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Abstract: Congestion in a Wireless Sensor Network (WSN) can lead to buffer overflow,

resource waste and delay or loss of critical information from the sensors. In this paper, we

propose the Priority-based Coverage-aware Congestion Control (PCC) algorithm which is

distributed, priority-distinct, and fair.PCC provides higher priority to packets with event

information in which the sink is more interested.PCC employs a queue scheduler that can

selectively drop any packet in the queue.PCCgives fair chance to all sensors to send packets

to the sink, irrespective of their specific locations, and therefore enhances the coverage fidelity

of the WSN. Based on a detailed simulation analysis, we show thatPCCcan efficiently relieve

congestion and significantly improve the system performance based on multiple metrics such

as event throughput and coverage fidelity. We generalizePCC to address data collection in

a WSN in which the sensor nodes have multiple sensing devicesand can generate multiple

types of information. We propose aPricing Systemthat can under congestion effectively

collect different types of data generated by the sensor nodes according to values that are placed

on different information by the sink. Simulation analysis show that ourPricing Systemcan

achieve higher event throughput for packets with higher priority and achieve fairness among

different categories. Moreover, given a fixed system capacity, our proposedPricing System

can collect more information of the type valued by the sink.
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1. Introduction

In a Wireless Sensor Network (WSN), sensors cooperate to sense, collect, and report information

about the environment to sinks. With the help of multihop wireless communication, a WSN can cover

a large area without the infrastructure or a backbone wired network. However, congestion can exist

inside a WSN due to the following inherent characteristics.First, in a multihop WSN, resources are

limited. Typical sensors have limited battery power, memory, and computing capability. In addition,

sensors also need to compete for shared resources inside theWSN, such as the shared wireless channel

with neighboring nodes and common paths to sinks. Second, majority of the time, the topology of a

WSN is not completely under control. As a result, a lot of traffic might contend for the same links or

nodes that can become the bottlenecks of the whole network. This imbalance of network traffic due to

the network topology can cause severe congestion in bottleneck nodes and/or links. Third, sensors that

detect an important event usually increase the data generation rate to accurately alarm the sinks in time.

For example, sensors used for monitoring temperature in a forest will generate a large number of alert

packets in a short period of time when they detect fires. Fourth, some new applications, such as patient

health monitoring [1] and image sensing [2], require high throughput and low delay, which can further

aggravate the congestion inside a WSN. Therefore, congestion control is necessary and inevitable in the

WSN. In the absence of congestion control, WSNs can suffer from packet loss due to buffer overflows

and inefficient utilization of critical resources such as shared wireless channel capacity and sensor

battery power.

Existing proposals to address congestion control in WSNs are either hop-by-hop data rate control or

source rate limiting mechanisms. In this paper, we propose aPriority-based Coverage-aware Congestion

Control (PCC) mechanism in Section2.. PCC operates at the network and MAC layers. It is a

distributed method that avoids aggregating network information in the sink and therefore does not require

complicated and expensive communication among nodes [3].

For advanced WSN applications, we expect to collect multiple categories of information from sensor

nodes. For example, from an under-water sensor network, we may collect data about the temperature,

the degree of ambient light, the pollution level, and other relevant parameters. The sink can request

and store different monitored information from the sensorsfor each data collection cycle. It is much

more efficient and economical than using separate overlapping sensor networks to gather different

information. Currently, sensor nodes such as the Mote [4] has the capability to gather all the information.

The Mote can be equipped with different kinds of sensor interfaces in the circuit board; Arch Rock’s

EPIC Mote has integrated temperature, light and humidity sensors [5]. However, multiple categories of

information contend for the limited network resource to send data from sensors to the sink. Managing

the sensors to cooperate and send multiple classes of data fairly and efficiently is a challenging problem,

especially when the network is congested. The sensors couldignore the difference between data in the

application-layer and send them to the sink with the same weight. However, different data have different
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value to the sink. For example, in the military application as in Figure1, the sensor network can collect

real-time battlefield information to identify an infantry,a tank, or a helicopter. However, different enemy

units pose different level of hazard. The information abouthostile helicopters and tanks are important

and urgent since they may be more dangerous than infantries.On the other hand, it is also not advisable

to assign very high priority to only one type of data. For example, although the data pertaining to hostile

tanks are important, it is also important to collect some information regarding infantries. It may be

disastrous to utilize all sensor network resources to locate hostile tanks at the cost of ignoring other

enemy units.

Figure 1. Collection of multiple classes of information in a WSN.

Sink

Sensor Nodes

Tank

Helicopter
Soldier

Soldier

Soldier

Consequently, a WSN should be able to allocate network resource to a specific kind of data according

to the “price” the sink places on the type of data. Hence, resource consumption depends on the following

factors: (1) properties of the events, such as priority, location, and frequency; (2) properties of the sensor

network, such as topology and link quality, and (3) other categories of events.

In Section2., we provide a mechanism to estimate the success probabilityfor transmitting a data

packet from a sensor to the sink. The success probability is agood metric for resource consumption

and includes both bandwidth and buffer. Based on the method in Section2., we generalize our scheme

to efficiently and fairly collect different categories of information when the WSN is congested. This is

presented in Section3.. The following are the key contributions of this paper:

1. In a WSN, packets with information of the desired event (Eventpackets), such as fires in the forest,

are more important and urgent than those without event information (Non-Eventpackets). (Note

thatNon-Eventpackets are inevitable since sensor nodes need to contact with the sink periodically

to notify that they are alive.) Therefore, inPCCwe distinguish them with different priority thereby

providing different throughput and dropping probability.

2. When congestion occurs, packets from nodes far from the sinkhave a smaller chance to reach the

destination than those from the nodes close to the sink [6]. Without any control, the WSN can

only collect the information from the nodes near the sinks. Therefore, inPCC, we assign packets

an index to store the probability of a packet successfully reaching any node along its path to the

sink. ThenPCC can dynamically adjust its dropping probability during congestion, to guarantee

fairness for all nodes and coverage fidelity of the whole network.

3. In a large WSN, wireless link quality changes according to multiple factors, such as obstacles

between transmitter and receiver, multiple-path transmissions, and interference among neighbor
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links. In PCC, we consider the influence of link quality as an important parameter to indicate

network resource utilization and the successful probability of transmissions.

