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Efficient Algorithm for Solving Semi-Infinite
Programming Problems and Their
Applications to Nonuniform
Filter Bank Designs

Charlotte Yuk-Fan Ho, Bingo Wing-Kuen Ling, Yan-Qun Liu, Peter Kwong-Shun Tam, Member, IEEE, and
Kok-Lay Teo, Senior Member, IEEE

Abstract—An efficient algorithm for solving semi-infinite pro-
gramming problems is proposed in this paper. The index set is
constructed by adding only one of the most violated points in a
refined set of grid points. By applying this algorithm for solving
the optimum nonuniform symmetric/antisymmetric linear phase
finite-impulse-response (FIR) filter bank design problems, the time
required to obtain a globally optimal solution is much reduced
compared with that of the previous proposed algorithm.

Index Terms—Dual parameterization, nonuniform filter banks,
semi-infinite programming.

I. INTRODUCTION

ANY engineering problems, such as, parametric esti-
mation problems [1], identification problems [2], array
pattern synthesis problems [3], window, filter, filter bank, and
wavelet kernel design problems [4]-[19], as well as optimal
control problems [20]-[24], can be formulated as optimization
problems subject to functional inequality constraints. Since con-
tinuous functions consist of infinite number of discrete points,
these infinite constraint optimization problems cannot be solved
via some simple methods.
In order to solve these problems, numerically efficient
simplex extension algorithms were employed in [6] and [16];

Manuscript received April 19, 2005; revised November 11, 2005. The
associate editor coordinating the review of this manuscript and approving it
for publication was Dr. Henrique S. Malvar. The work obtained in this paper
was supported by a research grant (project number G-YD26) from The Hong
Kong Polytechnic University, the Centre for Multimedia Signal Processing,
The Hong Kong Polytechnic University, the CRGC grant (Project Number
PolyU 5105\01E) from the Research Grants Council of Hong Kong, as well as
a research grant from the Australian Research Council.

C. Y.-F. Ho is with the Department of Electronic Engineering, Queen
Mary, University of London, London EI 4NS, UK. (e-mail: char-
lotte.ho@elec.qmul.ac.uk).

B. W.-K. Ling is with the Department of Electronic Engineering, Division
of Engineering, King’s College London, London WC2R 2LS, UK. (e-mail:
wing-kuen.ling @kcl.ac.uk).

Y.-Q. Liu is with the Department of Mathematics and Statistics, Royal
Melbourne Institute of Technology, Melbourne VIC 3001, Australia (e-mail:
yanqun.liu@rmit.edu.au).

P. K.-S. Tam is with the Department of Electronic and Information Engi-
neering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
(e-mail: enptam@polyu.edu.hk).

K.-L. Teo is with the Department of Mathematics and Statistics, Curtin Uni-
versity of Technology, Perth, CRICOS Provider Code 00301J, Australia (e-mail:
K.L.Teo@curtin.edu.au).

Digital Object Identifier 10.1109/TSP.2006.880314

conventional dual parameterization approaches were employed
in [5], [12], [17], [18] and [27]; an extended active set strategy
was employed in [4]; an extended version of Remez algorithm
was employed in [7] to generate a feasible starting condition
for the dual method; discretization methods were employed
in [9], [15], and [16]; outer-approximation cutting plane algo-
rithms were employed in [10], [15], and [30]; penalty function
approaches were employed in [11] and [26]; and constraint
transcription approaches were employed in [13] and [25].
Among them, the constraint transcription methods, the penalty
function approaches, the discretization methods, the cutting
plane methods and the conventional dual parameterization
methods are the most common methods employed for solving
engineering problems.

However, for the constraint transcription method [25], it suf-
fers from convergence problems. For the penalty function ap-
proach [11], it suffers from disadvantages of computing numer-
ical integration. For the discretization method [9], it does not
guarantee that the solution obtained would satisfy the corre-
sponding continuous constraints. For the cutting plane method
[30], the corresponding subset of the index set may consist of
infinite number of points and only approximated solution is ob-
tained. On the other hand, the dual parameterization method is
capable of finding the exact solution because a global solution
of the parameterized dual problems provides a solution to the
primal problems.

