
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997 1143

Efficient Algorithms
for All-to-All Communications in

Multiport Message-Passing Systems
Jehoshua Bruck, Senior Member, IEEE, Ching-Tien Ho, Member, IEEE,

Shlomo Kipnis, Member, IEEE, Eli Upfal, Senior Member, IEEE, and Derrick Weathersby

Abstract —We present efficient algorithms for two all-to-all communication operations in message-passing systems: index (or all-to-
all personalized communication) and concatenation (or all-to-all broadcast). We assume a model of a fully connected message-
passing system, in which the performance of any point-to-point communication is independent of the sender-receiver pair. We also
assume that each processor has k ≥ 1 ports, through which it can send and receive k messages in every communication round. The
complexity measures we use are independent of the particular system topology and are based on the communication start-up time,
and on the communication bandwidth.

In the index operation among n processors, initially, each processor has n blocks of data, and the goal is to exchange the i th
block of processor j with the j th block of processor i. We present a class of index algorithms that is designed for all values of n and
that features a trade-off between the communication start-up time and the data transfer time. This class of algorithms includes two
special cases: an algorithm that is optimal with respect to the measure of the start-up time, and an algorithm that is optimal with
respect to the measure of the data transfer time. We also present experimental results featuring the performance tuneability of our
index algorithms on the IBM SP-1 parallel system.

In the concatenation operation, among n processors, initially, each processor has one block of data, and the goal is to
concatenate the n blocks of data from the n processors, and to make the concatenation result known to all the processors. We
present a concatenation algorithm that is optimal, for most values of n, in the number of communication rounds and in the amount of
data transferred.

Index Terms —All-to-all broadcast, all-to-all personalized communication, complete exchange, concatenation operation, distributed-
memory system, index operation, message-passing system, multiscatter/gather, parallel system.

—————————— ✦ ——————————

1 INTRODUCTION

ollective communication operations [2] are communica-
tion operations that generally involve more than two

processors, as opposed to the point-to-point communication
between two processors. Examples of collective communica-
tion operations include: (one-to-all) broadcast, scatter, gather,
index (all-to-all personalized communication), and concate-
nation (all-to-all broadcast). See [13], [16] for a survey of col-
lective communication algorithms on various networks with
various communication models.

The need for collective communication arises frequently in
parallel computation. Collective communication operations
simplify the programming of applications for parallel comput-
ers, facilitate the implementation of efficient communication
schemes on various machines, promote the portability of

applications across different architectures, and reflect concep-
tual grouping of processes. In particular, collective communi-
cation is used extensively in many scientific applications for
which the interleaving of stages of local computation with
stages of global communication is possible (see [12]).

This paper studies the design of all-to-all communication
algorithms, namely, collective operations in which every
processor both sends data to and receives data from every
other processor. In particular, we focus on two widely used
operations: index (or all-to-all personalized communication)
and concatenation (or all-to-all broadcast).

The algorithms described here are incorporated into
the Collective Communication Library (CCL) [2], which
was designed and developed for the new IBM line of scal-
able parallel computers. The first computer in this line,
the IBM 9076 Scalable POWERparallel System 1 (SP1),
was announced in February 1994.

1.1 Definitions and Applications

INDEX: The system consists of n processors p0, p1, º, pn-1.
Initially, each processor pi has n blocks of data B[i, 0],
B[i, 1], º, B[i, n - 1], where every block B[i, j] is of size
b. The goal is to exchange block B[i, j] (the jth data
block of processor pi) with block B[j, i] (the ith data
block of processor pj), for all 0 £ i, j £ n - 1. The final

1045-9219/97/$10.00 © 1997 IEEE

————————————————

• J. Bruck is with the California Institute of Technology, Mail Code 136-93,
Pasadena, CA 91125. E-mail: bruck@paradise.caltech.edu.

• C.-T. Ho and E. Upfal are with IBM Almaden Research Center, 650 Harry
Rd., San Jose, CA 95120. E-mail: {ho, upfal}@almaden.ibm.com.

