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Abstract—Similarity calculation has many applications, such 

as information retrieval, and collaborative filtering, among 

many others. It has been shown that link-based similarity 

measure, such as SimRank, is very effective in characterizing 

the object similarities in networks, such as the Web, by 

exploiting the object-to-object relationship. Unfortunately, it is 

prohibitively expensive to compute the link-based similarity in 

a relatively large graph. In this paper, based on the 

observation that link-based similarity scores of real world 

graphs follow the power-law distribution, we propose a new 

approximate algorithm, namely Power-SimRank, with 

guaranteed error bound to efficiently compute link-based 

similarity measure. We also prove the convergence of the 

proposed algorithm. Extensive experiments conducted on real 

world datasets and synthetic datasets show that the proposed 

algorithm outperforms SimRank by four-five times in terms of 

efficiency while the error generated by the approximation is 

small.  

 

Keywords- Similarity Calculation, SimRank, Graph Mining  

I. INTRODUCTION  

It is a fundamental problem to compute similarity between objects 

in a network. The similarity calculation has a wide range of 

applications including similarity search, collaborative filtering for 

recommendation, clustering, etc. Many application domains can 

be modeled as networks. For examples, the Web graph (to find 

and recommend similar webpages), the paper citation graph (to 

find similar papers or related authors),  the query-click graphs (to 

recommend similar queries and webpages), and social network 

and collaborative tagging websites (to recommend friends and 

objects, such as photos). 

Link-based similarity [1] has been proposed to describe the 

similarity between objects in graphs by exploiting the object-to-

object relationship. It has been shown that link-based similarity 

measures produce more consistent results with human judgment 

than conventional similarity measures based on content (e.g. text 

for webpages) similarity, in many application domains [2].   

The basic idea of link-based similarity is that two objects are 

similar if they are related to similar objects in the networks. One of 

the most well known link-based similarity measures is SimRank 

[1] and many applications are developed, e.g. [3-7] based on 

SimRank and its extensions.  Intuitively, similar to PageRank 

algorithm, SimRank is also based on the concept of “random 

surfers”, and accordingly it is computed iteratively.  Although it 

has been shown that SimRank, as a link-based similarity measure, 

is very effective in measuring the similarity of objects in networks, 

it is unfortunately computationally expensive. Its time complexity 

is O(kn4), where k is the number of iterations required for the 

SimRank algorithm to converge, and n is the number of objects 

in a network. 

In this paper, we address the problem of efficiently computing 

link-based similarity. Our solution is based on an important 

observation that link-based similarity values follow power law 

distribution. It has been well studied that degrees in many real 

world graphs follow the power-law distribution (such graphs are 

called scale free graphs), such as the World Wide Web [9-10], 

metabolic network [11], telephone call graph[12], paper citation 

graph [13], etc. However the power law distribution for link-based 

similarity is less observed and studied. We observe that it exists as 

a fundamental and essential property for real world graphs 

(Section 3 will give detailed analysis).   

A salient feature of power-law distribution of link-based 

similarity scores is that majority of similarity scores between 

objects in real world graphs have very small values while only a 

small part of similarity scores are large. Based on this feature, we 

propose approximate algorithm, namely Power-SimRank, for 

computing SimRank. We prove that the approximate algorithm 

has guaranteed error bounds, and that the proposed algorithm will 

converge.  

Our contributions: 

 We offer a detailed study on an important principle in real 

world graphs: power-law distribution for link-based similarity 

scores.  

 Based on the characteristics of power-law distribution in 

similarity scores, we develop an approximate algorithm with 

guaranteed error bounds, namely Power-SimRank to extend 

SimRank. We also prove that the proposed algorithm 

converges by theoretical analysis. 

 Extensive experiments are conducted to evaluate the efficiency 

of the proposed algorithm and also the accuracy estimation of 

the proposed algorithm. Experimental results show that the 
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Power-SimRank algorithm is capable of outperforming 

SimRank by 4-5 times in terms of runtime, while the error 

generated by the approximation is small. 

    The rest of the paper is organized as follows: Section 2 

introduces the SimRank algorithm. Section 3 presents the power-

law distribution property of link-based similarity in real world 

graphs. Section 4 presents the proposed Power-SimRank 

algorithm. Experimental results are reported in Section 5. We 

cover related work in Section 6. Finally, Section 7 concludes our 

work. 