For the conventional dual parameterization method, it is
to parameterize the measure g in the dual problems so that
it transforms the semi-infinite programming problems into
equivalent finite dimensional nonlinear programming problems
via sequences of regular convex programs. These sequences
of convex programs are obtained by discretization. In the kth
iteration, the problems are solved by replacing the index set A
with a finite subset Ay. The finite subset A1 of the index set
is constructed from Ay, by adding all violated index points of a
refined set of grid points to Ay, while dropping all unnecessary
points from Aj. However, as the number of all violated index
points in a continuous set could be very large or even infinite, so
the shortcoming of this scheme is that the number of points in
A}, may be unbounded as k increases. For example, the number
of points that violates —z? > —1 is infinity because there are
infinite number of points in the set x € (—1,1). Even if the
number of points in Ay is finite, the computational complexity
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of employing this approach for solving the problem may be
very huge because the number of points in A may be very
large. In this paper, this conventional dual parameterization
method is improved as follows. We construct Ay, from Ag
by adding to A only one of the most violated points in a
refined set of grid points. Hence, the number of points in A is
bounded. For the same example, the most violated point is at
z = 0 and we only add this point in Ay.

It is shown in this paper that for each &, the number of points
in Ay is limited by the number of filter coefficients required
to be designed plus two. The computational complexity of the
dual parameterization algorithm does not only depend on the
filter lengths, but also on the number of points in the refined
sets of grid points. Hence, the computational complexity of this
algorithm is greatly reduced compared to the conventional one
[27]. Tt is worth noting that both the order of the optimization
problem and the number of points in the refined sets of grid
points for the nonuniform filter bank design problems are high.
This is because more than one filter is required to be designed
and the orders of the polynomials for the amplitude and aliasing
distortions are much higher than that for the specifications on
the passband and stopband of the filters. Hence, the complexity
issue is particularly important for the nonuniform filter bank
design problems.

The rest of this paper is organized as follows. In Section II,
we summarize the formulation of the optimum nonuniform
symmetric/antisymmetric linear phase FIR filter bank design
problem as a quadratic semi-infinite programming problem
[18]. In Section III, an improved dual parameterization al-
gorithm for solving the semi-infinite programming problem
is proposed. In Section IV, a numerical experiment for this
nonuniform filter bank design problem is presented. Finally,
Section V concludes the paper.

II. PROBLEM FORMULATION

In this paper, either symmetric or antisymmetric FIR filters
are designed, so all the filters are linear phase. The formulation
of this optimum nonuniform symmetric/antisymmetric linear
phase FIR filter bank design problem is similar to that of the
nonuniform transmultiplexer design problem [18], so only the
summary of the formulation is stated in this paper. Interested
readers are recommended to study [18].

Let the coefficient vectors of the analysis and synthesis fil-
ters be, respectively, x and y. By arbitrarily choosing a set of
synthesis filters, y is fixed. Define the cost function of an op-
timization problem as the sum of the ripple energy for all the
individual filters in the passband and stopband subject to the
specifications on the passband and stopband ripple magnitudes,
as well as on the amplitude and aliasing distortions. Using sim-
ilar approach in [18], the nonuniform filter bank design problem
can be formulated as the following semi-infinite programming
problem:

Problem (P)

mxin J(x) = ixTQx +bTx+p
subject to g(x,w) = A(w)x —c(w) <0, forweA

where J(x) is the cost function, g(x,w) < 0 is the continuous
constraint function, Q is a positive definite matrix, b is a vector,

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 11, NOVEMBER 2006

p is a positive scalar, A (w) and c(w) are continuously differen-
tiable functions with respect to some frequency band A.

Since amplitude and aliasing distortions are complex contin-
uous functions, constraints that take absolute values on these
functions are equivalent to quadratic constraints, which cause
the problem to be very difficult to solve. One common way
to tackle this difficulty is via a discretization approach. If the
discretization approach is employed, then the constraints be-
come convex quadratic constraints which will lead to a quadratic
programming problem. However, the number of grid points re-
quired is very large. As a result, the computational complexity
is very high. Hence, in this formulation, we make an approxima-
tion that the constraints on taking absolute values of these com-
plex functions are almost (but not) equivalent to constraints on
both the real and imaginary parts of these functions. The approx-
imation is valid if the constraint functions are small. By making
such approximation, the quadratic constraints can be approxi-
mated as linear constraints and the problem is much simplified
and become easier to solve.

Problem P can be efficiently solved using the improved dual
parameterization method and discussed in the following section
in detail. The problem is convex, so any local solution is a global
solution and the solution obtained is independent of the initial
values of x and y we select. Once we obtain the set of analysis
filters, we use the same method to compute the synthesis filters,
and iterate the above procedures. Since the feasible set of each
iteration is convex, this iteration process is actually a projection
on a convex set. Hence, the convergence of the iteration process
is guaranteed if a solution exists for each iteration. Eventually, a
set of analysis and synthesis filters that globally minimizes the
cost function and satisfies the continuous constraints is obtained.