• S. Kipnis is with News Datacom Research Ltd., 14 Wedgewood St., Haifa
34635, Israel. E-mail: skipnis@ndc.co.il.

• D. Weathersby is with the Department of Computer Science and Engi-
neering, University of Washington, Seattle, WA 98195.

 E-mail: derrick@cs.washington.edu.

Manuscript received 6 Apr. 1994; revised 27 Apr. 1997.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 100822.

C

1144 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997

result is that each processor pi, for 0 £ i £ n - 1, holds
blocks B[0, i], B[1, i], º, B[n - 1, i].

CONCATENATION: The system consists of n processors p0, p1,
º, pn-1. Initially, each processor pi has a block of data
B[i] of size b. The goal is to make the concatenation of
the n data blocks, namely, B[0] B[1] � B[n - 1],
known to all the n processors.

Both the index and concatenation operations are used
extensively in distributed-memory parallel computers and
are included in the Message-Passing Interface (MPI) stan-
dard proposal [24]. (The index operation is referred to as
MPI_Alltoall in MPI, while the concatenation is referred
to as MPI_Allgather in MPI.) For example, the index op-
eration can be used for computing the transpose of a ma-
trix, when the matrix is partitioned into blocks of rows (or
columns) with different blocks residing on different proc-
essors. Thus, the index operation can be used to support
the remapping of arrays in HPF compilers, such as re-
mapping the data layout of a two-dimensional array from
(block, *) to (cyclic, *), or from (block, *) to (*, block). The
index operation is also used in FFT algorithms [22], in
Ascend and Descend algorithms [26], in the Alternating
Direction Implicit (ADI) method [21], and in the solution
of Poisson’s problem by the Fourier Analysis Cyclic Re-
duction (FACR) method [28], [23], or the two-dimensional
FFT method [8]. The concatenation operation can be used
in matrix multiplication [19] and in basic linear algebra
operations [12].

1.2 Communication Model
We assume a model of a multiport fully connected mes-
sage-passing system. The assumption of full connectivity
means that each processor can communicate directly with
any other processor and that every pair of processors are
equally distant. The assumption of multiple ports means
that, in every communication step (or round), each proces-
sor can send k distinct messages to k processors and simul-
taneously receive k messages from k other processors, for
some k ≥ 1. Throughout the paper, we assume 1 £ k £ n - 1,
where n is the number of processors in the system. The
multiport model generalizes the one-port model that has
been widely investigated. There are examples of parallel
systems with k-port capabilities for k > 1, such as the
nCUBE/2, the CM-2 (where k is the dimension of the hyper-
cube in both machines), and transputer-based machines.

Such a fully connected model addresses emerging trends
in many modern distributed-memory parallel computers
and message-passing communication environments. These
trends are evident in systems such as IBM’s Vulcan [6],
MIT’s J-Machine [10], NCUBE’s nCUBE/2 [25], Thinking
Machines’ CM-5 [29], and IBM’s 9076 Scalable POWERparallel
System 1, and in environments such as IBM EUI [1], PICL
[14], PARMACS [17], Zipcode [27], and Express [31]. These
systems and environments generally ignore the specific
structure and topology of the communication network and
assume a fully connected collection of processors, in which
each processor can communicate directly with any other
processor by sending and receiving messages. The fact that
this model does not assume any single topology makes it

general and flexible. For instance, this model allows the
development of algorithms that are portable between dif-
ferent machines, that can operate within arbitrary and dy-
namic subsets of processors, and that can operate in the
presence of faults (assuming connectivity is maintained). In
addition, algorithms developed for this model can also be
helpful in designing algorithms for specific topologies.

We use the linear model [13] to estimate the commu-
nication complexity of our algorithms. In the linear
model, the time to send an m-byte message from one
processor to another, without congestion, can be mod-
eled as T = b + mt, where b is the overhead (start-up
time) associated with each send or receive operation, and
t is the communication time for sending each additional
byte (or any appropriate data unit).