II.OVERVIEW ON SIMRANK  

SimRank [1] is a method of measuring linkage-based similarity 

between objects in a graph that models the object-to-object 

relationships for a particular domain. The intuition behind 

SimRank score is that two objects are similar if they link to the 

similar objects.  This intuition also indicates that SimRank 

calculation needs to be recursive.  

    We proceed to present the formula to compute SimRank. 

Given a graph G(V, E) consisting of a set of nodes V and a set of 

links E, the SimRank similarity between objects a and b, denoted 

as S(a, b), is computed recursively as follows:  

| ( )| | ( )|

1 1

1                                                                        ( )  

( , )
( ( ), ( ))                   ( )  

| ( ) || ( ) |

I a I b

i j

i j

a b

S a b c
S I a I b a b

I a I b

    (1) 

,where c is a constant decay factor, 0< c <1; I(a) is the set of 

neighbor nodes of a and I i(a) is the ith neighbor node of a. |I(a)| is 

the number of neighbors of node a.  In case of I(a) or I(b) being 

an empty set, S(a, b) is specially defined as zero. 

    A solution to the SimRank equation (1) can be reached by 

iteration to a fixed-point. For each iteration k, let Sk(.,.)  be an 

iteration similarity function  and  Sk(a, b) be the iterative similarity 

score of pair  (a, b)  on iteration kth. The iteration process is started 

with S0 as follow.   

0

0                         (if )
( , )

1                         (if )

a b
S a b

a b

                                         (2) 

To calculate Sk+1(a, b) from Sk(a, b), we have the following 

equation: 

| ( )| | ( )|

1

1 1

( , ) ( ( ), ( ))
| ( ) || ( ) |

I a I b

k k i j

i j

c
S a b S I a I b

I a I b

                            (3) 

    In equation (3), 1/|I(a)|  is a single step probability of walking 

from node a  to a node in I (a). Therefore we can use probability 

transformation matrix T [21] to capture the single step probability 

in a Markov Chain. Thus, SimRank algorithm can be described 

by matrix calculation.  

  S0=E                                                                                              (4) 

,where E is an identity matrix.  
| ( )| | ( )|

( ) ( ) 1

1 1

( , ) ( ( ), ( ))
i j

I a I b

k aI a bI b k i j

i j

S a b c T T S I a I b                     (5) 

    Although the convergence of iterative SimRank algorithm can 

be guaranteed in theory, practical computation uses a tolerance 

factor ε to control the number of iterations such that a finite 

number of iterations are performed. It is recommend to set = 

0.001, the same as in PageRank [21]. Specifically, the ending 

condition of the iteration is as follows:  

max(|Sk(a,b) - Sk-1(a,b)| / |Sk-1(a,b)|)                                     (6) 

    It says that the iteration stops if the maximal change rate of 

similarity value between two iterations for all node pairs is smaller 

than the threshold ε. 

III.POWER-LAW OF SIMRANK SCORES 

In this section, we study SimRank score of node pairs in scale 

free graphs. We discretize similarity scores into bins of size 0.002; 

each bin (s-0.002, s] is represented by s. Let fs be the number of 

node pairs whose similarity scores follow in bin s. Figure 1 (a) 

shows the frequency fs versus the similarity score s in the log-log 

scale on different graphs. A striking obervation is that the plots can 

be approximated well by the linear regression. For example, the 

correlation coefficient is 2.17 for Cornell dataset. This shows that 

SimRank scores follow power-law distribution.  

Definition 1: We define SimRank exponent  to be the slope of 

the plot of frequency of SimRank scores versus SimRank score 

in log-log scale.  

    The second striking obervation is that the values of SimRank 

exponent remains relatively stable across the datasets. Generally, 

the exponent parameter is in the range [-1.8, -2.2] and details are 

given in Table 1.   

    We next analyze the fraction of node pairs whose SimRank 

scores exceed s over all node pairs, and the fraction of the sum of 

their SimRank scores over the sum of scores of all pairs. 