III. IMPROVED DUAL-PARAMETERIZATION ALGORITHM

As discussed in Section I, the conventional dual parame-
terization method is to parameterize the measure in the dual
problems so that it transforms the semi-infinite programming
problems into equivalent finite dimensional nonlinear program-
ming problems via sequences of regular convex programs. The
basic working principle of the conventional dual parameteriza-
tion method can be summarized as follows: Since the constraint
functions are continuous with respect to their index parameters
and the index set is compact Hausdorff, the constraint functions
can be redefined as an operator whose range is the Banach space
consisting of continuous functions defined on the index set and
equipped with the uniform norm. The order in the range space
is given by a cone consisting of all nonnegative functions on the
index set. The assumption of the conventional dual parameteri-
zation method is the existence of a solution that strictly satisfies
the continuous constraints. This condition is also known as the
Slater’s condition. Once the Slater’s condition is satisfied, the
Karush—-Kuhn-Tucker (KKT) conditions would be satisfied,
which guarantees a necessary optimality condition for such a
cone-constrained nonlinear programming problem, where the
Lagrange multiplier is defined as a regular Borel measure on the
index set. As a result, the set of multipliers satisfying the KKT
condition necessarily includes a measure with finite support
unless it is empty. Hence, any constraint qualification ensures
the existence of such a discrete measure, which is also called
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the Haar measure. On the other hand, strong duality holds for
convex programming under Slater’s constraint qualification.
Hence, the corresponding dual problem for semi-infinite pro-
gramming can then be formulated in the space of finite signed
regular Borel measures on the index set. The local KKT theory
and the global duality theory are naturally related through the
fact that the set of multipliers satisfying the KKT condition
coincides with the set of solutions to the dual problem, which
leads to the consequence that the set of dual solutions always
includes a measure with finite support under the Slater condi-
tion. Hence, the conventional dual parameterization method is
guaranteed to obtain a globally optimal solution that satisfies
the continuous constraint if a solution exists.

In order to reduce the computational complexity of the con-
ventional dual parameterization method, we need to define the
dual problem, the Slater condition and the KKT condition as
follows.

The Dorn’s dual of problem P can be formulated as shown
in the equation at the bottom of the page, where AT (A) is the
set of nonnegative bounded regular Borel measures on A.

As discussed in the above, in order to solve the problem se-
quence, we need an assumption of the satisfaction of the Slater
condition, and it is stated as follows.

Assumption 1 Slater Condition: 3Ixo € R° such that
g(xo,w) < 0,Vw € A, where S is the dimension of the vector
X0.

For the nonuniform filter bank design problem, this assump-
tion can be interpreted as follows: There exists a set of filter
coefficients such that the maximum values of the amplitude and
aliasing distortions, as well as the passband and stopband ripple
magnitudes of the filters, are strictly lower than that of the re-
quired specifications. If the set of decimation integer is compat-
ible, then this assumption can be easily achieved by using a set
of filters with suitably long filter lengths.

As discussed in the above, the dual parameterization tech-
nique is based on the dual parameterization theory, in which the
dual parameterization theory is based on the following results.

Lemma 1 KKT Condition: Assume that the Slater con-
straint qualification is satisfied. The minimum of problem P is
achieved at x* if and only if x* is feasible and there exists a
v* € A(A) such that
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where A(A) denotes the space of all signed finite regular Borel
measure.

This lemma states the necessary and sufficient condition re-
lating the minimum of problem P and the existence of v* in the
space of all signed finite regular Borel measure. This result will
be used in Lemmas 3 and 4 later. Since this result is well known
in the optimization community [28], we just state it and omit the
proof. Interested readers are recommended to study [28].

Lemma 2 Carathéodory Theorem: Let U be a subset of R>.
If x € coneU = Ua>0 acoU, that is, x is a nonnegative linear
combination of points in U, then there exists .S numbers of c; >
0 such that x = 21‘521 a; x5 forsome x§ € U,i =1,2,...,85.
In order words, if x € conelU, then x can be represented as a
nonnegative linear combination of at most S points of U.

This lemma states that the measure »* has a finite support of
no more than S points. This lemma is also required for the proof
of Lemma 4 which is stated later. Since this result is also well
known in the optimization community [28], we just state it and
omit the proof. Again, interested readers are recommended to
study [28].

Lemma 3: Assume that the Slater constraint qualification is
satisfied and the minimum of problem P is achieved at x*. Then
v* is a multiplier satisfying the KKT condition if and only if
(x*,v*) is a solution to the dual problem DP.

This lemma states the relationship between the satisfaction
of KKT condition stated in Lemma 1 and the solution to the
dual problem DP. This lemma is also required for the proof of
Lemma 4 which is stated later. Since the proof is shown in detail
in [27], we omit the proof in this paper. Interested readers are
recommended to study [27].

Lemma 4: Assume that the Slater constraint qualification is
satisfied and the minimum of problem P is achieved at x*. Then
the solution set of the dual problem DP contains a solution pair
(x*,v*) of which the measure »* has a finite support of no more
than S points.