For convenience, we define the following two terms in
order to estimate the time complexities of our communica-
tion algorithms in the linear model:

• C1: the number of communication steps (or rounds)
required by an algorithm. C1 is an important meas-
ure when the communication start-up time is high,
relative to the transfer time, of one unit of data, and
the message size per send/receive operation is
relatively small.

• C2: the amount of data (in the appropriate unit of
communication: bytes, flits, or packets) transferred in
a sequence. Specifically, let mi be the largest size of a
message (over all ports of all processors) sent in
round i. Then, C2 is the sum of all the mis over all
rounds i. C2 is an important measure when the start-
up time is small compared to the message size.

Thus, in our fully connected, linear model, an algorithm
has an estimated communication time complexity of T =
C1b + C2t. It should be noted that there are more detailed
communication models, such as the BSP model [30], the
Postal model [3], and the LogP model [9], which further
take into account that a receiving processor generally com-
pletes its receive operation later than the corresponding
sending processor finishes its send operation. However,
designing practical and efficient algorithms in these models
is substantially more complicated. Another important issue
is the uniformity of the implementation. For example, in the
LogP model, the design of collective communication algo-
rithms is based on P, the number of processors. Optimal algo-
rithms for two distinct values of P may be very different. This
presents a challenge when the goal is to support collective
communication algorithms for processor groups with various
sizes while using one collective communication library.

1.3 Main Contributions and Organization
We study the complexity of the index and concatenation
operations in the k-port fully connected message-passing
model. We derive lower bounds and develop algorithms
for these operations. The following is a description of our
main results:

• Lower bounds: Section 2 provides lower bounds on
the complexity measures C1 and C2 for both the con-
catenation and the index operations.

BRUCK ET AL.: EFFICIENT ALGORIITHMS FOR ALL-TO-ALL COMMUNICATIONS IN MULTIPORT MESSAGE-PASSING SYSTEMS 1145

For the concatenation operation, we show that any
algorithm requires C nk1 1≥ +log communication

rounds and sends C b n
k2

1≥ -a f units of data.

For the index operation, we show that any algo-
rithm requires C nk1 1≥ +log communication rounds

and sends C b n
k2

1≥ -a f units of data. We also show

that, when n is a power of k + 1, any index algorithm
that uses the minimal number of communication
rounds (i.e., C1 = logk+1 n) must transfer
C nbn

k k2 1 1≥ + +log units of data. Finally, we show that,
in the one-port model, if the number of communica-
tion rounds C1 is O(log n), then C2 must be W(bn log n).

• Index algorithms: Section 3 describes a class of effi-
cient algorithms for the index operation among n
processors. This class of algorithms is designed for
arbitrary values of n and features a trade-off be-
tween the start-up time (measure C1) and the data

transfer time (measure C2). Using a parameter r,

where 2 £ r £ n, the communication complexity
measures of the algorithms are C nr

k r1
1= - log

and C b nr
k

n
r r2

1£ - log . Note that, following our

lower bound results, optimal C1 and C2 cannot be ob-
tained simultaneously. To increase the performance of
the index operation, the parameter r can be carefully
chosen as a function of the start-up time b, the data
transfer rate t, the message size b, the number of
processors n, and the number of ports k. Two special
cases of this class are of particular interest: One case
exhibits the minimal number of communication
rounds (i.e., C1 is minimized to logk n+1 by choosing
r = k + 1), and another case features the minimal
amount of data transferred (i.e., C2 is minimized to

b n
k
-1 by choosing r = n). The one-port version of the

index algorithm was implemented on the IBM’s SP-1
to confirm the existence of the trade-off between C1

and C2. It should be noted that, when n is a power of
two, there are known algorithms for the index opera-
tion which are based on the structure of a hypercube
(see [5], [20], [18]). However, none of these algorithms
can be easily generalized to values of n that are not
powers of two without losing efficiency. The idea of a
trade-off between C1 and C2 is not new and has been
applied to hypercubes in [5], [18].

