
After examining the performance of VRL with all the optional

configurations suggested by Todd and Borgers, inAlgorithm 4 we
present the version that yields the best performance in our environ-
ment. This algorithm includes the same SELECT procedure as in
ZWK.

Algorithm 4 THE VRL A LGORITHM

Notation: s(j) denotes the corresponding reward for a successful offer j
and f(j) is the corresponding reward for offer j when it fails.

1-5: As in Algorithm 3
6: if offer i has failedthen
7: For j=0 to i,Do n(j)=n(j)+1, Q(j) =

Q(j)(n(j)−1)+f(j)
n(j)

8: else
9: For j=i to N, Do n(j)=n(j)+1, Q(j) =

Q(j)(n(j)−1)+s(j)
n(j)

4.1.4 Gittins’ index strategy
Some researchers have observed CE environments as a special

case of the multi-armed bandit problem [11, 1]. In this problem
every period a decision maker has to decide on which one ofn
slot machines he wants to play, given that each machine has differ-
ent gain probabilities (unknown a priori). These researchers used
Gittins’ index strategy [7], an optimal strategy for the multi-armed
bandit problem, to model the behavior of proposers in UG and of
sellers in the pricing problem, considering each optional proposal
or price as an arm. The Gittins’ strategy was applied to CE envi-
ronments by multiplying the Bernoulli reward process index value
of each option (see [7] p. 222) by its reward. However, these CE
problems are different from the classical multi-armed bandit prob-
lem since the arms are independent, while in CE environments the
success probability of an offer is gradually influenced by the size of
the offer. This difference may become more critical when there is a
large number of options rather than the 10 optional arms problems
considered in these papers. Thus, Brenner and Vriend [2] tried to
adjust to the interdependent arms in UG by adding the VL mecha-
nism to the Gittins’ strategy. In the following section we present the
performance of both the basic Gittins’ strategy (GS) (as in [11, 1])
and the virtual Gittins’ strategy (VG) (as in [2]) in our environment.

4.1.5 Segment-based meta-algorithm
This algorithm, suggested here for the first time is an intuitive

meta-algorithm which can extend any of the former basic meth-
ods. This algorithm is specifically designed for environments with
a large number of decision options. The idea of the segment-based

approach is to divide all the options into segments, and to activate
the learning method in the initial interactions on these segments,
rather than on specific discrete options (Algorithm 5 , state 3). Af-
ter several interactions the resolution can be increased by focusing
on smaller segments. This process continues gradually towards the
last segmentation hierarchy with the smallest segments, i.e. specific
discrete options, where final fine tuning is performed (end of state
3). This algorithm is based on the assumption of locality, i.e. ad-
jacent options yield similar average profits. The advantage of this
approach is the gradual filtering of the optimal solution. A com-
mon problem in conventional RL, for instance, is that an option
might have a high Q-value in a progressive stage of the learning
process, although it is far from the optimal option. With the pro-
posed meta-algorithm, this situation is prevented already in the pre-
liminary stages of learning, by weakening the Q-value of the entire
range surrounding this non-beneficial solution.

Algorithm 5 THE SEGMENT-BASED META-ALGORITHM

Notation: H denotes the number of segmentation hierarchies configured
by the user according to the size of the options set (setting this parameter,
the order of magnitude of the expected number of interactions must be
considered),Sh is the size of each segment in thehth segmentation
hierarchy, Qh are the Q-values vectors corresponding to thehth

segmentation hierarchy, andTh is the serial number of the last interaction
of the hth segmentation hierarchy.

1: For h=1 to H,Do For j=0 tod N
Sh
e, Do Qh(j)=1,

2: For each interaction,Do
3: For interactions0− T1 : c = 1

Select segment j from the 1st segmentation hierarchy according to
a SELECT procedure, using vectorQ1

Select offer i uniformly from segment j
For interactionsTx−1 − Tx : c = x

Select segment j from thexth segmentation hierarchy according to
a SELECT procedure, using vectorQx

Select offer i uniformly from segment j
...

