
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)Nanyang Technological University, Singapore.

Efficient agglomerative hierarchical clustering for
biological sequence analysis
Nguyen, Thuy Diem
2015
Nguyen, T. D. (2015). Efficient agglomerative hierarchical clustering for biological sequence
analysis. Doctoral thesis, Nanyang Technological University, Singapore.
https://hdl.handle.net/10356/65568
https://doi.org/10.32657/10356/65568

Downloaded on 24 Aug 2022 19:30:58 SGT

EFFICIENT AGGLOMERATIVE

HIERARCHICAL CLUSTERING FOR

BIOLOGICAL SEQUENCE ANALYSIS

NGUYEN THUY DIEM

SCHOOL OF COMPUTER ENGINEERING

2015

EFFICIENT AGGLOMERATIVE

HIERARCHICAL CLUSTERING FOR

BIOLOGICAL SEQUENCE ANALYSIS

NGUYEN THUY DIEM

School of Computer Engineering

A thesis submitted to the Nanyang Technological University

in partial fulfillment of the requirement for the degree of

Doctor of Philosophy

2015

Abstract

Cluster analysis or clustering is an important data mining technique widely used

for pattern recognition and information retrieval. In the context of computational

biology and bioinformatics, clustering has been successfully applied in many sub-

fields such as in evolutionary biology to group homologous genetic sequences into

gene families, in transcriptomics to group genes with related expression patterns,

or in ecology to describe communities of organisms in heterogeneous environments.

Cluster analysis originated from an anthropology study by Driver and Kroeber in

1932. Since then, over a hundred clustering algorithms have been developed to

target input datasets with different characteristics. Out of these algorithms, two

most prevalent methods are hierarchical clustering and k-means clustering. The

former algorithm is particularly useful for analyzing genetic datasets in evolution-

ary biology studies because there are inherent hierarchical relationships amongst

the genetic sequences extracted from related organisms in these datasets.

The hierarchical clustering analysis of biological sequences is however computa-

tional expensive in terms of both execution time and memory usage. Consequently,

this analysis was rarely applied to input datasets with more than ten thousand

sequences. In recent years, new high-throughput sequencing technologies can pro-

duce more data in a shorter time and for a cheaper cost. As a result, more and

more raw sequence data is efficiently produced from the genetic materials of live

organisms, many of which are examined for the first time. Hence, there is a press-

ing need for more effective computational techniques to study the relationships

among the newly-discovered species.

Motivated by the necessity for more effective clustering algorithms to study bio-

logical sequence data, I explore the use of parallel computing technologies with

new algorithms to perform agglomerative hierarchical sequence clustering in a

more effective way without compromising the accuracy of the results. Specifically,

I develop new parallel algorithms using general-purpose computing on graphics

processing units (or GPGPU) to speedup the most compute intensive part of the

hierarchical clustering process: the pairwise distance matrix computation of the

input sequences. Graphic cards from NVIDIA are becoming a commodity in recent

years and are available in many personal computers nowadays. With an NVIDIA

GPU card, any laptop or desktop running these parallel algorithms can speed up

iv

the matrix computation process by ten times to a hundred times faster compared

to the computation on a CPU using a traditional sequential (single-threaded) al-

gorithm.

Besides reducing execution time, I have built a more memory-efficient and robust

agglomerative hierarchical clustering algorithm. This new clustering method re-

duces memory usage by applying a data summarization technique to maintain a

compact version of only a part of the distance matrix instead of loading the whole

matrix into the main memory. An important feature of this algorithm is the capa-

bility to produce the same hierarchical structure as the standard method. The new

algorithm supports all three popular linkage schemes including: average-linkage,

single-linkage, and complete-linkage. Among them, average-linkage clustering is

widely used in many research and real-world applications, making a memory-

efficient average-linkage clustering algorithm in great demand.

Amongst various types of biological sequence cluster analyses, this thesis focuses on

a particular type of sequence clustering application called operational taxonomic

unit (OTU) clustering to demonstrate the usefulness of the afore-mentioned ef-

ficient algorithms for processing large genomic datasets. I have developed two

OTU clustering pipelines for 454 pyrosequencing datasets called CRiSPy-Embed

and CRiSPy-CUDA. A comprehensive evaluation benchmark using randomly sim-

ulated datasets and popular mock datasets has been designed to test the per-

formance of these pipelines against existing tools. The benchmark results show

that these tools can produce similar or more accurate OTU groupings than most

existing OTU hierarchical clustering tools in a much more efficient manner.

Acknowledgements

First and foremost, I would like to express my sincere thanks to my supervisors,

Prof Bertil Schmidt and Assoc Prof Kwoh Chee Keong for introducing me to the

exciting fields of high performance computing and bioinformatics. I am grateful

for their support, guidance and suggestions. Their expertise and academic expe-

rience have helped me become a capable researcher. In addition, I thanks Prof

Kyle Rupnow for his brief but valuable guidance during the period of my PhD

qualification examination.

Secondly, I would like to sincerely thank Ms. Irene Ng-Goh Siew Lai and Mr. Poli-

ran Kenneth Caballes, the laboratory executives of the Parallel and Distributed

Computing Center, for their efficient assistance and instant support in setting up

and troubleshooting the hardware resources.

In addition, I would like to also thank my best friend, Pham Chau Khoa for

many fruitful discussions about computers and programming. His passion for

technologies and excellent programming skill have inspired me to become a better

programmer.

Last but not least, my gratitude goes to my mother, Pham Thi Dieu Huong and

my former mentors, Dr. Timo Bretschneider and Dr. Ian McLoughlin for the

inspiration and encouragement they have provided me throughout my academic

journey.

v

Contents

Acknowledgements v

Contents v

List of Figures x

List of Tables xv

Abbreviations xvii

Symbols xviii

1 Introduction 1

1.1 Background . 1

1.1.1 Next-generation sequencing 1

1.1.2 Metagenomics . 3

1.1.3 16S rRNA datasets . 5

1.1.4 Biodiversity measures . 6

1.2 Motivation . 7

1.3 Objectives . 8

1.4 Contributions . 10

1.5 Thesis Structure . 11

2 Literature Survey 13

2.1 Cluster analysis . 13

2.1.1 General clustering approaches 14

2.1.2 Biological sequence clustering 15

2.2 OTU clustering . 17

2.2.1 Background . 17

2.2.2 De novo OTU clustering . 18

2.3 GPGPU in bioinformatics . 21

3 Parallel Distance Matrix Computation 23

3.1 Parallel computing . 24

3.1.1 OpenMP programming . 25

vii

Contents viii

3.1.2 MPI programming . 26

3.1.3 CUDA programming . 27

3.2 Biological sequence distance comparison 31

3.3 k-mer distance . 31

3.3.1 Definition . 31

3.3.2 Sorting-based k-mer distance calculation 33

3.3.3 OpenMP implementation . 36

3.3.4 CUDA implementation . 36

3.4 Euclidean distance . 38

3.4.1 Definition . 38

3.4.2 Parallel implementations . 40

3.5 Genetic distance . 42

3.5.1 Definition . 42

3.5.2 CUDA implementation . 44

3.6 Summary . 47

4 Memory-Efficient Agglomerative Hierarchical Clustering 49

4.1 Background . 49

4.1.1 Agglomerative hierarchical clustering 49

4.1.2 Memory-efficient AHC algorithms 52

4.2 SparseHC . 57

4.2.1 Algorithm . 57

4.2.2 Correctness . 59

4.2.3 Memory efficiency . 60

4.3 Evaluation . 62

4.3.1 Experiment setup . 62

4.3.2 Performance profiling . 62

4.3.3 Empirical complexity . 65

4.3.4 Clustering DNA datasets . 67

4.3.5 Clustering large matrices . 68

4.4 Summary . 69

5 OTU Clustering Pipelines 71

5.1 CRiSPy-Embed . 71

5.1.1 Approach . 72

5.1.2 Sequence embedding . 75

5.1.3 Dendrogram construction 76

5.1.4 OTU grouping . 80

5.2 CRiSPy-CUDA . 81

5.2.1 Approach . 81

5.2.2 Sequence comparison . 83

5.2.3 Dendrogram construction 85

5.2.4 OTU grouping . 86

5.3 Summary . 91

Contents ix

6 OTU Clustering Evaluation 93

6.1 Benchmark Framework . 93

6.1.1 Simulated test datasets . 93

6.1.2 Mock datasets . 95

6.1.3 Accuracy measures . 98

6.2 Evaluation of clustering accuracy 100

6.2.1 On simulated datasets . 101

6.2.2 On external mock datasets 111

6.3 Evaluation of computational efficiency 112

6.3.1 On large simulated datasets 112

6.3.2 On public datasets . 115

6.4 Summary . 119

7 Conclusion and Future Work 121

7.1 Conclusion . 121

7.2 Recommendation for Future Work 123

7.2.1 Target Illumina datasets . 123

7.2.2 Dimensionality reduction . 124

7.3 Publications . 125

A Biodiversity Assessment 127

A.1 Measuring species richness . 127

A.2 Measuring species abundance . 129

A.3 Measuring relative abundance . 130

Bibliography 130

List of Figures

1.1 The metagenomic processing pipeline: biodiversity assessment is
the focus of this research. 4

1.2 The structure of a prokaryote ribosome: the 16S rRNA gene is the
marker gene for biodiversity assessment. 5

1.3 The schematic representation of the 16s rRNA gene in a canonical
bacteria: hypervariable regions are in blue and conserved regions
are in purple. The grey regions are invariant in all bacteria [1] . . . 5

1.4 The biodiversity assessment flowchart: the shaded box shows the
main focus of this research - biological sequence clustering. 9

2.1 Taxonomy of clustering algorithms. 16

3.1 Shared memory model for parallel computation. 25

3.2 Message passing model for parallel computation. 26

3.3 Fermi architecture [2] . 28

3.4 Thread hierarchy and memory hierarchy of a Fermi GPU: the GTX
580 based on the GPU memory architecture by Nickolls and Dally [3] 29

3.5 The memory hierarchy of a Fermi GPU [2]. 30

3.6 The speedup of the parallel k-mer distance computation running on
a multicore CPU with respect to the number of threads 35

3.7 The overhead of the parallel OpenMP program for computing k-mer
distances . 35

3.8 Choosing the block size and the register count per thread in order
to maximize the multiprocessor warp occupancy. The red triangles
mark the chosen settings for the CUDA program to compute k-mer
distances: 256 threads per block and 18 registers per thread. 37

3.9 Profiling the CUDA program for computing k-mer distance running
on an NVIDIA GTX480 using the NVIDIA Visual Profiler. The
parallel program achieves a high occupancy value of 87.4%. 38

3.10 Choosing the block size and the register count per thread in order
to maximize the multiprocessor warp occupancy. The red triangles
mark the chosen settings for the CUDA program to compute Eu-
clidean distances: 256 threads per block and 14 registers per thread. 39

3.11 Scoring matrices for aligning two input sequences ATGAT and AT-
TAAT using the new linear memory formula with the scoring scheme:
match score is 5, mismatch score is -4, gap penalties are -10 and -5
for gap opening and gap extension respectively. 41

xi

List of Figures xii

3.12 The overall structure of the parallel CUDA program for computing
genetic distances on a GPU. 44

3.13 Choosing the block size and the register count per thread in order
to maximize the multiprocessor warp occupancy. The red triangles
mark the chosen settings for the CUDA program to compute genetic
distances: 512 threads per block and 62 registers per thread. 45

3.14 Profiling the CUDA program for computing genetic distance run-
ning on an NVIDIA GTX480 using the NVIDIA Visual Profiler.
The parallel program achieves a high GPU utilization value of 97.9%. 46

4.1 Example of the standard dendrogram and the equivalent complete
binary tree generated by clustering an input dataset of 10 data
points using the average-linkage scheme. 53

4.2 Example of the partial dendrogram and the equivalent incomplete
binary tree generated by clustering the same input dataset as above
(Figure 4.1) but using only the pairwise distances smaller than the
cutoff threshold of θ = 0.4 instead of the whole distance matrix. . . 54

4.3 Memory profiling of SparseHC versus ESPRIT’s aveclust and MCUPGMA.
aveclust runs out of memory for datasets larger than V2Mice-400k . 63

4.4 Runtime profiling of SparseHC versus ESPRIT’s aveclust and MCUPGMA.
aveclust runs out of memory for datasets larger than V2Mice-400k . 64

5.1 The CRiSPy-Embed processing pipeline: oval boxes indicate data
and rectangular boxes represent computation. The dashed rect-
angular box contains the cleansing steps using external chimera
removal and error correction tools. 72

5.2 The cumulative distribution functions (CDFs) of two matrices com-
puted from two datasets consisting of 1000 and 5000 sequences.
At the same distance threshold, the sparsity of the matrix com-
puted from the larger dataset is higher than that computed from
the smaller dataset. The red dots mark the cutoff values used in
CRiSPy-Embed. 73

5.3 The flow diagram of the SparseHC algorithm 77

5.4 The CRiSPy-CUDA processing pipeline: oval boxes indicate data
and rectangular boxes represent computation. The dashed rect-
angular box contains the cleansing steps using external chimera
removal and error correction tools. 81

5.5 The cumulative distribution functions (CDFs) of two matrices com-
puted from two datasets consisting of 1000 and 5000 sequences. The
red dots mark the cutoff values used in CRiSPy-CUDA. 84

5.6 The probability distribution functions (PDFs) of pairwise distance
matrices for two typical datasets: a raw dataset that contains errors
on the left and a cleaned dataset that contains few errors on the right. 87

5.7 Determination of the natural distance cutoffs of two datasets with
different characteristics by detecting the first sudden change merg-
ing distances of a dendrogram. These are same datasets as in Figure
5.6. 88

List of Figures xiii

6.1 Complications in labelling mock datasets to evaluate clustering ac-
curacy. 96

6.2 The benchmark of computational performance and accuracy of CRiSPy-
CUDA and CRiSPy-Embed against other OTU binning tools us-
ing 10 different datasets, each of which contains 5000 16S rDNA
reads that are generated randomly from 100 species. The bars and
whiskers represent the means and standard deviations from 10 runs
on these 10 datasets. 102

6.3 Different rank abundance models used for benchmarking: exponen-
tial, logarithmic, power law, linear and uniform distributions. 103

6.4 ARI scores achieved by the OTU binning tools of interest when
clustering datasets with the rank abundance models shown in Figure
6.3. Each dataset contains 5000 reads and is simulated from 100
full-length 16S rDNA reference sequences chosen randomly from the
Greengenes database. 104

6.5 AMI scores achieved by the OTU binning tools of interest when
clustering datasets with different rank abundance models. These
AMI scores are computed using the same clustering results as the
ARI scores in Figure 6.4. Both accuracy measures are reported for
comparison purpose. 105

6.6 ARI scores achieved by the OTU binning tools of interest when
clustering datasets with fold coverage values: 7 (1000 reads), 15
(2000 reads), 22 (3000 reads), 30 (4000 reads), 37 (5000 reads) and
45 (6000 reads). Each dataset is simulated from 100 full-length 16S
rDNA reference sequences chosen randomly from the Greengenes
database. 106

6.7 AMI scores achieved by the OTU binning tools of interest when
clustering datasets with different fold coverage values. These AMI
scores are computed using the same clustering results as the ARI
scores in Figure 6.6. 107

6.8 ARI scores achieved by the OTU binning tools of interest when
clustering datasets with different types of sequencing and PCR er-
rors (mutations, homopolymers, chimeras). Each dataset contains
5000 reads and is simulated from 100 full-length 16S rDNA reference
sequences chosen randomly from the Greengenes database. 108

6.9 AMI scores achieved by the OTU binning tools of interest when
clustering datasets with different types of sequencing and PCR er-
rors. These AMI scores are computed using the same clustering
results as the ARI scores in Figure 6.8. 109

6.10 ARI scores achieved by the OTU clustering tools of interest when
running on eight mock datasets in Table 6.1. 111

6.11 AMI scores achieved by the OTU clustering tools of interest when
running on eight mock datasets. 112

List of Figures xiv

6.12 Execution time of the OTU clustering tools of interest running on
large datasets of 25000 to 150000 cleaned reads. CRiSPy-CUDA
and CRiSPy-Embed are faster than ESPRIT-Tree, the fastest amongst
existing AHC tools. 113

6.13 Memory usage by the OTU clustering tools of interest when running
on large datasets with sizes ranging from 25000 to 150000 reads.
CRiSPy-CUDA and CRiSPy-Embed achieve quasilinear memory
complexity compared to the quadratic complexity of other AHC
tools such as ESPRIT-Tree. 114

A.1 A rarefaction curve generated by MG-RAST [4]. The species count
(richness) increases with the number of sequence sampled. The
optimal sample size for discovery applications is the size where the
species richness no longer increases. 128

A.2 A rank abundance curve generated by MG-RAST [4]. X-axis shows
the species sorted by abundance rank (from left to right the most
abundant to the least abundant species). Y-axis plots the abun-
dance of each species on a log scale. 131

List of Tables

1.1 Next-generation sequencing versus Sanger sequencing based on the
guide to next-generation sequencers by Glenn [5] 2

1.2 Characteristics of next-generation sequencing datasets 2

1.3 Examples of targeted 454 16SrRNA pyrosequencing datasets 2

2.1 Most commonly used clustering algorithms and their implementa-
tions in the popular statistical language R 14

4.1 The Lance Williams formulation of agglomerative hierarchical clus-
tering: parameters for seven commonly-used linkage schemes 50

4.2 The time and space complexity of query and update operations for
different graph implementations. SparseHC uses the adjacency map
representation which is derived from the adjacency list to accelerate
edge-related operations. 54

4.3 Distance dij between cluster Ci and Cj for clustering sparse matrices 57

4.4 Datasets used for performance profiling of average-linkage hierar-
chical clustering tools . 62

4.5 The empirical time and space complexity (f(n) = Cnk) of SparseHC
versus other online and offline AHC programs. This benchmark
experiment employs 20 distance matrices calculated from datasets
with sizes ranging from 1000 to 20000 objects. Execution time
fr(n) is assessed in seconds and memory usage fs(n) is assessed in
megabytes. The data input size n is measured in thousand data
points. 65

4.6 Execution time and memory usage of SparseHC, MCUPGMA, and
ESPRIT’s aveclust for processing partial matrices calculated from
genomic datasets with the sparsity level of 0.5 67

4.7 The memory efficacy of SparseHC measured by the matrix size
memory usage

ratio 68

6.1 Mock communities used for validating OTU clustering accuracy (#
means “the number of”) . 95

6.2 The simplified contingency table . 98

6.3 Runtime (in seconds) and speedup comparison of k-mer distance
computation between ESPRIT and CRiSPy 116

6.4 Runtime (in minutes) and speedup comparison of genetic distance
computation between ESPRIT and CRiSPy 116

6.5 Runtime (in minutes) of CRiSPy full run on a single-GPU 118

xv

List of Tables xvi

6.6 Runtime (in minutes) of CRiSPy full run on a quad-GPU cluster . . 119

6.7 Runtime (in minutes) and speedup comparison between ESPRIT
and CRiSPy . 119

Abbreviations

BLAST Basic Local Alignment Search Tool

CRiSPy Computing Species Richness in 16S rRNA

Pyrosequencing Datasets

CRiSPy-Embed CRiSPy using Sequence Embedding

CRiSPy-CUDA CRiSPy using CUDA

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DNA Deoxyribonucleic Acid

DP Dynamic Programming

GB Giga Bytes

GBPS Giga Bytes Per Second

GCUPS Giga Cell Updates Per Second

GPU Graphical Processing Unit

GPGPU General Purpose Computing using GPU

MPI Message Passing Interface

MCUPGMA Memory-Constraint UPGMA

NGS Next-Generation Sequencing

NMI Normalized Mutual Information

OpenMP Open Multiprocessing

OTU Operational Taxonomic Unit

PCI Peripheral Component Interconnect

PCR Polymerase Chain Reaction

RAM Random Access Memory

rRNA Ribosomal Ribonucleic Acid

xvii

Symbols xviii

SIMT Single Instruction Multiple Threads

SP Scalar Processor

SM Streaming Multiprocessor

UPGMA Unweighted Pair Group Method with Arithmetic Mean

Symbols

For distances

de(Vx, Vy) Euclidean distance between Rx and Ry

dk(Rx, Ry) k-mer distance between Rx and Ry

dg(Rx, Ry) genetic distance between Rx and Ry

θe Euclidean distance cutoff

θg genetic distance cutoff

θk k-mer distance cutoff

k tuple size for computing k-mer distances

VS standard vertical scoring matrix for global alignment

HS standard horizontal scoring matrix for global alignment

DS standard diagonal scoring matrix for global alignment

VB binary vertical scoring matrix for global alignment

HB binary horizontal scoring matrix for global alignment

DB binary diagonal scoring matrix for global alignment in

SM scoring matrix for global alignment in CRiSPy-CUDA

AL aligned length matrix for global alignment in CRiSPy-CUDA

ML mismatch length matrix for global alignment in CRiSPy-CUDA

sbt(a = b) match score

sbt(a 6= b) mismatch score

α gap opening penalty

β gap extension penalty

For SparseHC

xix

Symbols xx

E(t) exact link map at clustering iteration step t

I(t) inexact link map at clustering iteration step t

M amount of memory allocated to SparseHC

θ the maximum distance value in sparse distance matrix

λ the maximum distance value that has been loaded by SparseHC

For CRiSPy

Σ DNA alphabet

Ω set of all substrings over DNA alphabet Σ of length k

R set of input reads

L average read length of input dataset

NB the number of seeds in seed dataset

NR the number of reads in input dataset

NO the number of output OTU

O set of output OTU

V set of embedding vectors

B set of seeds

S sparse pairwise distance matrix

T number of clustering iterations in SparseHC

Chapter 1

Introduction

This thesis focuses on the development of efficient agglomerative hierarchical clus-

tering (AHC) algorithms for processing large biological datasets generated by new

deoxyribonucleic acid (DNA) sequencing technologies. This chapter provides some

background information about next-generation sequencing (NGS) technologies,

16S rRNA metagenomic datasets and the operational taxonomic unit (OTU) clus-

tering problem that motivates the development of new clustering methods. This

chapter also defines the objectives of this research and describes the overall struc-

ture of the thesis.

1.1 Background

1.1.1 Next-generation sequencing

DNA sequencing is the process of determining the sequence of nucleotide residues

of a DNA. Knowledge of DNA sequences is indispensable to study the molecular

structure and functions of the genetic materials from living organisms. NGS [5,

10, 11] refers to new technologies for high-throughput DNA sequencing which

produces millions of short DNA sequences (called reads) in a shorter time and

at lower cost compared to traditional Sanger-based sequencing technologies [12].

1

Chapter 1. Introduction 2

Table 1.1: Next-generation sequencing versus Sanger sequencing based on the
guide to next-generation sequencers by Glenn [5]

Table 1.2: Characteristics of next-generation sequencing datasets

Data Data size Read length
Pyrosequencing reads Raw: up to 106 reads Up to 700

from 454/Roche Cleaned: up to 5× 105 reads base pairs per read
sequencers e.g. GS FLX+

Paired-end reads Raw: up to 6× 109 reads Up to 100
from Illumina sequencers Cleaned: up to 109 reads base pairs per read
e.g. MiSeq and HiSeq

Table 1.3: Examples of targeted 454 16SrRNA pyrosequencing datasets

16S rRNA data Statistics Estimated number of OTUs
Twin gut [6] 1.2− 1.5× 106 reads 4949 OTUs in 27 body sites

130bp of a twin pair
Children gut [7] 4.4× 105 reads 1500-2000 OTUs in the

260bp gut of a child
Human skin [8] 3.5× 105 reads 4742 OTUs in the hands

230bp of 51 people
Human wound [9] 2.2× 105 reads 487 OTUs from 49 wounds

350bp

Chapter 1. Introduction 3

NGS carries great potential since the cost of NGS is decreasing considerably while

the data generation capacity of NGS is increasing significantly, both with the rate

multiple times faster than Moore’s law [13]. Table 1.1 lists the most popular NGS

sequencing platforms and compares them to a Sanger-based sequencing platform

- the ABI 3700xl. Table 1.1 shows that NGS can generate a large amount of short

reads in a shorter time at significantly lower costs.

There are a couple of existing and upcoming NGS platforms in the market. How-

ever, the most commonly used technologies with corresponding platforms are the

pyrosequencing platforms from 454/Roche and the recently paired end sequencing

platforms by Illumina [14]. The specifications of these two technologies are sum-

marized in the Table 1.2. Examples of 16S rRNA NGS datasets are shown in Table

1.3. This research aims to support the analysis of these datasets in metagenomic

studies. This thesis focuses on the problem of microbial diversity of a metagenome

using 16S rRNA pyrosequencing datasets.

1.1.2 Metagenomics

Microorganisms or microbes are living things, generally less than 0.2mm and in-

visible to human eyes. There are four main groups of microbes: bacteria, archaea,

microbial eukarya and viruses. Microbes play an important role to all living or-

ganisms on Earth including human , e.g., (1) perform photosynthesis (2) provide

plant with essential nutrition and fight off pathogens (3) enable human to extract

calories from food, synthesize vitamins and amino acids, and defend infectious

pathogens [15].

Due to the omnipresence of microorganisms on Earth and their essential roles

to other living organisms, microbiology has been an important branch of life sci-

ences. Traditionally, a microbe must be clonally cultured in a laboratory before its

genome is sequenced and studied. There are two major drawbacks of traditional

microbiology. Firstly, only a small proportion of microorganisms in nature can be

culture in wet laboratories. Hence the existing knowledge of cultured microbes is

Chapter 1. Introduction 4

I. Collect data II. Process data

1. Collect a sample

2. Extract genetic materials

(e.g. bacterial DNA, fungal

DNA, virus RNA)

3. Amplify DNA/RNA

4. Sequencing (e.g.

pyrosequencing)

Sequence-driven analysis:

• Biodiversity assessment

• Gene identification

• Metabolic pathway analysis

• Comparative analysis

Functional-driven analysis:

• Gene expression in heterologous host

• Identify genes with a particular function

Figure 1.1: The metagenomic processing pipeline: biodiversity assessment is
the focus of this research.

highly biased and does not represent the whole picture of the genomes of microor-

ganisms [16, 17]. Secondly, microbes rarely live independently. They usually live

in multi-species communities. Therefore, they often interact with each other and

with their surrounding environment (including host organisms such as human).

Cultured approaches fail to represent these interactions [18].

Recent advances in NGS technologies and computational methods have given rise

to a new way to study the genetic materials of microbial communities called

metagenomics. A metagenome is defined as a collection of genomes obtained from

many different microorganisms in a microbial community. Subsequently, metage-

nomics is the analysis of the collective genetic materials obtained from a sample

[19]. Figure 1.1 shows the common procedures for collecting and processing genetic

materials in a metagenomic study.

Metagenomics can address the aforementioned drawbacks of traditional microbiol-

ogy. A community (group) of micro-organism is sequenced together using new NGS

sequencing platforms and the large amount of sequenced data is then analyzed in

Chapter 1. Introduction 5

silico. With metagenomics, scientists can understand better the interaction of mi-

croorganisms within a community and the interaction of these microbes with their

living environment.

A significant amount of genetic data generated by NGS platforms is unseen and

unknown. Traditionally with Sanger sequencing, only one or a few species of

interest are chosen and sequenced, then analysed. With the high throughput of

NGS, 102 − 104 species which all live in a community are sequenced and analysed

together. Many species are unknown. Therefore, it is natural to start by clustering

them into groups. This process in a metagenomic project is called biodiversity

assessment.

1.1.3 16S rRNA datasets

The genetic material most commonly used to analyze the biodiversity of a metagenome

is the 16S rRNA gene. RNA molecules are responsible for protein synthesis. They

are essential and present in all organisms. The gene that encodes RNA is stored

70S ribosome

30S small subunit (SSU)

16S rRNA

(1540 nucleotides)
21 proteins

50S large subunit (LSU)

5S rRNA

(120 nucleotides)

3S rRNA

(2900 nucleotides)
31 proteins

Figure 1.2: The structure of a prokaryote ribosome: the 16S rRNA gene is
the marker gene for biodiversity assessment.

Figure 1.3: The schematic representation of the 16s rRNA gene in a canonical
bacteria: hypervariable regions are in blue and conserved regions are in purple.

The grey regions are invariant in all bacteria [1]

Chapter 1. Introduction 6

in the rDNA. Due to the essence of RNA, rDNA is the most conversed gene in

all organisms [20]. Furthermore, rDNA contains highly conserved domains inter-

spersed with variable regions [21] making it suitable for phylogenetic analysis by

comparative methods to infer relatedness and differences among different organ-

isms.