• Concatenation algorithms: Section 4 presents algo-
rithms for the concatenation operation in the k-port
model. These algorithms are optimal for any values of
n, b, and k, except for the following range: b ≥ 3, k ≥ 3,
and (k + 1)d - k < n < (k + 1)d, for some d. (Thus, if b = 1
or k = 1, which covers most practical cases, our algo-
rithm is optimal.) In this special range, we achieve ei-
ther optimal C2 and suboptimal C1 (one more than the

lower bound logk n+1), or optimal C1 and suboptimal

C2 (at most b - 1 more than the lower bound b n
k
-1a f).

• Pseudocode: Appendices A and B provide pseudo-
code for the index and concatenation algorithms, re-
spectively, in the one-port model. Both the index
and concatenation operations were included in the
Collective Communication Library [2] of the Exter-
nal User Interface (EUI) [1] for the 9076 Scalable
POWERparallel System (SP1) by IBM. In addition,
these one-port versions of the algorithms have been
implemented on various additional software plat-
forms including PVM [15], and Express [31].

2 LOWER BOUNDS

This section provides lower bounds on the complexity
measures C1 and C2 for algorithms that perform the con-
catenation and index operations. Proposition 2.1 was
shown in [13]. We include it here for completeness.

2.1 Lower Bounds for the Concatenation Operation

PROPOSITION 2.1. In the k-port model, for k ≥ 1, any concatenation
algorithm requires C1 1≥ +logk n communication rounds.

PROOF. Focus on one particular processor, say, processor p0.
The concatenation operation requires, among other
things, that the data block B[0] of processor p0 be
broadcast among the n processors. With k communica-
tion ports per processor, data block B[0] can reach at
most (k + 1)d processors in d communication rounds.

For (k + 1)d to be at least n, we must have d nk≥ +log 1

communication rounds. �

PROPOSITION 2.2. In the k-port model, for k ≥ 1, any concatena-

tion algorithm transfers C b n
k2

1≥ -a f units of data.

PROOF. Each processor must receive the n - 1 data blocks of
the other n - 1 processors, the combined size of which
is b(n - 1) units of data. Since each processor can use
its k input ports simultaneously, the amount of data
transferred through one of the input ports must be at

least b n
k
-1a f . �

2.2 Lower Bounds for the Index Operation

PROPOSITION 2.3. In the k-port model, for k ≥ 1, any index algo-
rithm requires C nk1 1≥ +log communication rounds.

PROOF. Any concatenation operation on an array B[i], 0 £ i < n,
can be reduced to an index operation on B[i, j], 0 £ i,
j < n, by letting B[i, j] = B[i] for all i and j. Thus, the
proposition follows from Proposition 2.1. �

PROPOSITION 2.4. In the k-port model, for k ≥ 1, any index algo-

rithm transfers C b n
k2

1≥ -a f units of data.

PROOF. Similar to the proof of Proposition 2.3, the proposi-
tion follows from Proposition 2.2. �

1146 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997

2.3 Compound Lower Bounds for the Index
Operation

Here, we provide additional lower bounds for the index
operation. These lower bounds characterize the measure C1

as a function of C2 and vice versa. Theorems 2.5 and 2.7

show that when C1 is optimized first, the lower bound on

C2 becomes an order of O(logk+1 n) higher than the “stand-
alone” lower bound given in Proposition 2.4. Then, Theo-
rem 2.6 shows that when C2 is optimized first, the lower

bound on C1 becomes (n - 1)/k as opposed to logk n+1 .
Finally, Theorem 2.9 gives a more general lower bound for
the one-port case.

THEOREM 2.5. If n = (k + 1)d, for some integer d ≥ 0, then any

index algorithm that uses exactly C1 = logk+1 n communi-
cation rounds must transfer at least C nbn

k k2 1 1= + +log
units of data.