For interactionsTH−1 − TH : c = H
Select offer i according to a SELECT procedure, using vectorQH

4: Observing opponent’s move, calculate reward
5: For h=c to H,Do updateQh according to an UPDATE procedure

4.2 Experiment Description
In order to evaluate the performance of the proposed algorithm,

and to compare it with other algorithms, we’ve experimentally ex-
amined agents interacting with human opponents in 4 different CE
environments, as follows:
1. UG, where the players had to divide 100 new Israeli Shekels
(NIS, where 1 U.S. $≈ 4.5 NIS), i.e. N=100.
2. A variant of UG in which the responder determines only whether
the proposer gets his share. The responder himself always receives
his own allocation [9]. In this version the responder’s decision is in-
fluenced by fairness and vindictiveness considerations, rather than
profitability as in the original UG version. Here also N=100.
3. Sealed-bid 2-bidders auction. The auction was for 100 NIS.
4. All-pay sealed-bid auction for 100 NIS, where all the bidders
must pay their biddings[10]. In this version risk taking considera-
tions is added to the bidder’s decision.

The examination of different environments which activate dif-
ferent personality characteristics of human opponents, guarantees
generality of the results. Dynamic pricing was not experimentally
examined, since no specific good can be unquestionably desired by
all of the participants. The following algorithms were examined:
1. R&E, as described in section 4.1.1.



2. ZWK, as specified in section 4.1.2.
3. Virtual RL (VRL), as specified in section 4.1.3.
4. Basic Gittins’ index strategy (GS), as described in section 4.1.4.
5. Virtual Gittins’ index strategy (VG), as described in 4.1.4.
6. Segment-based extension of the ZWK version of RL (SZWK).
7. Segment-based extension of VRL. (SVRL).
8. DVRL, as specified in section 3.
9. Segment-based extension of VG (SVG).
10. Deviated virtual extension of GS (DVG).

The first five algorithms were suggested by others and adapted
to our environment as detailed above, while the last five algorithms
are based on the two meta-algorithms we developed7.

It is important to mention that each algorithm was run with fixed
parameter configurations (such as theε value’s decreasing rate, and
deviation ratesα, β in the DVL algorithms) for all the different en-
vironments. Though specific configurations for each environment
could yield better performance, we preferred the generality of the
algorithms over a variety of CE environments, ensuring that no en-
vironment specific characterization would be used.

In the first experiment human participants were used as respon-
ders in the UG games, and as bidders in the auctions. Each person
participated once in each of the 4 environments. The automated
agents, on the other hand, interacted serially against different hu-
man opponents. Evaluating agents that were designed for human
involved environments by examining their performance with real
human data is necessary. As mentioned above, human competitors
do not obey subgame perfect equilibrium, and thus their behavior
cannot be a priori simulated. Additionally, human behavior cannot
be accurately statistically modeled, especially in small populations
as in this case. Another benefit from empirical experiments is the
ability to provide a concrete algorithm, namely DVRL (with a con-
crete configuration of parameters), which successfully competed
against human opponents. Thus, this agent can be immediately ap-
plied in real applications, at least as a starting point.

In the first stage of the experiment we surveyed 34 students (17
males and 17 females) participating in four CE environments. The
participants were students at Bar Ilan University, aged 20-28 (av-
erage 23.75), who were not experts in negotiation strategies nor in
economic theories directly relevant to the experiment (e.g. game
theory, decision theory). Each of the participants, who sat in an
isolated room at a computer work-station, interacted in the 4 CE
environments, one after the other.

In the auctions the participants were required to propose a bid,
which could be any integer from 0 to 100 NIS. The winner gains a
virtual 100 NIS. In the ultimatum games, where 100 NIS was the
full amount to be shared, the participants were required to respond
to various proposals, which were artificially provided in order to
determine the minimal acceptance amount of the players8(though
the participants were told that the proposals were provided by other
people). Data from a few participants who were inconsistent in
their decisions was excluded. At the end of the experiment, each
participant was paid between 15 to 30 NIS, proportionally to her
earnings in the interactions she participated in.