Figure 1.2 illustrates the structure of prokaryote ribosomes as introduced by [22]

S stands for Svedberg which is a unit for sedimentation rate. The larger the

sedimentation coefficient, the bigger the RNA subunit, e.g., 50S subunit is larger

than 30S subunit. Since a 5S RNA does not contain sufficient information for

comparative analysis, 16S RNA and 23S RNA are often chosen. However due

to the lack of primers and being larger, 23S RNA has lost favor to 16S RNA in

phylogenetic analysis.

RNA is less stable in DNA in the cells and all the information carried in RNA

can be found in the DNA. Therefore, rDNA is used for sequencing and analysis

instead of RNA. The 16S rDNA strand is often used as a gene marker to identify

microorganisms and assess the biodiversity of a microbial metagenome [23]. The

full-length 16S rDNA sequence contains nine hypervariable regions interspersed

with conversed regions as illustrated in Figure 1.3. For the purpose of species

richness estimation, we often use one or more regions to identify the species that

are present in a community. In this thesis, the terms ”rDNA dataset” and ”rRNA

dataset” are used interchangeably.

1.1.4 Biodiversity measures

Estimating the biodiversity of a microbial community is important to infer the

functionalities and the impact of that community on the hosts (e.g., plants and

animals including humans) or its surrounding environment (e.g., soil, water).

According to [24], there are three types of biodiversity:

Chapter 1. Introduction 7

• α-diversity is a measure of biodiversity in an ecosystem. It refers to the

number of species i.e. the species richness within an ecosystem. α-diversity

is the intra-community diversity.

• β-diversity is a measure of biodiversity in an area of many ecosystems. It

is assessed by the total number of species that are unique to each of the

ecosystems in the area. β-diversity is the inter-community diversity.

• γ-diversity is a measure of biodiversity of a region. It is computed as the

total species richness over that region, i.e., γ = α× β

This project targets only the α-diversity - the species richness of a microbial com-

munity. Two important aspects that should be considered when measuring α-

diversity are species richness and relative abundance [25]. Species richness refers

to the number of species that coexist in a microbial community. Species abundance

is calculated by the number of individuals per species and relative abundance mea-

sures the evenness with which the individuals are spread out among the species.

The mathematical formula for computing species richness and species abundance

of a community are listed in Appendix A.

1.2 Motivation

Next sequencing technologies such as 454 and Illumina platforms has generated a

massive amount of genomic data. At the same time, modern computing hardware

has quickly evolved from traditional single-core central processing units (CPUs)

to multi-core CPUs and subsequently high performance computing (HPC) plat-

forms such as general-purpose graphical processing units (GP-GPUs), compute

clusters and the most recent trend of compute clouds. The purpose of this work

is to build the bridge between data-processing and data-generating platforms by

developing new algorithms that utilizes the power of HPC hardware to analyze

high-throughput sequencing data in an effective manner. Specifically, this works

Chapter 1. Introduction 8

focuses on building parallel and memory-efficient algorithms and tools using GP-

GPUs to analyze genomic data produced by 454 platforms.

This research is motivated by a specific bioinformatic problem namely taxonomic

profiling for biodiversity assessment of metagenomic samples. The purpose of this

processing is to identify the components (and possibly structure) of a biological

sample consisting of many different (and most often novel) microorganisms. The

most popular approach is to extract the most representative genetic materials from

these organisms and then to find the inherent groups in this genetic pool. In data

mining terms, grouping can be done in a supervised manner by classification or

in an unsupervised manner by clustering or in a semi-supervised manner by the

combination of both classification and clustering. Due to the speculation that

the proportion of novel species in each metagenomic sample could be significantly

high (up to 90%), more focuses have been placed in the development of clustering

methods.

1.3 Objectives

Motivated by the biodiversity assessment problem, this research focuses on build-

ing new hierarchical clustering algorithms for 16s rRNA genes produced by 454

sequencing platforms. Hierarchical clustering is chosen due to (1) its capability to

construct biologically meaningful tree structure (2) its prospect to produce bet-

ter grouping (3) its potential usefulness to many other bioinformatic applications

and text mining problems and last but not least the lack of competent hierarchical

clustering algorithms to process genomic datasets with more than 10000 sequences.

Traditional computational tools for Sanger sequencing datasets such as dotur +

MUSCLE, mothur typically process 103 − 104 reads. These tools do not work

on next-generation sequencing datasets, each of which typically contains 105 reads

and above, either because of the runtime limitation or memory constraints. Hence,

there is a need for more effective and scalable programs to process these datasets.

Chapter 1. Introduction 9

The datasets generated by these two platforms should be considered separately

due to the following reasons. Firstly, the difference in the read length implies

difference processing e.g. shorter read length implies more duplicates, different

amplification and sequencing techniques implies different types of sequencing er-

rors. Secondly, the difference in the data size (pyrosequencing typically produces

105 − 106 reads while Illumina sequencing typically outputs 108 − 109 reads per

run) implies the need for different algorithms. This thesis focuses on the analyses

for pyrosequencing datasets.

The objective of this research is to provide scalable and efficient clustering tech-

niques to tackle the biodiversity assessment problem i.e estimating the species

richness and relative abundance of large-scale 16S rRNA metagenomic datasets.

Collect a metagenomics

sample

Extract the 16S rRNA gene

from the 70S ribosomes of

microbes in the sample

Amplify 16S rRNA genes

Run pyrosequencing to extract

short 16S reads

Perform biodiversity

assessment

Perform other sequence- and

functional-driven analyses

Biological sequence

comparison (on GPU)

Agglomerative hierarchical

clustering (on CPU)

Figure 1.4: The biodiversity assessment flowchart: the shaded box shows the
main focus of this research - biological sequence clustering.

Chapter 1. Introduction 10

Especially this research focuses on designing and implementing parallel algorithms

on the GPUs as well as space-efficient hierarchical clustering algorithms. Figure

1.4 illustrates how biodiversity assessment is performed using 16S rRNA genes

extracted from a metagenomic sample. Besides, it also highlights how biological

sequence clustering is often used in a metagenomic study.

1.4 Contributions

The major contributions of this thesis are compute-efficient algorithms for distance

matrix calculation on parallel architectures and a space-efficient hierarchical clus-

tering algorithm. Specifically, parallel algorithms have been developed to compare

biological sequence data using either the k-mer distance or the genetic distance or

the Euclidean distance metric.

Each of these parallel algorithms is implemented either in CUDA to support exe-

cution on a general-purpose graphical processing unit (GPGPU) or in OpenMP to

support execution on a multi-core CPU. While OpenMP implementation can be

straightforward, the parallel implementation in CUDA is often a non-trivial task.

To achieve maximum speedup on GPUs, the parallel implementations in CUDA

often involve various tasks such as data compression, task division and usage of

different memory types available on the GPUs.

Another important contribution of this research is the SparseHC algorithm, a

general-purpose agglomerative hierarchical clustering algorithm to tackle the high

space requirement of the traditional AHC approach. SparseHC can perform fast

and memory-efficient clustering on both partial and full distance matrices. SparseHC

supports three most commonly used linkage schemes: complete-linkage, single-

linkage and average-linkage schemes.

In the domain of OTU clustering, this research contributes two processing pipelines

namely the CRiSPy-Embed and the CRiSPy-CUDA pipeline. In general, the re-

sults of the cluster analysis are often hard to access since there is no universally

Chapter 1. Introduction 11

accepted independent data to validate the clustering outcomes. Therefore, to

evaluate the performance of these pipelines against existing tools, a comprehen-

sive OTU evaluation framework using simulated and mock datasets has also been

created. The evaluation process involves the creation of test datasets, the delib-

erate choice of sensible accuracy measurements as well as the interpretation and

presentation of the evaluation results.

1.5 Thesis Structure

The remainder of the report is organized as follows. Chapter 2 presents the lit-

erature survey on general text clustering and OTU clustering. Chapter 3 and

4 provide the details of the compute- and space-efficient algorithms developed

during the course of this research. Specifically, chapter 3 focuses in parallel com-

puting and parallel algorithms for computing pairwise distance matrices. Chapter

4 concentrates on the memory-efficient clustering algorithm SparseHC and related

topics. Subsequently, chapter 5 presents two new OTU binning pipelines called

CRiSPy-Embed and CRiSPy-CUDA built by assembling the individual compo-

nents discussed in 3 and 4. Chapter 6 describes an evaluation framework used to

validate the accuracy and efficiency of each processing pipeline in comparison with

other state-of-the-art OTU clustering pipelines. And finally, chapter 7 concludes

and discusses the future work of this thesis.

Chapter 2

Literature Survey

Cluster analysis is a popular technique in data mining with numerous applications

in research and commercialized applications. As discussed in 1, clustering is the

main analysis used for estimating species richness of a 16S metagenomic datasets.

This survey chapter provides a brief overview of cluster analysis with a focus on

aspects related biological sequence clustering. Subsequently, it reports a detailed

survey of existing state-of-the-artifacts techniques and algorithms in the domain

of de novo OTU clustering - the focus of this thesis.

2.1 Cluster analysis

Clustering or cluster analysis refers to the process of grouping a set of data points

in such a way that members in the same group are more similar to each other that

those in different groups. Other similar terms to clustering in the literature include

automatic classification, numerical taxonomy, typological analysis and botryology.

The subtle differences are in the usage of the result: the resulting grouping patterns

are of interest in data mining and the resulting discriminative power is of interest

in automatic classification in machine learning.

Cluster analysis is an essential procedure used in statistical data analysis and ex-

ploratory data mining. Cluster analysis was first used in social sciences such as

13

Chapter 2. Literature Survey 14

anthropology [26], psychology [27], personality psychology for trait theory classi-

fication [28]. Since then, this technique has been widely used in many fields of

knowledge discovery including machine learning, pattern recognition, information

retrieval, image analysis and bioinformatics.

Cluster analysis can be performed using various algorithms that differ notably in

two aspects: their definition of a cluster and the efficacy of the algorithm. Popu-

lar cluster notions include group with high level of similarities amongst members,

close-packed regions in the data space or certain statistical distributions. There-

fore, clustering can be formulated as a multi-objective optimization problem. The

choices of clustering algorithms and related parameter settings (e.g. the distance

function, the expected number of clusters, the density threshold) depend on the

characteristics of the input dataset and the intended use of the results.

2.1.1 General clustering approaches

Clustering techniques are often categorized into two groups: the hierarchical clus-

tering group and the partitional clustering group, depending on the cluster struc-

ture they produce. Each approach has its own pros and cons and often different

approaches yield different insights to the data. Table 2.1 lists out the most com-

monly used clustering algorithms available in the popular statistical analysis tool

Table 2.1: Most commonly used clustering algorithms and their implementa-
tions in the popular statistical language R

Algorithm R package & func. Category Note
Hierarchical base hclust() or Agglomerative Hierarchical clustering

cluster agnes() Agglomerative nesting
DIANA cluster diana() Divisive Divisive analysis clustering
SOTA clValid sota() Divisive Self-organizing tree algorithm

K-means base kmeans() Partitional K-means clustering
PAM cluster pam() Partitional Partition around medoids

CLARA cluster clara() Partitional Clustering large applications
FANNY cluster fanny() Fuzzy Fuzzy analysis clustering
SOM kohonen som() Neural network Self organizing map
Model mclust Mclust() Statistical Model-based clustering

Chapter 2. Literature Survey 15

R. There are three main categories presented in this table: the hierarchical cluster-

ing group (including two subgroups: agglomerative and divisive), the partitional

clustering group and the others group (e.g. fuzzy clustering, self-organizing map).

Besides using output structure, clustering methods can also be distinguished by

the distance metric and the size of the data. There are data points in the Euclidean

space where a cluster can be summarized using a centroid versus data points in

non-Euclidean spaces where other methods of summarization are required e.g. the

longest common subsequence of all sequences in a cluster can be used to summarize

that cluster. Another way to differentiate clustering algorithms is by the type of

memory they use during the clustering processes. Algorithms targeting very large

datasets often require external memory besides the main memory. Hence, these

methods often need additional techniques to reduce the hard disk assessing time.

Figure 2.1 shows the taxonomy of the most commonly used clustering algorithms

in the literature, incorporating all the various ways to differentiate clustering tech-

niques as discussed above. This research focuses on biological sequence cluster-

ing. More specifically, this research involves the development of new clustering

methods for very large biological sequence data in high-dimensional (probably

non-Euclidean) space.

2.1.2 Biological sequence clustering

Clustering is used to analyze high-throughput genomic data by grouping genes or

proteins with similar expression patterns or sharing similar biological pathways.

This analysis is particular important when dealing with novel genomic data pro-

duced by newly-developed high-throughput sequencing platforms such as 454 and

Illumina sequencers.

Clustering starts with data points which are objects in some space. For example,

DNA clustering starts with DNA sequences which are objects in the sequence

space. In evolutionary biology, the sequence space contains all possible biological

sequences (gene or protein) [29]. Each letter represents a dimension in the sequence

Chapter 2. Literature Survey 16

C
lu

st
e

ri
n

g
Hierarchical clustering

Agglomerative (AGNES, S-Plus),

Divisive (DIANA, S-Plus),

Multiphase (BIRCH, CURE, ROCK),

Dynamic modelling (CHAMELEON)

Partitional clustering

K-means (k-means, k-modes),

K-medoids (PAM, CLARA, CLARANS)

Density-based clustering

DBSCAN, OPTICS, DENCLUE

Grid-based clustering

STING, WaveCluster, CLIQUE

Graph-based clustering

Power Iteration Clustering, Shared Nearest Neighbour...

Model-based clustering

Probabilistic (EM)

Statistical (COBWEB, CLASSIT)

Others

Neural network (SOM, fuzzy clustering by ANN,

Evolutionary Algorithms)

Figure 2.1: Taxonomy of clustering algorithms.

Chapter 2. Literature Survey 17

space [30]. Each nucleotide in a DNA sequence is represented by an axis with 4

possible positions, each of which corresponds to an item in the DNA alphabet

Σ = A, T,G,C. A DNA sequence of length n can be viewed as a data point in a

Σn space with 4n possibilities. In other words, clustering is about grouping data

points in a most sensible way possible for a particular purpose.

Popular distance measures in the Euclidean space include the Euclidean distance

(L2 norm), the Manhattan distance (L1 norm) and the L∞ distance (L∞ norm).

On the other hand, common non-Euclidean distance measures include the Jaccard

distance, cosine distance, Hamming distance, edit distance and genetic distance.

To be considered as distance metrics, these measures must satisfy the following

three properties:

1. The non-negative property: d(a, b) ≥ 0 and d(a, b) = 0 when a = b

2. The symmetric property: d(a, b) = d(b, a)

3. The triangular inequality property: d(a, b) + d(b, c) > d(a, c) if a, b, c are

different data points

The same distance metric concept apply to biological sequences which are not in

the Euclidean space, but in the sequence space. For sequence comparison metrics,

three aforementioned conditions are often relaxed. Most commonly used measures

for DNA and protein sequences include the edit distance and the genetic distance.

2.2 OTU clustering

2.2.1 Background

Taxonomic profiling using 16S rRNA marker genes is an important step in a

metagenomic analysis pipeline [31]. Examples include profiling of microbiomes in

the human gut [32, 33] and in seawater [34]. Pyrosequencing is a next-generation

Chapter 2. Literature Survey 18

sequencing technology capable of producing a large amount of sequencing data in

a short period. This sequencing technology has been frequently used in metage-

nomic projects to sequence the hypervariable regions of the 16S rDNA marker

gene for the purpose of biodiversity assessment [35].

Clustering is an important technique to perform taxonomic profiling of a micro-

bial community by binning 16S rRNA amplicon reads into operational taxonomic

units (OTUs). Existing OTU clustering tools for biodiversity assessment of 16S

amplicon datasets can be grouped into three approaches: the closed-reference, the

de novo and the open-reference approach (a hybrid approach of the former two

approaches) [36, 37]. The closed-reference approach identifies a taxonomy com-

position of a metagenome by referencing the input dataset against a reference

database of known micro-organisms. Although known microbes can be efficiently

classified, this approach lacks the ability to identify novel species. According to

the ’rare biosphere’ theory [34, 38], many microbes have not been identified in ex-

isting reference databases. Therefore, grouping unknown microbes is an important

task, which motivates the de novo approach.

The de novo approach performs biodiversity profiling by grouping the DNA se-

quences in an input dataset into clusters. The open-reference approach is a hybrid

approach that first identifies known microbes by using the closed-reference and

subsequently channeling the genetic materials of unknown organisms to a de novo

algorithm for clustering. In this thesis, I focus on the de novo approach that

can be used either independently or together with a closed-reference algorithm for

open-reference OTU picking.

2.2.2 De novo OTU clustering

The de novo (or taxonomy-independent) method, does not need reference databases

for grouping. This approach works based on an underlying assumption that a full-

length 16S rDNA (in some cases, a region or a group of regions on the full-length

Chapter 2. Literature Survey 19

sequence) is representative of a particular species. It performs sequence cluster-

ing and then groups input reads into clusters called operational taxonomic units

(OTUs) based on a similarity threshold. Most existing studies and tools use heuris-

tic threshold values of 97% and 95% for grouping at the species and at the genus

level respectively. Depending on the structure of output groupings, existing algo-

rithms for the de novo approach can be further grouped into two categories: greedy

heuristic clustering (GHC) and agglomerative hierarchical clustering (AHC).

Greedy heuristic clustering (GHC) is a partitional clustering method that requires

a specific distance level as input. Greedy heuristic clustering is typically computed

by first choosing an input read as a seed. Each subsequent input read is then

compared against the existing set of seeds. If this sequence is similar to one of the

seeds within a predefined level (often at 97% sequence similarity), it will be added

to the cluster represented by that seed. Otherwise, this sequence is considered as

a new seed.

State-of-the-art tools in this category include UCLUST [39], USEARCH6, UP-

ARSE [40], CD-HIT-OTU [41], DySC [42] and QIIME’s pick otus [37]. UCLUST

chooses cluster seeds based on the percentage identity between a sequence and a

seed. USEARCH and UPARSE perform a similar seed choice as UCLUST with

additional filtering of clusters with low abundance i.e. small cluster sizes. CD-

HIT-OTU groups similar sequences above 97% identity threshold and keeps the

longest sequence as seeds. It also employs a fast heuristic to find high identify seg-

ments between sequences and hence avoid more costly full alignments. QIIME’s

pick otus implements a number of popular reference-based and de novo OTU al-

gorithms with the UCLUST algorithm chosen as the default method. DySC uses

a dynamic readjustment of cluster seeds. All GHC methods have linear space and

time complexity in terms of the number of input reads.

Agglomerative hierarchical clustering (AHC) is a bottom-up clustering technique

that requires a distance matrix computed from the pairwise comparisons of all

input reads. Notable tools in this category include mothur [43], ESPRIT [44] and

ESPRIT-Tree [45].

Chapter 2. Literature Survey 20

ESPRIT employs the traditional hierarchical approach of first computing an alignment-

based all-against-all distance matrix and then performs either complete-linkage or

average-linkage clustering on that matrix. ESPRIT reduces computational com-

plexity by generating only the lower part of a dendrogram. Although ESPRIT

has a time and space complexity of O(N2) as traditionally AHC algorithms, the

empirical runtime and memory usage are significantly reduced by a factor pro-

portional to the sparsity of the distance matrix used for generating the partial

dendrogram.

The approach of mothur is similar to ESPRIT but instead of pairwise global

alignment mothur uses multiple sequence alignment produced by a third-party

alignment tool such as MUSCLE [46] to compute the pairwise distance matrix.

Several studies have shown that using pairwise alignment produces better cluster-

ing outcomes than multiple sequence alignments [38, 47].

Different from ESPRIT and mothur, ESPRIT-Tree employs both greedy and hier-

archical strategies. Instead of seeds, it uses “probabilistic sequences” to present a

group of similar sequences and then applies a BIRCH-like [48] clustering method

to build and refine a “pseudo-metric based partition tree” using these probabilistic

sequences instead of the original input sequences. ESPRIT-Tree has quasilinear

space and time complexity [45].

Overall, the AHC approach has quadratic or cubic time and space complexity due

to the all-against-all pairwise read comparison. Meanwhile, the GHC implemen-

tations often has linear complexity, hence faster and more memory-efficient than

the AHC approach. On the other hand, AHC tools have been shown to produce

grouping results of higher quality than GHC tools [47]. Since the AHC approach

is highly compute-intensive, it does not scale well for large datasets. For example,

to cluster a dataset with N reads of length L, the time complexity to calculate

the pairwise distance matrix is O(N2L2) and the space complexity to perform

clustering ranges from O(N2) to O(N3) [49].

Current OTU clustering tools use a default distance cutoff value of 0.03. This

threshold value is chosen based on the presumption that the similarity between a

Chapter 2. Literature Survey 21

pair of 16S rDNA short reads created from the same full-length 16S rDNA (hence

from the same species) is higher than 97%. This assumption holds and hence is

only applicable for datasets in which the pairwise distances between reads from

the same species are less than 0.03 and the distances between reads from different

species are larger than 0.03. However, under circumstances where this assumption

does not hold, we prefer a more robust method to determine the cutoff threshold.

Recent OTU binning tools supporting dynamic cutoff thresholds are CROP [50]

and M-pick [51]. CROP applies Bayesian clustering on input sequences which are

described by Gaussian mixture models. Meanwhile, M-pick builds a graph from

the input dataset and subsequently detects groups of edges in which the number of

connections are “significantly higher than expected by chance”. M-pick employs

the concept of “modularity of a grouping” to indicate if a graph partitioning reveals

the underlying community structure.

2.3 GPGPU in bioinformatics

Parallel computing has been heavily employed in the field of bioinformatics due

to the heavy computation often occurs during a bioinformatic study. Especially,

general-purpose processing using graphical processing units (GPGPU) has become

more and more popular, especially amongst applications for sequence analysis and

3D molecular simulation.

For sequence analysis, GPUs are mainly used for sequence alignment for the pur-

pose of sequence comparison for sequence database search. A notable GPU-based

application is CUDASW++ for Smith-Waterman protein sequence global align-

ment [52–54]. For protein multiple sequence alignment we have MSA-CUDA [55].

For protein sequence BLAST search, two popular tools are CUDA-BLASTP [56]

and GPU-BLASTP [57].

For error correction of next-generation sequencing data, we have CUSHAW for

short read alignment [58–60]. We also have DecGPU [61] and Musket [62] for

Chapter 2. Literature Survey 22

short read error correction [63]. In the context of 3D molecular simulation, we have

applications such as molecular dynamics simulation [64] and 3D protein docking

[65, 66].

Besides bioinformatics, GPGPU has also been used in other data-intensive appli-

cations including graph processing [67, 68] and deep learning for big data appli-

cations such as general-purpose unsupervised learning [69, 70], image processing

and classification [71, 72].

Chapter 3

Parallel Distance Matrix

Computation

As discussed in Chapter 2, the clustering analysis using the agglomerative hier-

archical clustering approach consists of two stages: the distance matrix compu-

tation stage and the cluster hierarchy construction stage. The former stage is

often a compute intensive procedure, hence in the context of this research, is ac-

celerated using compute-efficient algorithms on parallel processors. Specifically,

parallel algorithms in either Compute Unified Device Architecture (CUDA) lan-

guage or Open Multi-Processing (OpenMP) are developed to execute this stage on

a general-purpose graphical processing unit (GPGPU) or a multi-core central pro-

cessing unit (CPU) respectively. This chapter details the background of parallel

programming, describes three main parallel distance matrix computation algo-

rithms developed during the course of this research and reports the acceleration

achieved by these parallel algorithms compared to their sequential counterparts.

The work described in this chapter has been published in [73] and [42].

23

Chapter 3. Parallel Distance Matrix Computation 24

3.1 Parallel computing

Parallel computing refers to the use of a parallel computer to reduce the processing

time required to solve a computational problem. A parallel computer is a com-

puter system with multiple processors. There are two main categories of parallel

computers: multicomputers and centralized multiprocessors. As suggested by its

name, a multicomputer is a parallel computer that consists of multiple computers

connected via a network. A centralized multiprocessor (also known as a symmet-

rical multiprocessor or SMP) is a highly integrated parallel computer consisting

of multiple CPUs sharing a single memory.

This section introduces two parallel programming techniques for SMPs: OpenMP

programming for multicore CPUs and CUDA programming for GPGPUs, as well

as a parallelization technique for multicomputers using the message passing in-

terface (MPI). These technologies can also be combined together in one program

to support heterogeneous systems. For examples, a program written in C using

OpenMP and MPI libraries can run on a cluster of multicore CPUs. Similarly, a

program written in C using CUDA and MPI can run on a cluster of GPGPUs. A

program written in C using CUDA, MPI and OpenMP libraries can use all the

parallel computation potentials of a cluster of both CPUs and GPUs.

There are three main types of parallelism: data parallelism where the same oper-

ation is applied to different data elements, functional parallelism where different

operations are applied to different data elements and pipelining where a problem

is divided into multiple computation stages and the stages from multiple problem

instances are chained together into an assembly line.

Data dependency graph is a directed graph that is often used to identify the par-

allelism amongst subtasks of a computational problem. Each vertex represents a

subtask and an edge from vertex u to vertex v denotes the dependency of subtask

v on subtask u i.e. subtask u must finish before subtask v starts. If there is no

edge between a pair of subtasks, they are independent of each other, hence can be

executed concurrently.

Chapter 3. Parallel Distance Matrix Computation 25

3.1.1 OpenMP programming

OpenMP is a popular and easy-to-use application programming interface (API)

used for parallel programming on multiprocessors i.e. a CPU with multiple cores.

OpenMP can be used together with C, C++ or FORTRAN.

OpenMP uses the shared memory model for parallel computation. The shared

memory model is used when multiple processors have access to the same memory

resource so that the can synchronize and communicate with each other using shared

variables. Figure 3.1 illustrates this concept.

OpenMP employs fork/join parallelism [74] in which there is a master thread

running the sequential portion of the code and creating additional threads to

execute the parallel sections (fork). At the end of a parallel portion, the child

threads are suspended and the control returns to the master thread (join).

Two main components of OpenMP are compiler directives and functions. Exam-

ples of OpenMP compiler directives include: parallel (precedes the code block to be

executed in parallel with multiple threads), for (precedes a for loop with indepen-

dent iterations that can be divided among multiple parallel threads), critical (pre-

cedes a critical section - a code section that should be executed by only one thread

at a time), etc. Examples of OpenMP functions include: omp get num procs (re-

turns the number of cores in a multiprocessor), omp set num threads (set the

Processor 1 Processor 2 Processor n ….

System bus

Shared memory

Figure 3.1: Shared memory model for parallel computation.

Chapter 3. Parallel Distance Matrix Computation 26

number of threads used to execute a code block), omp get thread num (returns

the thread ID), etc. Directives and functions allow easy transformation of a serial

program into a parallel program one code block at a time (incremental paralleliza-

tion).

OpenMP are often used in conjunction with MPI to program a cluster of multipro-

cessors. It can also be used in conjunction with CUDA to program a workstation

with multiple GPU cards installed.

3.1.2 MPI programming

MPI is the most popular specification used by parallel programs to pass messages

amongst computers in a cluster. In this work, I use the OpenMPI library [75]

which implements the MPI specification for parallel programs implemented in C.

Interconnection

Network

Processor

+ Memory

1

Processor

+ Memory

2

Processor

+ Memory

...

Processor

+ Memory

n

Figure 3.2: Message passing model for parallel computation.

Chapter 3. Parallel Distance Matrix Computation 27

The message passing parallel programming model assumes that the underlying

hardware is a collection of independent processors, each with its own local memory.

They communicate with each other by passing messages via an interconnection

network instead of assessing a common shared memory as in the OpenMP model.

Figure 3.2 illustrates this concept.

When running, a parallel program using MPI spawns multiple processes running on

multiple processors. Since all processes executes the same program, each process

is given a unique process ID which is used by the parallel program to distinguish

them in order to assign different tasks to different processes. Examples of MPI

functions include: MPI Init and MPI Finalize to initialize and shutdown MPI,

MPI Comm rank to determine a process ID, MPI Comm size to find the number

of processes running an MPI program.