4. We make use of cumulative survival probability of a packet reaching a node along its path to the

sink and the priority of different event information to design a mechanism to efficiently and fairly

collect different categories of information in a single WSN, calledPricing System.

The remainder of this paper is organized as follows. In Section 2., we present the details of thePCC

mechanism, describe the design objectives, and present thesimulation results. In Section3., we propose

a generalized pricing based scheme to efficiently collect multiple categories of information using one

WSN. Related research is discussed in Section4.. Finally, we conclude in Section5..

2. Priority-based Coverage-aware Congestion Control (PCC)

2.1. System Model and Design Considerations

We design our congestion control mechanism based on the system model shown in Figure2. We

consider a WSN withN sensor nodes that act both as source nodes as well as routers to forward packets

through a multihop network to the sink. Each sensor node has afixed size buffer to store packets, which

is shown for nodeC in Figure2. The buffer of nodeC contains packets generated by itself and packets

from other sensors, like packetPA from nodeA and packetPB from nodeB.

Figure 2. The overall system model.

0

A

Under normal condition of the physical attribute monitoredby the WSN, nodes generatesNon-Event

packets at a constant rate ofr packets per second (pkts/sec) which are forwarded towards the sink. Upon

sensing an event, sensor nodes generateEventpackets at higher rate,k × r pkts/sec wherek ≥ 1, to

report the information to the sink. A one-bit field in the packet header is used to identifyEventpackets.

The intermediate nodes can use this bit to route packets withdifferent priority.

Based on the above system model, the goal is to find a novel mechanism to efficiently collect

information generated by the nodes in the WSN. Before discussing the details of our approach, we

first explain the objectives, the design challenges and the corresponding solutions to the challenges.

1. High EventPackets Throughput: In a WSN with bothEventandNon-Eventpackets, it is important

to ensure thatEventpacket throughput is high. In addition, sinceEventpacket generation rate is
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normally higher than that ofNon-Eventpackets, congestion may occur when events are detected

by different sensor nodes simultaneously. Therefore, our mechanism should first guarantee high

Eventpacket throughput when nodes are congested, to make sure that emergency information, like

fire in the forest, is reported to the sink correctly and in a timely manner. We set up two thresholds

in the sensor node queue to dropEventandNon-Eventpackets to give the former higher priority.

To the best of our knowledge, few papers differentiateEventandNon-Eventpackets in WSNs

with the exception of Event-to-Sink Reliable Transport (ESRT) [7]. Note that our work is different

from ESRT, which is implemented in the transport layer and isan end-to-end congestion control

method.PCC, on the other hand, is distributed and is based on network layer queue scheduling

and MAC layer information feedback, as will be discussed in the following sections.

2. Coverage Fidelity: As we explained in Section1., packet throughput from a specific sensor node

drastically decreases when packets traverse multiple hopsto the sink. Therefore, packets generated

by nodes nearby the sink have much higher probability of reaching the sink than those generated by

nodes far away from the sinks. This leads to a spatial bias in the information collected in a multihop

WSN. However, it is crucial to achieve coverage fidelity in a WSN because each monitoring area is

usually equally important or remote areas are even more important since they are more difficult to

be monitored by direct methods. Unlike other proposed methods, we consider the fairness among

different areas at the application layer. Our proposed mechanism ensures that the sink receives

equal number of packets with the same priority from all the sensor nodes in the sensor network.

In IFRC [8], authors describe MAC layer fairness. However, MAC layer fairness does not ensure

application layer fairness since the sink is biased to receive packets from nodes that are near it.

3. Flexible Queue Scheduler: Most queue schedulers drop packets from the tail rather than any

position in the queue. But tail-dropping does not work well in our new scheme. For instance, if

the queue in a sensor node is near fully occupied and dominated with Non-Eventpackets, when

an Eventpacket arrives, it is better to dropNon-Eventpackets becauseEventpackets are more

important. To addressCoverage Fidelity, we can consider the scenario in Figure3, where nodeB

is closer to nodeC than nodeA, and the sink is at the rightmost end. If nodeA generates packetPA

and nodeB generates packetPB simultaneously,PB will normally arrive at nodeC earlier. When

PA arrives at nodeC whose queue is highly utilized,PA may be dropped whilePB remains in the

queue. This results in unfairness to different sensors. To mitigate this our proposed method checks

the status of all packets in the queue and selectively drops packets according to an optimization

algorithm, which will be introduced in the next section. With the help of a list of pointers to packets

in the queue, it is feasible to drop intermediate packets with much lower complexity than expected.

Figure 3. Queue scheduler that allows dropping intermediate packets.

A B C Sink

0 Queue Size

PB
PA
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4. Resource Efficiency: Another important concern in a WSN is resource efficiency since sensor

nodes usually have limited power and channel bandwidth [9, 10]. In a WSN, packets from sensors

far from the sink normally consume more network resource than those from nodes nearby the

sink. In our proposed method, we give preference to maintainpackets from remote nodes since

those packets have consumed more network resource and have lower probability to reach the sink

when the intermediate relaying node experiences severe congestion. Therefore, when the same

information is collected from different sensors in the network, our mechanism can efficiently

utilize network resources by reducing the average number ofpoint-to-point transmissions.

5. MAC/PHY Link Quality: In a multihop WSN, the interference among neighboring links can

severely reduce the transmission opportunities in MAC layer. In addition, in a WSN, wireless link

qualities, such as noise and channel fading, are quite distinct according to locations, obstacles, etc.

The link condition at MAC/PHY layer can also influence the success probabilities that packets

reach the sink. In respect to resource efficiency, packets traveling through low quality links

consume higher system resource since they require more re-transmission due to MAC collisions

or more transmission time due to lower PHY layer transmission rate. Therefore, our mechanism

will give packets traveling though poor quality links from remote nodes higher probability to reach

the sink.

2.2. Protocol and Algorithm Design of PCC

PCC is a distributed protocol. First, a distributed protocol ismore robust to node or link failures than

a centralized protocol. Second, a distributed protocol does not have to collect global information and

distribute centrally determined control information, which may introduce large overheads that are not

acceptable in a WSN. Third, the distributed algorithm is more scalable in large WSNs.