After extracting the bids from people in the auctions, as well as
their acceptance thresholds in the ultimatum games, we constructed
sets of opponents’ reactions for each environment. The sizes of the

7A combination of the 2 meta-algorithms is not presented in this paper
since its performance was experimentally worse than DVRL’s. Moreover,
the implementation of the combined agent is much more complicated than
DVRL’s, since it includes a large number of configurational parameters.
8This method of responders’ behavior examination is widely accepted in
UG literature [1].

sets were 34 for the auctions, 28 for the UG and 27 for the UG
variant, due to the exclusion of inconsistent players. At this stage
we examined the performance of each of the ten algorithms de-
tailed above, which were run serially against the sets of opponents’
thresholds. Thus, each algorithm had one interaction with each of
the human opponents in each of the four environments, without
knowing in advance the number of interactions. Since there is im-
portance to the order of the opponents, we constructed 200 random
permutations of the human decisions series, for each environment,
and compared the average payoffs of the different algorithms for
each permutation. In addition, these algorithms were run against
an artificial series of 50 auction opponents, constructed randomly
according to a normal distribution N(71,10). In this manner, we
wanted to examine the performance of the algorithms with a the-
oretical population which distributes normally, though there is no
evidence of such a distribution in any CE environment.

4.3 Experimental results
Table 1presents the average payoffs for each algorithm. The av-

erage payoffs integrate the data of all the 200 permutations. Due to
the fact that the algorithms’ random factors cause variation in the
results we ran each algorithm repeatedly for 50 times for each per-
mutation,. The standard deviations of the 50 results of each algo-
rithm with each permutation are also presented in order to measure
the stability and self-consistence of each algorithm.

4.3.1 Payoff analysis
As can be derived from the results, the DVRL algorithm was

almost always the most profitable algorithm. A non-parametric
Friedman test revealed significant differences in the ranking of the
algorithms (p<0.001). Further pairwise Wilcoxon tests showed
that the most efficient algorithm was significantly the DVRL algo-
rithm, except for the auction, where DVG was significantly though
only slightly better, and for the normal distributed auction, where
no significant difference was found between DVRL and SVG.

Moreover, the extension of both DVL and Segment-based meta-
algorithms almost always improved the payoff. Pairwise Wilcoxon
tests revealed that the algorithms SVRL, DVRL, SVG and DVG
always achieved higher payoffs than the first five algorithms (p<
0.001). The SVRL method always achieved the lowest payoff of
the leading quartet (SVRL, DVRL, SVG and DVG) (p<0.001),
except for the UG, where no significant difference was found be-
tween SVRL and DVG. The internal ranking of SVG and DVG was
inconsistent, with no significant differences in the all-pay auction
and the UG variant. As for the SZWK algorithm, we found that its
performance was always significantly higher (p<0.001) than the
basic ZWK’s algorithm, except for the all-pay auction, where no
significant difference was found between these methods.

Virtual learning was revealed as an efficient method, as can be
concluded by the general superiority of VRL over ZWK (except
for the UG variant), of VG over GS (except for the UG variant, and
for UG, where no difference was found) and of SVRL over SZWK
(except for the auction). A non-virtual version of SVG (a segment
based extension of GS), which is not presented here because of
space considerations, was similarly overpowered by SVG.

4.3.2 Results explanations
In order to understand the origin of the advantage of DVRL over

DVG, SVRL and over SVG, we should observeFigure 1. This plot
describes the average payoff of each algorithm - SVRL, DVRL,
DVG and SVG - (the y-axis), during the interactions (the x-axis).
The plot, which enables an easier tracking of the learning process,
presents only the data of the all-pay auction. However, the data of



Environment R&E ZWK VRL GS VG SZWK SVRL DVRL SVG DVG
UG payoff 35.55 39 41.3 37.43 37.44 40.13 41.59 43.28 42.35 41.79

SD 5.56 4.2 4.03 4.02 3.90 3.86 3.47 2.3 2.17 2.12
UG variant payoff 28.93 33.99 32.41 31.88 30.44 35.23 36.37 39.24 37.42 37.23

SD 5.86 5.01 5.6 5.31 5.96 4.85 4.19 1.99 2.68 2.30
Auction payoff 13.35 15.95 16.18 15.89 16.52 17.35 17.05 19.06 17.69 19.37

SD 3.21 3.81 3.64 4.12 3.57 3.31 2.87 1.47 3.15 1.69
All-pay auction payoff -3.27 -1.88 -1.09 -2.14 -1.11 -1.99 -0.26 2.91 1.65 1.5