Theorem 1: Let P(s) = 
min

/s s
s s

f ds f ds  be the fraction of the 

nodes pairs whose SimRank score exceeds s, and W(s) = 

min

/s s
s s

sf ds sf ds , be the fraction of total SimRank score for 

these pairs. >2. Then, we have W=P( )/( )                       (7)                           

Proof:  

P(s) = 
min

/s s
s s

f ds f ds  =  
min

  /  
s s

s ds s ds =   (s/smin)

W(s)= 
min

/s s
s s

sf ds sf ds = 
min

1 1 /  
s s

s ds s ds =  (s/smin)  

Thus,  W = P( )/( ).

    According to theroem 1, the P-W curve is concave downwards 

with a steep increase. This indicates that majority of the SimRank 

scores are very small and a small portion of the nodes pairs take a 

large fraction of SimRank scores in real world networks.  

    We apply theorem 1 on our datasets to plot P-W curves (the 

fraction of SimRank scores vs. the fraction of node pairs). Figure 

1(b) shows the P-W curves according to Theorem 1 and the real 

values on different datasets.  We can see that the two curves 

match very well. Take Cornell dataset as an example, we can see 

that 20% node pairs with the largest SimRank scores hold about 

78% of the sum of SimRank scores over all node pairs. We note 

that the curve of ACM dataset appears to be different. This is 

Power-Law Distribution of SimRank scores 

The frequency fs is a function of SimRank score s: fs s

where and are two constant parameters.  
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Figure 1.  SimRank scores for Power-Law distribution on real world datasets: (a) Log-log plot of frequency f versus the similarity score s. (b)  Fraction 

Proportion: the actual line describes the fraction W of the sum of SimRank scores held by fraction P of pairs and the theoretic line is drawn by following 

Theorem 1. The detail information on the datasets is shown in Table 1.  

because ACM dataset is extremely sparse (Table 1), the similarity 

scores of ACM dataset are more smaller than other datasets and a 

large number of similarity scores are 0. The parameter of ACM 

dataset is inapplicable to evaluate faction proportion. However, for 

the extremely sparse graph of ACM dataset, 2% node pairs with 

the largest SimRank scores hold all of SimRank scores. Hence, 

in general, in real world networks, fewer than 20% node pairs with 

the largest SimRank scores hold the 80% SimRank scores. 

TABLE I.  PARAMETER STATISTICS OF DATASETS 

Note: β is the slope of the degree distribution graph in log-log scale. ζ is 

the slope of SimRank score distribution graph in log-log scale. δ1 and δ2 

are standard deviation for β and ζ respectively. The parameters β and ζ are 

calculated by MLE [8]. 

IV.POWER-SIMRANK ALGORITHM 

The observations on power-law distribution for similarity scores 

show that a large portion of SimRank score is owned by a small 

percentage of nodes pairs for real world networks and the majority 

of similarity scores is very small.  This indicates that the time of 

similarity computation can be greatly reduced if we can save the 

computation used to compute the low similarity scores, which 

costs most of the computation. We conjecture that we can save 

computation time of SimRank if we do not recalculate P 

proportion of node pairs after a certain number of iterations, while 

we can guarantee that the errors from stopping the recalculation is 

within certain bounds.   

 Based on this idea, we propose a new algorithm Power-

SimRank that is capable of computing approximate SimRank 

with guaranteed error bounds. Algorithm 1 outlines the Power-

SimRank algorithm. It takes in five arguments. The first three 

arguments inherit from the original SimRank algorithm: the 

decay factor c gives the rate of decay as similarity flows across 

edges in a graph; transfer probability matrix T is explained in 

section 2.1; and tolerance factor is to control the number of 

iterations as discussed in section 2.1. The other two parameters are 

iteration threshold r and fraction of nodes pairs P.  Intuitively, 

after iteration r, we will stop recalculating the P portion of node 

pairs with the lowest similarity score. As to be shown, they will 

decide the theoretical error bounds of the approximated SimRank 

scores, and thus can be set in terms of the accuracy requirements 

of different applications.  

The algorithm first initializes variables (lines 1-3). Each element 

in matrix flagmatrix indicates whether or not the similarity of the 

corresponding node pair needs be calculated. If flagmatrix[a,b] = 0, 

pair(a, b) will need to be calculated iteratively. If flagmatrix[a,b] = 1, 

we will stop the iterative computation for the pair(a, b), and we call 

the pair (a, b) is locked. In line(4), The algorithm will stop if the 

ending condition in Equation (6) is satisfied. The algorithm then 

uses Equation (5) to compute the similarity score if node pair 

pair(a, b) is not set to 1 (lines 7-10).  In the rth iteration, if any node 

pair(a,b) is included by the P fraction (i.e. its similarity score is in 

the lowest P percentage), we will set flagmatrix[a,b] to 1 and will 

not recalculate its SimRank score in the subsequent iterations 

(lines 11-15). LockPairsNodes is used for this function.  