PROOF. Let n = (k + 1)d. In order to finish the algorithm in

exactly logk+1 n = d rounds, the number of processors

having received data from a given processor, say pi,
must grow by a factor of k + 1 in every round. This
defines a unique structure of the spanning tree Ti,

which is rooted at pi, that is a generalized version of

the binomial tree used to distribute the n - 1 data
blocks of processor pi among the other n - 1 proces-

sors. Denote by ,j the number of processors at level j

in tree Ti rooted at processor pi. One may use induc-

tion to show that l j j
d jk= e j . Now, the total amount of

data Di that is injected into the network over the

edges of the binomial tree Ti rooted at pi is given by

D b j b j d
j k b

k
k dni j

j

d
j

j

d

= = F
H
I
K = +

= =
Â Âl

0 0
1 ,

where the last equality step can be derived by differ-
entiating both sides of

d
j k kj

j

d
dF

H
I
K = +

=
Â

0

1b g

and then multiplying both sides by bk. Now, clearly,

C
D
nk

bn
k d

bn
k ni

k
i

n

2 1
0

1

1 1≥ = + = + +
=

-

Â log . �

THEOREM 2.6. Any algorithm for the index operation that trans-

fers exactly C b n
k2

1= -a f units of data from each processor

requires C n
k1

1≥ - communication rounds.

PROOF. In the index operation, each processor has n - 1 data
blocks that it needs to send to the other n - 1 processors.

If each processor is allowed to transfer at most b n
k
-1a f

units of data per port over all rounds, then it must be the

case that the jth data block of processor pi is sent directly

from processor pi to processor pj. (That is, each data
block is sent exactly once from its source to its destina-
tion, and no processor can forward data blocks of other
processors.) In this case, each processor must send n - 1
distinct messages to the other n - 1 processors. Any such
algorithm must require C n

k1
1≥ - rounds. �

THEOREM 2.7. Any index algorithm that uses C1 = Èlogk+1 n˘
communication rounds must transfer at least
C nbn

k k2 1 1= + +W logd i units of data.

PROOF. It is sufficient to prove the theorem for b = 1. Con-
sider any algorithm that finishes the index operation
in d = C1 (minimum) rounds. We show that the algo-

rithm executed a total of W(n2 logk+1 n) data transmis-
sions (over all nodes), thus, there is a port that trans-
mitted W n

k k n+ +1 1logd i units of data.

We first concentrate on the data distribution from a
given source node v to all other n - 1 nodes. Any such
algorithm can be characterized by a sequence of d + 1
sets, S0, S1, �, Sd, where Si is the set of nodes that have
received their respective data by the end of communi-
cation round i. Thus, S0 = {v}, |Sd| = n, and Si contains
Si-1 , plus nodes that received data from nodes in Si-1

in the ith communication rounds. Let xi = |Si|.

Clearly, xi £ xi+1 £ (k + 1)xi, because each node in Si can
send data to at most k other nodes under the k-port
model.

Next, we assign weights to the nodes in the sets,
Sis, where the weight of a node u in Si represents the
path length (or the number of communication rounds
incurred) from v to u in achieving the data distribu-
tion. The weights can be assigned based on the fol-
lowing rule. If a node u appears first in Si due to a
data transmission from node w in Si-1 , then the
weight of u is the weight of w plus one. Note that,
once a node is assigned a weight, it holds the same
weight in all subsequent sets.

By Lemma 2.8, we know that there are at most

f
j fke j nodes of weight f in Sj. Our goal is to give a

lower bound for the sum of the weights of the n
nodes in Sd. Without loss of generality, we can as-
sume that the sum of the weights is the minimum
possible.

Let X k kf
d f d

f

d
= = +

=Â e j b g1
0

. By the choice of d,

n X n k£ < +1b g .
Let Y kf

d f

f

d

=
=

-Â e j0

12 . Since, for

f k kd
f
d f

k d f
d d f£ - £ -

-
2

11, e j e j ,

Y k X k nd£ + = + <-1
1 1 1b g .