The protocol structure ofPCC is shown in Figure4. It operates both at the network and the MAC

layers, which are shown in the left and the right branches, respectively. As in the left branch, when

new packets arrive (from the application layer of the node orfrom other nodes as in Figure2) into the

network queue (Part1.1 in PCC), we selectively drop packets in the queue during congestion according

to an optimization algorithm (Part1.2 in PCC), introduced in the next subsection. Since our protocol

is distributed, each packeti has an additional field in the header,Pi, to store the cumulative survival

probability of the packet along the path. Therefore, at a sensor node when a packet chosen to be dropped,

we need to update thePi for all the remaining packets in the queue. Furthermore, as in the right branch

of Figure4, when the MAC layer is ready to transmit a packet (Part2.1 in PCC), we need to updatePi

of this packet with the probability that the packet will survive in the MAC/PHY link transmission from

the node (Part2.2 in PCC), and the packet is then send it to the next hop (Part2.3 in PCC).

When a sensor nodeA generates a packeti, we initializePi = 1. Along the path from nodeA to the

sink, all relaying nodes includingA updatesPi based on the packet dropping probability in network layer

and link layer transmission error and loss in the MAC/PHY layer. The cumulative survival probability

of a packet reaching any node in the network is used to determine the dropping probability of the packet

in the node.
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Figure 4. A block diagram illustrating the overall structure ofPCC.
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Queue Handler

As we explained in Section2.1., PCCsupports two priority classes of packets,EventandNon-Event

packets. In any node in the network, suppose that the total buffer size isQ and in the queue there areNE

Eventpackets andNN Non-Eventpackets with the total number of packetsN = NE + NN . We set up

two thresholds,Qmin andQmax as shown in Figure2, for handling different kinds of packets and apply

the following logic.

1. 0 ≤ N ≤ Qmin: buffer all incoming packets.

2. Qmin < N < Qmax: begin droppingNon-Eventpackets while keeping allEventpackets. The

dropping rate is selected such that the average number ofNon-EventpacketsNN = FN (N).

3. Qmax ≤ N ≤ Q: drop allNon-Eventpackets and begin to drop someEventpackets. The dropping

rate is selected such that the average number ofEventpacketsNE = FE(N).

FunctionFN(N) andFE(N) will be discussed later on.

As we discussed in Section2.1., the coverage fidelity and highEventpacket throughput are important

objectives. Therefore, we cannot randomly select packets in the queue to drop. In order to achieve

coverage fidelity we need to give fair chance to all packets from different sensor nodes in the network to

reach the sink. In other words, assuming that the accepting probability of a packeti is ki (i.e., (1 − ki)

is the dropping probability), we would like to ensure that∀i, j, Pi × ki = Pj × kj. In this case, we

can guarantee that packets from different nodes have the same or similar probability to reach the sink.

Therefore, our scheme is to findKE = [k1, k2, . . . , kNE
] andKN = [k1, k2, . . . , kNN

] under the following

constraints: ∑

i∈NE

ki = FE(N) (1)

∑

j∈NN

kj = FN (N) (2)

∀i, j ∈ NE Pi × ki = Pj × kj (3)

∀i, j ∈ NN Pi × ki = Pj × kj (4)
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However, solving the above problem can result in conflicts. For example, consider three(Event)

packets withP1 = 0.1, P2 = 0.25 andP3 = 0.5, andFE(3) = 2. Solving the above problem yields

KE = [1.25, 0.5, 0.25]. Note thatki is the accepting probability within[0, 1], sok1 is not an acceptable

probability measure. In other words, it is impossible to strictly guarantee the constraints (3) and (4). To

resolve this, we borrow another popular fairness metric,Jain’s Fairness Index([11]) (
P

xi)
2

(n∗
P

x2

i )
, to give a

relatively fair opportunity to packets. The optimization problem for bothEventandNon-Eventpackets

can be stated as follows

maximize{K}
(
∑

Pi × ki)
2

NP ×
∑

(Pi × ki)2
(5)

such that ∑

i∈NP

ki = F (N) (6)

∀i ∈ NP ki ∈ [0, 1] (7)

whereK is the decision variable andK, NP , F (N) could be eitherKE, NE, FE(N) or KN , NN , FN (N)

corresponding toEventandNon-Eventpackets, respectively.

It is difficult to implement the quadratic optimization problem in Equation (5) with limited resources

in the sensor nodes. Therefore, a simpler algorithm is required. Note that our initial objectives are

Equations (3) and (4), so for bothEventandNon-Eventpackets, the objective can be restated as
P1 × k1 = P2 × k2 = . . . = PNP

× kNP
= c (8)

⇒ ∀i, ki =
c

Pi

(9)

⇒
∑

i

c

Pi

= F (N) (∵
∑

i

ki = F (N)) (10)

⇒ c =
F (N)∑

i
1
Pi

(11)

⇒ ∀i, ki =
c

Pi

=
F (N)∑
i

1
Pi

× Pi

(12)

In this solution, ifki > 1 as discussed above, packeti should be kept in the queue, and therefore

ki ⇐ 1. However, this change influences the accepting probabilities of other packets, which need

corresponding updates givenki = 1. The details of how this done is shown in Algorithm1, which finds

the solution for objective in Equation (5).

In Algorithm 1, there are two loops inside thewhile statement, each of which has a complexity

of O(N). The worst case for each execution of thewhile loop is that we separate onePi from ~P in

each iteration with complexityO(N). Therefore, overall computation complexity of Algorithm1 is

N × (2N) = 2N2 which isO(N2).

The solution of this optimization problem,KE andKN , gives the accepting probability of each packet

in the queue. This can be used by the node to drop packets when the node is congested while maintaining

coverage fidelity by giving each packet a fair chance to remain in the queue. After the selection and

dropping process, thePi of each packeti is updated toPi = Pi × ki for all remaining packets since they

experience dropping one more time (Part1.3 in PCC).

FE(N) and FN(N) are accepting functions forEventand Non-Eventpackets, respectively. In a

tail-dropping scheme, when a new packet arrives, the accepting function is(N + 1) − fdrop(N) where
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fdrop(N) is the dropping probability of the new packet givenN packets in the queue. In our system,

since the queue handler could drop any number of packets,PCC can implement different kinds of

FE(N) and FN(N) functions. Note that the basic purpose ofFE(N) and FN(N) is to reduce the

congestion as a result the dropping probability monotonically increases with the number of packets in

the queue. In general,FN (N) can be a linear, convex, or concave function within [Qmin, Qmax] through

two fixed points, (Qmin, NN ) and (Qmax, 0) as shown in the left part of Figure5. Clearly, with the

convex function, packets are dropped very aggressively resulting in lower buffer utilization, while the

concave function is more conservative and will result in higher buffer utilization. The linear function is

between the convex and concave functions.