 

    

    

    

(a)                                                                    (b) 

Dataset Vertices#(n) Edges#(e)  1  2 

Cornell 867 2667 -2.77 0.101 -2.17 0.002 

Texas 827 2691 -2.65 0.079 -2.16 0.003 

Washington 1205 3299 -2.54 0.068 -2.10 0.002 

Wisconsin 1263 5305 -2.23 0.046 -2.16 0.001 

ACM 8983 7855 -3.04 0.050 -1.80 0.002 

Synthetic 5000 19980 -3.93 0.062 -2.15 0.005 
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Algorithm 1. Power-SimRank  

Input: Decay Factor c, Transfer Probability Matrix T, Tolerance Factor , 

Iteration Threshold r,   Fraction of Nodes Pairs P 

Output: Similarity Matrix s 

1:  k 1; 

2:  S0 identity matrix; 

3:  flagmatrix 0; //0:node pair need calculate. 1:do not need 

4:  while(max(|Sk(a, b) - Sk-1(a, b)| / |Sk-1(a, b)|) > ) 

5:        k k+1; 

6:        Sk-1 Sk; 

7:        for each element Sk(a, b) 

8:              if ( flagmatrix(a, b)= 0 )   

9:                   
| ( )| | ( )|

( ) ( ) 1

1 1

( , ) ( ( ), ( ))
i j

I a I b

k aI a bI b k i j

i j

S a b c T T S I a I b
 

10:     end for 

11:     if ( k = r ) 

12:          for each element Sk(a, b) 

13:                 LockPairsNodes(Sk, P);  // Set  Flagmatrix 

14:       end for 

15:    end if 

16: end while 

17: return Sk 

     

    Although the worst time and space complexity of Power-    

SimRank is the same as SimRank, it is much more efficient in    

practical computation since it needs fewer iterations and in each      

iteration the computation cost is cheaper than SimRank.  

Theorem 2 (Convergence):  The Power-SimRank similarity S 

(a, b) for any node pair (a, b) will converge to a fixed value. 

Proof: See the full version of this paper[14]. 

We also proceed to derive the error bound for Power-

SimRank algorithm. The parameters r and P for Power-

SimRank are significant to analyze the accuracy of SimRank.   

Theorem 3 (Accuracy Rule). At the iteration r, the similarity of 

P fraction of node pairs is locked (no further calculation) by the 

Power-SimRank. Thus, for every two nodes a and b, the 

difference between the SimRank and Power-SimRank 

similarities, i.e. the theoretical error bounds, is given as follows:  

Case 1: If pair (a, b) does not need further calculation beyond 

the iteration rth, S(a, b)-PS(a, b)≤ cr+1.  

Case 2:If  pair(a, b) needs to calculate beyond the iteration rth,  

2

21

2

1

1
( ( , ) ( , ))   

1 ( (1 ))

ravg S a b PS a b P c

c P

                   (8) 

Proof: See the full version of this paper[14]. 

V.EMPIRICAL STUDY 

We report a summary of empirical study on the performance of 

our methods. Section 5.1 presents the experimental setting, section 

5.2 reports the efficiency and section 5.3 reports the accuracy of 

the similarity measures for real world applications. 

A. Experimental Setting 

Datasets: Our experiments use the datasets in Table 1.  

Cornell, Texas, Washington, and Wisconsin Datasets: They 

consist of web pages crawled from computer departments of four 

universities from CMU datasets [15]. Web pages are manually 

divided into seven classes, student, faculty, staff, department, 

course, project and others.  Each webpage becomes a graph node. 

ACM Dataset: The dataset consists of 8968 papers crawled from 

Section B in ACM CCS [16], which is a credible subject 

classification system for Computer Science. Each paper is a graph 

node. According to ACM CCS 1998, these papers has been 

classified for six classes, such as "B.1control structures and 

microprogramming". 