3.1.3 CUDA programming

An NVIDIA graphical processing unit is created around a scalable programmable

processor array consisting of a number of streaming processors. The number of

streaming processors per device varies depending on the GPU type. Each stream-

ing processor is in turn contains a number of scalar processors and a configurable

on-chip shared memory. For the Fermi-based GPUs used in this project, each

GPU has 16 streaming processors, each of which has 32 scalar processors. The

on-chip memory on each streaming processor can be configured as 16 KB of PBSM

with 48 KB of L1 cache or as 48 KB of PBSM with 16 KB of L1 cache. Figure

3.3 [2] illustrates the architecture of a Fermi NVIDIA GPU.

CUDA is a parallel programming language used to program an NVIDIA GPU.

It extends general programming languages with a minimal set of abstractions for

expressing parallelism. Similar to OpenMP, CUDA enables users to write parallel

code for CUDA-enabled processors using familiar languages such as C, C++ and

FORTRAN [76].

Chapter 3. Parallel Distance Matrix Computation 28

Figure 3.3: Fermi architecture [2]

Chapter 3. Parallel Distance Matrix Computation 29

Figure 3.4: Thread hierarchy and memory hierarchy of a Fermi GPU: the
GTX 580 based on the GPU memory architecture by Nickolls and Dally [3]

A CUDA program is comprised of two parts: a host program running one or more

threads on a host CPU, and one or more parallel kernels which are executed on

a GPU device [77]. A CUDA kernel is a serial function launched on a set of

lightweight parallel threads. A group of lightweight concurrent threads is called

a thread block and a group of thread blocks is called a grid. When executing a

block, all threads in the block are split into small groups of 32 parallel threads,

called warps, which are scheduled in a single-instruction multiple-threads (SIMT)

fashion. Divergence of execution paths is allowed for threads in a warp, but

multiprocessors realize full efficiency and performance when all threads in a warp

take the same execution path.

Chapter 3. Parallel Distance Matrix Computation 30

Figure 3.5: The memory hierarchy of a Fermi GPU [2].

Threads within a block can access a fast per-block shared memory (PBSM) and

can synchronize through barriers. Threads within the same grid can communicate

with each other through atomic operations on the global memory shared amongst

all threads. The layered structure of the concurrent lightweight threads allows

coarse-grained data parallelism and task parallelism at the block level and fine-

grained data parallelism and thread parallelism parallelization at the thread level.

Figure 3.4 illustrates the thread hierarchy on a SM, which includes a grid of mul-

tiple blocks, each of which consists of many threads. It also shows the memory

hierarchy on a standard Fermi-based GPU device - the GTX 580, which includes

registers, shared, global, constant, shared memory as well as the characteristics of

each memory type .

Figure 3.5 shows the memory hierarchy of a Fermi GPU card. A Fermi card has

48KB/16KB of L1 cache and 768KB (6 × 128KB) of L2 cache that serves all data

accesses to GPU DRAM and system memory. L2 cache can be controlled through

Chapter 3. Parallel Distance Matrix Computation 31

inline modifiers in Parallel Thread Execution (PTX) assembly statements. In this

work, we focus on optimizing the L1 cache and texture cache, leaving the L2 cache

optimization to the hardware.

3.2 Biological sequence distance comparison

In this research, we study and employ two alignment-free distance metrics: the

Euclidean distance based on sequence embedding and the k-mer distance, together

with an alignment-based distance metric: the genetic distance.

The genetic distance is chosen since it is the most sensible and widely-used distance

for biological distance comparison. However, for large datasets the execution time

for the pairwise genetic distance matrix can be significantly long albeit computed

on GPUs. K-mer distance and Euclidean distance based on sequence embedding

are chosen since they have been shown to be highly correlated with the genetic

distance. On the other hand, they require significantly less execution time to

compute. Therefore, these alignment-free distances are used to substitute the

genetic distance in cases where accuracy can be compromised such as for the

filtration step in CRiSPy-CUDA.

3.3 k-mer distance

3.3.1 Definition

Definition 1

For a text sequence, a k-mer (also known as k-tuple or k-shingle) is defined as a

substring of length k found in that sequence. A k-mer tuple bag of a sequence S

is set of all k-mers (including duplicates) found in S.

Chapter 3. Parallel Distance Matrix Computation 32

The k-mer distance between two text sequences R and S is calculated based on

the k-tuple bags (i.e. duplicates are included) BR and BS created from the these

two sequences:

dk(R, S) = 1−
|BR ∩BS|

min(|BR|, |BS|)
(3.1)

Example:

Given two DNA sequences: R = “ATGAT” and S = “ATTTAAT”.

R consists of 4 k-mers of length 2. The tuple bag of R is: BR = AT, TG,GA,AT .

S consists of 6 k-mers of length 2. The tuple bag of S is: BS = AT, TT, TT, TA,AA,AT .

The k-mer distance between dk(R, S) = 1− 2
min(4,6)

= 1− 2
4
= 0.5

Definition 2

Here is another formulation of k-mer distance that is useful when k is small,

particularly for long sequences. Given two sequences R and S of length lR and lS

and a value k > 0, their k-mer distance is calculated using the following formula:

dk(R, S) = 1−

∑|Ω|
p=1 min(nR[p], nS[p])

min(lR, lS)− k + 1
(3.2)

The set Ω contains all substrings over the alphabet Σ of length k. The substrings

in Ω are enumerated in lexicographically sorted order. nR(p) and nS(p) represent

how frequent the substring with index p appear in sequence R and sequence S

respectively.

Using this second definition, we can represent a sequence of an arbitrary length

by a vector of fixed length |Ω| = |Σ|k as illustrated in the example below.

Example:

For DNA sequences Σ = {A, T,G,C}.

Chapter 3. Parallel Distance Matrix Computation 33

If k = 2, Ω = {AA,AC,AG,AT,CA,CC,CG,CT,GA,GC,GG,GT, TA, TC, TG, TT}.

Given two aforementioned DNA sequences: R = “ATGAT” and S = “ATTTAAT”.

nR = [0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0]

nS = [1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2]

dk(R, S) = 1− 2
min(5,7)−2+1

= 1− 2
4
= 0.5

Relationship with Jaccard similarity

The concept of k-mer distance between two sequences is closely related to the

concept of Jaccard similarity of sets.

The Jaccard similarity (also known as the Jaccard index or the Jaccard similarity

coefficient) of two sets A and B is defined as:J(A,B) = |A∩B|
|A∪B|

The Jaccard distance, which measures the dissimilarity between two sets, is com-

plementary to the Jaccard index: dJ(A,B) = 1− J(A,B)

3.3.2 Sorting-based k-mer distance calculation

Algorithm 1 Sorting-based k-mer distance calculation for two reads R1 and R2

of length l1, l2

count← 0
i← 0
j ← 0
while i < L1 − k + 1 and j < L2 − k + 1 do
if V1(i) < V2(j) then
i← i+ 1

else if V1(i) > V2(j) then
j ← j + 1

else
count← count+ 1
i← i+ 1
j ← j + 1

end if
end while
distance← count/(min(L1, L2)− k + 1)

Chapter 3. Parallel Distance Matrix Computation 34

This subsection introduces a sorting-based algorithm for calculating pairwise k-

mer distances. This algorithm has been designed based on the first definition of

k-mer distance as discussed above.

In the first step, we compute a value array Vi for each input read Ri. Vi contains

all substrings of length k in the sequence Ri. The substrings in Vi are sorted in

lexicographical order. To compute the distance between two reads, we scan their

corresponding value arrays in ascending order and in the meantime keep track of

the indices of these arrays. In each step, we compare two elements, each element

from one array. If the two elements are the same, we increment the values of

two indices and also the counter “count”. If the two elements are different, only

the index pointing to the array of the smaller value is increased by one. The

computation stops when the end of either array is reached. At that time, the

value “count” contains the number of similar substrings that the two input reads

have in common.

The sorting-based algorithm is illustrated in Algorithm 1. It requires time and

space O(l) for two reads of average length l. This k-mer distance computation

algorithm has been published in [73].

In CRiSPy-CUDA (Section 5.2), before computing the genetic distance matrix,

in the filtration step we need to compute the pairwise distance matrix using the

k-mer distance. The aforementioned sorting-based algorithm helps to speed up the

pairwise matrix calculation since (1) the decomposition of the original biological

sequences into k-mers is only done once (2) the string comparison operations of

k-mers are faster since each k-mers has been converted into a value (3) the number

of comparisons performed for a sequence pair is fewer thanks to the strategy of

sorting the value array beforehand. The next two subsections present the parallel

computation of the k-mer pairwise distance matrix using OpenMP and CUDA.

Chapter 3. Parallel Distance Matrix Computation 35

Figure 3.6: The speedup of the parallel k-mer distance computation running
on a multicore CPU with respect to the number of threads

Figure 3.7: The overhead of the parallel OpenMP program for computing
k-mer distances

Chapter 3. Parallel Distance Matrix Computation 36

3.3.3 OpenMP implementation

Figure 3.6 shows the speedup achieved by the parallel k-mer distance computation

running on a multi-core CPU. Each thread runs on a processor. The speedup is

the ratio between the serial runtime (i.e. the execution time using 1 thread) and

the parallel runtime (i.e. the execution time using 2 or more threads) [74]. The

actual speedup is less than the theoretical speedup due to the part of the code

that writes the output to file that does not run in parallel.

Figure 3.7 shows the overhead of the OpenMP program as the number of threads

increases. Using more threads often reduces computation time but increases com-

munication time. Because there is little communication between independent par-

allel tasks, we can observe that the overhead is negligible making the parallel

program very efficient.

The efficiency is computed using the following formula:

Efficiency =
Serialexecutiontime

Numberofthreads× Parallelexecutiontime
(3.3)

3.3.4 CUDA implementation

The massively parallel CUDA implementation first pre-computes all value arrays

on the CPU in parallel using OpenMP. They are then transferred to read-only

CUDA texture memory. Each pairwise distance k-mer computation is independent

of each other and thus each CUDA thread can calculate a pairwise distance in

parallel. To optimize memory accesses within a CUDA thread block, one value

array is stored in shared memory. Each thread within the block then fetches

value arrays from texture memory and compares the fetched array with the value

array stored in shared memory in parallel. Finally, the calculated k-mer distance

values are transferred back to CPU. The pair indices with k-mer distance smaller

than a given threshold value are kept in a sparse matrix index for the subsequent

processing stage.

Chapter 3. Parallel Distance Matrix Computation 37

(a) Block size

(b) Register per thread

Figure 3.8: Choosing the block size and the register count per thread in order
to maximize the multiprocessor warp occupancy. The red triangles mark the
chosen settings for the CUDA program to compute k-mer distances: 256 threads

per block and 18 registers per thread.

Chapter 3. Parallel Distance Matrix Computation 38

Figure 3.8 shows the result from the CUDA occupancy calculator for choosing the

optimal block size and the register count per thread for the targeted GPU in order

to achieve maximum multiprocessor warp occupancy. To optimize the performance

of the CUDA parallel code, I use the NVIDIA Visual Profiler to benchmark the

occupancy and GPU utilization. Figure 3.9 shows the profiling result for the k-mer

distance computation module. The parallel k-mer program achieves a practical

occupancy value of 85.8% over the theoretical occupancy of 100%. It also has a

high utilization level: only 1.6% runtime is spent for memory transfer while 91.1%

execution time is used for calculation.

3.4 Euclidean distance

3.4.1 Definition

The Euclidean distance is perhaps the most commonly used distance measure

between data points in the Euclidean space. In this work, we use the Euclidean

distance to measure the distances between a pair of sequence vector objects. A

sequence vector is used to represent a biological sequence in the Euclidean space. A

DNA sequence is transformed into a sequence vector via a process called sequence

embedding which is described in details in the section about CRiSPy-Embed of

Chapter 6.

Figure 3.9: Profiling the CUDA program for computing k-mer distance run-
ning on an NVIDIA GTX480 using the NVIDIA Visual Profiler. The parallel

program achieves a high occupancy value of 87.4%.

Chapter 3. Parallel Distance Matrix Computation 39

(a) Block size

(b) Register per thread

Figure 3.10: Choosing the block size and the register count per thread in
order to maximize the multiprocessor warp occupancy. The red triangles mark
the chosen settings for the CUDA program to compute Euclidean distances: 256

threads per block and 14 registers per thread.

Chapter 3. Parallel Distance Matrix Computation 40

After transform input reads into sequence vectors using the sequence embedding

procedure in CRiSPy-Embed, the normalized Euclidean distance d(i, j) between

a pair of sequence vectors Vi, Vj is computed as follows:

d(Vi, Vj) =

√

∑M

m=1(Vim − Vjm)2

M
(3.4)

Similar to the standard Euclidean distance, the normalized distance is a metric

on the set ℜM . Therefore, the normalized Euclidean distance also complies to the

three properties of a metric, specifically the symmetry, the non-negativity, and

the triangle inequality property. The triangle inequality property of the Euclidean

metric allows partial Euclidean distance matrices to be effectively clustered by

SparseHC used in CRiSPy-Embed.

3.4.2 Parallel implementations

The Euclidean distance computation is parallelized using the OpenMP (Open

Multi-Processing) on multi-core CPUs and CUDA (Compute Unified Device Ar-

chitecture) programming language on GPUs. Since the matrix is large and cannot

fit into the GPU memory, I divide the triangular matrix into small sub-matrices

and process each sub-matrix at a time. I use the pinned host memory to en-

sure high memory transfer throughput between host and device. The effective

throughput is 5.94 Giga Bytes Per Seconds (GBPS) compared to maximum possi-

ble throughput of 8GBPS. Figure 3.10 shows the block size and the register count

per thread obtained by profiling the Euclidean distance computation program us-

ing the CUDA occupancy calculator.

Besides, CUDA asynchronous streams are used to allow concurrent data transfer

and kernel execution. Therefore, the Euclidean module achieves 97% of GPU de-

vice utilization. The computation on a Fermi-based GPU (GeForce GTX 580) is

4.5x - 5.5x faster than the computation on a quad-core CPU (Intel Xeon W3540)

Chapter 3. Parallel Distance Matrix Computation 41

using four threads, and 13x - 15x faster than the single-threaded CPU computa-

tion.

“

 - A T G A T

-

U L D

0 0 0

M

0

U L D

0 0 0

M

0

U L D

0 0 0

M

0

U L D

0 0 0

M

0

U L D

0 0 0

M

0

U L D

0 0 0

M

0

ML

0

AL

0

ML

0

AL

1

ML

0

AL

2

ML

0

AL

3

ML

0

AL

4

ML

0

AL

5

A

U L D

0 0 0

M

0

U L D

0 0 1

M

5

U L D

0 1 0

M

0

U L D

1 0 0

M

0

U L D

0 0 1

M

5

U L D

0 1 0

M

0

ML

0

AL

1

ML

0

AL

1

ML

1

AL

2

ML

1

AL

4

ML

0

AL

4

ML

1

AL

 5

T

U L D

0 0 0

M

0

U L D

0 1 0

M

0

U L D

0 0 1

M

10

U L D

0 1 0

M

5

U L D

1 0 0

M

0

U L D

0 0 1

M

10

ML

0

AL

2

ML

1

AL

3

ML

0

AL

2

ML

1

AL

3

ML

1

AL

5

ML

0

AL

5

T

U L D

0 0 0

M

0

U L D

0 1 0

M

0

U L D

0 0 1

M

5

U L D

0 0 1

M

6

U L D

0 0 1

M

1

U L D

0 0 1

M

5

ML

0

AL

3

ML

1

AL

4

ML

1

AL

4

ML

1

AL

3

ML

2

AL

4

ML

1

AL

6

A

U L D

0 0 0

M

0

U L D

0 0 1

M

5

U L D

0 1 0

M

0

U L D

0 0 1

M

1

U L D

0 0 1

M

11

U L D

0 1 0

M

6

ML

0

AL

4

ML

0

AL

4

ML

1

AL

5

ML

2

AL

5

ML

1

AL

4

ML

2

AL

5

A

U L D

0 0 0

M

0

U L D

0 0 1

M

5

U L D

0 0 1

M

1

U L D

0 0 1

M

-4

U L D

0 0 1

M

6

U L D

0 0 1

M

7

ML

0

AL

5

ML

0

AL

5

ML

1

AL

5

ML

2

AL

6

ML

2

AL

6

ML

2

AL

5

T

U L D

0 0 0

M

0

U L D

0 1 0

M

0

U L D

0 0 1

M

10

U L D

0 1 0

M

5

U L D

1 0 0

M

1

U L D

0 0 1

M

11

ML

0

AL

6

ML

1

AL

7

ML

0

AL

6

ML

1

AL

7

ML

3

AL

7

ML

2

AL

7

Figure 3.11: Scoring matrices for aligning two input sequences ATGAT and
ATTAAT using the new linear memory formula with the scoring scheme: match
score is 5, mismatch score is -4, gap penalties are -10 and -5 for gap opening

and gap extension respectively.

”

Chapter 3. Parallel Distance Matrix Computation 42

3.5 Genetic distance

3.5.1 Definition

In order to run as many threads as possible on GPUs, the amount of memory

used in each kernel to compute an alignment of two reads needs to be optimized.

As a result, a linear memory formula for semi-global alignment with affine gap

penalty as derived from the standard formula of the Needleman-Wunsch dynamic

programming (DP) algorithm with 3 scoring matrix: horizontal, vertical and di-

agonal [78].

Three standard scoring matrices M , V , H are replaced with one scoring matrix

M and three mutually exclusive binary DP matrices U , L, D to store immedi-

ate traceback pointers. This replacement results in little effect on the alignment

outcomes though significantly reduce the amount of memory required to store an

alignment cell from 3 integers to 1 integer and 3 booleans (embedded in a char),

thus increases the parallelism level of the CUDA program.

The scoring matrix of the alignment is computed using the following formula:

M(p, q) = max



















M(p− 1, q − 1) + sbt(Ri[p], Rj[q])

M(p, q − 1) + αD(p, q − 1) + βU(p, q − 1)

M(p− 1, q) + αD(p− 1, q) + βL(p− 1, q)

(3.5)

where D, L and U are binary DP matrices to indicate which neighbor (diagonal,

left or up) the maximum in cell M(p, q) is derived from. Matrices D, L and U are

Chapter 3. Parallel Distance Matrix Computation 43

defined as follows:

U(p, q) = 0, L(p, q) = 0, D(p, q) = 1

if M(p, q) = M(p− 1, q − 1) + sbt(Ri[p], Rj[q])

U(p, q) = 0, L(p, q) = 1, D(p, q) = 0

if M(p, q) = M(p, q − 1) + αD(p, q − 1) + βU(p, q − 1)

U(p, q) = 1, L(p, q) = 0, D(p, q) = 0

if M(p, q) = M(p− 1, q) + αD(p− 1, q) + βL(p− 1, q)

(3.6)

Note that except for the first row and the first column, D(p, q)+L(p, q)+U(p, q) =

1 for p = 0, . . . , li, q = 0, . . . , lj.

To make the genetic distance calculation more suitable for parallelization, a trace-

back-free linear space solution was implemented by merging the ml and al calcu-

lation into the DP computation of the optimal global alignment score. To obtain

the values ml and al, two more matrices ML and AL are introduced with the

recurrent relations as follows:

ML(p, q) = U(p, q)ML(p, q − 1) + L(p, q)ML(p− 1, q)

+D(p, q)ML(p− 1, q − 1)−m(Ri[p], Rj[q]) + 1

AL(p, q) = U(p, q)AL(p, q − 1) + L(p, q)AL(p− 1, q)

+D(p, q)AL(p− 1, q − 1) + 1

(3.7)

where m(Ri[p], Rj[q]) = 1 if Ri[p] = Rj[q] and m(Ri[p], Rj[q]) = 0 otherwise.

Initial conditions are given by ML(0, q) = ML(p, 0) = 0, AL(0, q) = q, AL(p, 0) =

p for p = 0, . . . , li, q = 0, . . . , lj.

Figure 3.11 illustrates an example for the computation of the DP matrices M ,

U ,D, L, ML and AL. The dark shaded cells and arrows show the semi-global

alignment path from the cell with the largest value in the final row or final column

(in this case value 7 in cell(6,5)) to any cell from the first row or the first col (in

this example, cell(2,0)) . Note that this is a score-only computation and therefore

requires only linear space.

Chapter 3. Parallel Distance Matrix Computation 44

Furthermore, the banded alignment concept has been employed to reduce the num-

ber of computed DP matrix cells. In this approach, only cells within a narrow band

along the main diagonal are calculated. Even though some of the distance values

might change, the pairwise distances can still result in a similar OTU structure

after clustering.

3.5.2 CUDA implementation

An overview of the CUDA implementation on a single GPU of the genetic distance

computation is shown in Figure 3.12. The pair indices and input reads are trans-

ferred to CUDA global memory, whereby reads are represented as binary strings

using two bits per base: A=00, T=01, G=11, C=10.

Multiple CUDA threads can calculate the pairwise distances in parallel. During

the computation, one row of DP matrix values per pairwise alignment is stored in

CUDA global memory which is accessed using coalesced data transfer to reduce

transfer time. Moreover, each thread within a thread block computes a DP matrix

CPU GPU

Sequence file Binary sequences

Pair file Sparse matrix of pairs

Output file

Texture memory

Shared memory

Temp genetic distances
Sparse genetic
distance matrix

Registers

Temporary
variables

Local memory

1 column of the DP matrix

Global memory

Executing host codes written
with C++, OpenMP

Execute device code – CUDA kernels

Sparse matrix of pairs

Binary sequences

Binary
sequences

Sparse genetic
distance matrix

4x4 DP submatrix

Figure 3.12: The overall structure of the parallel CUDA program for comput-
ing genetic distances on a GPU.

Chapter 3. Parallel Distance Matrix Computation 45

(a) Block size

(b) Register per thread

Figure 3.13: Choosing the block size and the register count per thread in
order to maximize the multiprocessor warp occupancy. The red triangles mark
the chosen settings for the CUDA program to compute genetic distances: 512

threads per block and 62 registers per thread.

Chapter 3. Parallel Distance Matrix Computation 46

Figure 3.14: Profiling the CUDA program for computing genetic distance
running on an NVIDIA GTX480 using the NVIDIA Visual Profiler. The parallel

program achieves a high GPU utilization value of 97.9%.

block of size 4 × 4 using register - the memory type with fastest access, which

reduces the costly accesses to global memory by a factor of 4 and makes the kernel

compute-bound rather than memory-bound. At the end of the computation, each

thread returns a distance value to a buffer located in the per block shared memory.

The result buffer is then transferred to CUDA global memory, back to the host

memory and the CPU creates the final sparse genetic distance matrix.

Figure 3.13 shows the result from the CUDA occupancy calculator for choosing the

optimal block size and the register count per thread for the targeted GPU. Figure

3.14 shows the profiling result for the genetic distance computation. Although

it has fully utilized the GPU for computation with 97.9% of wall time, it has an

achieved occupancy of 12.4% over the theoretical occupancy of 37.5%. The genetic

distance computation is more compute-intensive and requires much more memory

than the k-mer distance computation. Therefore, its theoretical occupancy is

limited by the number of registers required by each thread for computation. The

compute/memory ratio is 417, showing that the genetic kernel is compute-bound

rather than memory-bound.

I suggest the following practical CUDA optimization guidelines which have proven

effective throughout this work:

• Use pinned host memory and minimize the data transfer between host and

device: Using pinned host memory, the CUDA implementation for genetic

Chapter 3. Parallel Distance Matrix Computation 47

distance computation achieves an average memory throughput of 5.9 giga-

bytes per second (GBPS) (the maximum host to device bandwidth on the

PCI Express x16 Gen2 is 8 GBPS) in both k-mer distance and genetic dis-

tance modules, which is two times faster than if the non pinned host memory

was used.

• Optimize the use of registers and threads per block: A Fermi -based GPU

has 32768 32-bit registers per streaming processor. Each processor can have

maximum 1024 threads (32 warps x 32 threads). For the occupancy of 100%,

each thread can use up to 32768/1024 = 32 registers. One can use the CUDA

occupancy calculator to help visualize the effects of the number of threads

per block and the number of registers per thread to occupancy.

• Maximize the use of shared memory in place of local or global memory.

• Use texture memory for coalesced access of CUDA two-dimensional array.

• Replace the more expensive calculation such as multiplication and division

less expensive ones like addition and subtraction whenever possible.

• Use binary instead of text data files to speed up the file input/output process.

3.6 Summary

One of the main contributions of this thesis are compute-efficient algorithms for

distance matrix calculation on parallel architectures. Specifically, parallel algo-

rithms have been developed to compare biological sequence data using either the

k-mer distance or the genetic distance or the Euclidean distance metric.

Each of these parallel algorithms is implemented either in CUDA to support ex-

ecution on a general-purpose graphical processing unit (GPGPU) or in OpenMP

to support execution on a multi-core CPU. While OpenMP implementation can

be straightforward, the parallel implementations in CUDA are often a non-trivial

tasks. To achieve maximum speedup on GPUs, the parallel implementations in

Chapter 3. Parallel Distance Matrix Computation 48

CUDA often involve various tasks such as data compression, task division and

usage of different memory types available on the GPUs.

In this chapter, we use small to medium datasets for profiling purpose. For the

sensitivity of these parallel implementations to larger datasets, please refer to

section 6.3.2 of chapter 6.

The parallel distance matrix computation modules discussed in this chapter al-

though targeting biological sequence data can also be used for other text analysis

tasks. Furthermore, parallel Euclidean distance can be used as an independent

module for computing pairwise distances between real-valued data points.

Chapter 4

Memory-Efficient Agglomerative

Hierarchical Clustering

“Computing a hierarchical clustering of objects from a pairwise distance matrix

is an important algorithmic kernel in computational science. Since the storage of

this matrix requires quadratic space with respect to the number of objects, the

design of memory-efficient approaches is of high importance to research”. This

chapter provides some background information on standard agglomerative hierar-

chical clustering algorithms, discusses in details a new memory-efficient algorithm

namely SparseHC and reports the evaluation results to compare SparseHC with

other algorithms for the same purpose. The work described in this chapter has

been published in [79].

4.1 Background

4.1.1 Agglomerative hierarchical clustering

“Clustering is an important unsupervised machine learning technique to group

similar objects in order to uncover the inherent structure of a given dataset. De-

pending on the output, clustering algorithms are broadly divided into two main

49

Chapter 4. Memory-Efficient Hierarchical Clustering 50

Table 4.1: The Lance Williams formulation of agglomerative hierarchical clus-
tering: parameters for seven commonly-used linkage schemes

Linkage α1 α2 β γ Alternative formula
Single 0.5 0.5 0 -0.5 dij = min

x∈Ci,y∈Cj

dxy

Complete 0.5 0.5 0 0.5 dij = max
x∈Ci,y∈Cj

dxy

Average |Ci|
|Ci|+|Cj |

|Cj |

|Ci|+|Cj |
0 0 dij =

1

|Ci||Cj|

∑

x∈Ci,y∈Cj

dxy

Weighted 0.5 0.5 0 0

Centroid |Ci|
|Ci|+|Cj |

|Cj |

|Ci|+|Cj |
− |Ci||Cj |

(|Ci|+|Cj |)2
0

Median 0.5 0.5 -0.25 0

Ward |Ci|+|Cm|
|Ci|+|Cj |+|Cm|

|Cj |+|Cm|

|Ci|+|Cj |+|Cm|
− |Cm|

|Ci|+|Cj |+|Cm|
0

categories: hierarchical clustering and partitional (or flat) clustering [80–82]. The

structured output produced by hierarchical clustering algorithms is often more in-

formative than the unstructured set of clusters returned by partitional clustering

algorithms [49, 83]. Thus, hierarchical clustering is a crucial data analysis tool in

many fields including computational biology and social sciences [84]. Nonetheless,

the quadratic time and especially the quadratic memory complexity have limited

the use of hierarchical clustering software to rather small datasets [83]. Since many

areas of computational science face a data explosion, addressing the problem of

computing a hierarchical clustering from a large and possibly sparse pairwise dis-

tance matrix in a memory-efficient way is becoming increasingly important. I

tackle this problem by presenting a new general-purpose online hierarchical clus-

tering algorithm called SparseHC.”

Hierarchical clustering can be divided into two categories: the agglomerative

“bottom-up” approach and the divisive “top-down” approach [83]. “I focus on

the former category: agglomerative hierarchical clustering (AHC). AHC algo-

rithms can be characterized as sequential, agglomerative, hierarchical, and non-

overlapping [85, 86]. In AHC algorithms, objects or data points are first treated

as singletons and subsequently merged one pair of clusters at a time until there

is only one cluster left. There are seven commonly used linkage schemes: single,

complete, average (UPGMA), weighted (WPGMA), centroid (UPGMC), median

Chapter 4. Memory-Efficient Hierarchical Clustering 51

(WPGMC) and Ward’s method. The properties of each scheme are discussed in

[87]. The merging criteria used by all these schemes can be neatly represented

with the recurrence formula by Lance and Williams [88].“

Given that two clusters Ci and Cj have previously been merged into cluster Ck,

the distance between cluster Ck and any unmerged cluster Cm is defined as:

dkm = d(Ci ∪ Cj, Cm) = α1dim + α2djm + βdij + γ|dim − djm|

The specific parameters for each scheme are defined in Table 4.1.