BRUCK ET AL.: EFFICIENT ALGORIITHMS FOR ALL-TO-ALL COMMUNICATIONS IN MULTIPORT MESSAGE-PASSING SYSTEMS 1147

Thus, the algorithm must use all the possible nodes
with weights less than d 2 .

To bound the sum of the weights ,we need a lower
bound on

Z f d
f k f

f

d

= F
H

I
K

=

-

Â .
0

12

For f d£ -2 1, f
d fke j is monoton in f. Thus, at least

n/2 of the nodes have weight at least d 2 1 2-d i .

That is, Z = W(nd).
Summing over all origins, the total number of

transmissions is at least nZ = W(n2 d). Thus, at least
one port has a sequence of

C
n
k d

n
k nk2 11=

F
HG

I
KJ = +

F
HG

I
KJ+W W log

 data transmissions. �

LEMMA 2.8. There are no more than f
j fke j nodes of weight f in Sj

(defined in the proof of Theorem 2.7).

PROOF. We prove by induction on j. There is clearly no more
than one node of weight zero and k nodes of weight
one in S1. Assume that the hypothesis holds for j - 1.

Note that Sj contains up to f
j fk-1e j nodes of weight f

that appeared with the same weight in Sj-1, plus up to

k kf
j f
-
- -

1
1 1e j nodes that receive data at communication

round j from nodes with weight f - 1 in Sj-1. The claim

holds for j since

j
f k k

j
f k

j
f kf f f-F

H
I
K + -

-
F
H

I
K = F

H
I
K

-1 1
1

1 . �

THEOREM 2.9. When k = 1, any algorithm for the index operation
that uses C1 = O(log n) communication rounds must
transfer C2 = W(bn log n) units of data.

PROOF. Assume that there is an algorithm with C1 £ c log n

for some constant c ≥ 1. Consider the binomial distri-

bution j
c nloge j. Let h be the minimal ,, such that

j
c n

j
nloge j ≥

=

+Â 0

1l
. One can show that any algorithm

that finishes in c log n rounds must have the following
property. For every j such that 1 £ j £ h, there exist

j
c nloge j messages from each node that travel at least j

hops in the network. Notice that, in this property,
each message can only be counted once for a given j.
Therefore, the average number of hops a message has
to travel for each node is h/2, if h £ log n, or log n/2, if
h ≥ log n. Since h must be W(log n) from Lemma C.1 in
Appendix C, we have C2 = W(bn log n). �

3 INDEX ALGORITHMS

This section presents a class of efficient algorithms for the
index operation. First, we provide an overview of the algo-
rithms. Then, we focus on the communication phase of the
algorithms for the one-port model. Next, we describe two
special cases of this class of algorithms. Then, we generalize
the algorithms to the k-port model. And finally, we com-
ment on the implementation and performance of this class
of algorithms.

3.1 Overview
The class of algorithms for the index operation among n
processors can be represented as a sequence of processor-
memory configurations. Each processor-memory configu-
ration has n columns of n blocks each. Columns are la-
beled from 0 through n - 1 (from left to right in the fig-
ures) and blocks are labeled from 0 through n - 1 (from
top to bottom in the figures). Column i represents proces-
sor pi, and block j represents the jth data block in the
memory offset. The objective of the index operation, then,
is to transpose these columns of blocks. Fig. 1 shows an
example of the processor-memory configurations before
and after the index operation for n = 5 processors. The
notation “ij” in each box represents the jth data block ini-
tially allocated to processor pi. The label j is referred to as
the block-id.

All the algorithms in the class consist of three phases.
Phases 1 and 3 require only local data rearrangement on
each processor, while Phase 2 involves interprocessor
communication.

PHASE 1. Each processor pi independently rotates its n data
blocks i steps upwards in a cyclical manner.

PHASE 2. Each processor pi rotates its jth data block j steps
to the right in a cyclical manner. This rotation is im-

Fig. 1. Memory-processor configurations before and after an index operation on five processors.

1148 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997

plemented by interprocessor communication.

PHASE 3. Each processor pi independently rotates its n data
blocks i steps downwards in a cyclical manner.