SD 6.07 5.2 5.14 5.22 4.43 6.12 5.14 2.6 3.08 2.81
Normal distributed payoff 7.83 11.66 12.39 11.08 12.63 13.03 14.14 14.88 14.82 14.74

auction SD 2.12 3.18 2.94 4.16 2.87 2.87 1.72 0.57 1.09 0.84

Table 1: Average payoff and standard deviation of various algorithms against human opponents

the other environments were quite similar, thus we can refer to the
all-pay auction as a representative case. The left side of the plot
shows a noticeable preliminary advantage of the DVRL method.
Particularly, the payoff of DVRL is higher than the others till the
12th round, where it becomes proximately equal to DVG. This pre-
liminary advantage can be attributed to the low extent of reinforce-
ment in the RL’s Q-values update procedure, compared to the ex-
tensive reinforcement conducted by Gittins’ indices. For example,
the Q-value of an offer which succeeded 2 out of 3 interactions,
would be reinforced in the RL method by 66% of its reward, while
using Gittins’ method it would be reinforced by 91%. An offer
which was successful only once out of 5 interactions, would be
reinforced in the RL approach by 20% of its reward, while using
Gittins’ method it would be reinforced by 47%. Thus, offers which
are extremely far from the optimal will be filtered more quickly
with the pedant RL methods.

The pedantry of RL is also the reason for the relative success
of the SVRL in the first learning stages. However, in SVRL this
pedantry becomes an obstacle in the progressive learning stages:
Optimal segments, where the probability of success is usually not
100%, were sometimes rejected after a few interactions, and were
hardly focused in later stages9. However, this problem in the pro-
gressive learning stages, was much less harmful in the DVRL method.
The reason for this is that, in contrast to SVRL, (optimal) options
with currently low Q-values will not necessarily be abandoned for
long. In addition, according to the DVL update protocol, (optimal)
options are also reinforced by the success of options which are less
risky. Thus, the DVRL becomes less sensitive to over filtering of
the pedant RL method.

This difference in sensitivity between the segment-based and the
DVL approaches underlies the superiority of DVG over the VSBG
algorithm, in the progressive learning stages, as noticeable on the
right side ofFigure 1 (from the 16th round on). However, the dif-
ference is much less significant than the difference between the RL-
based algorithms, since the Gittins approach is much less pedant.
Therefore, the SVG is not critically harmed by the abandonment
of low valued options. Moreover, the fast convergence to an op-
timal (large) segment which usually occurred in SVG, provided a
superiority over the DVG algorithm, in the initial interactions.

Another finding of our experiment was the general improvement
caused by virtual learning. This could be explained by the fast
updating of a large set of offers after every interaction, with the

9Extending the duration of the first stages, where a few number of large
segments are observed, would have reduced this problem. However, since
we considered environments with a total number of 50 interactions at most,
the average total payoff would not have risen by extending the duration of
the first stages, since it would often harm the later interactions, where the
fine tuning is managed. The final stage of fine tuning is critically important,
especially in the context of CE environments.

Figure 1: Average payoff during the all-pay auction

VL method. Thus, offers which are significantly irrelevant are fil-
tered within a few interactions, while it is easy to find a non virtual
learner that proposes 90% in UG after the 20th interaction, for ex-
ample. This significant advantage offsets the disadvantage in accu-
racy, caused by the information asymmetry in the virtual updating
process mentioned above.

In order to measure the stability and self-consistence of each al-
gorithm we compared the standard deviations of the payoff results
of 50 runs with each permutation of the ten algorithms. Observing
the standard deviations inTable 1, it can be concluded that the stan-
dard deviation of DVRL was always the least (p<0.001), except
for the UG, where both DVG and SVG were lower than DVRL.
Since low values of standard deviation guarantee more certain and
stable results, using the proposed DVRL algorithm is preferable
from this aspect as well. This property may be attributed to the fact
that the DVL meta-algorithm includes no random decision, except
for the first interaction. In addition, the fast screening in the DVRL
as well as the lower sensitivity to over-filtering of the optimal so-
lution discussed earlier, provide a stable and consistent pattern of
solution search. For similar reasons, the relative ranking of other
algorithms in the deviations measures were compatible with the
relative ranking in the payoffs measures.

4.3.3 Comparison with human performance
In this section we compare the performance of the DVRL algo-

rithm with the performance of human competitors. For this purpose
we asked our participants to compete iteratively against a series of
other human opponents, exactly in the same manner the automated
agents had been competing. In this manner we wanted to reveal
whether the DVRL agent can outperform human natural intuitions
and life experience in this context. Note that the automated agent
was run with the same parameters for all the environments, and no
domain specific knowledge had been applied to the agents.