Depending on the input data, AHC algorithms can be divided into the “stored data

approach” and the “stored matrix approach” [89, 90]. The stored data approach

requires the recalculation of pairwise distance values for each merging step. Since

only data points are stored in the main memory, algorithms in this approach can

achieve O(N) space complexity often at the expense of O(N3) time complexity

[91], where N is the number of input data points.

“One notable algorithm in the stored data approach is the nearest-neighbor chain

algorithm, which achieves O(N) space complexity and O(N2) time complexity for

the Ward’s method linkage scheme. However, this algorithm is not applicable to

the centroid and median linkage schemes because these schemes do not fulfill the

required reducibility criterion i.e. d(Ci∪Cj, Cm) ≥ min(d(Ci, Cm), d(Cj, Cm)) [90,

91]. For the single-, complete- and average-linkage schemes, this algorithm requires

O(N2) space and time complexity [92]. On the contrary, in the stored matrix

approach an all-against-all pairwise distance matrix of size N2 is first computed

and then used for clustering. As a result, this approach requires O(N2) time and

memory complexity [82].”

“To overcome the low memory efficiency of classical AHC algorithms, new tech-

niques perform either data reduction by random sampling (e.g. data sampling and

partitioning in CURE [93]) or data summarization by using a new data structure

to represent the original data (e.g. the CF tree in BIRCH [48]). Although these al-

gorithms have linear memory complexity [82], the dendrograms produced by these

Chapter 4. Memory-Efficient Hierarchical Clustering 52

algorithms are indeterministic and are dissimilar those produced by standard AHC

tools because of the random procedures being used.”

In this work, I focus on reducing the primary memory consumption of the AHC

stored matrix approach. I have developed SparseHC, a general-purpose memory-

efficient AHC algorithm for single-, complete- and average-linkage schemes. SparseHC

is an online algorithm. Borodin and El-Yaniv [94] defined online algorithms as al-

gorithms that focus on scenarios where “the input is given one piece at a time and

upon receiving an input, the algorithm must take an irreversible action without

the knowledge of future inputs”. “Because online algorithms only require partial

input in the main memory for processing, they are often used to target problems

with high space complexity. To my knowledge, there are only a few existing on-

line hierarchical clustering algorithms for the stored matrix approach including

MCUPGMA [95] for the average scheme and ESPRIT hcluster [44] for single and

complete schemes.”

“SparseHC employs a similar strategy as in MCUPGMA and hcluster where the

input distance matrix is first sorted and then processed in a chunk-by-chunk man-

ner. SparseHC incorporates two new techniques in order to achieve significantly

better performance:

1. Compression of the information in the currently loaded chunk of the input

matrix into the most compact form.

2. Usage of an efficient graph representation to store unmerged cluster connec-

tions, which allows constant access to these connections for faster speed.

”

4.1.2 Memory-efficient AHC algorithms

“SparseHC and other online AHC algorithms work based on the observation that

once the values of an input distance matrix are sorted in ascending order and

Chapter 4. Memory-Efficient Hierarchical Clustering 53

(a) Full dendrogram

(b) Complete binary tree

Figure 4.1: Example of the standard dendrogram and the equivalent complete
binary tree generated by clustering an input dataset of 10 data points using the

average-linkage scheme.

Chapter 4. Memory-Efficient Hierarchical Clustering 54

(a) Partial dendrogram

(b) Incomplete binary tree

Figure 4.2: Example of the partial dendrogram and the equivalent incomplete
binary tree generated by clustering the same input dataset as above (Figure
4.1) but using only the pairwise distances smaller than the cutoff threshold of

θ = 0.4 instead of the whole distance matrix.

Table 4.2: The time and space complexity of query and update operations
for different graph implementations. SparseHC uses the adjacency map rep-
resentation which is derived from the adjacency list to accelerate edge-related

operations.

Representation Storage Add edge Remove Edge Query edge
Incidence matrix O(|V ||E|) O(|V ||E|) O(|V ||E|) O(E)
Adjacency matrix O(|V |2) O(1) O(1) O(1)
Incidence list O(|V |+ |E|) O(1) O(E) O(E)
Adjacency list O(|V |+ |E|) O(1) O(E) O(V)
Adjacency map O(|V |+ |E|) O(1) O(1) O(1)

Chapter 4. Memory-Efficient Hierarchical Clustering 55

loaded chunk-by-chunk from the top, the merge order and the dendrogram dis-

tances can be accurately determined using only the loaded part i.e. without any

knowledge about the unseen portion. ”

SparseHC takes a sorted distance matrix D as input and iteratively builds a den-

drogram from reading only a part of D in each iteration step as shown in Figure

4.1. Depending on the available main memory, a sequence of values 0 = λ0 < λ1 <

. . . < λT = θ is built on-the-fly. In each iteration step 1 ≤ t ≤ T , all distances

dxy with λt−1 ≤ dxy < λt are read from D. Starting from the a tree consisting of

only N leaves where a leaf node i (1 ≤ i ≤ N) represents the singleton cluster

Ci = {i}, a binary tree (which is the dendrogram) is built from bottom up. Since

only two clusters are merged at a time, the full binary tree has a height of N − 1

and consists of 2N − 1 nodes (see Figure 4.1).

In offline AHC algorithms, D has to be a full pairwise distance matrix. However,

in online AHC algorithms such as SparseHC, D can be either full or sparse. A

sparse distance matrix Dθ uses a predefined distance cutoff θ (0 ≤ θ < 1) and

stores only distance values up to θ (0 ≤ dxy ≤ θ, ∀dxy ∈ D). For sparse matrix

clustering, the output dendrogram has a height in the range of [1, N − 1] and a

size in the range of [N, 2N − 1] as shown in Figure 4.2.

“The input to SparseHC is a sorted full or sparse distance matrix stored in a list

of tuples (i, j, dij) format. The maximum element of a full matrix is 1.0 while that

of a partial matrix is a pre-defined distance cutoff θ < 1.0. The ability to process

sparse distance matrices is particularly useful in applications like taxonomic studies

in bioinformatics [44, 96] where only the lower part of the final dendrogram is

of interest. In these situations, runtime and memory usage are further reduced

depending on the sparsity of the input matrix. The memory efficiency and ability

of SparseHC to process sparse matrices come at the cost of pre-sorting the input

matrices. Nonetheless, the memory performance of SparseHC is not affected if an

external merge sort algorithm [97] is used for the sorting stage.”

Chapter 4. Memory-Efficient Hierarchical Clustering 56

“Similar to offline AHC algorithms, during the clustering process, SparseHC needs

to store all the connections amongst unmerged clusters to figure out which clus-

ter pair will be merged next. However, same as other online AHC algorithms,

SparseHC only stores the connections amongst active clusters. A cluster pair is

called active in iteration step t when (1) both clusters do not have a parent and

(2) at least one distance value between the member data points has been read

from the input file during the first t iteration steps. I observe that active clusters

contribute to only a small subset of unmerged clusters. The memory efficiency of

online AHC algorithms is determined by their ability to store active connections

in a compact way.”

SparseHC uses an undirected weighted graph to model the connections amongst

active cluster pairs. This graph consists of a set of vertices V and a set of edges E.

The vertices are the nodes of the binary tree i.e. V = {C1, C2, . . . , C2N−1}. A fixed

size array is used to store all possible vertices, hence allowing O(1) vertex query

and update. The undirected weighted edges are the active connections amongst

the clusters.

“Graphs are typically implemented using an adjacency matrix, an adjacency list,

an incidence matrix or an incidence list [98]. The time and space complexity

of each representation are shown in Table 4.2. To facilitate its cluster merging

process, SparseHC prefers a graph representation that requires minimum storage

for the graph and allows constant time to perform edge insertion, edge deletion,

and edge update. Therefore, I have modified the standard adjacency list to assist

these operations. I call this graph representation the adjacency (hash) map.”

“The adjacency map is a collection of unordered hash maps, one for each vertex

of the graph. Each hash map records the set of neighbors of its vertex using the

neighbor vertex identification number as the key. Because of this adjacency map

representation, SparseHC can use O(|V |+ |E|) space to store all the clusters and

their active connections. More importantly, these connections can be accessed and

updated in O(1) time.”

Chapter 4. Memory-Efficient Hierarchical Clustering 57

4.2 SparseHC

“This section presents a memory-efficient online hierarchical clustering algorithm

called SparseHC [79]. SparseHC scans a sorted and possibly sparse distance matrix

chunk-by-chunk. Meanwhile, a dendrogram is built by merging cluster pairs as

and when the distance between them is determined to be the smallest among

all remaining cluster pairs. The key insight used is that for finding the cluster

pair with the smallest distance, it is unnecessary to complete the computation of

all cluster pairwise distances. Partial information can be utilized to calculate a

lower bound on cluster pairwise distances that are subsequently used for cluster

distance comparison. Experimental results show that SparseHC achieves a linear

empirical memory complexity, which is a significant improvement compared to

existing algorithms.”

4.2.1 Algorithm

The definition of the edge e
(t)
ij between two active clusters Ci and Cj in iteration

step t is defined in Table 4.3 depending on the clustering scheme. d
(t)
ij is the

minimum possible distance between Ci and Cj and is computed according to Table

4.3. s
(t)
ij (n

(t)
ij) is the sum (number) of distance values between any member of Ci to

any member of Cj that has been read from the input file so far. λt is the maximum

distance value loaded from the input matrix so far.

In each iteration step t, active edges are partitioned into two sets: a set of complete

edges K(t) and a set of incomplete edges I(t) (both sets are stored in the adjacency

Table 4.3: Distance dij between cluster Ci and Cj for clustering sparse matri-
ces

Linkage Edge definition
Cluster distance

Complete condition
Incomplete edge Complete edge

Single e
(t)
ij = () d

(t)
ij = 1.0 d

(t)
ij = dxy n

(t)
ij = 1

Complete e
(t)
ij = (n

(t)
ij) d

(t)
ij = 1.0 d

(t)
ij = dxy n

(t)
ij = |Ci||Cj|

Average e
(t)
ij = (s

(t)
ij , n

(t)
ij) d

(t)
ij =

s
(t)
ij +λ(t)(|Ci||Cj |−n

(t)
ij)

|Ci||Cj |
d
(t)
ij =

s
(t)
ij

|Ci||Cj |
n
(t)
ij = |Ci||Cj|

Chapter 4. Memory-Efficient Hierarchical Clustering 58

Algorithm 2 SparseHC algorithm for a sorted input matrixD from N data points
stored as a list of tuples (x, y, dxy).

Ci ← {i} ∀i = 1, . . . , N
E.max size ← N {E is the adjacency map E = K ∪ I}
k ← N ; t← 0;λ0 ← 0 {initialize cluster id k, iteration t, distance threshold λ}
while D 6= ∅ do
t← t+ 1
while D 6= ∅ and E.size ≤ E.max size do
dxy ← D.get next(); D = D \ {dxy}
Ci ← Cx.get ancestor(); Cj ← Cy.get ancestor()

e
(t)
ij .update(dxy) {create e

(t)
ij if it does not exist}

compute d
(t)
ij {use the cluster distance formula in Table 4.3}

if e
(t)
ij is complete then

Ci.minK ← min(Ci.minK, d
(t)
ij); Ci.merge candidate ← Cj

else
Ci.minI ← min(Ci.minI, d

(t)
ij)

end if
end while
λt ← dxy {λt is the largest distance in an iteration}
while dij = min(K(t)) ≤ min(I(t)) and k ≤ 2N − 1 do
k ← k + 1; Ck ← Ci ∪ Cj {merge clusters Ci and Cj into cluster Ck}

for all Cm such that e
(t)
im ∈ E ∨ e

(t)
jm ∈ E do

e
(t)
km ← merge(e

(t)
im, e

(t)
jm) {s

(t)
km ← s

(t)
im + s

(t)
jm; n

(t)
km ← n

(t)
im + n

(t)
jm}

E = E ∪ {e
(t)
km} \ {e

(t)
im, e

(t)
jm, e

(t)
ij }

compute d
(t)
km {use the cluster distance formula in Table 4.3}

if e
(t)
km is complete then

Ck.minK ← min(Ck.minK, d
(t)
km); Ck.merge candidate ← Cm

else
Ck.minI ← min(Ci.minI, d

(t)
km)

end if
end for

end while
if E.size ≥ E.max size then
E.max size ← 2 × E.max size {dynamically increase the adjacency map
size}
if E.size ≥ RAM.size then
return partial result {when the memory limit is reached}

end if
end if

end while
return full result

Chapter 4. Memory-Efficient Hierarchical Clustering 59

map). A complete edge is a connection between two active clusters that are ready

to be merged. An incomplete edge is a connection between two active clusters

that are yet to be merged. For complete- and average- linkage schemes, an edge

is complete when n
(t)
ij = |Ci||Cj|. Otherwise, when n

(t)
ij < |Ci||Cj|, the edge is

considered incomplete. For single-linkage scheme, an edge is complete when n
(t)
ij =

1 i.e. the connection between two clusters is complete as soon as the first distance

value between any member reads has been read from the input.

Let min(I(t)) (min(K(t))) denote the smallest distance value in I(t) (K(t)). The

high-level description of the SparseHC algorithm in each iteration t (1 ≤ t ≤ T)

consists of three steps:

1. Read the distance values dxy from matrix D in ascending order until the

adjacency map is full and determine the value λ(t).

2. Update/create the edges for all active cluster pairs with the new distances

and partition them into I(t) and K(t).

3. Retrieve the edge e
(t)
ij for which d

(t)
ij = min(K(t)) ≤ min(I(t)). Merge the

cluster pair Ci and Cj into cluster Ck. Delete e
(t)
ij from K(t) and combine

existing edges to either cluster Ci or Cj into new edges to cluster Ck. Repeat

until min(K(t)) > min(I(t)).

Algorithm 2 shows the details of SparseHC.

4.2.2 Correctness

“To show the dendrogram produced by SparseHC is correct, we need to prove that

up to the distance cutoff θ both the merge distance values and the merge order

are preserved.

Merge distances : Let d
(t)
ij be the merge distance between two clusters Ci and Cj

assuming that they are being merged by SparseHC in an iteration t. Let dij be the

merge distance between Ci and Cj produced by a traditional AHC algorithm. We

Chapter 4. Memory-Efficient Hierarchical Clustering 60

need to show that d
(t)
ij = dij. Indeed, when Ci and Cj are merged by SparseHC,

the edge e
(t)
ij is complete. By definitions of dij in Table 4.1 and in d

(t)
ij when e

(t)
ij

is complete in Table 4.3, it holds that d
(t)
ij = dij. Therefore, the merge distance

values are preserved.

Merge order : To prove that SparseHC preserves the merge order, we show that if

Ci and Cj are merged before Ck and Cm, then dij ≤ dkm. At the time when Ci

and Cj are being merged in an iteration t, we have d
(t)
ij = dij = min(K(t)). In step

t, after Ci and Cj are merged, the status of the edge e
(t)
km is one of the followings:

1. e
(t)
km is active and complete⇒ e

(t)
km ∈ K(t). For a complete edge, it holds that

d
(t)
km = dkm.

Besides, e
(t)
km ∈ K(t) ⇒ min(K(t)) ≤ d

(t)
km. Therefore, dij ≤ dkm

2. e
(t)
km is active and incomplete ⇒ e

(t)
km ∈ I(t). For an incomplete edge, it holds

that d
(t)
km ≤ dkm. In SparseHC, it always holds that min(K(t)) ≤ min(I(t))⇒

dij ≤ min(I(t)).

Besides, e
(t)
km ∈ I(t) ⇒ min(I(t)) ≤ d

(t)
km. Therefore, dij ≤ dkm

3. e
(t)
km is inactive ⇒ e

(t)
km /∈ {K(t) ∪ I(t)}. For an inactive edge, it holds that

λt < d
(t)
km ≤ dkm. Since Ci and Cj have been merged in iteration t, dij ≤ λt.

Therefore, dij < dkm

For all cases, we have d
(t)
ij = dij and dij ≤ dkm i.e. both the merge distances and

the merge order are preserved in SparseHC.”

4.2.3 Memory efficiency

“While standard offline AHC algorithms store all the connections amongst un-

merged clusters in memory (i.e. |Ci| × |Cj| values for a cluster pair (Ci, Cj),

SparseHC uses at most two values per cluster pair: the number of connections

n
(t)
ij and the sum of distances s

(t)
ij (see Table 4.3). Specifically, SparseHC maintains

Chapter 4. Memory-Efficient Hierarchical Clustering 61

only one value per cluster pair (n
(t)
ij) for complete-linkage clustering, two values per

pair (n
(t)
ij , s

(t)
ij) for average-linkage clustering and none for single-linkage clustering.

Compared to offline AHC tools, SparseHC uses less primary memory because of

two reasons: (1) SparseHC stores only the information from the currently loaded

chunks and (2) It stores a compact version of the seen information: at most two

values per active cluster pair.

Compared to existing online AHC tools such as hcluster and MCUPGMA, SparseHC

is better because of three reasons. Firstly, SparseHC uses an array of hash maps

to store the compact cluster connections. This efficient data structure allows O(1)

query, insert and delete, which contributes to the compute efficiency of SparseHC.

Secondly, for average-linkage clustering, SparseHC uses two values instead of four

values per cluster connection as in MCUPGMA. More importantly, SparseHC

dynamically allocates the amount of memory needed and returns partial results

if all the available memory is consumed. MCUPGMA and hcluster require the

user to specify the amount of memory beforehand and return error if the allocated

amount is insufficient.

Thirdly, SparseHC supports three linkage types while ESPRIT hcluster supports

only single- and complete-linkage clustering and MCUPGMA supports only average-

linkage. ESPRIT has another sub-module called aveclust which performs fast

average-linkage clustering. However, aveclust is not memory-efficient and still re-

quires quadratic memory complexity. Finally, SparseHC stops after performing

N − 1 merges. This termination condition is particularly useful for single-linkage

clustering where the clustering process converges early.”

Chapter 4. Memory-Efficient Hierarchical Clustering 62

4.3 Evaluation

4.3.1 Experiment setup

To benchmark the performance of SparseHC, I use two standard AHC implemen-

tations: the MATLAB linkage function and the fastcluster Python program [90].

I also use three online AHC implementations including EPSRIT’s hcluster for

complete-linkage clustering, ESPRIT’s aveclust for average-linkage clustering and

MCUPGMA also for average-clustering. These tools are chosen for their compute

and/or memory efficiency as well as the availability of executable source codes.

These performance profiling experiments are executed on a Dell T3500 workstation

running 64-bit Ubuntu operating system. This station has a quad-core Intel Xeon

W3540 2.93 GHz processor and 8GB of RAM. The peak memory usage is measured

with the Valgrind Massif profiler [99] and the execution time is recorded using

Linux time command.

4.3.2 Performance profiling

I use eight Euclidean sparse distance matrices (with distance cutoff θ = 0.10)

computed by CRiSPy-Embed on eight V2Mice datasets [33] listed in Table 4.4 as

inputs for these average linkage clustering tools. The size of these sparse matrices

Table 4.4: Datasets used for performance profiling of average-linkage hierar-
chical clustering tools

Dataset Num of annotated reads Num of unique reads Average length
V2Mice 1,003,674 159,329 234.0

V2Mice-100k 100,000 26,248 234.0
V2Mice-200k 200,000 45,736 234.0
V2Mice-300k 300,000 62,613 234.3
V2Mice-400k 400,000 77,052 234.6
V2Mice-600k 600,000 95,494 234.6
V2Mice-700k 700,000 110,896 234.6
V2Mice-800k 800,000 130,999 234.6
V2Mice-1000k 1,000,000 158,808 234.6

Chapter 4. Memory-Efficient Hierarchical Clustering 63

ranges from 2.2GB to 64.5GB as shown by the ”Sparse matrix size” curve in Figure

4.3.

Figure 4.3 and 4.4 show the memory consumption and runtime of SparseHC com-

pared to aveclust from the ESPRIT package and MCUPGMA on a Dell worksta-

tion with 12GB RAM.

aveclust requires the whole input matrix to be loaded into memory. From the

memory profiling graph, we can observe that the amount of memory used by

aveclust is approximately the size of the input matrix. Therefore with 12GB RAM,

the largest dataset that aveclust can process is V2Mice-400k with size(S) = 6.7GB.

aveclust runs out of memory while processing larger datasets. On the other hand,

MCUPGMA uses the maximum amount of memory allocated to it. This maximum

value can be controlled by setting the heap-size parameter in MCUPGMA to the

amount of available RAM (12GB for our workstation). Empirical results show

that MCUPGMA indeed uses approximately 10GB of RAM.

Figure 4.3: Memory profiling of SparseHC versus ESPRIT’s aveclust and
MCUPGMA. aveclust runs out of memory for datasets larger than V2Mice-

400k

Chapter 4. Memory-Efficient Hierarchical Clustering 64

Figure 4.4: Runtime profiling of SparseHC versus ESPRIT’s aveclust and
MCUPGMA. aveclust runs out of memory for datasets larger than V2Mice-

400k

SparseHC tops the other sparse matrix clustering tools in terms of memory ef-

ficiency. Figure 4.3 shows that it uses much less memory than the input matrix

since it neither requires the whole matrix as in aveclust nor uses all available RAM

as in MR-MC-UPGMA. On contrary, SparseHC dynamically allocates a necessary

amount of memory by only increasing the value M in Algorithm 2 when needed.

This dynamic allocation mechanism makes SparseHC more memory-efficient than

MCUPGMA. The recorded memory usage shows that SparseHC uses only 5.8GB

of RAM to process an input matrix of 64.5GB. Furthermore, SparseHC is 3x faster

than avelust and 10x - 15x faster than MCUPGMA as shown in Figure 4.4. The

distributed link map greatly contributes to the runtime efficiency of SparseHC.

In conclusion, SparseHC for average linkage clustering is better than aveclust and

MCUPGMA in terms of both speed and memory usage.

Chapter 4. Memory-Efficient Hierarchical Clustering 65

Table 4.5: The empirical time and space complexity (f(n) = Cnk) of
SparseHC versus other online and offline AHC programs. This benchmark
experiment employs 20 distance matrices calculated from datasets with sizes
ranging from 1000 to 20000 objects. Execution time fr(n) is assessed in seconds
and memory usage fs(n) is assessed in megabytes. The data input size n is

measured in thousand data points.

The empirical runtime growth fr(n)
AHC tool Single-linkage Complete-linkage Average-linkage
SparseHC 0.003× n1.855 0.190× n2.047 0.216× n2.040

hcluster/aveclust 0.340× n2.015 0.378× n2.000 0.216× n2.047

MATLAB linkage 0.352× n1.996 0.344× n1.996 0.336× n2.003

fastcluster 0.221× n2.085 0.306× n1.955 0.236× n2.073

MCUPGMA not available not available 1.313× n2.120

The empirical memory growth fs(n)
AHC tool Single-linkage Complete-linkage Average-linkage
SparseHC 0.886× n0.456 1.272× n0.848 1.155× n0.962

hcluster/aveclust 0.242× n0.482 user-defined 1.007× n1.982

MATLAB linkage 7.674× n1.998 7.673× n1.998 7.674× n1.998

fastcluster 79.166× n1.995 78.343× n2.001 78.336× n2.001

MCUPGMA not available not available user-defined

4.3.3 Empirical complexity

The theoretical memory complexities of online AHC algorithms are often difficult

to estimate because of their heuristic nature. To benchmark the online algorithms

of interest, I use the regression model of memory and execution time introduced

by Coffin et al. [100] to calculate the empirical complexities [101] instead of the

theoretical values.

Assuming the runtime and memory usage follow the power rule i.e. f(n) ≈ Cnk

where n is the input size, the constant factor C and the order k can be estimated

using regression on the log-transformed model where ǫ is the error term:

log f(n) = k log n+ logC + ǫ (4.1)

Chapter 4. Memory-Efficient Hierarchical Clustering 66

The values k and C are then estimated as follows:

f(n) = Cnk →
f(n2)

f(n1)
= (

n2

n1

)k (4.2)

→ k =
log f(n2)

f(n1)

log(n2

n1
)

(4.3)

→ C =
f(n)

nk
(4.4)

Table 4.5 reports the average empirical runtime and memory growth of the tested

AHC clustering implementations of interest. I use full pre-sorted pairwise Eu-

clidean distance matrices as inputs in this experiment. These matrices are com-

puted from 1000 - 20000 randomly-generated data points. Although the values

of C and k in Table 4.5 are only representative of the performance of these algo-

rithms on the tested random datasets, our results on larger datasets in Table 4.7

and on biological sequence datasets in Table 4.6 further confirm and strengthen

the validity of the regression model for evaluating empirical complexity and the

estimated values in Table 4.5.

The upper sub-table of Table 4.5 shows that all algorithms have quadratic run-

time with k ≈ 2 as expected. Nevertheless, if I plot these functions in the domain

[0, 106] data points, we can see that SparseHC is the fastest amongst them. Es-

pecially for single-linkage clustering, the constant factor C of SparseHC is two

orders of magnitude smaller than other tools. For the complete- and average-

linkage schemes, the main reason for the fast runtime of SparseHC is the efficiency

of edge operations of the adjacency map data structure. For the single-linkage

scheme, the significant improvement in speed is due to the edge completion con-

dition (n
(t)
ij = 1). This condition allows two clusters to be merged as soon as the

connection between them becomes active, making it unnecessary for SparseHC to

store and query active connections of unmerged clusters. Moreover, because of

this condition, the merging process for the single-linkage scheme often completes

before all values of the input file are loaded, effectively reducing the amount of

runtime spent for file input.

Chapter 4. Memory-Efficient Hierarchical Clustering 67

The lower sub-table of Table 4.5 shows that offline algorithms have quadratic

memory complexity with k ≈ 2 as anticipated. Python clustering modules such

as fastcluster or SciPy cluster function are less memory-efficient than MATLAB

linkage since they require additional intermediate data besides the input matrix.

On the contrary, the memory usage of SparseHC grows sublinearly/linearly with

the input size. SparseHC mainly uses memory to store the adjacency map of

unmerged cluster connections.

For the “user-defined“ cases in Table 4.5, our experiments show that SparseHC

uses less memory than hcluster and MCUPGMA. For example, to cluster a 4GB

matrix, SparseHC consumes 16MB while hcluster uses up 192MB of main memory.

Similarly, to cluster a 2.2GB matrix, SparseHC consumes 21MB while MCUPGMA

uses up 312MB of main memory. Therefore, SparseHC is the most space-efficient

for complete- and average-linkage clustering. For single-linkage, SparseHC and

hcluster achieve similarly good memory performance.

4.3.4 Clustering DNA datasets

To showcase the usefulness of SparseHC for clustering biological sequences, I tested

it with partial pairwise matrices computed from genetic datasets. These sparse

matrices are half the sizes of the full matrices. As shown in Table 4.6, I use

four matrices generated from datasets of 10000, 20000, 30000, and 40000 DNA

sequences.

Table 4.6: Execution time and memory usage of SparseHC, MCUPGMA,
and ESPRIT’s aveclust for processing partial matrices calculated from genomic

datasets with the sparsity level of 0.5

Number of Sparse matrix Runtime (in seconds) Memory usage (in MB)
sequences size (in MB) SparseHC aveclust MCUPGMA SparseHC aveclust MCUPGMA
10000 483 13.3 15.0 169.2 8.4 96.4 311.2
20000 2035 54.2 67.3 651.2 14.7 383.3 311.9
30000 4706 126.0 174.8 1477.9 24.3 860.9 312.7
40000 8415 229.8 321.1 2815.9 30.9 1529.6 313.8

Chapter 4. Memory-Efficient Hierarchical Clustering 68

The matrices are computed using the sequence embedding module in CRiSPy-

Embed. Each input sequence is converted into a sequence vector of real coor-

dinates by calculating the k-mer distances between that sequence and a set of

representative sequences in the input dataset called seeds. After the conversion

process, we compute the pairwise Euclidean distance matrix using the embedding

vectors. The elements in the matrix are then sorted in ascending order and only

the elements in the lower half are retained for clustering. The linkage scheme used

in this experiment is the average-linkage.