Algorithm 1 Optimization Algorithm

Input: ~P , F (N)

Output:K

1: Initial K ⇐ [0]

2: while TRUE do

3: for i = 1 to NP do
4: ki = F (N)

P

i
1

Pi
×Pi

5: end for
6: counter ⇐ 0

7: for i = 1 to NP do
8: if ki > 1 then
9: ki ⇐ 1

10: counter ⇐ counter + 1

11: ~P ⇐ ~P \ Pi

12: end if
13: end for
14: if counter = 0 then

15: return K;

16: else
17: F (N) ⇐ F (N) − counter

18: end if

19: end while

WhenN > Qmax, we begin droppingEventpackets. Furthermore, since we drop allNon-Event

packets,N = NE, which means the buffer is occupied only byEventpackets. Since the buffer utilization

ratio should monotonically increase with congestion, it implies FE(N) ≤ FE(N + 1). Additionally,

since the dropping probability also needs to monotonicallyincrease withN to relieve congestion,

we can conclude that when there areNE > Qmax packets with a new incoming packet, we have

N ≤ FE(N) ≤ (N + 1). Consequently, we haveFE(N) = N + 1 − dE(N), wheredE(N) is a

non-decreasing function with the value bounded between [0,1]. While the above scheme looks similar

to a tail-dropping scheme, it is important to point out that our mechanism is different from tail-dropping
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since we may drop a packet from any position in the queue. The only similarity is that the average

number of remaining packetsFE(N) is similar to that in the tail-dropping scheme. The curvedE(N)

is shown in Figure5, and it can also be a convex, linear or concave function. The convex function is

conservative, the concave function is aggressive, and the linear function is in between sincedE(N) is the

minus term.

Figure 5. CandidateFN (N) anddE(N) functions.

FN(N)

NQmin Qmax

NN

0 Q

dE(N)

NQmin Qmax

1

0 Q
0

Link Quality Measurement

As we discussed in Section2.1., collisions in MAC layer and link failures in PHY layer influence the

probability that a packet is successfully received by the sink. Therefore, when the MAC layer is ready to

send the packets in the queue, we also need to updatePi to record the link quality information. A number

of parameters can provide the link quality information, such as the number of interfering neighbors and

Signal-to-Interference-and-Noise Ratio (SINR). However, due to limited resources in a WSN, we prefer

to find an efficient parameter which can also be easily obtained through link measurement. In our system,

we choose the ratio of the number of successful transmissions (MS) to the total number of transmission

attempts (MT ) as the metrics to indicate link quality. First,MT andMS represent the influence from

both collisions in the MAC layer and transmission failures in the PHY. Second, each node can easily

maintain this information by counting the transmissions inthe MAC layer.

Note that wireless link quality in a WSN is usually time-variant. Therefore, recent measurement

results are more important than those that are older; the newmeasurements can more accurately represent

the current link quality. In other words, if we time0 to t to be slotted into small intervals,MS(t2)
MT (t2)

is more

valuable thanMS(t1)
MT (t1)

as long as0 ≤ t1 ≤ t2 ≤ t. On the other hand, we also do not want the instantaneous

perturbation of link quality to destroy the accuracy of estimation ofPi, so we cannot simply abandon

the information fromMS(t1)
MT (t1)

. Therefore, we follow the basic idea of machine learning [12]. In each

time intervaltj , we independently collect the statistic information ofMS(tj)

MT (tj )
, and the link quality in time

intervaltj , denoted byL(tj) to be given by

L(tj) = (1 − α) × L(tj−1) + α ×
MS(tj)

MT (tj)
(13)

Then in Part2.2we updatePi = Pi×L(tj) wheretj is the current time. The parameterα will depend on

the wireless network is and its value may be decided by the network administrator. If the link changes

quickly, for example, as in an underwater WSN,α will be set close to1 so as to incorporate more recent
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information. On the contrary, if the link is stable,α should be smaller so as to accept more history

information to avoid instantaneous variation of the link.

Discussions

As we described in this section, different components inPCC realize the design considerations

in Section2.1.. First, the separate thresholds forEvent and Non-Eventpackets in queue handler

guarantee the high throughput ofEventpackets during congestion. Second, the optimization algorithm in

Equations (5), (6) and (7) provides coverage fidelity of the whole network. Third, theproposed new

queue dropping schemes, and corresponding packet admission probabilitiesKE andKN implements

flexible queue scheduler. Finally, updatingPi by the probability of network dropping and MAC/PHY

link failure efficiently utilize the network resource.

2.3. Evaluation and Comparison

In this section, we evaluatePCC and compare its performance with other existing solutions.

Compared with the dynamic queue scheduling inPCC, most queue schedulers, such asFIFO or

RED [13] use tail-dropping. Since it is not our focus to compare different existing queue schedulers,

we only show comparison results withFIFO. Note that the conclusions in this section still apply to other

queue schedulers.

In the following simulations, we use standard IEEE 802.11 protocol for the MAC and physical layer.

Ad hoc On-Demand Distance Vector (AODV) [14] is used as routing protocol in network layer and

User Datagram Protocol (UDP) and Constant Bit Rate (CBR) areused in the transport and application

layers, respectively. For the results presented in the following subsections, the X-axis represents the rate

at which theNon-Eventpackets are generated. Sensors with events generateEventpackets at a higher

rate, which is1.5 times the basic rate. Note that in our simulations, all the sensor nodes that detect

the Eventgenerate at the same rate. However, this is not a requirementof our scheme. We compare

the performance based on different metrics, such as throughput, packet delay and fairness. We consider

random topologies with24 sensors and one sink, where 12 sensors areEventnodes and the others are

Non-Eventnodes. The following results are the average of25 simulation runs.