Based on the KKT condition stated in Lemma 1, the
Carathéodory Theorem stated in Lemma 2 and the relationship
between the satisfaction of KKT condition and the solution to
the dual problem DP stated in Lemma 3, the proof of Lemma
4 can be followed easily. Since the detail proof is also shown
in [27], we omit the proof in this paper. Interested readers are
recommended to study [27].

Lemma 4 is the foundation of the dual parameterization
method. The importance of Lemma 4 is that it allows us
to reduce problem DP to a finite dimensional problem. In
order to solve the primal problem P, we only need to find
a solution pair (x*,»*) of problem DP. From Lemma 4, we
can restrict our search for v* to those nonnegative measures
having a finite support of no more than S supporting points.
Such a measure v is characterized by its k supporting points

Qx* +b+ / (A(w)Tdv*(w)=0 (1a)
A
/ (A(w)x* — c(w))Tdv* (@) = 0 (1b)
A
and
v >0 (1c)
Problem(DP)
iy

subject to Qx+b+ [, (A

1xTQx + [, (c(w))dv(w)
(WHTdv(w) =0, veAt(A)
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w; € Afore = 1,2,...,k, and the corresponding measures
w; = v({w;}) > 0fori = 1,2,...,k at each point. If we
restrict the measure v in problem DP to those of finite support
of no more than k£ supporting points which are collectively
denoted by Z, then problem DP is reduced to the following
problem:

Problem (PDP;,)

1,T k T
Juin 3% Qx+ 3 (c(wi)

subject to Qx+b + Zle(A(wi))Tp,i =0
p; >0, fori=1,2,...k
w; €A, fori=1,2,...,k
where pp = [py py -, pJand T = [wy wy o, wil.
Problem PDPy, is called the parameterized dual of problem
P with parameterization number k. From the above discus-
sions, we see that once a global solution (x*, u*, 7*) of problem
PDP,, is obtained, then x* must be the solution of problem
P if £ is suitably large. Here, suitably large means that k is no
less than an integer k£*, the minimum parameterization number,
which is no more than S, but not known exactly before solving
the problem. Thus, in order to solve problem P, we only need
to deal with problem PDPy.
For any finite index set Z = {wy,ws,...,wr} C A, we
define the following problem:
Problem (PDP(Z))1

k
I:l;ul,rl,l 5x"Qx + Zj:1(c(wj))T”'j

subject to Qx4+ b+ Z?Zl(A(wj))Tp,j =0
p; >0, forj=1,2....k
where p is defined as in problem PDPy.

Hence, problem P can be solved efficiently by the following
improved dual parameterization algorithm. The algorithm com-
bines an adaptive scheme for an approximated solution and a
local search procedure.

For eachi > 1, let A; be a given subset of A satisfying

d(A;,A) = max min |w — w| — 0. (2)
wWEAWEA;
For any w € A and x € R°, we define gmax(X,w) =
maxi <j<m ¢j(X,w), where g;(x,w) is the jth entry of the
vector g(x, w) and m is the number of rows of g(x, w).

Algorithm 1:

Step 1) Choose an arbitrary filter coefficient vector x° € R,
a small number ¢ > 0, a large integer IV, and a
sequence of finite parameterization sets A; = {w; :
j=1,2,... k},fori=1,2,---, satisfying (2).

Step 2) Let Ky = ©, where © denotes the empty set. Set
1= 0.

Step 3) Set «+ = ¢ + 1. Find w;
gmax(xi_17 wz) = IMaXyeA,; gmax(x

€ A, such that
1‘,—17w).
Ifgmax(x"'_l,w,i) <esets, =F;_1.

If7 > N, go to Step 6).

Else, set (x%, u') = (x* 1, ui 1), E; = E;_4
and repeat Step 3).

End.
Else, Z; = F;_1 U {wt}

End.
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Step 4) Solve problem PDP(Z;) to obtain a solution
(x', 1)

Step 5) Choose aset F; C Z; with no more than .S+ 1 points
such that the solution of problem PDP (F;) is in the
form (x¢, u').

Go to Step 3).

Step 6) Suppose Z; has k points wy, wo, ..., wy. Starting
from (x?, u?, 7%), where x' and ' are defined pre-
viously and 7% = [wy, @, ---, wy]isthe k tuple
formed by the points in Z;, find a local minimum
(x*, u*,7*) for problem PDP}. Then x* is taken
as the solution for problem P.