Fig. 2 presents an example of these three phases of the
algorithm for performing an index operation among n = 5
processors.

The implementation of Phases 1 and 3 on each proces-
sor involves only local data movements and is straight-
forward. In the sequel, we focus only on the implementa-
tion of Phase 2. Different algorithms are derived depend-
ing on how the communication pattern of Phase 2 is de-
composed into a sequence of point-to-point communica-
tion rounds.

3.2 The Interprocessor Communication Phase
We present the decomposition of Phase 2 into a sequence of
point-to-point communication rounds, assuming the one-
port model and using a parameter r (for radix) in the range
2 £ r £ n.

For convenience, we say that the block-id of the jth data
block in each processor after Phase 1 is j. Consider the
rotation required in Phase 2. Each block with a block-id j in
processor i needs to be rotated to processor (i + j) mod n.
The block-id j, where 0 £ j £ n - 1, can be encoded using
radix-r representation using w nr= log digits. For con-

venience, we refer to these w digits from zero through w - 1
starting with the least significant digit. Our algorithm for
Phase 2 consists of w subphases corresponding to the w

digits. Each subphase consists of at most r - 1 steps, corre-
sponding to the (up to) r - 1 different non-zero values of a
given digit. In subphase x, for 0 £ x £ w - 1, we iterate Step 1
through Step r - 1, as follows:

• During Step z of subphase x, where 1 £ z £ r - 1 and
0 £ x £ w - 1, all data blocks, for which the xth digit of

their block-id is z, are rotated z ◊ rx steps to the right.
This is accomplished in a communication round by a
direct point-to-point communications between processor
i and processor (i + z ◊ rx) mod n, for each 0 £ i £ n - 1.

For example, when r is chosen to be 3, the fifth block
will be rotated two steps to the right during Step 2 of
Subphase 0, and later rotated again three steps to the right
during Step 1 of Subphase 1. This follows from the fact
that 5 is encoded into “12” using radix-3 representation.

Note that, after w subphases, all data blocks have been
rotated to the correct destination processor as specified by
the processor id. However, data blocks are not necessarily
in their correct memory locations. Phase 3 of the algorithm
fixes this problem.

The following points are made regarding the performance
of this algorithm.

• Each step can be realized by a single communica-
tion round by packing all the outgoing blocks to the
same destination into a temporary array and send-
ing them together in one message. Hence, each
subphase can be realized in at most r - 1 communi-
cation rounds.

• The size of each message involved in a communica-
tion round is at most b n

r data.

• Hence, the class of the index algorithms has complex-
ity measures C r nr1 1£ -a f log and

C b r nn
r r2 1£ -a f log ,

where r is chosen in the range 2 £ r £ n.

3.3 Two Special Cases
The class of algorithms for the index operation in the one-
port model contains two interesting special cases:

1) When r = 2, the derived algorithm requires

Fig. 2. An example of memory-processor configurations for the three phases of the index operation on five processors.

BRUCK ET AL.: EFFICIENT ALGORIITHMS FOR ALL-TO-ALL COMMUNICATIONS IN MULTIPORT MESSAGE-PASSING SYSTEMS 1149

C n1 2= log

communication rounds, which is optimal with respect
to the measure C1. Also, in this case,

C b nn
2 2 2£ log ,

which is optimal (to within a multiplicative factor) for
the case when C n1 2= log . Fig. 3 shows such an ex-
ample with r = 2 and n = 5. The shaded data blocks are
the ones subject to rotation during the next subphase.

2) When r = n, the derived algorithm transfers C2 = b(n - 1)
units of data from each node, which is optimal with
respect to the measure C2. The value of C1 in this case
is C1 = n - 1, which is optimal for the case when C2 =
b(n - 1).

Hence, r = 2 should be chosen when the start-up time of the
underlying machine is relatively significant, and the product
of the block size b and the per-element transfer time is rela-
tively small. On the other hand, r = n should be chosen when
the start-up time is negligible. In general, r can be fine-tuned
according to the parameters of the underlying machines to
balance between the start-up time and the data transfer time.