Throughput and Delay

The throughput and end-to-end delay are shown in Figure6 and Figure7, respectively. In Figure6,

sinceFIFO does not distinguishEventand Non-Eventpackets, the capacities of “Event FIFO” and

“Non-Event FIFO” are roughly proportional to the traffic generation rate. However, when the traffic

generation rate exceeds the bound, which degrades the wireless link quality by introducing more collision

and larger contention window in MAC protocol, the overall capacity ofFIFO decreases.PCCprovides

Eventpackets higher priority. Therefore, the throughput of “Event PCC” keeps increasing until it reaches

the whole system capacity. On the other hand, moreNon-Eventpackets are dropped during congestion,

and therefore the capacity of “Non-Event PCC” decreases with the increase of the basic packet generation

rate. As we explained before, with the constraint of the system capacity, sinks are more interested in the

Eventpackets, so the results are consistent with our design objective.



Sensors2009, 9 8094

In Figure7, it is obvious that the end-to-end delay ofEventor Non-Eventpackets inFIFO almost

remains the same. SincePCC preferentially acceptsEventpackets,Eventpackets experience longer

queue delay on average. However, during congestion, only a few Non-Eventpackets reach the sink

(most are dropped in the intermediate nodes) and they experience low queueing delay. Therefore, the

average delay ofNon-Eventpackets inPCC is comparably low.

Figure 6. System throughput.
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Figure 7. Avgerage end-to-end delay.
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Coverage Fidelity

The most important improvement ofPCC is that it provides fairness to all sensor irrespective of their

location, and therefore offers coverage fidelity of the whole WSN. In Figure8, we count the number of

packets from different sensors and derive the Jain’s Fairness Index (JFI). From the results, it is clearly

observed that the fairness ofFIFO decreases with the increase in the basic packet generation rate when

the network is heavily congested and only the sensors very close to the sink are able to forward their

packets to the sink. However, theJFI of Eventpackets inPCC is much higher since sensors give packets

equal probability to go to the next hop. SincePCC dropsNon-Eventpackets during congestion, only a

few Non-Eventof the packets can reach the destination. Therefore, theJFI of Non-Eventpackets does

not improve.
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Figure 8. Jain’s fairness of the different schemes.
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To explicitly compare the performance ofPCC, we use a chain topology, which contains three sensors

and one sink. Node 1 is closest to the sink; node 3 is farthest from the sink and node 2 is in the middle.

The distance between the nodes are the same. All sensors are eitherEventor Non-Eventnodes. We count

the number of packets received by the sink from the three sensors, and results are shown in Table1. We

found that inFIFO, packets from remote nodes have a lower probability to reachthe sink while in

PCC, the network provides an equal chance to packets from all sensors. The fairness of bothEventand

Non-Eventpackets improve significantly withPCC.

Table 1. Packets successfully received from different sensors in a chain topology.

Node 1 Node 2 Node 3 Jain’s Fairness Index

Event PCC 139 130 135 0.99925

Event FIFO 297 77 20 0.54735

Non-Event PCC 149 125 124 0.99247

Non-Event FIFO 292 60 23 0.52437

FE(N) andFN (N)

All the above results are based on the linear function for both FE(N) andFN(N). In this section, we

compare the influence of different functions (e.g., convex,concave, direct line) on the performance of

PCC. Since we collected the results when the network is congested and every sensor kept transmitting

packets to the next hop, the throughput of the three functions are almost the same. The results of

end-to-end delay and fairness are shown in Figure9 and Figure10. In Figure9, the delay of the concave

curves (Note that “concave” refers toFE(N), not dE(N)) is largest since this scheme conservatively

kept more packets in the buffer than the other two schemes; therefore packets have longer queue delay.

However, if we employ the convex function, which aggressively drop more packets, the packet delay

decreases since the average queue length of all nodes is the smallest among the three schemes.

SincePCC can selectively drop any packets in the queue, the more packets there are in the buffer,

the more optionsPCChas, which meansPCCcan provide better fairness performance and hence higher

coverage fidelity. The analysis is validated in Figure10which shows that the performance of the concave

function is the best among three schemes and that of the convex function is the worst.
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Figure 9. End-to-end delay for the three different functions for implementingFE(N) .
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Figure 10. Fairness for the three different functions for implementing FE(N).
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Qmin andQmax

Qmin andQmax are important parameters inPCCsince they are the thresholds in the queue scheduler

to determine whenEventandNon-Eventpackets will be dropped. Similar to previous discussion, higher

values ofQmin andQmax are related to higher buffer utilization, so the average packet delay is larger

due to longer queueing delay. Therefore, in this section we only show the fairness results ofNon-Event

packets, which are influenced by bothQmin andQmax. In Figure11, Qmin andQmax are normalized

by the total buffer length. We find that whenQmin is increased with fixedQmax, moreNon-Event

packets remain in the buffer without being selected by the queue scheduler. Consequently, the fairness

is determined more by the wireless link quality and the lowerfairness is due to the randomness. When

Qmax is increased with a fixedQmin, moreNon-Eventpackets have the opportunity to remain in the

buffer and the queue scheduler can implement the optimization algorithm to selectively drop packets.

Consequently, the fairness index is higher. However, note that the influence ofQmin andQmax is not

obvious, or in other words,PCC is not very sensitive to the choice of the thresholds.
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Figure 11. Influence ofQmin andQmax.
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3. A Generalized Approach for Multiple Event Types

In general, sensor nodes may have multiple sensing devices to monitor multiple attributes of the

physical environment in which they are deployed. Each of these sensing devices will generate its own

EventandNon-Eventpackets. Consequently, simply distinguishingEventandNon-Eventpackets may

not be enough when the WSN is in a congested state. Different sensed data will have different value to

the sink and it is important to ensure that more of the valuable data is collected by the sink when the

network is congested. In this section, we extendPCC by introducing aPricing Systemwhich modifies

the packet dropping policy based on different priorities ofdifferentEventpackets to achieve a specified

balance between the aggregate “value” of the collected dataand coverage fidelity. The key features of

the proposedPricing Systemare the following:

• The sink acts as the information consumer and sets a price that it is willing to pay for each different

types ofEventpackets. Higher prices indicates the sink prefers the sensor network to collect this

corresponding category ofEventpacket at the cost of more transmission resource. The ratio of

different prices determines the balance between the priority and coverage. If all prices are equal,

thePricing systemdegrades toPCC. If one of the prices is∞, the sink is willing to only accept

the corresponding category ofEventpackets and consequently the wireless sensor network would

block all other types ofEventpackets.