In Algorithm 1, we need to initialize two parameters, N and
€. The purpose of introducing the integer N is to prevent the
algorithm from terminating prematurely. For example, if the it-
eration number ¢ is small, the subset A;;; may be relatively
sparse in A and it may happen that the approximated solution
x', as part of the solution (x, u*) of problem PDP(Z;), sat-
isfies all the constraints corresponding to index points in A; ;.
Without introducing the integer IV, the algorithm would termi-
nate the iteration at this stage even if gmax(xi, w) > 0 at some
pointsw € A\A, and goes to the final local search procedure.
In this case, x' may not be close enough to the primal solution
x* and the subsequent local search procedure in Step 6) does
not find a global solution for problem PDPy. The parameter ¢
relates to the tolerable error. Theoretically, it can be set as close
as zero if the Slater condition is satisfied.

The main difference between this algorithm and the conven-
tional one [27] is that this algorithm is more efficient in the
sense that the dimension of the quadratic problem in each it-
eration and that at the final local search procedure is much re-
duced. In the above algorithm, we can see from Step 5) that the
number of points in F; is no more than S + 1 points. Hence,
in Step 3), if gmax(x'"1, ;) > € then Z; = Ei_1 U {w;}
and the number of points in Z; is no more than S + 2 points. In
Step 3), if gmax (X' 71, @;) < €, then Z; = E;_;.1fi < N, then
FE; = FE,;_1. Hence, the number of points in both Z; and E; is
no more than S + 1 points. As a result, after reiterates of Step
3), the number of points in F; and Z; is no more than S + 1 and
S + 2 points, respectively. According to Algorithm 1, we only
need to solve the problem PDP(Z) in Step 4) and Step 5). As
the dimension of the problem PDP(Z) is equal to the size of
the vector x plus that of u, the size of the vector x and B; is,
respectively, S X 1 and m x 1, and there is no more than S + 2
points in Z; or there is no more than S + 2 p;, so we only need
to solve a quadratic programming problem of dimension not ex-
ceeding S + m(S + 2) with S linear equality constraints. This
is because the number of equality constraints is equal to the size
of the vector Qx + b + 3% (A(w;))" p;, which is . Simi-
larly, we can see that we only need to find a local solution of a
nonlinear programming problem at the final local search proce-
dure of dimension no more than S + (m + 1)(S + 2).

Since the dimension of the optimization problem is greatly
reduced, one may query that the numerical accuracy of the ob-
tained solution will be traded off. It is worth noting that if the
parameters € and N are chosen properly, then the efficiency of
the improved dual parameterization method will not be traded
off with the numerical accuracy of the obtained solution even
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though the dimensionality of the problem is reduced. Or in other
words, the solution obtained using the improved dual parame-
terization method is the same as that of the conventional dual
parameterization method. This is because both the conventional
and the improved dual parameterization algorithm guarantee
that the obtained solution is the globally optimal solution, which
is uniquely defined. This result will be proved in Theorem 1
later. In order to prove Theorem 1, we need Lemmas 5 and 6
stated below:

Lemma 5: Step 5) of the Algorithm 1 is numerically feasible.

Proof: Let Z; = {w; : j = 1,2,...,k}. Then problem

PDP(Z;) is in the form of PDP(Z). Let (x;, i1;) be the solu-
tion to this problem obtained in the ¢th iteration. Consider the
following linear program:

Problem (LP;)

. S+1
min i—1 Uj
(V) =1 Vi

subject to Z?Zl(c(wj))Tp.j +vsy1 =V
k L
Yo (Aw)) T +o=4¢

n=>0
and
v>0
where
k
vi=» (c(w;)) u
j=1
éL = _QXZ - b
w=[p] p i
D= [v1 Vo , Us]T
and

v=[0" vsy]”.

In problem LP;, which is the phase one of a linear program,
vj for j = 1,2,...,S5 4 1 are known as artificial variables in
the simplex theory of linear programming. Using the simplex
method, we obtain a basic feasible solution (z;,0;) where ; is
azero vector and fz; contains no more than S+ 1 nonzero vectors
in R™. Let ; = [pd @y ---, @] and define E; = {w; : 1 <
7 <k, ;1,3- # 0}. We form a new tuple fi; consisting of those
column vectors g in f1; whose corresponding indexes w; are in
E;. Then, it is easy to see that (x;, f;) is a solution to problem
PDP(E)). ]

This lemma is important for the convergence of the algorithm.

Lemma 6: Let Z = {w; : j =1,2,...,k} C Abe any finite
subset of index points. Then problem PDP(Z) is the Dorn’s
dual form of the following program:

Problem (P(7))

min J(x) = ixTQx +bx+p
subject to  A(w;)x —c(w;) <0, forj=1,2,... k.
A vector £ € R° is the solution of problem P(Z7) if and

only if there exists some ft = [fi; fi, ---, fi;] such that(, i)
is a solution of problem PDP(Z). Furthermore, V(P (Z)) =
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—V(PDP(Z)), where V(D) denotes the optimal value of a
given problem D.
Proof: This lemma is easy to check and we omit the details. B

This lemma states the necessary and sufficient relationship
between solutions of problem P(Z) and problem PDP(Z).
Hence, we can use Algorithm 1 to solve the problem PDP(Z;)
instead. This result is required for Theorem 1 and is stated
below.

