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Abstract -- Efficient second order algorithm for training
feedforward neural networks is presented. The algorithm has
a similar convergence rate as the Lavenberg-Marquardt
(LM) method and it is less computationally intensive and
requires less memory. This is especially important for large
neural networks where the LM algorithm becomes
impractical. Algorithm was verified with several examples.

1. Introduction

The error backpropagation algorithm (EBP) [13][14][23]
was a significant breakthrough in neural network research,
but it is also known as an algorithm with a very poor
convergence rate.  Many attempts have been made to speed
up the EBP algorithm.  Commonly known heuristics
approaches [4][16][18][19][21] such as momentum [10],
variable learning rate [7], or stochastic learning [15] lead
only to a slight improvement.  Better results were obtained
with the artificial enlarging of errors for neurons operating
in the saturation region [2][8][12][20].  More significant
improvement was possible by using various second order
approaches such as Newton, conjugate gradient, or the
Levenberg-Marquardt (LM) method [1][3][5][6][17].  The
LM algorithm is now considered as the most efficient [6].  It
combines the speed of the Newton algorithm with the
stability of the steepest decent method.

The main disadvantage of the LM algorithm is its
demand for memory to operate with large Jacobians and a
necessity of inverting large matrixes. The rank of matrixes to
be inverted is equal to the number of weights in the system.
Such large matrixes must be inverted at each iteration step
and this results in large computation time.

2. Levenberg-Marquardt Algorithm (LM)

For LM algorithm, the performance index to be
optimized is defined as
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where [ ]T

Nwww ...21=w  consists of all weights of the
network, dkp is the desired value of the kth output and the pth

pattern, okp is the actual value of the kth output and the pth

pattern, N is the number of the weights, P is the number of
patterns, and K is the number of the network outputs.

Equation (1) can be written as
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where E is the cumulative error vector (for all patterns).
From equation (2) the Jacobian matrix is defined as
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and the weights are calculated using the following equation
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where I is identity unit matrix, µ  is a learning parameter and
J is Jacobian of m output errors with respect to n weights of
the neural network. For µ  = 0 it becomes the Gauss-Newton
method. For very large µ  the LM algorithm becomes the



steepest decent or the EBP algorithm.  The µ  parameter is
automatically adjusted at each iteration in order to secure
convergence. The LM algorithm requires computation of the
Jacobian J matrix at each iteration step and the inversion of
JTJ square matrix. Note that in the LM algorithm an N by N
matrix must be inverted in every iteration. This is the reason
why for large size neural networks the LM algorithm is not
practical.  We are proposing another method that provides a
similar performance, while lacks the inconveniences of LM,
and is more stable.

3. Modification of the LM Algorithm

Instead of the performing index given by (1), the
following new performing index is introduced
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This form of the index, which represents a global error, will
later lead to a significant reduction of the size of a matrix to
be inverted at each iteration step. Equation (5) can be also
written as:
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Now the modified Jacobian matrix tJ
v

can be defined as



























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

N

KKK

N

N

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

w
e

)
L

)) MMM

)
L

))

)
L

))

)

21

2

2

2

1

2

1

2

1

1

1

J                   (7)

and equation (4) can be written using the modified Jacobian
matrix tJ

v
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Note tJ
v

 is a K by N matrix, and it still leads to a
necessity of inverting an N by N matrix. Where N is the
number of weights. This problem can be now further

simplified using the Matrix Inversion Lemma which states
that if a matrix A satisfies

TCCDBA 11 −− += (9)
then
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Substituting equations (11), (12), (13), and (14) into
equation (10), one can obtain
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Note that in the right side of equation (15), the matrix to
be inverted is of size K by K.  In every application, N, which
is number of weights, is much greater than K, which is
number of outputs.  Thus, using equation (15) the intensity
of computation can be significantly reduced.

By inserting equation (15) into equation (8) one may have
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For single output networks, equation (10) becomes
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Note that in equation (17) matrix inversion is not
required at all. The equation is useful, because any
feedforward network with one hidden layer and K outputs
can be decoupled to a K single output network.

With the proposed modifications much larger neural
networks can be trained than in the case when the LM
algorithm.

4. Examples

The proposed algorithm was verified on several
examples with different sizes and different roughness of the
error surfaces. Several benchmark problems XOR, parity 3,
parity 4, and letter recognition [9] were used.
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Figure 1. XOR problem with 2 hidden neurons.
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Figure 2. Parity 3 problem with 2 hidden neurons.
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Figure 3. Parity 3 problem with 3 hidden neurons.
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Figure 4. Parity 4 problem with 6 hidden neurons.
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Figure 5. Character Learning with 10 hidden neurons.

5. Conclusion

A fast and efficient training algorithm for feedforward
neural networks with one hidden layer was developed and
tested on several examples. An even number of required
iterations is slightly larger than in the LM algorithm, yet it is
less computationally intensive and less memory demanding.

The size of the matrix corresponds to the number of
outputs, while in the LM algorithm the size of the matrix
corresponds to the number of weights in the neural network.
The large size of this matrix is a significant drawback of the
Levenberg-Marquardt algorithm; due to memory limitations
it can be only used for relatively small neural networks.  The
proposed algorithm does not have this limitation since the
matrix is equal only to the number of inputs and the matrix
inversion must be done only once.
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