• The sensors operate as the information providers and when congested selectively drop packets

according to the value that the sink places on the information in each packet (determined by the

price set by the sink). When the buffer utilization is high, the sensor tends to keep packets with the

lower accumulated survival probabilityPi and higher price. The detailed algorithm is introduced

in Section3.1..

• The prices can dynamically vary according to the changes in the physical environment and the

network condition. When the sink modifies the prices, the newprices are broadcast to the entire

network and each sensor node uses the new prices to adjust thedropping policy during congestion.

ThePricing Systemgives more flexibility to the network administrators. It is easy to add or delete a

category of information by adding a new price or setting the price to zero, as long as the hardware can

sense the corresponding type of information. Adjusting theranking of different types ofEventpackets
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can also be done through changing the prices of the data collected by the sensors. In addition, the prices

configured by the network administrators is able to accurately control the dropping probabilities, and thus

control the ratio of received packets in the sink. Based on the structure ofPCC, we describe the algorithm

for thePricing Systemin Section3.1.and evaluate the performance improvement in Section3.2..

3.1. Protocol and Algorithm

The structure of thePricing Systemis almost the same asPCCdescribed in Section2.1.. However, in

order to support multiple types, it is necessary to modify the communication protocol and the dropping

strategy as described below.

Task 1: In the Pricing System, the sink needs to broadcast the updated prices to all sensors in the

network. This functionality could be implemented on multiple layers, such as application, network or

MAC layers. In order to avoid additional burden to the network, thePricing Systembroadcasts the prices

through theACKs of the MAC layer so as not to introduce a new protocol. In wireless networks,ACKs

in the MAC layer is inevitable due to theCSMA/CAprotocol as the sender needs the confirmation of the

transmission from the receivers. In the proposed approach,the sink could update the prices and notify

the nodes within one hop when it receives their data frames. Later those sensors receiving the new prices

could propagate the information to their neighbors. This process will eventually ensure that all sensors

are aware of the new prices. This process does take some time to propagate the updated information to

the whole network. However, note that the MAC layer transmissions occur frequently even without any

data communication. For example, most routing protocols need to detect whether the next hop is still

alive, which triggers periodic transmissions between two neighbors at the MAC layer.

In order to support the above approach, it is also necessary to modify the format ofACK frame.

Suppose there are totallyM types of packets,M − 1 types ofEventpackets and one type ofNon-Event

packet. In the payload of anACK, M variables (2 bytes for each) present the prices of all categories; and

one variable presents thetime stamp, with which the nodes can compare the newly received prices with

the stored ones. Therefore, the possible price range is216 ≈ 64K; and the length of the time stamp is

64K, which could be utilized circularly if necessary.

Task 2: Unlike PCC, Pricing Systemsupports multipleEventtypes. Therefore, in the header of each

packet, we augment an additional part withn = log2M bits to label the type of the packet. When a

sensor generates a packet, it sets the header with the category so that all nodes along the path to the sink

are able to process this packet according to the dropping strategy introduced below.

The overall structure of the algorithm is similar to Figure4, except that we replace the Part2.1with

the following new dropping strategy. To support the multiple categories of events, we introduce a new

notationRi, which is theprice of packeti. Ri can be any one of theM prices, ranging from1 to 64K.

With the definition ofRi, the Part2.1becomes

1. 0 ≤ N ≤ Qmin: Keep all packets since the utilization of the buffer is low.

2. Qmin < N < Qmax: Keep all types ofEventpackets and begin to dropNon-Eventpackets

according to the functionFN(N) shown in left part of Figure5. The optimization problems
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becomes

maximize
{ ~KN}

(
∑

i∈NN

Pi×ki

R
)2

NN ×
∑

i∈NN
(Pi×ki

R
)2

(14)

such that
∑

i∈NN

ki = FN(N) (15)

∀i ∈ NN ki ∈ [0, 1] (16)

where R is the price ofNon-Eventpackets, and ~KN = [k1, k2, . . . , kNN
] is the accepting

probability, which is the decision variable. In the optimization algorithm, we would like the

ratio of different type of price to be equal to the ratio of thecumulative survival probability of

different types of packets as much as possible. The ideal case is when the Jain’s Fairness Index

equals 1, which is achieved whenR1 : R2 : . . . : RM = P1k1 : P2k2 : . . . : PMkM . In other

words, we ensure thatEventpackets for which the sink is willing to pay a higher price hashigher

accumulated survival probability (Piki) and the ratio of the cumulative survival probability follows

the ratio of the prices. If two classes of packets traverse through similar network conditions, the

ratio of throughput of these two types of packets should be similar to the ratio of the prices. Note

that network condition includes both network link quality and the probability of being dropped in

a node along the path to the sink. If the prices of two classes of packets are the same, we would

like the probability of packets received at the sink to be thesame. If all the prices are equal, the

optimization problem becomes the same as Section2.. Since allNon-Eventpackets have the same

price and we selectively dropNon-Eventpackets, Equation14becomes

maximize{ ~KN}

(
∑

Pi × ki)
2

NN ×
∑

(Pi × ki)2
(17)

Note that ifR = 0, thenki = 0.

3. Qmax ≤ N ≤ Q: After dropping allNon-Eventpackets, begin droppingEventpackets since the

buffer is highly utilized. The dropping strategy follows the optimization problem given by,

maximize{ ~KE}

(
∑

j∈NE

Pj×kj

Rj
)2

NE ×
∑

j∈NE
(

Pj×kj

Rj
)2

(18)

such that
∑

j∈NE

kj = FE(N) (19)

∀j ∈ NE kj ∈ [0, 1] (20)

whereRj is the price of packetj, and ~KE = [k1, k2, . . . , kNE
] is the accepting probability, which is

the decision variable. The meaning of the optimization is the same as explained in last paragraph.

FE(N) = N + 1 − dE(N) and thedE(N) function are shown in the right part of Figure5. Note

that, if Rj = 0, thenkj = 0.

The algorithm is similar to Algorithm1. The only difference is to setPi/Rj instead ofPi.