Theorem 1: 1If (2) is satisfied, then the sequence {x‘} ob-
tained from Algorithm 1 converges to the solution of problem
P. Therefore, assuming that problem PDP, has only a finite
number of local minima for each k, if ¢ and IV are suitably
chosen, then x* obtained in Step 6) is the optimal solution of
problem P.

Proof: The proof is shown in Appendix I. [ |

The importance of Theorem 1 is that we can guarantee the
convergence of Algorithm 1 to the solution of problem P. Since
the dimension of the quadratic programming does not exceed
S 4+ m(S + 2) with S linear equality constraints, Algorithm 1
can be used to solve semi-infinite programming problems effi-
ciently.

IV. NUMERICAL EXPERIMENTS

We have performed extensive numerical experiments, in-
cluding the cases with the sets of decimation integers {2,4, 4},
{2,6,6,6} and {3,3,6,6}. We obtain excellent results for all
these examples. For brevity and to focus on ideas, we only
present the case with the set of decimation integers {2, 4, 4}.

Since this set of decimation integers corresponds to a cas-
cade of uniform filter banks in a tree structure manner, an exact
perfect reconstruction is possible if the filter lengths are long
enough. Hence, there should exist a solution such that the spec-
ifications on aliasing and amplitude distortions are strictly sat-
isfied. That means the Slater’s constraint qualification holds
and our proposed algorithm will converge to the global min-
imum. Although the existence of a solution or the satisfaction
of Slater’s constraint is not guaranteed if the filter lengths are
short, the possibility of this set of decimation integer getting a
solution is higher than the others.

Although perfect reconstruction is easy to achieve if the set
of decimation integers is {2,4, 4} even at short filter lengths, it
is not guaranteed that the passband and stopband specifications
are satisfied. For real applications, subband processing, such as
quantization, is applied. This subband processing is based on the
frequency selectivity of the filters. If the frequency selectivity
of these filters is bad, then the subband processing may process
undesirable frequency bands. As a result, the performance of
the overall systems may be bad even though perfect reconstruc-
tion is achieved without subband processing. Hence, we some-
times tradeoff the perfect reconstruction conditions with good
frequency selectivity filters.

In order to guarantee that the overall system can achieve near
perfect reconstruction with the performance better than that re-
ported in [29], in which the amplitude distortion can be bounded
by —40 dB, the aliasing distortion can be bounded by —60 dB
and the stopband ripple magnitude is bounded by —60 dB with
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64 tap filters, we set the specifications on both the real and imag-
inary parts of amplitude distortions as —40 dB, and that of the
aliasing distortions as well as the specification on the stopband
ripple magnitude as —60 dB.

For this set of decimation integers, the passbands and the
stopbands of the filters in the analysis bank are denoted as, re-
spectively, BY and B for ¢ = 0, 1,2, and defined as follows:

B = (_E + 8307 3 - aBO) (3a)
Bf < +8B1, 8Bl>
3T

@] <_Z 4+ 0By, —= — 8B1) (3b)

Bg: <3—7r+832 7r) < s —?2%—8B2> 3c)
s _ (T T
B: = (2 + 9By, 7r) ( -3 aBo) 3d)
B: = < 7r,—— —8B1>
3
U (—— +8B17 8B1) U (I + OB, >
(3e)
and
3 3

B = <—%+8B2, : 8B2> (3

where 0By, 0B and JBs are the transition bandwidths of the
lowpass filter, bandpass filter and highpass filter, respectively,
and selected as 0By, = 0.25636,0B8; = 0.3214, and 0By =
0.32099.

In the improved dual parameterization algorithm, we choose
e = 0.001, N = 10 and A; for s = 1,2,--- as the set of
discrete frequencies sampled from — to 7 with step size 0.01.
The initial values of x and y of our algorithm are selected as
the filters designed using the Matlab function “fir1”. In fact, any
initial condition would give the same globally optimal solution
as discussed before.