We began our examination after collecting a series of acceptance
threshold amounts in the ultimatum games from the first 21 partic-



Environment (# of human participants) Human DVRL
UG (13) 49.56 (3.41) 52.59

UG variant (13) 40.8 (7.45) 44.36
Auction (13) 15.74 (4.02) 19.01

All-pay Auction (13) -0.18 (3.53) 1.4
Normal distributed auction (15) 11.79 (2.78) 14.35

Table 2: Average payoff (SD) of humans and of a DVRL agent
competing with human opponents.

ipants, as well as their biddings in the auctions (whereas in previ-
ous sections the series included all the 34 participants). In order
to enlarge the size of the series we inserted each opponent twice,
creating a 42-round auction, a 34-round UG and a 36-round UG
variant (when using the original series without the enlargement, the
results were not qualitatively different). Similarly, we constructed
an artificial series of 40 biddings in an auction normally distrib-
uted, as before. The consequent participants were asked to interact
with those series, functioning as proposers in the ultimatum games
and as bidders in the auctions. After each decision, the partici-
pants were informed of the success of their offer by the ”current”
opponent. Actually, these proposers were expected to learn the ac-
ceptance thresholds distribution of the responders’ population, ex-
actly as the agents learn. All the learners, including the automated
learner, competed with the same series of opponents.

The average payoffs of the human learners, as well as the pay-
offs of the DVRL agent, in the exact same scenarios, are presented
in Table 2. The results show a clear advantage of the DVRL agent
over the human learners in all the environments. Although this
statement cannot be proved statistically, since we ran only one per-
mutation from each environment, the results show that the DVRL
average payoff was usually about one standard deviation above the
human’s average payoff.

4.3.4 A small set of decision options environments
In order to check the performance of our meta-algorithms in a

small set of options, we performed the exact same simulations with
merely 10 decision options. The agents could choose an integer
from 0 to 10 in each interaction, and the original values of the op-
ponents’ vectors were divided by 10 and then rounded to the closest
integer. The results, not presented here due to space restrictions,
showed a significant advantage of the DVRL over the other algo-
rithms, both in payoffs and in standard deviations, almost in all
cases. Moreover, the internal hierarchy among the algorithms was
similar to the 100-options version, and we found a general signifi-
cant advantage of both meta-algorithms over the basic algorithms.
Nonetheless, the gap between the performance of the basic algo-
rithms and their extensions was smaller in the 10-options version.

5. CONCLUSION AND FUTURE WORK
We presented a new meta-algorithm, namely DVL, which ex-

tends existing methods for efficiently competing in multi-interaction
one-shot CE environments with different human opponents. Our
experimental findings show that the DVL extension of an RL basic
algorithm is significantly better than humans and other algorithms
surveyed in this paper, especially in environments which contain a
large set of optional decisions at each decision point. Moreover,
they show that both DVL and the segment-based meta algorithm,
also presented here for the first time, almost always significantly
improve the performance of the basic algorithms they extend.

In future work we intend to design agents which efficiently com-
pete in CE environments for a high number of interactions. As

mentioned above, in this study we were principally concerned with
adaptable agents, which compete in no more than several dozens of
repeated interactions. However, the DVRL algorithm does not nec-
essarily grant efficiency for environments which last for hundreds
of interactions. The reason is mainly due to the fact that the directed
search for an optimal option, partially neglects the exploration of
other options. Thus, we would like to explore the ”damage” DVRL
and other algorithms cause in the long run, and to suggest efficient
approaches for interacting in CE environments for long durations.

In addition, we intend to extend the approaches discussed in this
paper to more sophisticated classes of interactions. Particularly, we
would like to examine the repeated version of CE interactions, in
which several negotiation rounds can be conducted against each op-
ponent. When competing repeatedly against the same opponent, a
specific modeling of the current opponent must be done, in addition
to the generic modeling of the population. Moreover, in contrast
to the one-shot version, a current move may influence the future
behavior of the opponent, a fact that must be taken into account.
Therefore, we intend to design an agent that develops several op-
tional models of typical opponents in the population, and matches
the appropriate model to each opponent with which it interacts.
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