Synthetic Dataset: We use Barabasi Graph Generator [17] to 

generate graphs such that their node degree follows the power-law 

distribution as follows: 5 initial nodes are created. Then upon each 

iteration of the generator, a new node is added and 2 edges are 

created from this new node to other nodes with the probability 

distribution P(i) = di / id , where di is the degree of node i. This 

process continues until the desired size of the graph is reached. 

We generate a number of graphs with the number of nodes from 

500 to 5000 and use VxEy to denote the generated graph with x 

nodes and y edges. 

All our experiments are conducted on a PC with a 3.0GHz Intel 

Core 2 Duo Processor, 2GB memory, running windows XP 

Professional. All algorithms are implemented in Java.  

B. Efficiency of the proposed algorithm  

Table 2 gives the runtime of the the proposed methods Power-

SimRank, and the orginal SimRank. For Power-SimRank, we use 

default parameter r = 6 and P = 20%. We can see that Power-

SimRank speeds up SimRank by nearly four times on all data. 

The main reason for the speed-up is that Power-SimRank needs 

much less time after certain (r) interations than SimRank and our 

methods need less iteration. Note that the computational cost for 

all algorithms depends on both the time for each step of iteration 

and the number of iterations. 

TABLE II.  TOTAL TIME(S) VS. ALGORITHM 

Dataset SimRank Power-SimRank 

Cornell 162.0s 33.3s 

Wisconsin 602.7s 132.3s 

Texas 147.9s 32.1s 

Washington 453.1s 93.8s 

ACM 191441s 47599s 

V5000E2000 37946s 10508s 

 

    To have a better understanding on the speed-up, Figure 4 shows 

the time cost for each iteration of different algorithms on all the 

data.  We can see that from the first to the 6th iteration,  the time 

cost of each iteration of Power-SimRank is almost identical to 

that of SimRank, but at subsequent iterations the time cost of our 

algorithm drops dramatically. After the 6th iteration, 80% of the 

nodes with low similarity scores are locked in the proposed 

methods. The subsequent iterations will only compute similarity 

score for unlocked node pairs (nearly 20% node pairs according to 

power law distribution), and thus the time cost of our algorithm 

drops very quickly. Note that the proposed algorithm need fewer 

iterations to converge as shown in Figure 2.  
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Figure 2.  Number of iteration vs. Time (seconds) 

    To study the scalability of the proposed methods, we run 

experiments on synthetic graphs with different number of nodes. 

As shown in Figure 3, the runtime increases with the number of 

nodes for all methods. However, Power-SimRank scales much 

better than SimRank, and runs nearly four times faster than 

SimRank algorithm.  
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Figure 3.  The number of nodes vs. Time(seconds) 

C. Accuracy of the proposed algorithm 

We evaluate the accuracy in two ways. First, we compute the 

average error of similarity scores of our algorithm compared with 

SimRank. Second, we evaluate the accuracy of using the 

similarity score from different methods for a clustering application.  

1) Average Error  
Two parameters, r and P, affect the accuracy of similarity values 

directly. We will evaluate the effect of the two parameters on the 

performance. We observe qualitatively similar tendency for 

Power-SimRank on all datasets. Due to space limitation, we 

only report the result of Power-SimRank on the Cornell 

dataset.   

    In the first experiment, we fix the parameter P to 0.8 and vary r 

from 1 to 41. Figure 4(a) shows that with the increment of r, the 

average error (the error of a node pair is the difference between 

Power-SimRank and SimRank for the node pair) of Power-

SimRank drop.  In figure 4(a), the line Pcn describes the trend of 

Ave SimRank score. With the iteration increase, the line accord 

with Pcn. After 6th iteration, we also notice that the real average 

error is extremely small.  In Figure 4(b), with the increase of r, the 

runtime of Power-SimRank increases.    

Figure 4.  The effect of r in Power-SimRank on performance (P = 0.8) 

    In addition, we fix r at 6 and vary P from 0% to 100%.  In figure 

5, with the increase of P, the average error increases slowly from 0 

to 0.0035 and the runtime drops quickly form 160s to 20s as 

expected.  