For the same set of filter lengths employed in [29],
our design can achieve the passband ripple magnitudes
bounded by ¢,, = —150.9365 dB, 6,, = —69.1622 dB and
0p, = —98.8590 dB, while the stopband ripple magnitudes
bounded by 6,, = —72.4579 dB, 6;, = —66.1358 dB and
0s, = —74.1299 dB. Both the real part and imaginary part of
the amplitude distortions is less than —63.1403 dB, and both
the real part and imaginary part of the aliasing distortions is
less than —66.6287 dB. It can be checked that our proposed
algorithm meet all the required specifications. Fig. 1 shows
the responses of the analysis filters and Fig. 2 shows the
corresponding amplitude and aliasing distortions. Compared
to the result obtained in [29], we have about 20 dB and 4
dB improvements on respectively, the amplitude and aliasing
distortions, as well as 612 dB improvements on the stopband
ripple magnitudes of the filters. The main reasons for the
improvements are because the filters obtained in [29] is based
on the sum of filter responses of filters in the corresponding
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Fig. 1. Magnitude responses of the analysis filters. (Color version available
online at http://ieeexplore.ieee.org.)

uniform cosine-modulated filter banks, which is not a globally
optimal solution in general.

To compare our results with that of perfect reconstruction
filter banks, we implement the perfect reconstruction filter
banks as a tree structure. There are many filters that the filter
lengths of the equivalent filters in the corresponding nonuni-
form filter banks are less than or equal to 64. For example,
we can use a set of filters with filter length 32 in the first
branch of the tree structure and 16 in the second branch, or 24
in the first branch and 20 in the second branch, etc. In order
to make the roll-off of the frequency response of each filter
similar, the filter length of the filters in the first branch should
be approximately equal to that in the second branch. Hence, we
use 24 tap and 20 tap filters in, respectively, the first branch and
second branch. Due to finite bit implementation, the magnitude
and aliasing distortions are nonzero and found as, respectively,
—285.8366 dB and —279.8754 dB. The passband ripple mag-
nitudes are found as 6,, = —31.9776 dB, ¢,, = —40.0002 dB
and 6,, = —66.3320 dB, while the stopband ripple mag-
nitudes are as 0;, = —13.0335 dB, §;, = —17.2047 dB
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Fig. 2. Amplitude and aliasing distortions. (Color version available online at
http://ieeexplore.ieee.org.)

and 65, = —30.2599 dB. This set of filters is far from the
required specifications. Compared to our results, we have very
significant improvements on both the passband and stopband
ripple magnitudes. The main reasons for the improvements are
because the filter lengths are too short to satisfy the passband
and stopband specifications under the perfect reconstruction
condition. So if we relax the perfect reconstruction requirement,
better passband and stopband performances can be achieved.

For this example, we see that our algorithm has found a solu-
tion satisfying the required constraint specifications. For other
nonuniform filter banks with other specifications, in general,
there is no guarantee that a solution exists such that the required
specifications are satisfied. If there is no solution for a partic-
ular set of filter lengths, one may increase the filter lengths in-
crementally, run the numerical experiments again and check if
the required specifications are satisfied. If there is no solution,
one may need to relax the specifications.

To compare the computational complexity to the conven-
tional dual parameterization approach [27], we find that both
approaches require three iterations for the convergence. How-
ever, the conventional approach requires to solve a standard
quadratic program of dimension 23472 at the last iteration,
while the improved dual parameterization method only requires
to solve a standard quadratic program of dimension 6102 at
the last iteration. The reduction of the dimensionality of the
problem results to the reduction of simulation time not in a
linear manner, but in an exponential manner. To understand
this point, let’s consider the following example. If there are
10 points to search in a one-dimensional problem, then there
are 100 points to search in the corresponding two-dimensional
problem. Hence, the computational time reduces exponentially
with respect to the dimensional of the problem. As a result,
the computational complexity of the improved dual parame-
terization reduces much compared to that of the conventional
dual parameterization method. It is found that the simulation
time for the improved dual parameterization method is about 5
minutes, while that of the conventional dual parameterization
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method using the same initial condition and parameters €, [V
and A is about 17 days. All these experiments are running
using a PC with Pentium 1.2 GHz CPU and 256 MB DDRAM.
Hence, the design time for the improved dual parameterization
is greatly reduced by 99.9796%, even though the dimensional
of the problem is just reduced by 74.0031%.

V. CONCLUSION

The main contribution of this paper is to propose a fast
implementation algorithm for solving semi-infinite program-
ming problems and applied to the optimum nonuniform
symmetric/antisymmetric linear phase FIR filter bank design
problems subject to various practical specifications in the fre-
quency domain. In the improved dual parameterization method,
no more than S + 2 index points are chosen in each iteration
of the standard quadratic program to form the parameterized
dual problem, where S is the dimension of the primal problem.
As a result, it is only required to solve a standard quadratic
program of dimension not exceeding S + m(S + 2) with S
linear equality constraints, where m is the number of inequality
constraints of the primal problem. Furthermore, at the final
local search procedure, we only need to find a local solution of
a nonlinear programming problem of dimension no more than
S + (m + 1)(S + 2). Hence, the improved technique can sig-
nificantly reduce the computational complexity. The numerical
experiments obtained shows a significant improvement in terms
of the passband and stopband specifications, as well as the
amplitude and aliasing distortions, compared to other methods
reported in existing literature.