Table 4.6 reports the sparse matrix size, together with the memory usage and

execution time of MCUPGMA, ESPRIT’s aveclust and SparseHC. We can observe

that SparseHC uses significantly less memory than both aveclust and MCUPGMA.

Notably, the amount of main memory used by SparseHC is 50x - 280x smaller than

the size of the input sparse matrices. In terms of execution, SparseHC is about 10

times faster than MCUPGMA and 1.2x - 1.4x faster than aveclust.

4.3.5 Clustering large matrices

To highlight the memory efficiency of SparseHC, I report the matrix size
memory usage

ratio for

four representative large datasets in Table 4.7. These datasets contains randomly-

generated data points in the coordinate space. The pairwise distance matrices

computed from these datasets are 2 - 28 times bigger than the amount of RAM

available on the test platform.

Table 4.7 shows that SparseHC can process distance matrices three to four orders

of magnitude (i.e. 103 - 104) larger than the memory capacity. The memory

Table 4.7: The memory efficacy of SparseHC measured by the matrix size
memory usage

ratio

Number of Matrix size Memory usage (in MB) Memory efficiency of SparseHC
data points (in GB) Single Complete Average Single Complete Average

50000 14 7.0 30.5 44.9 2055 469 318
100000 56 12.2 60.0 90.2 4673 954 635
150000 126 17.7 89.6 143.4 7272 1437 897
200000 224 22.9 119.4 198.9 10013 1917 1151

Chapter 4. Memory-Efficient Hierarchical Clustering 69

complexity of the single-linkage scheme is linear with respect to the number of

input data points. The average-linkage scheme uses about 1.5 times more memory

than the complete-linkage scheme.

4.4 Summary

In this chapter, I have introduced the SparseHC algorithm to address the high

space complexity of the standard agglomerative hierarchical clustering approach.

SparseHC a new online AHC tool which can perform accurate single-, complete-

and average-linkage hierarchical clustering with linear empirical space complexity.

SparseHC can be used for general-purpose cluster analysis, not limited to biological

sequence analysis. SparseHC is especially useful for clustering large datasets on

computing platforms with a limited amount of main memory. As long as a distance

matrix is provided as input, SparseHC can process both full and sparse matrices.

Nonetheless, it should be noted that in order for SparseHC to provide a sensible

dendrogram, the sparse matrix should be a contiguous part extracted from a sorted

full pairwise distance matrix.

It is also useful to note that the amount of memory used by SparseHC depends

on (1) the type of distance metric and (2) the type of linkage. SparseHC is more

efficient for the distance metrics that satisfy the triangle inequality such as the

Euclidean distance that for those that do not adhere to the inequality such as

the genetic distance. For the same input matrix, the average-linkage uses more

memory than the complete-linkage, which in turn uses more memory than the

single-linkage. Therefore, we recommend the average-linkage scheme when cluster

quality is the main concern. On the other hand, when memory resource is limited

or when execution time is a concern, it is better to use the complete-linkage or the

single-linkage scheme.

Since many scientific areas are facing a data explosion issue, memory-efficient al-

gorithms like SparseHC are of high importance to research. SparseHC can be

Chapter 4. Memory-Efficient Hierarchical Clustering 70

applied to many real-world applications such as genetic clustering in bioinformat-

ics, market segmentation in business and marketing, crime hot spot identification

or student group identification in social science. Furthermore, SparseHC can also

used to power some of the most popular data mining applications such as social

network analysis, search result grouping or user preference prediction in recom-

mender systems.

The SparseHC source code is available at the following Bitbucket repository:

https://bitbucket.com/ngthuydiem/sparsehc. The Euclidean distance matrix

simulator can also be accessed at https://bitbucket.com/ngthuydiem/simmat.

https://bitbucket.com/ngthuydiem/sparsehc
https://bitbucket.com/ngthuydiem/simmat

Chapter 5

OTU Clustering Pipelines

This chapter describes two new OTU clustering pipelines for species richness esti-

mation of 16S rRNA pyrosequencing datasets called CRiSPy-Embed and CRiSPy.

These pipelines are formed by combining the parallel distance matrix computation

and the space-efficient clustering algorithms discussed in previous chapters as well

as additional preprocessing and post-processing procedures. The evaluation of

these pipelines against other OTU clustering tools is reported in the next chapter.

The review of state-of-the-art OTU binning tools has been reported in Chapter 2.

The work described in this chapter has been published in [102] and [103].

5.1 CRiSPy-Embed

This section introduces a new hierarchical OTU clustering pipeline called CRiSPy-

Embed [102]. CRiSPy-Embed stands for “Computing Richness in 16S Pyrosequencing

Datasets using Sequence Embedding”. CRiSPy-Embed addresses two issues of the

agglomerative hierarchical clustering approach: the high computational cost of

the sequence alignment for distance matrix construction and the high memory

requirement of average-linkage hierarchical clustering.

71

Chapter 5. OTU Clustering Pipelines 72

5.1.1 Approach

A main idea in CRiSPy-Embed is to replace the costly sequence alignment for

sequence comparison with a more efficient computation called sequence embed-

ding. This approach is based on the embedding method used by Clustal-Omega

Unique cleaned

reads

Embedding vectors

Partial Euclidean

distance matrix

Partial dendrogram

with height Θ

Operational

Taxonomic Units

(OTUs)

1. Build embedding vectors

 Select seeds from the input reads

 Build embedding vectors from 𝑘-mer

distances 𝑑𝑘 between reads and seeds

2. Compute pairwise normalized Euclidean

distances 𝑑 and output the partial distance

matrix of pairs with 𝑑 < Δ

3. Memory-efficient average-linkage

agglomerative hierarchical clustering

4. Determine a natural distance cutoff χ and

perform sequence grouping at χ

Raw 16S rRNA

pyrosequencing reads

0. Preprocess reads

 Remove sequencing errors

 Remove chimeras

 Merge identical reads



Figure 5.1: The CRiSPy-Embed processing pipeline: oval boxes indicate data
and rectangular boxes represent computation. The dashed rectangular box con-
tains the cleansing steps using external chimera removal and error correction

tools.

Chapter 5. OTU Clustering Pipelines 73

0.0 0.1 0.2 0.3 0.4 0.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distance value

C
u
m

u
la

ti
ve

 p
ro

b
a
b
ili

ty

(delta=0.07, sparsity=0.05)

(delta=0.1, sparsity=0.09)

(delta=0.3, sparsity=0.75)

(a) Dataset with 1000 reads

0.0 0.1 0.2 0.3 0.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distance value

C
u
m

u
la

ti
ve

 p
ro

b
a
b
ili

ty

(delta=0.06, sparsity=0.04)

(delta=0.1, sparsity=0.11)

(delta=0.3, sparsity=0.8)

(b) Dataset with 5000 reads

Figure 5.2: The cumulative distribution functions (CDFs) of two matrices
computed from two datasets consisting of 1000 and 5000 sequences. At the
same distance threshold, the sparsity of the matrix computed from the larger
dataset is higher than that computed from the smaller dataset. The red dots

mark the cutoff values used in CRiSPy-Embed.

Chapter 5. OTU Clustering Pipelines 74

[104, 105]. The input reads are first converted into vectors of real coordinates. The

distance matrix is then constructed from pairwise Euclidean distances between

these embedding vectors. The alignment-free sequence comparison technique re-

quires N2(log2 N)2 + N(log2 N)2L computations instead of 3N2L2 for a dataset

with N sequences of average length L. Furthermore, the distance matrix compu-

tation module has been parallelized for both multi-core CPU and many-core GPU

architectures. As a result, the matrix computation in CRiSPy-Embed only takes

10% - 25% of the total runtime as opposed to 90% - 99% in ESPRIT.

CRiSPy-Embed addresses the memory issue of average-linkage clustering by using

the SparseHC clustering algorithm described in Chapter 5 which is faster and more

space-efficient than other space-efficient clustering algorithms such as aveclust and

MC-UPGMA. Moreover, CRiSPy-Embed uses dynamic dendrogram cutting pro-

cedure to cut the dendrogram produced by the hierarchical clustering process.

This allows us to obtain the final OTU grouping using a more natural cutoff of

the dendrogram instead of using a static cutoff value as other OTU binning tools.

Our clustering accuracy assessment using various simulated datasets shows that

CRiSPy-Embed achieves more accurate clustering outcomes compared to several

notable OTU clustering pipelines such as QIIME, USEARCH6, CD-HIT-OTU,

ESPRIT-Tree and ESPRIT.

Figure 5.1 shows the processing pipeline of CRiSPy-Embed. The following tech-

niques have been used to reduce runtime and memory requirements of the standard

AHC approach:

• Sparse matrix representation: CRiSPy-Embed uses the default value ∆ =

1
2ln(N)

where N is the dataset size because in practice only about 10% of a

full matrix is needed to obtain a partial dendrogram of interest. To maintain

the same sparsity level of 10%, smaller distance thresholds should be used for

larger datasets (see Figure 5.2). Hence, the threshold ∆ in CRiSPy-Embed

is inversely proportional to the dataset size N .

• Embedding and parallelization: CRiSPy-Embed uses the sequence embed-

ding approach to compute a pairwise distance matrix. Furthermore, two

Chapter 5. OTU Clustering Pipelines 75

parallel programs have been implemented to support computing the matrix

on either a multi-core CPU (Central Processing Unit) or a GPU (Graphi-

cal Processing Unit). The OpenMP version on a quad-core CPU with four

threads is 2.7x - 2.9x faster than the single-threaded CPU computation. The

computation on a Fermi-based GPU is 13x - 15x faster than on a single CPU

core.

5.1.2 Sequence embedding

Given an input dataset R = {R1, R2, . . . , RN} consisting of N unique reads (or

sequences) over the four-element DNA alphabet Σ = {A, C, G, T}, the embedding

process consists of two steps:

1. Seed selection: The input readsR are first sorted by read length in ascending

order. M ′ seeds are then sampled from R at an equal distance of L =

⌊N/M ′⌋. Following the LLR algorithm by [106], M ′ is set as M ′ = (log2N)2.

An all-against-all comparison is performed amongst these seeds using k-mer

distance to eliminate identical seeds and retain a set S = {S1, S2, . . . , SM}

of M unique seeds (M ≤M ′).

2. Embedding vector construction: For each input read Ri (1 ≤ i ≤ N), an em-

bedding vector Vi of length M (the number of unique seeds) is constructed.

An embedding vector Vi = (Vi1, Vi2, . . . , Vi(M)) is built from the k-mer dis-

tances between the read Ri and all the seeds in S i.e. Vij = dk(Ri, Sj)

(1 ≤ i ≤ N , 1 ≤ j ≤M).

Given a read Ri and a seed Sj of length li and lj and a positive integer k,

their k-mer distance is defined as:

dk(Ri, Sj) = 1−

∑|Ω|
p=1 min(ni[p], nj[p])

min(li, lj)− k + 1
(5.1)

where Ω is the set of all substrings over Σ of length k enumerated in lexico-

graphically sorted order and ni(p) and nj(p) are the numbers of occurrences

Chapter 5. OTU Clustering Pipelines 76

of substring number p in Ri and Sj respectively. k should be chosen such

that the chance of finding a particular k-mer in an input read is low. This

probability depends on two factors: the alphabet size and the average read

length. For DNA reads with a small alphabet size (|Ω| = 4), CRiSPy-Embed

uses k = 15 resulting in 415 ≈ 109 possible k-mers. A typical pyrosequencing

read is 450 characters long, which is indeed much smaller than one million.

Besides, for k = 15, a substring 15-mer can be packed into an integer of 32

bits with two bits for each DNA letter.

After the embedding process, the original dataset R of N sequences is converted

into the dataset V = {V1, V2, . . . , VN} of N vectors, each of which has M coordi-

nates.

CRiSPy-Embed uses the distance threshold ∆ = 1
2ln(N)

where N is the dataset size

(ESPRIT uses ∆ = 0.3 and ESPRIT-Tree uses ∆ = 0.1). This default threshold

is chosen because in practice only about 5% of a full matrix is needed to obtain a

partial dendrogram of interest. To maintain the same sparsity level of 5%, smaller

distance thresholds should be used for larger datasets (see illustration in Figure

5.2). Thus, the threshold ∆ in CRiSPy-Embed is inversely proportional to the

dataset size N .

The parallel distance matrix computation is described in Chapter 4.

5.1.3 Dendrogram construction

“CRiSPy-Embed uses SparseHC for space-efficient average-linkage hierarchical

clustering of sparse Euclidean distance matrices. Traditionally, hierarchical clus-

tering takes a full pairwise distance matrix D and progressively builds a complete

binary tree called a dendrogram. For the average-linkage scheme, the distance

between two clusters Ci and Cj is defined as follows:

dij =

∑

r∈Ci,s∈Cj
drs

|Ci||Cj|
(5.2)

Chapter 5. OTU Clustering Pipelines 77

a sparse
distance
matrix S
(∀sij ≤ ∆)

external merge sort S

read a distance value
sij from sorted S

update the adjacency
map and divide it
into the incomplete
map I(t) and the
complete map K(t)

is adjacency
map full?

find dij = min(K(t))

is
dij ≤ min(I(t))?

merge Ci and Cj

and update the
adjacency map

is dendrogram
complete?

dendrogram

no

yes

no

yes

no

yes

Figure 5.3: The flow diagram of the SparseHC algorithm

Chapter 5. OTU Clustering Pipelines 78

When two clusters Ci and Cj are merged into a cluster Ck = Ci ∪ Cj, then the

distance between Ck to any other cluster Cm can be calculated as:

dkm =
dim|Ci|+ djm|Cj|

|Ci|+ |Cj|
(5.3)

CRiSPy-Embed uses a sparse distance matrix S which only contains all distances

less than ∆ instead of storing the full matrix D. In-memory sparse average-linkage

clustering can be performed on S by replacing a missing distance by ∆ [95].

However, even when using a sparse distance matrix, for large-scale datasets, it is

often still not possible to store all elements of the matrix in the main memory.

Assuming N = 106 unique input reads and 5% of pairwise distances are ≤ ∆, S

would contain 5%× (106)2/2 = 25 billion elements. If each distance element takes

12 bytes (8 bytes to store two indices and 4 bytes to store the distance), it requires

12× 25 = 300 billion bytes = 300 GB just to store the sparse distance matrix.”

In order to deal with large sparse distance matrices, CRiSPy-CUDA uses SparseHC

to perform memory-efficient out-of-core hierarchical clustering. SparseHC itera-

tively builds a dendrogram from reading only a part of S in each iteration step.

SparseHC is discusses in details in the previous chapter.

“Figure 5.3 summarizes the main steps in SparseHC.

1. Sorting : The sparse distance matrix is divided into smaller chunks each of

which fits into the memory. Each chunk is then sorted and written into

an individual file on the hard drive. The sorting module is implemented

in parallel for both CPUs and GPUs using the key-value sorting algorithm

called sort by key from the Thrust library [107].

2. Merging : The merging module reads all the sorted files on disk and uses

the priority queue data structure to merge these files together and passes

the results to the clustering module. The sorting and merging are known

collectively as external merge sort [97].

Chapter 5. OTU Clustering Pipelines 79

3. Clustering : Depending on the available main memory, a sequence of values

0 = λ0 < λ1 < . . . < λT = ∆ is built on-the-fly. In each iteration step

1 ≤ t ≤ T , all distances sij with λt−1 ≤ sij ≤ λt are read from S. Starting

from a tree consisting of only N leaves (where leaf i represents the singleton

cluster Ci = {i}), a binary tree is built from bottom up. A cluster pair is

called active in iteration step t when (1) both clusters do not have a parent

and (2) at least one distance value between the member reads has been read

from the input file during the first t iteration steps.

Consider an active cluster pair (Ci, Cj) in iteration step t. The link l
(t)
ij is a

triple (sum
(t)
ij , n

(t)
ij , d

(t)
ij) where sum

(t)
ij (n

(t)
ij) is the sum (number) of distance

values between any member of Ci to any member of Cj that has been read

from the input file so far. d
(t)
ij is the minimum possible distance between Ci

and Cj and is computed as follows:

d
(t)
ij =

sum
(t)
ij + λt(|Ci||Cj| − n

(t)
ij)

|Ci||Cj|
(5.4)

A link is defined as complete if nij = |Ci||Cj|. Otherwise, it is called incom-

plete. In iteration step t, links are partitioned into a set of complete links

K(t) and a set of incomplete links I(t).

Let min(I(t)) (min(K(t))) denote the smallest distance value in I(t) (K(t)).

The clustering procedure in each iteration t(1 ≤ t ≤ T) involves the following

steps:

(a) Read the distance values sij from S in ascending order until the adja-

cency map is full and determine the value λ(t).

(b) Update/create the links for all active cluster pairs with the new dis-

tances and partition them into I(t) and K(t).

(c) Retrieve the link lij for which dij = min(K(t)) ≤ min(I(t)). Merge the

cluster pair Ci and Cj into Ck. Delete lij fromK(t) and combine existing

links to Ci and Cj into new links to Ck. Repeat until min(K(t)) >

min(I(t)).

Chapter 5. OTU Clustering Pipelines 80

”

5.1.4 OTU grouping

Most existing OTU binning tools, for both approaches AHC and GHC, use the

de facto cutoff value of 97% sequence similarity. This de facto choice is based on

the assumption that the pairwise genetic distance between a pair of full-length

16S rDNA from different species differ by more than 3% and that 97% similarity

in 16S rDNA amplicons reflects 3% dissimilarity in the full sequences. When

the actual distance distribution does not follow this assumption, a more flexible

approach to determine the final OTU grouping is preferred. A recent tool aiming

to provide a more dynamic OTU picking functionality is M-pick [51]. M-pick works

by detecting groups of edges in a graph where the number of edges within such

groups are “significantly higher than expected by chance”.

CRiSPy-Embed uses new dendrogram-based method to automatically determine

the distance cutoff for a dendrogram. The aim of this method is to find a dynamic

cutting method to discover the natural grouping in 16S rDNA short read datasets.

The key insight used is that a big jump in the merging distances of a dendrogram

indicates the grouping of two intrinsically unrelated clusters. Hence, cutting the

dendrogram right before this jump occurs will result in a more natural grouping

of data points in a dataset.

A data mining technique called anomaly detection is used to find a natural cut-

off point χ. Given the (possibly incomplete) merging sequence produced by

SparseHC, CRiSPy-Embed first computes the pairwise differences between ev-

ery two consecutive merging distances. Subsequently, the change in variance of

the distance differences is detected using the R changepoint package [108]. The

merging distance at which the most significant change in variance occurs is the

cutoff point χ that is used by CRiSPy-Embed.

Chapter 5. OTU Clustering Pipelines 81

5.2 CRiSPy-CUDA

5.2.1 Approach

This section describes an OTU binning pipeline called CRiSPy-CUDA. CRiSPy-

CUDA stands for “Computing Richness in 16S Pyrosequencing Datasets with

CUDA” [103]. Figure 5.4 shows the processing pipeline of CRiSPy-CUDA.

Raw 16S rRNA

pyrosequencing reads

Partial distance matrix 𝐷 = {𝑑:𝑑 ≤ Δ}

Partial dendrogram with

height 𝜃

Operational Taxonomic

Units (OTUs)

Unique cleaned reads

0. Preprocess reads

 Remove sequencing errors

 Remove chimeras

 Merge identical reads



1. Compute all-against-all pairwise

distances and output the indices of

pairs with 𝑑 ≤ Δ (0 ≤ Δ ≤ 1)

2. Memory-efficient agglomerative

hierarchical clustering

3. Determine a natural distance cutoff χ and perform sequence grouping at χ

Figure 5.4: The CRiSPy-CUDA processing pipeline: oval boxes indicate data
and rectangular boxes represent computation. The dashed rectangular box con-
tains the cleansing steps using external chimera removal and error correction

tools.

Chapter 5. OTU Clustering Pipelines 82

While CRiSPy-CUDA uses the static cutoff value of 0.03, CRiSPy-CUDA has a

dynamic method to automatically determine the distance threshold to obtain the

natural grouping of a dataset. Due to this dynamic dendrogram cutting, CRiSPy-

CUDA produces better grouping results than most existing OTU binning tools

including QIIME, CD-HIT-OTU, UPARSE, USEARCH6, ESPRIT-Tree, ESPRIT

and CRiSPy-CUDA in terms of the adjusted rand index (ARI) score.

Pyrosequencing datasets often contain sequencing errors and PCR artifacts in-

cluding mutations (insertions and deletions), homopolymers, and chimeras [96].

Therefore, input reads are preprocessed (e.g. filtered, trimmed, de-replicated, de-

noised, and chimeras removal) by third-party tools such as AmpliconNoise [109]

and UCHIME [110]. As a result, the inputs to CRiSPy-CUDA are preprocessed

datasets of unique cleaned 16S rRNA reads.

CRiSPy-CUDA uses the following techniques to reduce runtime and memory re-

quirements of the standard AHC approach:

• Parallel distance computation: CRiSPy-CUDA supports parallel distance

matrix computation on a multi-core CPU with one or multiple threads, a

GPU or a GPU cluster with multiple GPUs with well-designed parallel al-

gorithms that aim to leverage the computational power of the hardware (see

Chapter 4.

• Sparse matrix representation: For the purpose of species richness estimation,

I are often interested in only the lower part of the dendrogram where the

species grouping can be found. Since the dendrogram is built bottom-up

and only its lower part is required, I can stop building the dendrogram after

passing a certain height of interest Θ. As a result, at the end of the clustering

procedure I often obtain a partial dendrogram instead of the typical full

dendrogram.

To build such partial dendrograms, I only need a partial distance matrix,

which contains a subset of the full pairwise distance matrix. Keeping partial

matrices reduces the processing required in the later steps and allows the

Chapter 5. OTU Clustering Pipelines 83

use of dendrogram-based methods on larger datasets. Partial matrices for

building partial dendrograms consist of distance values smaller than a cer-

tain threshold ∆. Please note that cluster distance threshold Θ is different

from the pairwise read distance threshold ∆. Depending on the clustering

algorithm, the value ∆ is chosen, often by experiments, such that there are

sufficient distance values to build a dendrogram up to the height of Θ. The

default value of ∆ in ESPRIT is 0.3 [44] and in ESPRIT-Tree is 0.1 [45].

• Memory-efficient sparse matrix clustering : Even though I use a sparse rep-

resentation of the calculated distance matrices, typical sizes of large matrices

can still exceed the RAM capacity of a standard workstation. Thus, I have

developed a fast and memory-efficient hierarchical clustering algorithm for

sparse matrices called SparseHC (see Chapter 5). SparseHC scans a sorted

sparse distance matrix chunk-by-chunk and a dendrogram is built by merg-

ing cluster pairs as soon as the distance between them is determined to be

the smallest among all remaining cluster pairs. The main insight used is

that it is unnecessary to wait for the completion of all cluster pair distance

computations for finding the cluster pair with the smallest distance. Partial

information can be used to determine lower bounds on cluster pair distances

that are used for cluster distance comparison.

5.2.2 Sequence comparison

I use the following techniques to reduce runtime and memory requirements of the

standard AHC approach:

• Banded sequence alignment and parallelization: To compute a genetic dis-

tance matrix, CRiSPy-CUDA uses a modified dynamic programming for-

mula, which allows efficient banded sequence alignment on parallel comput-

ing systems. I have developed two parallel implementations to support the

matrix computation on either a multi-core CPU (Central Processing Unit)

or a many-score GPU (Graphical Processing Unit).

Chapter 5. OTU Clustering Pipelines 84

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance value

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

(delta=0.1, sparsity=0.1)

(a) Dataset with 1000 reads

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance value

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

(delta=0.08, sparsity=0.1)

(b) Dataset with 5000 reads

Figure 5.5: The cumulative distribution functions (CDFs) of two matrices
computed from two datasets consisting of 1000 and 5000 sequences. The red

dots mark the cutoff values used in CRiSPy-CUDA.

Chapter 5. OTU Clustering Pipelines 85

The OpenMP version on a quad-core CPU with four threads is on average

4.7x faster than the single-threaded CPU computation by ESPRIT. The

computation on a Fermi-based GPU is on average 100x faster than ESPRIT

on a single CPU core.

• k-mer distance filtration and parallelization: Even with our efficient align-

ment algorithm, computing the pairwise genetic distance matrix is still costly.

Therefore, prior to this step, CRiSPy-CUDA performs pairwise k-mer dis-

tance computation to reduce the amount of sequence alignments in the sec-

ond step. This filtration technique was first introduced by ESPRIT [44]

based on the observation of the high correlation between the k-mer distance

and the genetic distance [111].

The OpenMP version on a quad-core CPU with four threads is on average

4.3x faster than the single-threaded CPU computation by ESPRIT. The

computation on a Fermi-based GPU is on average 50x faster than ESPRIT

on a single CPU core.

• Sparse matrix representation: In CRiSPy-CUDA, I use the default value

∆ = 1
log2(N)

where N is the dataset size because I observe that only about

10% of a full matrix is needed to obtain a partial dendrogram of interest. To

maintain the same sparsity level of 10%, smaller distance thresholds should

be used for larger datasets (see Figure 5.5). Hence, the threshold ∆ in

CRiSPy-CUDA is inversely proportional to the dataset size N .

5.2.3 Dendrogram construction

The hierarchical clustering in CRiSPy-CUDA is a procedure of shaping an incom-

plete binary tree (i.e. a partial dendrogram), where each leaf node represents a

unique read. Since most existing hierarchical clustering tools require full distance

matrices as inputs, I develop our own clustering algorithm called SparseHC to tar-

get sparse distance matrices. SparseHC scans a sorted (possibly sparse) distance

matrix chunk-by-chunk and a dendrogram is built by merging cluster pairs as and

Chapter 5. OTU Clustering Pipelines 86

when the distance between them is determined to be the smallest among all re-

maining cluster pairs. The key insight used is that for finding the cluster pair with

the smallest distance, it is unnecessary to wait for completing the computation of

all cluster pair distances. Partial information can be used to determine a lower

bound on cluster pair distances used for cluster distance comparison.

SparseHC achieves a linear empirical memory complexity, which is a significant im-

provement compared to other algorithms for the same purpose. SparseHC supports

memory-efficient single-linkage, complete-linkage and average-linkage hierarchical

clustering for both sparse and full matrices. Prior to SparseHC, the average-linkage

scheme cannot be used on large datasets due to memory usage restriction albeit it

has been shown in several benchmark studies to provide better clustering results

than the single-linkage and complete-linkage schemes [38, 47]. In CRiSPy-CUDA,

I also use the complete-linkage scheme for building the dendrogram. In CRiSPy-

CUDA, I use the average-linkage scheme for better dendrogram building thanks

to SparseHC.

5.2.4 OTU grouping

The OTU binning approach works based on an underlying assumption that a

full-length 16S rDNA (or in some cases, a region or a group of regions on the

full-length sequence) is representative of a particular species. Static grouping

methods further assume that the pairwise genetic distance between a pair of 16S

rDNA short reads from the same full-length rDNA sequence (i.e. from the same

species) is less than 0.03. Although most tools allow users to set this threshold

parameter before running the tool, the value of 0.03 or 97% is most commonly

used unless a user has other reasons to change this assumption and pick another

value. This assumption is reasonable in cases where the distances between 16S

read pairs from the same species are at most 0.03 and the distances between pairs

from different species are larger than 0.03. Most existing OTU binning tools such

as UPARSE, CD-HIT-OTU, ESPRIT-Tree, etc. use this de facto threshold.

Chapter 5. OTU Clustering Pipelines 87

0.00 0.05 0.10 0.15 0.20 0.25

0
2
0

6
0

1
0
0

PDF of only intra−species distances

D
e
n
s
it
y

0.0 0.1 0.2 0.3 0.4

0
2

4
6

8
1
0

PDF of only inter−species distances

D
e
n
s
it
y

0.0 0.1 0.2 0.3 0.4

0
2

4
6

8

PDF of all pairwise distances (both intra− and inter− species)

D
e
n
s
it
y

(a) dataset with errors

0.000 0.002 0.004 0.006 0.008

0
2
0
0
0

4
0
0
0

6
0
0
0

PDF of only intra−species distances

D
e
n
s
it
y

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8

PDF of only inter−species distances

D
e
n
s
it
y

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8

PDF of all pairwise distances (both intra− and inter− species)

D
e
n
s
it
y

(b) dataset without errors

Figure 5.6: The probability distribution functions (PDFs) of pairwise distance
matrices for two typical datasets: a raw dataset that contains errors on the left

and a cleaned dataset that contains few errors on the right.