Furthermore, the computation complexity is the same asPCC, which isO(N2).
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3.2. Simulations

In this section, we compare the performance of ourPricing Systemwith FIFO. Note that the results

shown here also apply to other tail dropping active queue management algorithm such as RED. We

consider total throughput, throughput per class, fairnessand “value” as the performance metrics for the

performance comparison. In a multihop wireless network,
∑N

i=1 hi indicates the capacity of network,

whereN is the number of packets successfully received at the destination node, andhi is the number

of hops traversed by packeti from source to destination. The implicit assumption is thatall packets

are equally important. In this study, we consider a WSN with several classes of packets with different

priorities. We use priceRi in our Pricing Systemto indicate the relative priority of packeti. Based

on this, we define the new metric “value” as
∑N

i=1 Ri ∗ hi, whereRi is the price of packeti andhi is

the number of hops traversed by packeti from source to destination. The higher the “value”, the more

information is collected from the WSN.

We evaluate the correctness and performance of our algorithm using a chain topology and a random

topology. The chain topology is used as a base case to analyzeand validate the results. In the simulations,

IEEE 802.11 is used at the MAC/PHY layer, AODV is used as the routing protocol in the network layer,

UDP is set as the transport layer protocol and CBR traffic source is used in the application layer.

The chain scenario consists of five nodes in a linear topologywith equal distance between nodes.

Node 1 is the sink and all packets generated by node 5 pass through nodes 4, 3, 2 to reach node 1. Node

5 generateNon-Eventpackets and three types ofEventpackets with price 2, 4, and 8 units, respectively.

In order to explicitly evaluate the performance of our algorithm, we setQmin andQmax to 0 so that

our optimization algorithm is always active during the simulation. Results are shown in Figure12 to

Figure15. The x-axis in all the figures is packet generation rate whichis set to be the same for all the

four (Non-Eventand threeEvent) types of packets.

Figure 12. Throughput of multiple types of packets for chain topology.
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From Figure12 we can see that for FIFO which does not differentiate the packets, the throughput

of different Event packets andNon-Eventpackets are almost the same. For ourPricing System,

type 3Eventpackets have the highest throughput since they have the highest price; type 1Eventpackets

have the lowest throughput since they have one fourth of type1 price and one half of type 2 price. No
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Non-Eventpackets are received by the sink since they are all dropped. We setQmax equal to0 as to

explicitly test our optimization algorithm, therefore, all Non-Eventpackets are dropped. We also find

that the throughput of the type 1Eventin the Pricing System is less than that of FIFO. Since the total

throughput of the network is fixed, the increased throughputof type 3 decrease the throughput of type 1.

The total throughput is shown in Figure13.

Figure 13. Aggregate system throughput for chain topology.
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Figure 14. Pi values of different types ofEventpackets for chain topology.
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From Figure13, we can see that the throughput increases with packet generation rate until the network

capacity is reached at which point it saturates. We can also see that the total throughput of FIFO and our

Pricing Systemhas the same trend. However, the total throughput of our Pricing System is lower than

that of FIFO because bothQmin andQmax are0. Consequently, the queue utilization is lower. But the

total throughput should be almost the same for FIFO and Pricing System, which can be seen from our

random topology simulation whereQmin = 1/3 ∗ QueueSize andQmax = 2/3 ∗ QueueSize.

To validate the design of our Pricing System, Figure14shows the the averagePi values of the received

packets at the sink. Note that thePi value in the sink means the successful transmission probability of

packet to the sink. When the packet generation rate is small and there is sufficient network capacity, the
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successful transmission probability is higher. When the packet generation rate is high and the network

becomes congested, the probability of successful transmission becomes smaller. The most important

validation here is that when the network is highly congested, the ratio of averagePi values is almost

the same as the ratio of price. For example, when the packet generation rate is 272 kbps,P1 = 0.1253,

P2 = 0.2686, andP3 = 0.5176, which is in the same ratio as the price for the different types of packets

namely,2 : 4 : 8.

Figure15 plots the “value” as a function of the packet generation rate. We see that the “value” of

Pricing System is much better than FIFO when network is congested. When the traffic generation rate

is low, the “value” is smaller than FIFO due to the low utilization of the queue buffer. It is not the case

whenQmin = 1/3 ∗ QueueSize andQmax = 2/3 ∗ QueueSize, which will be shown in the random

topology simulation.

Figure 15. Comparison of value for chain topology.
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Figure16 to Figure19 show the simulation results for random topologies; the results are average of

25 simulation experiments which corresponds to25 different random topologies. Each random topology

contains25 nodes, including a sink. Eight of the nodes sendNon-Eventpackets and3 types ofEvent

packets with the price2 : 4 : 8. Other nodes do not generate packets but forward packets to the sink.

The X-axis in the figures is the packet generation rate which is the same for each of the different types.

In these simulations, we setQmin = 1/3 ∗ QueueSize andQmax = 2/3 ∗ QueueSize and the dropping

functions are linear functions shown in Figure5.

Figure16 shows the throughput of different types of packets using FIFO and ourPricing System.

First, the throughput of different types packets using FIFOare almost the same, since FIFO does not

differentiate different type of packets. Second, when the network is not or lightly congested, FIFO

and Pricing System has the similar throughput. But the throughput ofNon-Eventpackets usingPricing

Systemis smaller than that using FIFO, because thePricing Systembegins to selectively drop some

Non-Eventpackets so as to avoid congestion. Third, when network is highly congested, the throughput

of type3 and type2 packets using Pricing System are much higher than those using FIFO. ThePricing

Systemis able to guarantee higher probability of successful transmission of packets with higher priority

when network is congested. Furthermore, the ratio of successful transmission of packets is consistent

with the ratio of price decided by the network operator.
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Figure 16. Throughput of differentEventtypes for random topology.
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Figure 17. Aggregate system throughput for random topology.
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Figure 17 shows the total throughput of all types of packets using FIFOand our Pricing System.

We can see that their throughputs are similar. In a wireless network, throughput increases as packet

generation rate increasing. When the network is saturated,the total throughput decreases lightly because

of the severe MAC layer contention. The FIFO line is more smooth since FIFO only drop packets when

the buffer size is full. However, the pricing line has some randomness, since ourPricing Systemdrop

packet using the probability obtained from our optimization algorithm.

We show Jain’s Fairness Index of different types of packets in Figure18. Our optimization algorithm

lets packets with the same price have the same probability ofsuccess to reach the sink. Our simulation

results show that ourPricing Systemhas higher fairness than FIFO. But the fairness ofNon-Eventpackets

usingPricing Systemhas lower fairness than FIFO. This is because we drop allNon-Eventpackets when

buffer size is bigger thanQmax.