APPENDIX |
PROOF OF THEOREM 1

According to Lemma 6, we can see that x* is the solution of
the problem P(Z;). According to Lemma 5, we see that Step
5) is numerically feasible. Hence, according to Step 5), x' is
the solution of problem P (E;). On the other hand, x**! is the
solution of problem P (7, 1) of which the constraint index set
Z;41 contains E; as a subset. Thus, it is easy to see that

J(x') < J(xH), fori=1,2,--- . )
The existence of a Slater point x for problem P shows that the
sequence {.J(x*)} is bounded from above by .J(x¢). Thus, there
exists some constant J* such that

J(x') = J*, asi — +oo. 3)

The strict convexity of the quadratic cost .J(x) and the bound-
edness of {./(x")} guarantee that the sequence {x'} is bounded.
Let {x;, } be any chosen convergent subsequence of {x'} such
that

x;, — X, ask — 400 (0)
for some x € R°. We now show that x is a feasible point of
problem P. In fact, if X is not a feasible point of problem P,
then there exists wy € A such that gpax (X, wg) > 0. Let
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1
igmax(fg wO) =4. (7)

Since gmax (X, w) is continuous, we see that there exists 5 > 0
such that

|gmax(xaw) - gmax(x7w0)| <0,
for [|[x — X|| < fand [|w —wo|| < B. (8)

As a result, we have
Imax (X, w) > 6, for ||x — x|| < fand ||w —wo|| < B. (9)

From (2) and (6), there exists an integer K such that for £ >
K, A;, and Xk satisfy

max min |w — w| < b and ||x™* — || < ﬁ (10)
wWEAWEA;, 2 2

Especially, there exists w;, € A;, such that w;, and x** satisfy

» 3
llwi), — woll < g and [|x"* — x|| < % fork > K. (1)

Gmax (X, w;, ) > 6, for k > K. (12)

It is clear from (12) and the definition of Z;, ;1 that w;, is in
Zi.+1 and hence

Gumax (X w;, ) <0, for k> K. (13)

Again, from the definitions of Z;, 41 and F;, , we see that xi
and x** 1 are, respectively, the solution and a feasible point of
problem P(FE;, ). Hence, from the fact that the feasible set of
problem P(E;, ) is convex and its objective function is strictly
convex, .J(x) is strictly monotone along the segment connecting
xi and x** 11 Particularly, we have

J(x“)<J( 5

) < J(xFL), (14)
Since {w;, } is contained in the compact set A, it has a con-
verging subsequence. Without loss of generality, we suppose
{w;, } itself converge to w’ € A. At the same time, we can fur-

ther suppose that {x**1} converges to some limit %. Taking
limit (K — 400) in (13) and (14), we obtain

Imax(X,w") <0 (15)
and

) < J(%). (16)

From (15), it allows that

|gmax(§(7 w/) - gmax(i7 (U())|
Z gmax(wi(]) - gmax(iv w/) Z 26. (17)
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According to (11), we have ||w’ — @|| < (/2. Hence, (8) shows
that

[x — x| > 5. (18)

From (5), we have

J(X) = J(X). (19)

Now we see that (16), (18), and (19) contradict the fact that .J (x)
is strictly convex. Therefore, x is feasible to problem P.

Next we show that the whole sequence {x} converges to the
solution x* of problem P. Suppose {x'} does not converge.
Then there are two sequences {x**} and {x’*} converging to
x’ and x”, respectively, where x’ # x’. From the above, we
can see that both x’ and x” are feasible to problem P. Then
point (x" + x")/2 is feasible to problem P and hence feasible
to problem P(Z;, ) for all k& > 1. Therefore

/ 11 J / J 1
J(X+X>< 6) + J&T) _ e (20)
2 2
Since J(xi) — J* as k — 400, we have
/ 1
J (%) < J(x™*) 1)

for sufficiently large k. This contradicts to the fact that x'* is
the solution to problem P(Z;, ). Therefore, {x'} converges to
x*. It is clear that x* is the solution of problem P.

Finally, if € is sufficiently small and if N is sufficiently large,
then the approximation solution x’ found at the termination
of the iteration in Step 5) will be so close to the primal solu-
tion that the objective value of problem PDPy, at (x', u’, 1)
is smaller than the second smallest local minimum value of
problem PDP,,. Therefore, the final local search procedure will
find the global solution. And this completes the proof. |
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