Chapter 5. OTU Clustering Pipelines 88

Merge index

D
if
fe

re
n
c
e
 b

e
tw

e
e
n
 t

w
o
 s

u
b
s
e
q
u
e
n
t

m
e
rg

in
g
 d

is
ta

n
c
e
s

0 50 100 150 200

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

(a) dataset with errors

Merge index

D
if
fe

re
n
c
e
 b

e
tw

e
e
n
 t
w

o
 s

u
b
s
e
q
u
e
n
t
m

e
rg

in
g
 d

is
ta

n
c
e
s

0 50 100 150 200

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

(b) dataset without errors

Figure 5.7: Determination of the natural distance cutoffs of two datasets with
different characteristics by detecting the first sudden change merging distances

of a dendrogram. These are same datasets as in Figure 5.6.

Chapter 5. OTU Clustering Pipelines 89

Several recent studies [38] have questioned the generality of the default value

when using on datasets with different characteristics. In practice, there are two

common cases where this assumption might not hold true. Firstly, two 16S full-

length sequences from two different species share a higher or lower resemblance

than 97% sequence distance. Subsequently, this assumption causes an under- or

over-estimation of the biodiversity of a dataset. Secondly, this assumption is based

on the specific definition of genetic distance for comparing reads. In the literature,

there are many ways of computing sequence similarity/distance depending on the

type of sequence comparison used including alignment-based methods e.g. local,

global, glocal sequence alignment or alignment-free methods e.g. k-mer distance

based on word counting [112]. Under these circumstances, a more robust/dynamic

way for identifying the distance threshold is preferable to the conventional value of

0.03. Recently, Wang et al. [51] have developed M-pick to provide a more dynamic

way to address this issue. This method works well for datasets with low diversity.

For datasets with higher diversity (100 species or more), M-pick faces the problem

of underestimation.

Figure 5.6 illustrates a common case where the de facto choice of 0.03 pairwise

genetic distance for OTU grouping at the species level is suboptimal by showing

the effect of errors on the distribution of inter-species and intra-species pairwise

distances. Each full pairwise distance matrix (bottom sub-figures) can be decom-

posed into two sets: the set of intra-species distances (top sub-figures) and the set

of inter-species distances (middle subfigures). The aim of dynamic dendrogram

cutting is to find a distance threshold that best separates these two distance sets.

The aim of dynamic dendrogram cutting is to find a distance threshold that best

separates the intra-species distance set from the inter-species set, that is to group

sequences from the same species together. This figure shows that for cleaned

datasets a smaller distance threshold than 0.03 is often more appropriate to group

short reads from the same species and differentiate reads from different species.

Potential factors that can affect the distribution of pairwise distances include

those directly alter the DNA sequence of each read, directly affecting the dis-

tances of that read to other sequences. Besides PCR and sequencing errors, other

Chapter 5. OTU Clustering Pipelines 90

community-related characteristics such as abundance, coverage and diversity can

also affect the distribution of pairwise distances.

In CRiSPy-CUDA, I use a new dendrogram-based method to automatically deter-

mine the distance threshold to cut a dendrogram. The aim of this method is to

discover the natural grouping in 16S rDNA short read datasets. The key insight

used is that a big jump in a dendrogram indicates the grouping of two intrinsically

unrelated clusters. Hence, cutting the dendrogram right before this jump occurs

will result in the natural grouping of data points in a dataset. The main issue is to

formulate the definition of big jump. A straight forward way to determine these

big jumps is to take the absolute differences between two consecutive merging dis-

tances and then simply take the maximum difference. However, this method is

susceptible to noises and outliers. Instead, I apply a technique called change point

detection.

In CRiSPy-CUDA, given the (possibly incomplete) merging sequence produced

by SparseHC, I first compute the sequence of differences between every pair of

consecutive merging distances. I then detect the change in variance of the differ-

ence sequence using the R changepoint package [108]. Figure 5.7 illustrates the

detected change points in two different merging sequences with different statistical

characteristics produced by CRiSPy. The natural cutoff distance of the dataset

with errors is 0.0350, which corresponds to the difference of 0.0013 (indicated by

the vertical line in the figure on the left). The cutoff of the dataset without errors

is 0.0073, which corresponds to the difference of 0.0008 (indicated by the vertical

line in the on the right).

The changepoint package consists of several search algorithms used to identify

the points at which changes in the probability distribution of a time series occur.

Other R packages in the category of multiple change point search algorithms are

cumSeg [113] and ecp [114]. While most change point detection packages provide

only a particular search method, the changepoint package implements a variety of

popular search algorithms and test statistics such as the binary segmentation al-

gorithm, the segment neighborhood algorithm and the PELT algorithm. I employ

Chapter 5. OTU Clustering Pipelines 91

this assortment of algorithms to find the best test statistics and search algorithm

to detect the change points in the merging sequence produced by the clustering

procedure of CRiSPy.

The particular changepointmethod used in CRiSPY is described as follows. Given

the merging sequence Θ = (Θ1,Θ2, . . . ,Θn) (n ≤ N − 1 where N is the number of

input reads), a change point τ is a value in the range [1, n] such that the statistical

properties of Θ1 = (Θ1, . . . ,Θτ) and Θ2 = (Θτ+1, . . . ,Θn) are significantly differ-

ent. Statistical properties including the mean and/or variance of the distributions

of Θ1 and Θ2 are summarized in the sets of parameters Θ̂1 and Θ̂2 correspondingly.

The single change point detection problem can be posed as a hypothesis test. The

null hypothesis H0 is that there is no change point in the merging sequence. The

alternative hypothesis H1 is that there is one change point τ in the merging se-

quence. I can then compute the test statistic to reject the null hypothesis using

the maximum likelihood approach:

Λ = −2 log(
likelihood for null hypothesis

likelihood for alternative hypothesis
)

= 2(log likelihood for alternative hypothesis

− log likelihood for null hypothesis)

= 2{max
τ

(log p(Θ1|Θ̂1) + log p(Θ2|Θ̂2))− log p(Θ|Θ̂)}

If Λ is larger than a certain threshold c, I can reject the null hypothesis and

conclude that there exists a change point τ . The value of τ is then estimated such

that the log likelihood (log p(Θ1|Θ̂1) + log p(Θ2|Θ̂2)) is maximized.

5.3 Summary

This research introduces CRiSPy-CUDA and CRiSPy-Embed - two scalable pipelines

for de novo OTU clustering of large 16S rRNA pyrosequencing datasets. Using

a workstation with a single CUDA-enabled GPU, CRiSPy-CUDA and CRiSPy-

Embed can efficiently perform biodiversity estimation of large metagenomic datasets.

Chapter 5. OTU Clustering Pipelines 92

Based on algorithms which are designed for massively parallel CUDA-enabled

GPU, CRiSPy-CUDA and CRiSPy-Embed achieve significant speed-up over the

same serial pipeline.

With the recent development in bioinformatics, the CRiSPy pipelines can have

many other real-world applications besides biodiversity assessment for metage-

nomic datasets. One related application is in plant systematics to generate arti-

ficial phylogenies of plants at the species, genus or higher level. Another bioin-

formatic application is in transcriptomics to group genes with similar expression

patterns or in sequence analysis to group homologous sequences into gene fam-

ilies. They can also be used to cluster human genetic data to infer population

structures. Since large-scale genomic datasets become more and more accessible

to scientists, scalable yet accurate tools like CRiSPy-CUDA and CRiSPy-Embed

are crucial for research in this area.

CRiSPy-CUDA is available at https://github.com/ngthuydiem/crispy-cuda

and CRiSPy-Embed is available at https://github.com/ngthuydiem/crispy-embed.

https://github.com/ngthuydiem/crispy-cuda
https://github.com/ngthuydiem/crispy-embed

Chapter 6

OTU Clustering Evaluation

Similar to general cluster analysis, benchmarking OTU clustering algorithms and

tools is a nontrivial problem itself due to the lack of benchmark datasets with

groundtruth information, especially for NGS metagenomic datasets in which many

organisms are sequenced for the first time. This chapter describes the methodol-

ogy taken in this research to reasonably compared the accuracy of the clustering

algorithms of interest. The work described in this chapter has been published in

[102] and [103].

6.1 Benchmark Framework

6.1.1 Simulated test datasets

I simulate 16S rDNA amplicon read datasets using Grinder [115] to obtain a

more comprehensive benchmark on different datasets with various controlled pa-

rameters. In the context of this study, I focus on 454 pyrosequencing datasets.

Test datasets are simulated using full-length 16S reference sequences and univer-

sal primers for 16S rRNA. I obtain the reference sequences from the Greengenes

database [116] and two universal primers for 16S rDNA: 926F (AAACTYAAAK-

GAATTGACGG) and 1492R (CGGTTACCTTGTTACGACTT).

93

Chapter 6. OTU Clustering Evaluation 94

In these experiments, I have varied the following attributes: read length, diversity,

fold coverage, rank abundance, dataset size, sequencing and PCR error model.

Read length is simulated with three variables: the average length, the distribution,

and the standard deviation. Following the recommendation by Grinder for 454

datasets, I use the average length of 450 bp, the normal distribution and the

standard deviation of 50 bp for all test datasets.

Diversity of a simulated dataset refers to the number of full-length reference se-

quences used to simulate that dataset. For small datasets with 5000 reads, I use

100 reference sequences as in a 16S rRNA case study of Grinder [115]. For larger

datasets, I use diversity values ranging from 500 to 5000 species depending on the

dataset size.

Fold coverage is defined as the total number of base pairs in an output simulated

dataset divided by the total number of base pairs of the input reference sequences.

When I fix the average read length and the diversity, the fold coverage is deter-

mined by the number of output reads. In these experiments, I control the fold

coverage by choosing the desired number of reads instead.

Rank-abundance is used to specify how rarity or commonness of a species in rela-

tivity to other species in the same community. Except for a particular experiment

to study the impact of different rank-abundance models, I use the power law distri-

bution i.e. P (n) = nα with α = 0.1 to model the relative species richness in these

test datasets since the power law rank-abundance is often observed in real-world

16S rDNA datasets [31, 117].

Errors refer to sequencing and PCR errors including mutations, homopolymers

and chimeras.

• Mutations are simulated by introducing substitutions, insertions and dele-

tions at positions that follow a specified distribution. In these experiments,

I use the constant mutation rate of 0.1% i.e. 1 out of 1000 base pairs is a

mutation.

Chapter 6. OTU Clustering Evaluation 95

• Homopolymers are introduced by adding homopolymeric stretches to using

a specified model where the length of each stretch follows a normal distribu-

tion. As recommended by Grinder, I use the Balzer model [115, 118].

• Chimeras refer to reads generated from the fusion of two or more amplicon

template sequences. In the test datasets that contain chimeras, I specify

that 10% of amplicon templates are chimeric.

In consideration of the fact that the preprocessing step is often recommended for

raw datasets before OTU binning [96], most of these test datasets are cleaned

datasets with little errors. Except for a particular experiment to test the robust-

ness of OTU binning tools in the presence of errors, I experiment with the assump-

tion that 90% sequencing and PCR errors are removed during the preprocessing

stage.

6.1.2 Mock datasets

Eight mock communities are also used to validate the clustering results. Two V5

datasets were sequenced from a library of 94 16S rRNA clones [119]: “Divergent”

was sequenced from 23 clones that differed at least by 7% mixed in equal propor-

tions while “Artificial” was sequenced from 90 clones some of which differed by

only 1% and mixed in uneven proportions to simulate a real-world community.

Six V2 datasets were extracted from a pool of 87 isolated organisms [6]: “Even1”,

Table 6.1: Mock communities used for validating OTU clustering accuracy
(# means “the number of”)

Dataset #original #labeled #cleaned, average #species #multi-labeled #single-labeled
reads reads unique reads length OTUs OTUs

Divergent 35190 34905 13,364 268 23 22 22
Artificial 31867 31765 10,790 269 90 117 48
Even1 53,771 49,006 7,144 250 87 133 70
Even2 45,178 41,104 5,995 248 87 124 70
Even3 54,153 49,588 6,996 245 87 133 73

Uneven1 44,926 39,369 5,583 247 87 92 62
Uneven2 44,176 41,914 5,868 254 87 114 58
Uneven3 50,931 48,365 7,098 243 87 105 55

Chapter 6. OTU Clustering Evaluation 96

Case 3a: similar reads are grouped into a new OTU

Case 3: two species with some divergent

reads and some similar reads

Case 3c: similar reads belong to OTU_2 only

Case 2: two species with similar reads one OTU

Case 1: two species with divergent reads  two OTUs

Case 3b: similar reads belong to OTU_1 only

 OTU_1

An 16S rRNA read

OTU_1+2

OTU_2

 Species A

Species B

Figure 6.1: Complications in labelling mock datasets to evaluate clustering
accuracy.

Chapter 6. OTU Clustering Evaluation 97

“Even2”, “Even3” were mixed in equal proportions and “Uneven1”, “Uneven2”,

“Uneven3” were mixed in uneven proportions. These datasets are all labeled and

preprocessed before input to the OTU clustering tools. The characteristics of these

mock datasets are summarized in Table 6.1.

Clustering is knowledge discovery process to identify patterns in unlabeled datasets.

However, to evaluate the accuracy of a clustering algorithm, I need the ground truth

or labeled datasets. Obtaining the ground truth for a 16S rRNA dataset can be a

tricky issue. It is often impossible to know the actual taxa assignment (e.g. Read

1 is from Species A, Read 2 is from Species B) of a 16S segment since it might

belong to more than one taxa (species, genus, etc.) as illustrated in Figure 3 (Case

2 and 3). From a sequenced dataset, I can only determine the OTU assignment

of a 16S segment (e.g. Read 1 is from Species A hence assigned to OTU 1, Read

2 may be from either Species A or B or both and hence assigned to OTU 1+2).

As a result, the OTU assignment is used as the ground truth instead of the taxa

assignment.

I determine the OTU assignment of a read by using USEARCH -usearch global

[39] to blast a mock dataset against its corresponding reference dataset with the

stringent criteria of minimum 97% identity. After blasting, I retain about 90%-

99% the original datasets. One read may be annotated with multiple labels due

to the fact that several species or several full-length 16S rRNA clones might have

identical 16 rRNA segments thus producing multiple BLAST hits.

For sequences that are common among multiple species in Figure 3 - Case 3, I

can either consider that they belongs to a new OTU (OTU 1+2 in Case 3a) or

consider that they belongs to one of the original OTUs (OTU 1 in Case 3b or

OTU 2 in Case 3c). In the former case, I have multi-labeled OTUs as ground

truth and in the latter case, I have single-labeled OTUs as ground truth. The

expected numbers of single-labeled and multi-labeled OTUs in the mock datasets

are shown in the last two columns of Table 6.1.

It is important to remember that due to the complications when determining the

ground truth, I can only measure how good a clustering result is compared to

Chapter 6. OTU Clustering Evaluation 98

the ground truth label generated from BLAST results but not the actual ground

truth. Thus, the following accuracy evaluation is a reasonable but by no means

an exact indication to how good an clustering algorithm is.

6.1.3 Accuracy measures

There are many existing measures to validate clustering results. 22 of these mea-

sures are summarized in [120]. Among these measures, the corrected-by-chance

measures such as the adjusted mutual information (AMI) or the adjusted rand

index (ARI) measures are recommended over the equivalent uncorrected indices

such as the mutual information index (MI) or the Rand index (RI) [120, 121]

due to two reasons. Firstly, unadjusted measures are affected by the number of

clusters in the results while adjusted measures are not [121]. Secondly, adjusted

measures provide a constant baseline (ideally the baseline value is 0) to indicate no

similarity for two clusterings sampled independently at random while unadjusted

measure often provide a high and non constant value. Hence, although several

OTU clustering studies [45, 47, 96] have used the NMI score to measure OTU

clustering accuracy, I recommend the ARI or AMI score for validation.

Normalized Mutual Information

Normalized Mutual Information (or NMI) [49] score is defined as follows:

NMI(Ω , C) =
2MI(Ω |C)

H(Ω) +H(C)

where Ω = ω1, ω2, ..., ωK is the set of ground truth clusters and C = c1, c2, ..., cJ

is the set of clustering outcomes.

Table 6.2: The simplified contingency table

Number of pairs same label different labels
same cluster a b

different clusters c d

Chapter 6. OTU Clustering Evaluation 99

Given a dataset of N raw sequences, the entropies H(Ω) and H(C) are computed

as:

H(Ω) = −
∑ |ωk|

N
log2
|ωk|

N
,H(C) = −

∑ |cj|

N
log2
|cj|

N

where |ωk| is the number of sequences in cluster ωk .

The mutual information MI(Ω |C) can be computed as follows:

MI(Ω |C) = H(Ω) +H(C)−H(Ω |C)

where H(Ω |C) is the conditional entropy of Ω on C:

H(Ω |C) = −
∑

k

∑

j

|ωk ∩ cj|

N
log2
|ωk ∩ cj|

N

|ωk ∩ cj| denotes the number of sequences that are present in both clusters ωk and

cj.

Adjusted Mutual Information

AMI score is based on normalized mutual information score (NMI) (used in [47],

[96]) with adjustment for the chance that two data objects are randomly in the

same cluster, hence is a more appropriate measure than the NMI score to evaluate

clustering accuracy. AMI score attains a minimum value of 0 when the clustering

result is totally different from the ground truth and a maximum value of 1 when

the clustering result is exactly the same as the ground truth. A higher AMI score

indicates a higher accuracy of a clustering algorithm. For the detailed formula of

AMI score, see [121].

Adjusted Rand Index

ARI is the corrected for chance version of the simpler Rand index [122] which

measures the percentage of decisions that are correct:

Chapter 6. OTU Clustering Evaluation 100

RI =
a+ d

a+ b+ c+ d
=

a+ d
(

n

2

) (6.1)

where a, b, c, d are defined in Table 6.2 and n is the dataset size. a and d denote

two types of correct decisions. a counts all true positive decisions that assign two

reads from the same reference sequence to the same cluster and d counts all true

negative decisions that assign two reads from two reference sequences to different

clusters. Meanwhile, b and c denote two types of errors. b counts all false positive

decisions that assign two reads from two reference sequences to the same cluster

and c counts all false negative decisions that assign two reads from the same

reference sequence to different clusters.

Like other measures for clustering validation, ARI aims to measure the similarity

between two groupings: the actual grouping (the labels) and the predicted group-

ing (the clustering results). I want to measure the similarity between the grouping

produced by an OTU clustering pipeline and the actual grouping of the input

reads. I use the identity of original full-length reference sequence from which a

read is extracted as the label of that read. ARI score is defined as:

ARI =

(

n

2

)

(a+ d)− [(a+ b)(a+ c) + (b+ d)(c+ d)]
(

n

2

)2
− [(a+ b)(a+ c) + (b+ d)(c+ d)]

(6.2)

A random labeling in which the predicted grouping is very different from the actual

grouping results in an ARI score close to 0.0 while a perfect labeling has a score

of 1.0.

6.2 Evaluation of clustering accuracy

In this section, I evaluate the accuracy and efficiency of CRiSPy-CUDA and

CRiSPy-Embed against M-pick - a dynamic OTU binning tool together with

Chapter 6. OTU Clustering Evaluation 101

other state-of-the-art static OTU binning tools including CD-HIT-OTU v0.0.2,

UPARSE (a part of USEARCH v7.0 package), USEARCH v6.1, QIIME pick otus

v1.8, ESPRIT (2011 distribution), and ESPRIT-Tree (2011 distribution). All

static tools work with the assumption that the genetic distance between a pair of

16S rDNA short reads from the same species is less than 0.03. Although these

tools allow users to set the distance threshold parameter before clustering, the

value of 0.03 or 97% is most commonly used unless there are reasons to change

this assumption and pick another value before running a tool. In these experi-

ments, I use the distance cutoff of 0.03 for these static tools as in their default

settings.

All experiments are conducted on a 64-bit Ubuntu operating system using an HP

ENVY 700 PC with Intel Core i7-4790 3.6 GHz processor and 8GB of RAM.

CRiSPy-CUDA and CRiSPy-Embed run on an NVIDIA GTX 745 graphic card

with CUDA 6.5 toolkit installed on the same PC. The runtime is measured us-

ing the Linux time command and the peak memory usage is measured with the

Valgrind Massif profiler [99]. To minimize statistical influence, every experiment

is carried out multiple times and the result from each run is stored in a MySQL

database for later retrieval and reporting purposes. Each measurement (such as

runtime, memory usage or clustering accuracy) reported in this section is the av-

erage value computed from multiple runs.

6.2.1 On simulated datasets

In the first experiment, I compare the overall performance of all tools in terms

of clustering accuracy, runtime and memory usage. This experiment runs five

times on five different datasets with typical characteristics of cleaned 16S ampli-

con datasets: 5000 pyrosequencing amplicon reads from 100 reference sequences

with few sequencing errors. I report the means (bars) and standard deviations

(whiskers) of each parameter from five runs in Figure 6.2. Asterisks above each

box plot of an existing tool indicate the level of significance (p-value) of the statis-

tical hypothesis test to show that the mean scores achieved by CRiSPy-CUDA and

Chapter 6. OTU Clustering Evaluation 102

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AR
I s

co
re

0.86 0.73 0.42 0.57 0.53 0.57 0.57 0.57 0.55
Clustering accuracy in ARI score

0.70
0.75
0.80
0.85
0.90
0.95
1.00

AM
I s

co
re

0.95 0.90 0.80 0.85 0.85 0.86 0.85 0.85 0.85

Clustering accuracy in AMI score

0
500

1000
1500
2000
2500
3000

R
un

tim
e

(in
 s

ec
on

ds
) 5 3 61 1957 31 4 1 34 2

Runtime

0

500

1000

1500

2000

2500

M
em

or
y

(in
 M

B)

47 38 2330 77 253 370 24 12 51
Memory usage

CRiSPy-CUDA

CRiSPy-Embed
M-pick

ESPRIT

ESPRIT-Tree
QIIM

E

USEARCH6

UPARSE

CD-HIT-OTU
60
80

100
120
140
160
180
200

N
um

be
r o

f O
TU

s 116 166 80 85 88 91 91 74 91
Estimated number of OTUs

Figure 6.2: The benchmark of computational performance and accuracy of
CRiSPy-CUDA and CRiSPy-Embed against other OTU binning tools using
10 different datasets, each of which contains 5000 16S rDNA reads that are
generated randomly from 100 species. The bars and whiskers represent the

means and standard deviations from 10 runs on these 10 datasets.

Chapter 6. OTU Clustering Evaluation 103

0.94
0.96
0.98
1.00
1.02
1.04
1.06 Rank abundance plot for 10 datasets with uniform model.

0.0

0.5

1.0

1.5

2.0 Rank abundance plot for 10 datasets with linear model.

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

R
el

at
iv

e
ab

un
da

nc
e

pe
rc

en
ta

ge
 (%

)

Rank abundance plot for 10 datasets with powerlaw model.

0
2
4
6
8

10
12
14
16
18 Rank abundance plot for 10 datasets with logarithmic model.

0 20 40 60 80 100
Abundance rank

0
1
2
3
4
5
6
7
8
9 Rank abundance plot for 10 datasets with exponential model.

Figure 6.3: Different rank abundance models used for benchmarking: expo-
nential, logarithmic, power law, linear and uniform distributions.

Chapter 6. OTU Clustering Evaluation 104

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

AR
I s

co
re

*** *** *** *** *** *** ****** *** *** *** *** *** ***
Rank abundance model: uniform

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AR
I s

co
re

*** *** *** *** *** *** ****** *** *** ** *** *** ***
Rank abundance model: linear

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AR
I s

co
re

*** *** *** *** *** *** ****** ** *** *** *** *** ***

Rank abundance model: powerlaw

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AR
I s

co
re

*** *** *** *** *** *** ****** *** *** * * * **
Rank abundance model: logarithmic

CRiSPy-CUDA

CRiSPy-Embed
M-pick

ESPRIT

ESPRIT-Tree
QIIM

E

USEARCH6

UPARSE

CD-HIT-OTU
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AR
I s

co
re

*** *** *** *** *** *** ****** *** *** o * o *

Rank abundance model: exponential

Figure 6.4: ARI scores achieved by the OTU binning tools of interest when
clustering datasets with the rank abundance models shown in Figure 6.3. Each
dataset contains 5000 reads and is simulated from 100 full-length 16S rDNA

reference sequences chosen randomly from the Greengenes database.

Chapter 6. OTU Clustering Evaluation 105

0.70
0.75
0.80
0.85
0.90
0.95
1.00

AR
I s

co
re

*** *** *** *** *** *** ***
*** *** *** *** *** *** ***

Rank abundance model: uniform

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

AR
I s

co
re

*** *** *** *** *** *** ***
*** *** *** ** *** *** ***

Rank abundance model: linear

0.70
0.75
0.80
0.85
0.90
0.95
1.00

AR
I s

co
re

*** *** *** *** *** *** ***
*** ** *** *** *** *** ***

Rank abundance model: powerlaw

0.75

0.80

0.85

0.90

0.95

1.00

AR
I s

co
re *** *** *** *** *** *** ***

*** *** *** ** ** ** ***

Rank abundance model: logarithmic

CRiSPy-CUDA

CRiSPy-Embed
M-pick

ESPRIT

ESPRIT-Tree
QIIM

E

USEARCH6

UPARSE

CD-HIT-OTU
0.75

0.80

0.85

0.90

0.95

1.00

AR
I s

co
re *** *** *** *** *** *** ***

*** *** *** * ** * *

Rank abundance model: exponential

Figure 6.5: AMI scores achieved by the OTU binning tools of interest when
clustering datasets with different rank abundance models. These AMI scores
are computed using the same clustering results as the ARI scores in Figure 6.4.

Both accuracy measures are reported for comparison purpose.

Chapter 6. OTU Clustering Evaluation 106

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AR
I s

co
re

*** *** *** * * * ****** * * o o o *
Fold coverage: 7-fold coverage

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AR
I s

co
re

*** *** *** *** *** *** ****** *** *** * * * ***
Fold coverage: 15-fold coverage

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

AR
I s

co
re

*** *** *** *** *** *** ****** *** *** ** *** ** ***
Fold coverage: 22-fold coverage

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AR
I s

co
re

*** *** *** *** *** *** ****** ** *** ** ** ** **
Fold coverage: 30-fold coverage

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AR
I s

co
re

*** *** *** *** *** *** ****** ** *** *** *** *** ***
Fold coverage: 37-fold coverage

CRiSPy-CUDA

CRiSPy-Embed
M-pick

ESPRIT

ESPRIT-Tree
QIIM

E

USEARCH6

UPARSE

CD-HIT-OTU
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AR
I s

co
re

*** *** *** *** *** *** ****** *** *** * ** ** **
Fold coverage: 45-fold coverage

Figure 6.6: ARI scores achieved by the OTU binning tools of interest when
clustering datasets with fold coverage values: 7 (1000 reads), 15 (2000 reads),
22 (3000 reads), 30 (4000 reads), 37 (5000 reads) and 45 (6000 reads). Each
dataset is simulated from 100 full-length 16S rDNA reference sequences chosen

randomly from the Greengenes database.

Chapter 6. OTU Clustering Evaluation 107

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

AR
I s

co
re

*** *** *** *** *** *** ***
*** * * o o o o

Fold coverage: 7-fold coverage

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

AR
I s

co
re

*** *** *** *** *** *** ***
*** *** ** * ** ** **

Fold coverage: 15-fold coverage

0.70
0.75
0.80
0.85
0.90
0.95
1.00

AR
I s

co
re

*** *** *** *** *** *** ***
*** *** *** *** *** *** ***

Fold coverage: 22-fold coverage

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

AR
I s

co
re

*** *** *** *** *** *** ***
*** ** *** ** ** *** **

Fold coverage: 30-fold coverage

0.70
0.75
0.80
0.85
0.90
0.95
1.00

AR
I s

co
re

*** *** *** *** *** *** ***
*** ** *** *** *** *** ***

Fold coverage: 37-fold coverage

CRiSPy-CUDA

CRiSPy-Embed
M-pick

ESPRIT

ESPRIT-Tree
QIIM

E

USEARCH6

UPARSE

CD-HIT-OTU
0.70
0.75
0.80
0.85
0.90
0.95
1.00

AR
I s

co
re

*** *** *** *** *** *** ***
*** ** ** * ** ** *

Fold coverage: 45-fold coverage

Figure 6.7: AMI scores achieved by the OTU binning tools of interest when
clustering datasets with different fold coverage values. These AMI scores are
computed using the same clustering results as the ARI scores in Figure 6.6.