 

(a)  Average Error 

 

(b) Runtime 

Figure 5.  The effect of P in Power-SimRank  on performance  (r = 6) 

2) Accuracy for the real world application 
Note that the data we use has class labels that can be used as the 

ground truth for clustering. We follow the evaluation method in 

[3], which uses PAM [22], a k-medoids clustering approach, to 

cluster objects based on similarity score. We do the clustering 

using the similarities calculated by different algorithms. Precision 

[23] is used to measure the quality of clusters that are generated 

using different similarity metrics, and thus the quality of similarity 

scores:
1 2

1 2

...

...

n

n

r r r

t t t

C C C
precision

C C C

(9), Where 
ir

C  is the number of 

nodes which have the right label in ith cluster and 
it

C is the total 

number of nodes in ith cluster. Following [3], for each similarity 

calculation method, we run PAM 50 times for each data and report 

the results of the run with the best precision. We use the default 

parameter P =0.8 and r=6 in this experiment.  

    In figure 6, it shows the accuracy of clusters generated using the 

four similarity measure. We can see that the precision using 

Power-SimRank similarity is slightly lower than that use 

SimRank similarity. However, the loss of the accuracy of 

Power-SimRank is small. 

Accuracy Experiment

A
c

c
u

ra
c

y
(%

)

Simrank Power-Simrank  

Figure 6.  Accuracy of clustering using different similarity calculation 

methods on real world datasets 

VI.RELATED WORK 

The early research work for similarity calculation based on link 

analysis focuses on the citation patterns of scientific papers, based 

on measures co-citation [18] and co-coupling [19]. co-

citation means if two documents are often cited together by 

 

(a) Average Error  

 

(b) Runtime 
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other documents, they may be about the same topic. co-

coupling means that if two papers cite many papers in 

common, they may be on the same topic. Amsler et al. [20] fuse 

bibliographic co-coupling and co-citation measures to 

determine the similarity between documents. These methods 

compute the similarity by considering only the immediate 

neighbors. In contrast, SimRank [1] considers the entire 

relationship graph to compute the similarity between two nodes. 

But this method suffers from high computational cost, O(kn4) in 

the worst case. There are some recent methods proposed to 

improve the performance of SimRank. Jeh and Widom [1] also 

propose an algorithm called Pruning-SimRank [1], which 

computes similarities by a small scope of relationship graph 

around two nodes. However, the accuracy of this method is not 

very good since it ignores much information. Lizorkin et al. [7] 

present a technique to estimate the accuracy of computing 

SimRank iteratively and some optimization techniques that 

improve the performance of the iterative algorithm. The 

techniques are orthogonal to our method and can be combined 

with our method.  Fogoras et al. [6] presents a general framework 

of Monte Carlo similarity search algorithm that recomputes an 

index database of random fingerprints, and at query time, 

similarities are estimated from the fingerprints. Cai et al. [5] 

propose an Adaptive-SimRank algorithm based on the 

observation that the convergence rates of different object pairs are 

different when SimRank is used to compute the similarities. Xi et 

al [4] propose SimFusion measure that can effectively integrate 

relationships from multiple sources to measure the similarity of 

data objects by iteratively computing over the Unified 

Relationship Matrix (URM). All these techniques for link-based 

similarity do not consider power-law distribution of similarity 

scores that exists in real world graphs, as we observe in this paper. 

To our knowledge, the power-law distribution of SimRank scores 

is only observed previously by Yin et al [3] and they propose an 

efficient and accurate approach for linkage-based clustering 

algorithm LinkClus. However, Yin et al. do not consider 

parameter estimation for the power-law distribution, which is 

essential to study the power-law distribution. Moreover, we utilize 

the power-law distribution in a different way from Yin et al. Yin et 

al. propose a hierarchical structure, SimTree, to represent the 

similarity score between objects based on the power law 

distribution of SimRank scores and develop linkage-based 

clustering algorithm LinkClus. In contrast, we utilize the 

property of power-law distribution to reduce the number of 

iterations and computational cost of each iteration. 

VII.CONCLUSION 

In this paper, we find that link-based similarity scores follow the 

power-law distribution in real world graphs, and also estimate the 

parameters of the distribution. Based on this observation, we 

propose the Power-SimRank algorithm to improve the 

performance of SimRank. Moreover, we prove the convergence 

of the proposed algorithm and analyze the error bounds of the 

proposed algorithm. Experimental results show that the proposed 

algorithm runs four-five times faster than SimRank, and the 

approximation error is small. 
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