Figure19 shows the simulation results of our newly defined metric “value”. When network is not

congested, the values of FIFO andPricing Systemare almost the same. However, when the network is
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congested, the proposedPricing Systemreceives more packets with higher priority and has much

higher value than FIFO.

Figure 18. Fairness of different classes ofEventpackets for random topology.
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Figure 19. Comparison of value for random topology.
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4. Related Work

Prior works on congestion control mechanisms in WSNs are mainly embedded in the end-to-end

controls, such as CODA [15], ESRT [7], STCP [16], PORT [17], SenTCP [18] and [19]. The

underlying method in these papers is the use of end-to-end rate adjustment to fulfil congestion control.

These protocols detect and prevent congestion by reducing the number of packet retransmissions and

energy used. We briefly summarize the main contributions of these papers. Congestion Detection

and Avoidance(CODA) is one of the early papers discussing congestion control in wireless sensor

networks. CODA is a energy efficient scheme which comprises of three mechanisms: (1) receiver-based

congestion detection, (2) open-loop hop-by-hop backpressure, and (3) closed-loop multi-source

regulation. CODA is evaluated by two metrics proposed by theauthors, namely, energy tax and fidelity
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penalty. Event-to-Sink Reliable Transport (ESRT) is basedon the observation that sensor networks are

event-based systems. ESRT protocol operation is determined by the network state in terms of congestion

condition in the network and path reliability. Simulation analysis of ESRT shows that proposed transport

protocol achieves desired reliability with minimum energyconsumption. Sensor Transmission control

Protocol (STCP) is a scalable and reliable transport layer protocol for sensor networks. STCP is central

control protocol since most of the functionalities are implemented at the base station. Simulations show

that STCP can increase network lifetime and achieve high reliability. Price-Oriented reliable Transport

(PORT) protocol is proposed to obtain reliability and minimize energy consumption. Price refers to the

communication cost between sources and the sink. PORT uses price information to achieve reliability.

Minimization of energy consumption is achieved by two schemes, upstream information optimization of

the sink and downstream optimal routing scheme locally implemented in sensor nodes. Simulations show

the effectiveness of PORT for reducing energy consumption comparing to existing schemes. SenTCP is

an open-loop hop-by-hop congestion control protocol for wireless sensor networks to improve system

throughput, reduce packet dropping, and minimize energy consumption. The work in [19] proposes a

congestion control using the congestion degree calculatedby the remaining buffer size and net flow.

Rate-Controlled Reliable Transport (RCRT) protocol proposed in [20] ensures efficient and flexible

rate control like previous protocols. However, RCRT has theimprovement that combine reliable

transmission and congestion control together. Congestiondetection and rate adaptation functionality

are performed by the sink. The author also evaluated RCRT on a40-node wireless sensor network

testbed and show that it achieves better performance compared with IFRC [8].

The studies reported in [21–24] address the congestion problem using routing protocols. In [21],

congestion control is achieved by dividing the monitoring areas into several subareas and adjust the local

and forwarding traffic based on the transmission parameter.In [22], an interference-minimized multipath

routing protocol is proposed for load balancing and a congestion control scheme to reduce the loading

rate of the source. The main idea of [23] is to find a less congested node to forward packets to when

congestion occurs. In [24] a routing protocol is proposed for congestion control in WSNs by selecting a

route which use Network Allocation Vector (NAV)[25] information to determine the channel status. Our

optimization algorithm is orthogonal with these protocolssince they work in different layers.

Other research based on priority fairness are [26], IFRC [8], Fusion [27], and [28–30]. The study

reported in [26] gives a design of a distributed, scalable congestion elimination mechanism in the

transport layer, which ensures fair delivery of packets to the sink when using either a probabilistic

selection or a epoch-based proportional selection. Interference-Aware Fair Rate Control (IFRC)

discusses a mechanism for each node to detect the contendingflows locally and fairly by adapting its

own transmission rate and using a congestion sharing mechanism. It can achieve MAC layer fairness, but

not application layer fairness. Application layer fairness is more important to users. Fusion combines

three mechanisms that span to different layers. They are hop-by-hop flow control, rate limiting source

traffic, and a prioritized MAC protocol. Hop-by-hop flow control is used for congestion detection and

mitigation. Rate limiting is used to prevent unfairness toward sources which are far from the sink. A

prioritized MAC scheme is designed for congested nodes to have higher priority to access the channel

as to quickly drain out their buffer. The works reported in [28–30] share a similar idea and use node

priority index to reflect the importance of each node for priority-based congestion control. These papers
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neglect the details of MAC protocols and assume they provideeven access opportunities for each node,

which neglect the important characteristic of time-varying wireless links in WSNs. Finally, the priority

index design is based on node priority, not priority of different classes of information.

To the best of our knowledge, there is only one paper that discusses congestion control for

heterogeneous traffic [31]. But the protocol did not consider the wireless link characteristic, fairness

and coverage fidelity. Our scheme, however, can efficiently collect different categories of information

based on their relative priorities and also consider the affect of wireless links to achieve fairness.

5. Conclusion

In this paper, we have proposed a new schemePCC to address congestion problem in a WSN and

then we extendPCC to efficiently collect multiple categories of information in an advanced WSN. In

PCC, we assign different priorities toEventandNon-Eventpackets, which have different values in a

WSN. We propose an optimization algorithm to provide fair opportunity to sensors irrespective of their

locations. We present a novel queue scheduler, which can drop any packets in the queue, supplies much

more flexibility to information collection during congestion. Finally, also carefully involve the factor of

different wireless link qualities and utilize the statistic information to adjust the dropping decision. In

PCC, sensors only need to collect local information about the queue in the network layer and link quality

in MAC layer, which is scalable and practical for large WSNs.Our analysis and simulation show that

PCC can achieve highEventthroughput and much better fairness and hence higher coverage fidelity.

We also discussed the influence of some of the parameters onPCC, such as admission function and two

thresholds forEventandNon-Eventpackets.

In the Pricing System, we propose an optimization algorithm for the queue scheduler. ThePricing

Systemis simple and efficient to distribute network resources to differentEventpacket according to the

decision of the network operator. ThePricing Systemis carried out when the network is congested.

Following the design, we can control congestion and fully utilize the WSN. Our simulations show that

higher throughput can be achieved for packets with higher price, and fairness can be guaranteed within

one category.
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