Chapter 6. OTU Clustering Evaluation 108

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AR
I s

co
re

*** *** *** *** *** *** ****** *** *** *** *** *** ***
Error model: With no errors

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AR
I s

co
re

*** *** *** *** *** *** ****** ** *** *** *** *** ***
Error model: With few errors (after preprocessing)

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AR
I s

co
re

*** *** *** *** *** *** ****** *** ** * * ** **
Error model: With mutations (indels and subsitutions)

0.3
0.4
0.5
0.6
0.7
0.8
0.9

AR
I s

co
re

*** *** *** *** *** *** ****** *** * o o o *
Error model: With homopolymers

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AR
I s

co
re

*** *** *** ** ** ** ***** *** * o o o o
Error model: With chimeras

CRiSPy-CUDA

CRiSPy-Embed
M-pick

ESPRIT

ESPRIT-Tree
QIIM

E

USEARCH6

UPARSE

CD-HIT-OTU
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AR
I s

co
re

** *** o o ** o oo o o * o o o
Error model: With three error types: mutations, homopolymers and chimeras

Figure 6.8: ARI scores achieved by the OTU binning tools of interest when
clustering datasets with different types of sequencing and PCR errors (muta-
tions, homopolymers, chimeras). Each dataset contains 5000 reads and is simu-
lated from 100 full-length 16S rDNA reference sequences chosen randomly from

the Greengenes database.

Chapter 6. OTU Clustering Evaluation 109

0.70
0.75
0.80
0.85
0.90
0.95
1.00

AR
I s

co
re

*** *** *** *** *** *** ***
*** *** *** *** *** *** ***

Error model: With no errors

0.70
0.75
0.80
0.85
0.90
0.95
1.00

AR
I s

co
re

*** *** *** *** *** *** ***
*** ** *** *** *** *** ***

Error model: With few errors (after preprocessing)

0.75
0.80
0.85
0.90
0.95
1.00

AR
I s

co
re *** *** *** *** *** *** ***

*** *** *** ** ** *** **

Error model: With mutations (indels and subsitutions)

0.75
0.80
0.85
0.90
0.95
1.00

AR
I s

co
re *** *** *** *** *** *** ***

*** o o o o o o

Error model: With homopolymers

0.65
0.70
0.75
0.80
0.85
0.90
0.95

AR
I s

co
re

*** *** *** ** *** ** **
*** o o o o o o

Error model: With chimeras

CRiSPy-CUDA

CRiSPy-Embed
M-pick

ESPRIT

ESPRIT-Tree
QIIM

E

USEARCH6

UPARSE

CD-HIT-OTU
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AR
I s

co
re

*** ** o o ** o *o ** *** *** * *** ***

Error model: With three error types: mutations, homopolymers and chimeras

Figure 6.9: AMI scores achieved by the OTU binning tools of interest when
clustering datasets with different types of sequencing and PCR errors. These
AMI scores are computed using the same clustering results as the ARI scores

in Figure 6.8.

Chapter 6. OTU Clustering Evaluation 110

CRiSPy-Embed are different (in most cases, higher) than those achieved by other

tools. Besides, for each scenario the horizontal dashed line shows the maximum

mean score achieved by tested existing tools.

CRiSPy-CUDA and CRiSPy-Embed provide better clustering accuracy mainly

due to the dynamic dendrogram cutting method. The clustering accuracy of M-

pick is low because the modularity-based approach employed by M-pick often does

not work well for a large number of clusters. The memory usage of M-pick is also

higher than other tools due to the storage required to build and store a graph of

N vertices for modularity detection. Most GHC tools employ similar clustering

strategies with slightly different seeding scheme, thus producing similar accuracy.

CRiSPy-CUDA generally runs faster than most AHC tools thanks to the parallel

algorithms running on GPU. Particularly, CRiSPy-CUDA is 1.8x - 2.9x faster than

ESPRIT-Tree, the currently most efficient AHC tool according to the benchmark

by Sun et al. [47]. CRiSPy-CUDA is slower than some GHC tools due to the

different natures of the two approaches: quadratic versus linear complexity.

To benchmark the robustness of these OTU clustering tools on different types of

datasets, I vary two important aspects of a 16S datasets namely the rank abun-

dance model and the fold coverage and the diversity. Figure 6.4 and 6.5 report the

clustering quality for five common abundance models supported by Grinder using

two different accuracy measures: the ARI and the AMI score. Similarly, Figure 6.6

and 6.7 report the clustering accuracy for five fold-coverage values often encoun-

tered in real-world datasets. These results further illustrate the robustness of the

dynamic dendrogram cutting employed in CRiSPy-CUDA and CRiSPy-Embed.

Although using any OTU clustering tool directly on uncleaned datasets is not

recommended, I also benchmark the clustering quality on datasets with sequencing

errors to compare their robustness in the presence of errors. Figure 6.8 and 6.9

report the results from this experiment.

CRiSPy-CUDA is able to handle datasets with mutations and chimeras as well as

cleaned datasets with sequencing errors. Out of three types of sequencing errors,

Chapter 6. OTU Clustering Evaluation 111

homopolymers and chimeras have the greater impact on CRiSPy’s clustering ac-

curacy. This phenomenon can be explained by the fact that homopolymers induce

a more significant effect on the pairwise distance values of the alignment-based

genetic distance matrix. Meanwhile, chimeric sequences are often treated as new

OTUs and cause an overestimation of the number of OTUs. Nonetheless, CRiSPy-

CUDA still produces better clustering results than existing OTU clustering tools

for datasets with or without errors.

6.2.2 On external mock datasets

To validate the performance of CRiSPy-CUDA and CRiSPy-Embed on non-simulated

datasets, I use eight mock communities produced in vitro by Quince et al. [119]

Figure 6.10: ARI scores achieved by the OTU clustering tools of interest when
running on eight mock datasets in Table 6.1.

Chapter 6. OTU Clustering Evaluation 112

Figure 6.11: AMI scores achieved by the OTU clustering tools of interest
when running on eight mock datasets.

and Turnbaugh et al. [6]. Figure 6.10 and 6.11 show the performance of CRiSPy-

CUDA and CRiSPy-Embed against QIIME and UPARSE on these eight mock

datasets. Overall, CRiSPy-CUDA and CRiSPy-Embed are more accurate than

both UPARSE and QIIME.

6.3 Evaluation of computational efficiency

6.3.1 On large simulated datasets

In this experiment, I compare the computational performance CRiSPy-CUDA

against other scalable binning tools. As shown in Figure 6.2, M-pick and ESPRIT

Chapter 6. OTU Clustering Evaluation 113

20000 40000 60000 80000 100000 120000 140000 160000
Number of unique reads

0

500

1000

1500

2000

R
un

tim
e

(in
 s

ec
on

ds
)

CRiSPy-CUDA
CRiSPy-Embed
ESPRIT-Tree
QIIME
CD-HIT-OTU
USEARCH6

Figure 6.12: Execution time of the OTU clustering tools of interest running on
large datasets of 25000 to 150000 cleaned reads. CRiSPy-CUDA and CRiSPy-
Embed are faster than ESPRIT-Tree, the fastest amongst existing AHC tools.

Chapter 6. OTU Clustering Evaluation 114

20000 40000 60000 80000 100000 120000 140000 160000
Number of unique reads

0

200

400

600

800

1000

1200

1400

M
em

or
y

us
ag

e
(in

 M
B)

CRiSPy-CUDA
CRiSPy-Embed
ESPRIT-Tree
QIIME
CD-HIT-OTU
USEARCH6

Figure 6.13: Memory usage by the OTU clustering tools of interest when run-
ning on large datasets with sizes ranging from 25000 to 150000 reads. CRiSPy-
CUDA and CRiSPy-Embed achieve quasilinear memory complexity compared

to the quadratic complexity of other AHC tools such as ESPRIT-Tree.

Chapter 6. OTU Clustering Evaluation 115

are less efficient than other tools. Therefore, they are not included in this experi-

ment. I use eight large datasets with different sizes ranging from 25000 to 150000

unique cleaned reads and the same rank abundance model (power law) and fold

coverage value (about 35x).

The memory usage of CRiSPy-CUDA scales quasilinear with respect to the dataset

size as shown in Figure 6.13. Furthermore, Figure 6.12 shows that both CRiSPy-

Embed and CRiSPy-CUDA are faster than ESPRIT-Tree, the currently most ef-

ficient AHC tool according to the benchmark by Sun et al. [47]. In particular,

CRiSPy-CUDA is 1.8x - 2.9x faster than ESPRIT-Tree.

6.3.2 On public datasets

To evaluate the performance of CRiSPy, we have acquired eight 16S rRNA pyrose-

quencing datasets from the NCBI Sequence Read Archive (SRA) including three

medium datasets and five large datasets. These raw datasets usually contain reads

of low quality which can introduce a considerable number of false diversity into

the species richness estimation. Hence, we have preprocessed these raw datasets

to remove reads which contains ambiguous nucleotides (N) and reads with lengths

that are not within 1 standard deviation from the average length. The numbers

of reads before and after preprocessing are recorded in Table 6.3.

In this study to benchmark CRiSPy-CUDA on both CPU and GPU, we compare

it mainly against ESPRIT. ESPRIT package includes two different versions: a

personal computer version (ESPRIT PC) and a computer cluster version (ESPRIT

CC). ESPRIT PC implements sequential codes running on a single-CPU. ESPRIT

CC takes a data parallel approach to parallelize both k-mer and genetic distance

computation. The input data is split into several parts and distributed to compute

nodes in a cluster through job submission. The partial distance matrices are then

combined to form the full sparse distance matrix which is clustered by the same

clustering module as ESPRIT PC.

Chapter 6. OTU Clustering Evaluation 116

Table 6.3: Runtime (in seconds) and speedup comparison of k-mer distance
computation between ESPRIT and CRiSPy

Dataset
Number of Number of ESPRIT PC ESPRIT CC CRiSPy MT Single-GPU Quad-GPU
raw reads cleaned reads T T S T S T S T S

SRR029122 40864 15179 322 98 3.29 78 4.13 6.7 48 1.7 189
SRR013437 57902 22498 838 257 3.26 203 4.13 15.8 53 4.0 211
SRR064911 23078 16855 837 251 3.33 203 4.12 19.1 44 4.8 173
SRR027085 249953 131482 27600 8648 3.19 6014 4.59 473 58 119 232

SRR033879 81 1494071 300667 153000 48316 3.17 29130 5.25 3150 49 791 193
SRR026596 97 333630 178860 91300 29386 3.11 22432 4.07 1746 52 440 208
SRR058099 339344 162223 78000 25550 3.05 17920 4.35 1459 53 368 212
SRR043579 857248 256760 195000 66115 2.95 48221 4.04 4046 48 1015 192

Table 6.4: Runtime (in minutes) and speedup comparison of genetic distance
computation between ESPRIT and CRiSPy

Dataset
Average Percentage of ESPRIT PC ESPRIT CC CRiSPy MT Single-GPU Quad-GPU
length pairs left p T T S T S T S T S

SRR029122 239 11.04% 161 64 2.50 33 4.88 1.7 94 0.4 374
SRR013437 267 11.82% 462 184 2.51 94 4.93 4.6 101 1.1 402
SRR064911 524 56.73% 4700 1964 2.39 958 4.90 44 108 11 429
SRR027085 260 0.84% 1074 423 2.54 212 5.07 10 107 2.6 416

SRR033879 81 268 9.03% 64806 27029 2.40 12683 5.11 611 106 153 424
SRR026596 97 541 28.45% 2815 1128 2.50 559 5.04 26 110 6.5 434
SRR058099 531 6.76% 52430 22568 2.32 10551 4.97 479 109 120 437
SRR043579 556 8.37% 166160 73289 2.27 32627 5.09 1496 111 374 444

Since the performance of ESPRIT CC depends on cluster setup and is subjected

to communication overheads, we mainly use ESPRIT PC to benchmark the per-

formance of CRiSPy. However, we also report the runtime and speedup of ES-

PRIT CC on a cluster of 4 CPUs to give readers a rough idea about the perfor-

mance of ESPRIT CC. We use the latest ESPRIT version released on Febru-

ary 2011. ESPRIT source code is available upon request to Dr. Sun Yijun

http://plaza.ufl.edu/sunyijun/ESPRIT.html.

We have implemented three different versions of CRiSPy:

1. a multithreaded C++ program with OpenMP (CRiSPy MT)

2. a CUDA program running on a single-GPU (CRiSPy single-GPU)

3. a CUDA program running on a multi-GPU cluster (CRiSPy multi-GPU)

We have conducted performance comparisons under the Linux OS with the fol-

lowing setup. ESPRIT PC and CRiSPy MT runtime are estimated on a Dell

T3500 Workstation with a quad-core Intel Xeon 2.93 GHz processor, 4GB RAM.

http://plaza.ufl.edu/sunyijun/ESPRIT.html

Chapter 6. OTU Clustering Evaluation 117

ESPRIT CC runtime is estimated on a cluster for four Dell T3500 Workstations

connected via Ethernet. Condor High-Throughput Computing System is used for

job submission. CRiSPy single-GPU runtime is measured on a Fermi-based Tesla

S2050 GPU card with 3GB RAM. CRiSPy quad-GPU runtime is measured on

a quad-GPU cluster which consists of two host nodes, each of which connected

to two S2050 GPU cards. These nodes are connected by a high-speed Infiniband

network. We use the following parameters for our experiments: k = 6, θk = 0.3

for large datasets, θk = 0.5 for medium datasets, θg = 0.2, sbt(x = y) = 5,

sbt(x 6= y) = −4, α = −10 and β = −5.

Performance comparison of k-mer distance computation

Table 6.3 records the runtime (in seconds) of the pairwise k-mer distance com-

putation. For a dataset which contains n reads, the total number of pairs to be

computed is n(n− 1)/2. For both k-mer and genetic distance modules, T stands

for runtime and S stands for speedup. T includes IO transfer time between host

CPU and CPU, computation time of the algorithm and file IO time to output

results to file.

CRiSPy MT is a multithreaded program written in C++ with OpenMP for a

multi-core PC. It exploits the data parallelism of the pairwise distance matrix com-

putation and achieves an average speedup 4.34 compared to ESPRIT PC. ESPRIT

CC requires more time that CRiSPy MT mainly due to scheduling, communica-

tion overheads and data splitting stage. CRiSPy on a single-GPU (quad-GPU)

runs 50.7(201.3) times faster than ESPRIT PC and 11.7 (46.4) times faster than

CRiSPy MT.

Performance comparison of genetic distance computation

Table 6.4 shows the runtime (in minutes) of the genetic distance computation on

the aforementioned datasets. The percentage of pairs p reported in Table 6.4 is

defined as the number of read pairs with k-mer distance less than the threshold

θk = 0.3 divided by the total number of pairs which is n(n − 1)/2 for a dataset

Chapter 6. OTU Clustering Evaluation 118

of n reads. Hence,1− p is the percentage of pairs that k-mer distance module has

effectively filtered out.

When running on multiple GPUs, the number of pair indices acquired from k-

mer filtering step are divided equally amongst all the GPUs. Each GPU will

then process its set of pair indices independently. As the runtime of ESPRIT

PC, ESPRIT CC and CRiSPy MT are tremendous for large datasets, we sample

representative parts of each dataset to get an estimated runtime.

In comparison with ESPRIT PC, the runtime taken by CRiSPy MT reduces by

the factor of 5.00 on average. Furthermore, average speedup gain by CRiSPy

single-GPU (quad-GPU) is 105.6 (419.8) compared to ESPRIT PC and 21.1 (84.0)

compared to CRiSPy MT. Similar to the filtration stage, ESPRIT CC encounters

even more signification communication overheads since the amount of input and

output data are much larger.

The speedup gain of the genetic distance module is much more significant com-

pared to the k-mer distance module since genetic distance computation is more

compute-intensive and hence it can utilize more processing powers of GPUs. Fur-

thermore, the performance of this module increases in correspondence to the av-

erage length and the size of the input dataset.

Execution time of CRiSPy full run

CRiSPy’s processing pipeline includes three modules: parallel k-mer distance com-

putation, parallel genetic distance matrix computation and sequential clustering

of the resulting sparse distance matrix. Table 6.5 and Table 6.6 show the runtime

of CRiSPy on a single-GPU and a quad-GPU cluster respectively for five large

datasets.

Table 6.5: Runtime (in minutes) of CRiSPy full run on a single-GPU

Dataset
k-mer distance Genetic distance Clustering Total runtime

distance full 1/5 1/10 Sorting Hcluster full 1/5 1/10
SRR027085 7.9 10 4.8 3.3 2.6 3.0 24 18 17

SRR033879 81 53 611 286 195 162 285 1111 785 694
SRR026596 97 29 26 10 6.2 1.7 1.8 58 43 39
SRR058099 24 479 195 116 36 49 587 303 224
SRR043579 67 1496 607 360 102 152 1849 960 714

Chapter 6. OTU Clustering Evaluation 119

Table 6.6: Runtime (in minutes) of CRiSPy full run on a quad-GPU cluster

Dataset
k-mer Genetic distance Clustering Total runtime
distance full 1/5 1/10 Sorting Hcluster full 1/5 1/10

SRR027085 2.0 2.6 1.2 0.8 2.6 3.0 10 8.8 8.4
SRR033879 81 13 153 72 49 162 285 613 532 509
SRR026596 97 7.3 6.5 2.6 1.6 1.7 1.8 17 13 12
SRR058099 6.1 120 49 29 36 49 210 139 119
SRR043579 17 374 152 90 102 152 678 455 393

Table 6.7: Runtime (in minutes) and speedup comparison between ESPRIT
and CRiSPy

Dataset
ESPRIT PC CRiSPy MT Full band 1/5 band 1/10 band

T T S T S T S T S
SRR029122 167 35 4.79 2.4 68 1.6 106 1.3 125
SRR013437 477 98 4.85 6.1 78 3.7 130 3.0 157
SRR064911 4720 968 4.88 50 94 24 196 17 276

For the genetic distance computation, we use three different global alignment

schemes including full alignment, 1/5 banded alignment and 1/10 banded align-

ment. Please note that 1/5 (1/10) banded alignment reduces the runtime by a

factor of 2.29 (3.58) compared to full alignment. We have observed from these

experiments that 1/5 banded alignment produces identical OTUs as the full align-

ment and the 1/10 banded alignment results in only some minor difference in terms

of outliers.

Table 6.7 shows the comparison between ESPRIT PC, CRiSPy MT and CRiSPy

single-GPU full run for three medium datasets. We notice that by using banded

alignment, CRiSPy single-GPU often requires two orders of magnitude less time

than ESPRIT PC to execute the whole pipeline. Besides, the larger the dataset,

the more significant speedup CRiSPy achieves.

6.4 Summary

This chapter reports the benchmark results achieved by the CRiSPy-Embed and

CRiSPy-CUDA pipelines in comparison with other OTU clustering tools. It is

often difficult to access the results of the cluster analysis due to the lack of univer-

sally accepted validation datasets with predefined labels. Therefore, to evaluate

Chapter 6. OTU Clustering Evaluation 120

the performance of these pipelines against existing tools, a comprehensive OTU

evaluation framework using simulated and mock datasets has also been created.

The evaluation process involves the creation of test datasets, the deliberate choice

of sensible accuracy measurements as well as the interpretation and presentation

of the evaluation results. The benchmark results show that CRiSPy-Embed and

CRiSPy-CUDA outperforms other OTU binning tools in terms of both accuracy

and computational performance.

Chapter 7

Conclusion and Future Work

The main objective of this thesis is the development of efficient, accurate and

robust hierarchical clustering algorithms for recognizing stratified patterns in bi-

ological sequence datasets. This chapter concludes the thesis by recounting the

work done in this project towards this goal. This chapter also provides some

recommendations to extend this work in future research.

7.1 Conclusion

Agglomerative hierarchical clustering is a useful analysis technique especially for

biological sequence datasets. However, it is computational expensive with theo-

retical runtime complexities ranging from O(n2logn) to O(n3) for a dataset of n

data points. The AHC analysis involves two main steps: the pairwise distance

matrix computation and the grouping procedure.

This research introduces CRiSPy-CUDA and CRiSPy-Embed - two scalable tools

for taxonomy-independent analysis of large-scale 16S rRNA pyrosequencing datasets

running on low-cost hardware. Using a workstation with a single CUDA-enabled

GPU, CRiSPy-CUDA and CRiSPy-Embed can efficiently perform biodiversity es-

timation of large metagenomic datasets. Based on algorithms which are designed

for massively parallel CUDA-enabled GPU, CRiSPy-CUDA and CRiSPy-Embed

121

Chapter 7. Conclusions and Future Work 122

achieve speedup of up to two orders of magnitude over the equivalent sequential

pipeline. Because large-scale genomic datasets become more and more accessible

to scientists, scalable yet accurate tools like CRiSPy-CUDA and CRiSPy-Embed

are crucial for research in this area.

To enable the application of hierarchical clustering analysis on large datasets,

I have implemented a memory-efficient algorithm for agglomerative hierarchical

clustering called SparseHC. SparseHC can also perform space-efficient average-

linkage, single-linkage and complete-linkage on sparse distance matrices. Empirical

results show that SparseHC outperforms other sparse hierarchical clustering tools

in terms of both speed and memory usage, making it suitable for processing large

sparse distance matrices. Besides OTU clustering, SparseHC can also be used as

a general hierarchical clustering tool for full and sparse distance matrices.

Although CRiSPy-CUDA is designed for microbial studies targeting DNA se-

quence analysis, the individual k-mer distance and genetic distance modules on

multi-core CPU and GPU can easily be extended to support protein sequence

analysis and be used in other biological sequence analyses. For examples, k-mer

distance is used for fast, approximate phylogenetic tree construction [46] and pair-

wise genetic distance computation is used in metagenomic processing pipelines

such as CROP [50].

Similarly, CRiSPy-Embed can be used to transform data points from a sequence

space (e.g. DNA space or protein space) into the coordinate space. After con-

verting sequences into vectors of real coordinates, we can apply multidimensional

scaling to these vectors to scale them to two or three dimensional space, which

then can be plotted on 2D or 3D figures. This capability of CRiSPy-Embed is

particularly useful for visualizing biological sequences.

Chapter 7. Conclusions and Future Work 123

7.2 Recommendation for Future Work

7.2.1 Target Illumina datasets

CRiSPy-CUDA and CRiSPy-Embed currently target preprocessed pyrosequenc-

ing datasets of up to a million reads. However, the data size generated by new

sequencing platforms are increasing rapidly. Recent sequencers such the Illumina

HiSeq can now generate up to 600 billion paired-end reads of average length 150

base pairs.

Besides 454 pyrosequencing, Illumina sequencing is now becoming another com-

mon sequencing technology used to generate 16S rRNA datasets. Compared to

454 datasets, Illumina datasets are often larger but contain much shorter reads.

The Illumina read length is in the range of 50-150 base pairs as compared to 400-

700 base pairs as in 454 reads. I have run CRiSPy and CRiSPy-Embed on several

simulated Illumina datasets.

The CRiSPy tools are unable to scale up to datasets sized billions of reads because:

• The clustering module is memory constrained. The data size that the

CRiSPy tools can currently process is proportional to the RAM capacity

• Illumina read length is very short compared to pyrosequencing reads. CRiSPy’s

approach uses distances between the sequences to distinguish them and to

cluster them. When the read length is short, the reads become very similar

and hence the metric-based approaches does not work well.

Thus, there is a need for faster and more memory-efficient algorithms and tools

to process datasets of larger size. Designing more accurate and fast algorithms to

analyze even large-scale datasets is therefore an important future research topic.

A possible direction for future research is to design a parallel/distributed algo-

rithm for agglomerative hierarchical clustering because it can potentially solve the

memory constraint and scalability issues of the current approaches.

Chapter 7. Conclusions and Future Work 124

7.2.2 Dimensionality reduction

OTU clustering for next generation sequencing datasets can be considered as a

special application of a more general problem: clustering of high dimensional

datasets. Another special characteristic of the OTU clustering problem is that the

data points lie in a non-Euclidean space.

Throughout this work the main approach taken to tackle the high dimension issue

is based on filtration. The data is first filtered by the cleansing process by removing

contaminated data points (e.g. reads with the end points unmatched with the

primers used in the DNA sequencing processes, chimeric sequences coming from

two different original full-length DNA sequences) and by removing the redundant

data points (duplicates). Subsequently, the data is filtered for the second round

after the matrix computation stage where only a part of the full pairwise distance

matrix.

Another common approach often used in machine learning to tackle the high di-

mension issue is dimensionality reduction using techniques such as principal com-

ponent analysis. Dimensionality reduction for large biological sequence datasets

is another interesting future research direction.

Chapter 7. Conclusions and Future Work 125

7.3 Publications

1. Nguyen, T. D., Schmidt, B., Zheng, Z., & Kwoh, C. K.(2015). Efficient

and Accurate OTU Clustering with GPU-based Sequence Align-

ment and Dynamic Dendrogram Cutting. In IEEE/ACM Transac-

tions on Computational Biology and Bioinformatics (no. 1, pp. 1). IEEE

Computer Society. ISSN 1545-5963. doi: 10.1109/TCBB.2015.2407574.

2. Nguyen, T. D., Schmidt, B., & Kwoh, C. K. (2014). Fast Dendrogram-

based OTU Hierarchical Clustering using Sequence Embedding. In

Proceedings of the 5th ACM Conference on Bioinformatics, Computational

Biology, and Health Informatics - BCB ’14 (pp. 63-72). ACM Press. ISBN

9781450328944. doi: 10.1145/2649387.2649402.

3. Nguyen, T. D., Schmidt, B., & Kwoh, C. K. (2014). SparseHC: a

memory efficient online hierarchical clustering algorithm. In Proce-

dia Computer Science (vol. 29, pp. 8-19). Elsevier. ISSN 18770509. doi:

10.1016/j.procs.2014.05.001.

4. Nguyen, T. D., Schmidt, B., Zheng, Z., & Kwoh, C. K. (2013). Large-

Scale Clustering of Short Reads for Metagenomics On GPUs. In

Biological Knowledge Discovery Handbook: Preprocessing, Mining, and Post-

processing of Biological Data (chap. 44, pp. 1003-1022). Wiley. ISBN

9781118617151. doi: 10.1002/9781118617151.

5. Zheng, Z., Nguyen, T. D., & Schmidt, B. (2011). CRiSPy-CUDA:

Computing species richness in16S rRNA pyrosequencing datasets

with CUDA. In Pattern Recognition in Bioinformatics (vol. 7036, pp.

37-49). Springer. ISBN 978-3-642-24854-2.

Appendix A

Biodiversity Assessment

Let R = {R1, . . . , RNR
} denote the input read dataset, which consists of NR reads

(or sequences) over the DNA alphabet Σ = {A,C,G, T}. Let O = {O1, . . . , ONO
}

denote the output OTUs (or clusters) produced by the OTU binning tools. The

output set is composed of NO clusters, each of which consists of one or more reads.

Species richness and abundance are computed as follows:

A.1 Measuring species richness

Species richness is defined as the number of species in a community. When esti-

mating the species richness of a community, only the presence or absence of taxa

is considered. Species richness can be quantified by one of the following measures:

Rarefaction curve

A rarefaction curve is “a plot of the number of species as a function of the number

of samples” [123]. It is commonly used in sampling processes to identify the

sampling size. The rarefaction curve, fn is defined as:

fn = E[Xn] = NO −

(

NR

n

)−1 NO
∑

i=1

(

NR −Ni

n

)

(A.1)

127

Appendix A. Biodiversity Assessment 128

Figure A.1: A rarefaction curve generated by MG-RAST [4]. The species
count (richness) increases with the number of sequence sampled. The optimal
sample size for discovery applications is the size where the species richness no

longer increases.

• NR denotes the number of input sequences

• NO denotes the number of output taxonomic units

• Xn denotes the number of output taxonomic units still present in the sub-

sample of n sequences

Figure A.1 shows a sample rarefaction curve.

chao

Given the assumption that rare species also carry information about missing

species, chao1 and chao2 measures use identified singletons (clusters that have

one members each) and doubletons (clusters that have two members each) to es-

timate the amount of missing species [124].

Schao1 = Sobs +
f1(f1 − 1)

2(f2 + 1)
Schao2 = Sobs +

f 2
1

2f2
(A.2)

• Schao2 is the estimate of species richness using species abundance information

• Sobs denotes the observed number of species

• f1 denotes the number of output singletons (1-member clusters)

Appendix A. Biodiversity Assessment 129

• f2 denotes the number of output doubletons (2-member clusters)

Abundance-based Coverage Estimator (ACE)

Abundance-based coverage estimator or ACE is another commonly-used metric

for species richness. The ACE measure is defined as follows:

SACE = Sabundance +
Srare + f1γ̂

2

Ĉ
(A.3)

• Sabundance measures the number of abundant species

• Srare measures the number of rare species

• f1 measures the number of output singletons (1-member clusters)

• Ĉ denotes the estimated sample coverage Ĉ = 1− f1/
∑K

i=1 ifi

• γ̂2 denotes the estimated squared coefficient of variation

γ̂2 = max(0, Srare

∑K

i=1 i(i− 1)fi/[Ĉ(
∑K

i=1 ifi)
2]− 1)

A.2 Measuring species abundance

Species abundance takes additional accounts for the number of occurrences of a

taxon. Species abundance can be quantified by the Shannon index or the Simpson

index.

Shannon index

The Shannon index or the Shannon entropy is a popular measure of biodiversity.

It is defined as:

H ′ = −
NO
∑

i=1

ii log ii (A.4)

Bibliography 130

ii is the proportion of individuals belonging to the i-th OTU (Oi) and NO is the

richness or total number of species in the community of interest.

The Shannon index quantifies the uncertainty in predicting the species identity of

an individual that is taken at random from the dataset.

Simpson index

The Simpson index expresses the probability that two entities taken at random

from the dataset of interest represent the same type.

λ =

NO
∑

i=1

i2i (A.5)

A.3 Measuring relative abundance

Relative abundance or species evenness defines how equally abundant are each of

the species. Relative abundance is defined as:

J ′ =
H ′

H ′
max

, H ′
max = lnNO (A.6)

where NO is the total number of species, determined by species richness.

The rank abundance curve or Whittaker plot can be used to display the relative

species abundance. Abundance rank (x-axis) versus the relative abundance (y-

axis). It can also be used to visualize species richness and species evenness. Figure

A.2 shows an example of the rank abundance curve.

Bibliography 131

Figure A.2: A rank abundance curve generated by MG-RAST [4]. X-axis
shows the species sorted by abundance rank (from left to right the most abun-
dant to the least abundant species). Y-axis plots the abundance of each species

on a log scale.

Bibliography

[1] J. G. Caporaso, C. L. Lauber, W. A. Walters, et al. “Ultra-high-throughput

microbial community analysis on the Illumina HiSeq and MiSeq platforms”.

The ISME Journal, volume 6, no. 8, pp. 1621–1624, 2012.

[2] P. Glaskowsky. “NVIDIA Fermi: The First Complete GPU Computing

Architecture”. Technical report, 2009.

[3] J. Nickolls and W. J. Dally. “The GPU Computing Era”. IEEE Micro,

volume 30, no. 2, pp. 56–69, 2010.

[4] F. Meyer, D. Paarmann, M. D’Souza, et al. “The metagenomics RAST server

- a public resource for the automatic phylogenetic and functional analysis of

metagenomes”. BMC Bioinformatics, volume 9, no. 1, p. 386, 2008.

[5] T. C. Glenn. “Field guide to next-generation DNA sequencers”. Molecular

Ecology Resources, volume 11, no. 5, pp. 759–69, 2011.

[6] P. J. Turnbaugh, C. Quince, J. J. Faith, et al. “Organismal, genetic, and

transcriptional variation in the deeply sequenced gut microbiomes of iden-

tical twins”. Proceedings of the National Academy of Sciences, volume 107,

no. 16, pp. 7503–7508, 2010.

[7] C. De Filippo, D. Cavalieri, M. Di Paola, et al. “Impact of diet in shaping

gut microbiota revealed by a comparative study in children from Europe and

rural Africa”. Proceedings of the National Academy of Sciences, volume 107,

no. 33, pp. 14691–6, 2010.

133

Bibliography 134

[8] N. Fierer, M. Hamady, C. L. Lauber, et al. “The influence of sex, handedness,

and washing on the diversity of hand surface bacteria”. Proceedings of the

National Academy of Sciences, volume 105, no. 46, pp. 17994–17999, 2008.

[9] S. E. Dowd, T. R. Callaway, R. D. Wolcott, et al. “Evaluation of the bacterial

diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX

amplicon pyrosequencing (bTEFAP)”. BMC Microbiology, volume 8, no. 1,

p. 125, 2008.

[10] E. R. Mardis. “Next-generation DNA sequencing methods.” Annual Review

of Genomics and Human Genetics, volume 9, pp. 387–402, 2008.

[11] J. Shendure and H. Ji. “Next-generation DNA sequencing”. Nature Biotech-

nology, volume 26, no. 10, pp. 1135–45, 2008.

[12] C. A. Hutchison. “DNA sequencing: bench to bedside and beyond.” Nucleic

Acids Research, volume 35, no. 18, pp. 6227–37, 2007.

[13] A. Sboner, X. J. Mu, D. Greenbaum, et al. “The real cost of sequencing:

higher than you think!” Genome Biology, volume 12, no. 8, p. 125, 2011.

[14] J. F. Siqueira, A. F. Fouad, and I. N. Rôças. “Pyrosequencing as a tool for

better understanding of human microbiomes.” Journal of Oral Microbiology,

volume 4, 2012.

[15] J. Handelsman, J. Tiedje, L. Alvarez-Cohen, et al. Committee on Metage-

nomics: Challenges and Functional Applications. National Academy of Sci-

ences, 2007.

[16] R. I. Amann, W. Ludwig, and K. H. Schleifer. “Phylogenetic identifica-

tion and in situ detection of individual microbial cells without cultivation.”

Microbiological Reviews, volume 59, no. 1, pp. 143–69, 1995.

[17] M. S. Rappé and S. J. Giovannoni. “The uncultured microbial majority”.

Annual Review of Microbiology, volume 57, pp. 369–94, 2003.

[18] J. C. Wooley, A. Godzik, and I. Friedberg. “A primer on metagenomics”.

PLoS Computational Biology, volume 6, no. 2, p. e1000667, 2010.

Bibliography 135

[19] P. Hugenholtz and G. W. Tyson. “Microbiology: metagenomics”. Nature,

volume 455, no. 7212, pp. 481–3, 2008.

[20] T. A. Isenbarger, C. E. Carr, S. S. Johnson, et al. “The most conserved

genome segments for life detection on Earth and other planets”. Origins of

life and evolution of the biosphere : the journal of the International Society

for the Study of the Origin of Life, volume 38, no. 6, pp. 517–33, 2008.

[21] J. F. Petrosino, S. Highlander, R. A. Luna, et al. “Metagenomic pyrosequenc-

ing and microbial identification”. Clinical Chemistry, volume 55, no. 5, pp.

856–66, 2009.

[22] B. Alberts, A. Johnson, J. Lewis, et al. “From RNA to Protein”, 2002.

[23] J. E. Clarridge. “Impact of 16S rRNA gene sequence analysis for identifi-

cation of bacteria on clinical microbiology and infectious diseases”. Clinical

Microbiology Reviews, volume 17, no. 4, pp. 840—-62, table of contents,

2004.

[24] R. H. Whittaker. “Evolution and measurement of species diversity”. Taxon,

pp. 213–251, 1972.

[25] S. P. Hubbell. The Unified Neutral Theory of Biodiversity and Biogeography.

Princeton University Press, 2001.

[26] H. E. Driver and A. L. Kroeber. Quantitative expression of cultural relation-

ships. University of California Press, 1932.

[27] R. C. Tryon. Cluster analysis: correlation profile and orthometric (fac-

tor) analysis for the isolation of unities in mind and personality. Edwards

Brother, Inc., 1939.

[28] R. B. Cattell. “The description of personality: basic traits resolved into

clusters.” Journal of Abnormal and Social Psychology, volume 38, no. 4, p.

476, 1943.

Bibliography 136

[29] M. A. DePristo, D. M. Weinreich, and D. L. Hartl. “Missense meanderings

in sequence space: a biophysical view of protein evolution.” Nature Reviews

Genetics, volume 6, no. 9, pp. 678–87, 2005.

[30] E. Bornberg-Bauer and H. S. Chan. “Modeling evolutionary landscapes: mu-

tational stability, topology, and superfunnels in sequence space.” Proceedings

of the National Academy of Sciences of the United States of America, vol-

ume 96, no. 19, pp. 10689–94, 1999.

[31] M. N. Ashby, J. Rine, E. F. Mongodin, et al. “Serial analysis of rRNA genes

and the unexpected dominance of rare members of microbial communities”.

Applied and Environmental Microbiology, volume 73, no. 14, pp. 4532–42,

2007.

[32] P. J. Turnbaugh, M. Hamady, T. Yatsunenko, et al. “A core gut microbiome

in obese and lean twins”. Nature, volume 457, no. 7228, pp. 480–484, 2009.

[33] P. J. Turnbaugh, V. K. Ridaura, J. J. Faith, et al. “The effect of diet on the

human gut microbiome: a metagenomic analysis in humanized gnotobiotic

mice”. Science Translational Medicine, volume 1, no. 6, p. 6ra14, 2009.

[34] M. L. Sogin, H. G. Morrison, J. A. Huber, et al. “Microbial diversity in

the deep sea and the underexplored ’rare biosphere’”. Proceedings of the

National Academy of Sciences, volume 103, no. 32, pp. 12115–12120, 2006.

[35] S. M. Huse, J. A. Huber, H. G. Morrison, et al. “Accuracy and quality of

massively parallel DNA pyrosequencing.” Genome Biology, volume 8, no. 7,

p. R143, 2007.

[36] M. Hamady and R. Knight. “Microbial community profiling for human

microbiome projects: Tools, techniques, and challenges”. Genome Research,

volume 19, no. 7, pp. 1141–1152, 2009.

[37] J. G. Caporaso, J. Kuczynski, J. Stombaugh, et al. “QIIME allows analysis

of high-throughput community sequencing data”. Nature Methods, volume 7,

no. 5, pp. 335–336, 2010.

Bibliography 137

[38] S. M. Huse, D. M. Welch, H. G. Morrison, et al. “Ironing out the wrinkles

in the rare biosphere through improved OTU clustering”. Environmental

Microbiology, volume 12, no. 7, pp. 1889–1898, 2010.

[39] R. C. Edgar. “Search and clustering orders of magnitude faster than

BLAST”. Bioinformatics, volume 26, no. 19, pp. 2460–2461, 2010.

[40] R. C. Edgar. “UPARSE: highly accurate OTU sequences from microbial

amplicon reads”. Nature Methods, volume 10, no. 10, pp. 996–8, 2013.

[41] W. Li and A. Godzik. “Cd-hit: a fast program for clustering and comparing

large sets of protein or nucleotide sequences”. Bioinformatics, volume 22,

no. 13, pp. 1658–1659, 2006.

[42] Z. Zheng, T.-D. Nguyen, and B. Schmidt. “CRiSPy-CUDA: Computing

species richness in 16S rRNA pyrosequencing datasets with CUDA”. Pattern

Recognition in Bioinformatics, pp. 37–49. Springer, 2011.

[43] P. D. Schloss, S. L. Westcott, T. Ryabin, et al. “Introducing mothur: Open-

Source Platform-Independent Community Supported Software for Describ-

ing and Comparing Microbial Communities”. Applied and Environmental

Microbiology, volume 75, no. 23, pp. 7537–7541, 2009.

[44] Y. Sun, Y. Cai, L. Liu, et al. “ESPRIT: estimating species richness us-

ing large collections of 16S rRNA pyrosequences”. Nucleic Acids Research,

volume 37, no. 10, p. e76, 2009.

[45] Y. Cai and Y. Sun. “ESPRIT-Tree: hierarchical clustering analysis of mil-

lions of 16S rRNA pyrosequences in quasilinear computational time”. Nucleic

Acids Research, volume 39, no. 14, p. e95, 2011.

[46] R. C. Edgar. “MUSCLE: multiple sequence alignment with high accuracy

and high throughput”. Nucleic Acids Research, volume 32, no. 5, pp. 1792–

1797, 2004.

Bibliography 138

[47] Y. Sun, Y. Cai, S. M. Huse, et al. “A large-scale benchmark study of ex-

isting algorithms for taxonomy-independent microbial community analysis.”

Briefings in Bioinformatics, volume 13, no. 1, pp. 107–121, 2011.

[48] T. Zhang, R. Ramakrishnan, and M. Livny. “BIRCH: A New Data Cluster-

ing Algorithm and Its Applications”. Data Mining and Knowledge Discovery,

volume 1, no. 2, pp. 141–182, 1997.

[49] C. D. Manning, P. Raghavan, H. Schütze, et al. Introduction to Information

Retrieval. Cambridge University Press, 2008.

[50] X. Hao, R. Jiang, and T. Chen. “Clustering 16S rRNA for OTU prediction:

a method of unsupervised Bayesian clustering.” Bioinformatics, volume 27,

no. 5, pp. 611–618, 2011.

[51] X. Wang, J. Yao, Y. Sun, et al. “M-pick, a modularity-based method for

OTU picking of 16S rRNA sequences”. BMC Bioinformatics, volume 14,

p. 43, 2013.

[52] Y. Liu, D. L. Maskell, and B. Schmidt. “CUDASW++: optimizing Smith-

Waterman sequence database searches for CUDA-enabled graphics process-

ing units.” BMC research notes, volume 2, no. 1, p. 73, 2009.

[53] Y. Liu, B. Schmidt, and D. L. Maskell. “CUDASW++2.0: enhanced Smith-

Waterman protein database search on CUDA-enabled GPUs based on SIMT

and virtualized SIMD abstractions”. BMC Research Notes, volume 3, p. 93,

2010.

[54] Y. Liu, A. Wirawan, and B. Schmidt. “CUDASW++ 3.0: accelerating

Smith-Waterman protein database search by coupling CPU and GPU SIMD

instructions.” BMC bioinformatics, volume 14, no. 1, p. 117, 2013.

[55] B. Schmidt and D. Maskell. “MSA-CUDA: Multiple Sequence Alignment

on Graphics Processing Units with CUDA”. 2009 20th IEEE International

Conference on Application-specific Systems, Architectures and Processors,

pp. 121–128. IEEE, 2009.

Bibliography 139

[56] W. Liu, B. Schmidt, and W. Müller-Wittig. “CUDA-BLASTP: accelerating

BLASTP on CUDA-enabled graphics hardware.” IEEE/ACM transactions

on computational biology and bioinformatics / IEEE, ACM, volume 8, no. 6,

pp. 1678–84, 2011.

[57] P. D. Vouzis and N. V. Sahinidis. “GPU-BLAST: using graphics processors

to accelerate protein sequence alignment.” Bioinformatics, volume 27, no. 2,

pp. 182–8, 2011.

[58] Y. Liu, B. Schmidt, and D. L. Maskell. “CUSHAW: a CUDA compatible

short read aligner to large genomes based on the Burrows-Wheeler trans-

form.” Bioinformatics, volume 28, no. 14, pp. 1830–7, 2012.

[59] B. Schmidt. “CUSHAW2-GPU: Empowering Faster Gapped Short-Read

Alignment Using GPU Computing”. IEEE Design & Test, volume 31, no. 1,

pp. 31–39, 2014.

[60] Y. Liu, B. Popp, and B. Schmidt. “CUSHAW3: sensitive and accurate base-

space and color-space short-read alignment with hybrid seeding.” PloS one,

volume 9, no. 1, p. e86869, 2014.

[61] Y. Liu, B. Schmidt, and D. L. Maskell. “DecGPU: distributed error correc-

tion on massively parallel graphics processing units using CUDA and MPI.”

BMC bioinformatics, volume 12, no. 1, p. 85, 2011.

[62] Y. Liu, J. Schröder, and B. Schmidt. “Musket: a multistage k-mer spectrum-

based error corrector for Illumina sequence data.” Bioinformatics, vol-

ume 29, no. 3, pp. 308–15, 2013.

[63] H. Shi, B. Schmidt, W. Liu, et al. “A parallel algorithm for error correction

in high-throughput short-read data on CUDA-enabled graphics hardware”.

Journal of Computational Biology, volume 17, no. 4, pp. 603–615, 2010.

[64] W. Liu, B. Schmidt, G. Voss, et al. “Molecular dynamics simulations on

commodity GPUs with CUDA”. pp. 185–196, 2007.

Bibliography 140

[65] B. Sukhwani and M. C. Herbordt. “GPU acceleration of a production molec-

ular docking code”. Proceedings of 2nd Workshop on General Purpose Pro-

cessing on Graphics Processing Units - GPGPU-2, pp. 19–27. ACM Press,

New York, New York, USA, 2009.

[66] M. Ohue, T. Shimoda, S. Suzuki, et al. “MEGADOCK 4.0: an ultra-high-

performance protein-protein docking software for heterogeneous supercom-

puters.” Bioinformatics, volume 30, no. 22, pp. 3281–3, 2014.

[67] J. Zhong and B. He. “Parallel graph processing on graphics processors made

easy”. Proceedings of the VLDB Endowment, volume 6, no. 12, pp. 1270–

1273, 2013.

[68] J. Zhong and B. He. “Medusa: Simplified Graph Processing on GPUs”.

IEEE Transactions on Parallel and Distributed Systems, volume 25, no. 6,

pp. 1543–1552, 2014.

[69] R. Raina, A. Madhavan, and A. Y. Ng. “Large-scale deep unsupervised

learning using graphics processors”. Proceedings of the 26th Annual Inter-

national Conference on Machine Learning - ICML ’09, pp. 1–8. ACM Press,

New York, New York, USA, 2009.

[70] A. Coates, B. Huval, T. Wang, et al. “Deep learning with COTS HPC sys-

tems”. Proceedings of the 30th international conference on machine learning,

pp. 1337–1345. 2013.

[71] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification with

Deep Convolutional Neural Networks”. F. Pereira, C. J. C. Burges, L. Bot-

tou, et al., editors, Advances in Neural Information Processing Systems 25,

pp. 1097–1105. Curran Associates, Inc., 2012.

[72] A. Giusti, D. C. Cireşan, J. Masci, et al. “Fast Image Scanning with Deep

Max-Pooling Convolutional Neural Networks”. p. 11, 2013.

Bibliography 141

[73] T.-D. Nguyen, B. Schmidt, Z. Zheng, et al. “Large-Scale Clustering of Short

Reads for Metagenomics On GPUs”. M. Elloumi and A. Y. Zomaya, edi-

tors, Biological Knowledge Discovery Handbook: Preprocessing, Mining, and

Postprocessing of Biological Data, chapter 44, pp. 1003–1022. John Wiley &

Sons, Inc., Hoboken, New Jersey, 2013.

[74] M. J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-

Hill Education Group, 2003.

[75] D. Kranzlmüller, P. Kacsuk, and J. Dongarra, editors. Recent Advances

in Parallel Virtual Machine and Message Passing Interface, volume 3241

of Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2004.

[76] J. Nickolls, I. Buck, M. Garland, et al. “Scalable parallel programming with

CUDA”. Queue, volume 6, no. 2, pp. 40–53, 2008.

[77] E. Lindholm, J. Nickolls, S. Oberman, et al. “NVIDIA Tesla: A unified

graphics and computing architecture”. Micro, IEEE, volume 28, no. 2, pp.

39–55, 2008.

[78] S. B. Needleman and C. D. Wunsch. “A general method applicable to the

search for similarities in the amino acid sequence of two proteins”. Journal

of Molecular Biology, volume 48, no. 3, pp. 443–453, 1970.

[79] T.-D. Nguyen, B. Schmidt, and C.-K. Kwoh. “SparseHC: A Memory-efficient

Online Hierarchical Clustering Algorithm”. Procedia Computer Science, vol-

ume 29, pp. 8–19, 2014.

[80] P. Berkhin. “A survey of clustering data mining techniques”. J. Kogan,

C. Nicholas, and M. Teboulle, editors, Grouping Multidimensional Data,

volume 10, chapter 2, pp. 25–71. Springer, 2006.

[81] A. K. Jain, M. N. Murty, and P. J. Flynn. “Data clustering: a review”.

ACM Computing Surveys, volume 31, no. 3, pp. 264–323, 1999.

Bibliography 142

[82] R. Xu and D. Wunsch. “Survey of clustering algorithms”. IEEE Transactions

on Neural Networks, volume 16, no. 3, pp. 645–678, 2005.

[83] M. Steinbach, G. Karypis, and V. Kumar. “A Comparison of Document

Clustering Techniques”. KDD Workshop on Text Mining, volume 400, no. X,

pp. 1–2, 2000.

[84] M. Girvan and M. E. J. Newman. “Community structure in social and biolog-

ical networks”. Proceedings of the National Academy of Sciences, volume 99,

no. 12, pp. 7821–6, 2002.

[85] W. H. E. Day and H. Edelsbrunner. “Efficient algorithms for agglomerative

hierarchical clustering methods”. Journal of Classification, volume 1, no. 1,

pp. 7–24, 1984.

[86] P. H. A. Sneath and R. R. Sokal. Numerical Taxonomy: The Principles

and Practice of Numerical Classification. A Series of books in biology. W.H.

Freeman, 1973.

[87] B. S. Everitt, S. Landau, M. Leese, et al. Cluster Analysis. Wiley Series in

Probability and Statistics. Wiley, 5th edition, 2011.

[88] G. N. Lance and W. T. Williams. “A General Theory of Classificatory Sort-

ing Strategies 1. Hierarchical systems”. The Computer Journal, volume 9,

no. 4, pp. 373–380, 1967.

[89] M. R. Anderberg. Cluster analysis for applications. Academic Press, 1973.

[90] D. Müllner. “fastcluster: Fast Hierarchical, Agglomerative Clustering Rou-

tines for R and Python”. Journal of Statistical Software, volume 53, no. 9,

pp. 1–18, 2011.

[91] F. Murtagh and P. Contreras. “Methods of Hierarchical Clustering”. arXiv

preprint arXiv:1105.0121, 2011.

[92] I. Gronau and S. Moran. “Optimal implementations of UPGMA and other

common clustering algorithms”. Information Processing Letters, volume 104,

no. 6, pp. 205–210, 2007.

Bibliography 143

[93] S. Guha, R. Rastogi, and K. Shim. “CURE: an efficient clustering algorithm

for large databases”. ACM SIGMOD Record, volume 26, no. 1, pp. 73–84,

1998.

[94] A. Borodin and R. El-Yaniv. Online computation and competitive analysis.

Cambridge University Press, 1998.

[95] Y. Loewenstein, E. Portugaly, M. Fromer, et al. “Efficient algorithms for

accurate hierarchical clustering of huge datasets: tackling the entire protein

space”. Bioinformatics, volume 24, no. 13, pp. i41–9, 2008.

[96] M. J. Bonder, S. Abeln, E. Zaura, et al. “Comparing clustering and pre-

processing in taxonomy analysis”. Bioinformatics, volume 28, no. 22, pp.

2891–2897, 2012.

[97] D. Knuth. “External Sorting”. D. Knuth, editor, The Art Of Computer

Programming, Volume 3: Sorting and Searching, chapter 5, pp. 248–379.

Addison-Wesley, 2nd edition, 1998.

[98] R. Sedgewick. Algorithms in C++: Graph Algorithms. Addison-Wesley,

2002.

[99] N. Nethercote and J. Seward. “Valgrind”. ACM SIGPLAN Notices, vol-

ume 42, no. 6, p. 89, 2007.

[100] M. Coffin and M. J. Saltzman. “Statistical Analysis of Computational

Tests of Algorithms and Heuristics”. INFORMS Journal on Computing,

volume 12, no. 1, pp. 24–44, 2000.

[101] R. Sedgewick and P. Flajolet. Analysis of Algorithms. Addison-Wesley, 2013.

[102] T.-D. Nguyen, B. Schmidt, and C.-K. Kwoh. “Fast dendrogram-based OTU

clustering using sequence embedding”. Proceedings of the 5th ACM Con-

ference on Bioinformatics, Computational Biology, and Health Informatics

- BCB ’14, pp. 63–72. ACM Press, New York, New York, USA, 2014.

Bibliography 144

[103] T. D. Nguyen, B. Schmidt, Z. Zheng, et al. “Efficient and Accurate OTU

Clustering with GPU-based Sequence Alignment and Dynamic Dendrogram

Cutting”. IEEE/ACM Transactions on Computational Biology and Bioin-

formatics, volume PP, no. 99, p. 1, 2015.

[104] G. Blackshields, F. Sievers, W. Shi, et al. “Sequence embedding for fast

construction of guide trees for multiple sequence alignment”. Algorithms for

Molecular Biology, volume 5, p. 21, 2010.

[105] F. Sievers, A. Wilm, D. Dineen, et al. “Fast, scalable generation of high-

quality protein multiple sequence alignments using Clustal Omega”. Molec-

ular Systems Biology, volume 7, p. 539, 2011.

[106] N. Linial, E. London, and Y. Rabinovich. “The Geometry of Graphs and

Some of Its Algorithmic Applications”. Combinatorica, volume 15, pp. 577–

591, 1994.

[107] N. Bell and J. Hoberock. “Thrust: A Productivity-Oriented Library for

CUDA”. GPU Computing Gems, pp. 359–371. Morgan Kaufmann Pub,

jade edition, 2011.

[108] R. Killick, P. Fearnhead, and I. A. Eckley. “Optimal Detection of Change-

points With a Linear Computational Cost”. Journal of the American Sta-

tistical Association, volume 107, no. 500, pp. 1590–1598, 2012.

[109] C. Quince, A. Lanzen, R. J. Davenport, et al. “Removing noise from pyrose-

quenced amplicons”. BMC Bioinformatics, volume 12, no. 1, p. 38, 2011.

[110] R. C. Edgar, B. J. Haas, J. C. Clemente, et al. “UCHIME improves sensi-

tivity and speed of chimera detection”. Bioinformatics, volume 27, no. 16,

2011.

[111] R. C. Edgar. “Local homology recognition and distance measures in lin-

ear time using compressed amino acid alphabets”. Nucleic Acids Research,

volume 32, no. 1, pp. 380–385, 2004.

Bibliography 145

[112] D. Gusfield. Algorithms on strings, trees, and sequences. Cambridge Uni-

versity Press, 1997.

[113] V. M. R. Muggeo and G. Adelfio. “Efficient change point detection for

genomic sequences of continuous measurements.” Bioinformatics, volume 27,

no. 2, pp. 161–6, 2011.

[114] N. A. James and D. S. Matteson. “ecp: An R Package for Nonparametric

Multiple Change Point Analysis of Multivariate Data”, 2013.

[115] F. E. Angly, D. Willner, F. Rohwer, et al. “Grinder: a versatile amplicon and

shotgun sequence simulator”. Nucleic Acids Research, volume 40, no. 12, p.

e94, 2012.

[116] T. Z. DeSantis, P. Hugenholtz, N. Larsen, et al. “Greengenes, a chimera-

checked 16S rRNA gene database and workbench compatible with ARB”.

Applied and Environmental Microbiology, volume 72, no. 7, pp. 5069–72,

2006.

[117] M. D. Dumas, S. W. Polson, D. Ritter, et al. “Impacts of poultry house

environment on poultry litter bacterial community composition”. PloS One,

volume 6, no. 9, p. e24785, 2011.

[118] S. Balzer, K. Malde, A. Lanzén, et al. “Characteristics of 454 pyrosequencing

data–enabling realistic simulation with flowsim”. Bioinformatics, volume 26,

no. 18, pp. i420–5, 2010.

[119] C. Quince, A. Lanzén, T. P. Curtis, et al. “Accurate determination of mi-

crobial diversity from 454 pyrosequencing data.” Nature Methods, volume 6,

no. 9, pp. 639–641, 2009.

[120] A. N. Albatineh, M. Niewiadomska-Bugaj, and D. Mihalko. “On Similarity

Indices and Correction for Chance Agreement”. Journal of Classification,

volume 23, no. 2, pp. 301–313, 2006.

Bibliography 146

[121] N. X. Vinh, J. Epps, and J. Bailey. “Information Theoretic Measures for

Clusterings Comparison: Variants, Properties, Normalization and Correc-

tion for Chance”. The Journal of Machine Learning Research, volume 11,

pp. 2837–2854, 2010.

[122] W. M. Rand. “Objective criteria for the evaluation of clustering methods”.

Journal of the American Statistical Association, volume 66, no. 336, pp.

846–850, 1971.

[123] N. J. Gotelli and R. K. Colwell. “Quantifying biodiversity: procedures and

pitfalls in the measurement and comparison of species richness”. Ecology

Letters, volume 4, no. 4, pp. 379–391, 2001.

[124] A. Chao. “Estimating the population size for capture-recapture data with

unequal catchability”. Biometrics, volume 43, no. 4, pp. 783–91, 1987.