3.4 Generalization to the k-Port Model
We now present a modification to the index algorithm
above for the k-port model. Phase 1 and Phase 3 of the algo-

rithm remain the same. In Phase 2, we still have
w nr= log subphases as before, corresponding to the w

digits in radix-r representation of any block-id j, where 0 £
j £ n - 1. In each subphase, there are, at most, r - 1
“independent” point-to-point communication steps that
need to be performed. Since these point-to-point communi-
cation steps are independent, they can be performed in par-
allel, subject to the constraint on the number of parallel in-
put/output ports k. Thus, every k of these communication
steps can be grouped together and performed concurrently.
Therefore, each subphase consists of at most r

k
-1 commu-

nication steps. The complexity measures for the index algo-
rithm under the k-port model, therefore, are
C nr

k r1
1£ - log and C b nr

k
n
r r2

1£ - log , where r can

be chosen in the range 2 £ r £ n. To minimize both C1 and

C2, one clearly needs to choose r, such that (r - 1) mod k = 0.

3.5 Implementation
We have implemented the one-port version (k = 1) of the
index algorithm on an IBM SP-1 parallel system. (The IBM
SP-1 is closer to the one-port model in the domain of the
multiport model.) The implementation is done on top of the
point-to-point message-passing external user interface
(EUI), running on the EUIH environment. At this level, the
communication start-up, b, measures about 29 msec, and the

Fig. 3. An example of memory-processor configurations for the index algorithm on five processors, which has an optimal C1 measure.

1150 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997

sustained point-to-point communication bandwidth is
about 8.5 Mbytes/sec, i.e., t < 0.12 msec/byte.

Fig. 4 shows the measured times of the index algorithm
as a function of message size with various power-of-two
radices r on a 64 node SP-1. As can be seen, the smaller ra-
dix tends to perform better for smaller message sizes, and
vice versa.

Fig. 5 compares the measured times of the index algo-
rithm with r = 2, r = n = 64, and optimal r among all power-
of-two radices, respectively, on a 64 node SP-1. The break-
even point of the message size between the two special
cases of the index algorithms (i.e., r = 2 and r = n) occurs at
about 100 to 200 bytes. The index algorithm with optimal
power-of-two radix, as expected, is the best overall choice.

Fig. 6 shows the measured times of the index algorithm
as a function of radix for three different message sizes: 32
bytes, 64 bytes, and 128 bytes. As the message size in-

creases, the minimal time of the curve tends to occur at a
higher radix.

When comparing these measured times with our predicted
times based on the linear model, we find big discrepancies
quantitatively, but relatively consistent qualitatively. Note that
we are mainly interested in the qualitatively behavior of the
index algorithm on a general message-passing system. We
believe the quantitative differences between the measured
times and the predicted times are due to the following factors:

1) There are various system routines running in the
background that have a higher priority than the user
processes.

2) We do not model the copy time incurred by the func-
tion copy, pack, and unpack (see the pseudocode in
Appendix A).

3) We do not model the congestion behavior of the SP-1.
4) There is a slowdown factor, somewhere between one

and two, from the linear model to the send_and_receive
model.

If we model the congestion behavior as a fixed multi-
plicative factor of tc and assume the system routines have
a fixed slowdown factor of the overall time, then the total
time for the index operation can be modeled as

T = g1C1ts + g2C2tc + g3.

4 CONCATENATION ALGORITHMS

There are two known algorithms for the concatenation op-
eration in the one-port model. The first is a simple folklore
algorithm which consists of two phases. In the first phase,
the n blocks of data from the n processors are accumulated
to a designated processor, say processor p0. This can be
done using a binomial tree (or a subtree of it when n is not a
power of two). In the second phase, the concatenation re-
sult from processor p0 is broadcast to the n processors using
the same binomial tree. This algorithm is not optimal since
it consists of C n1 2= log communication rounds and

Fig. 4. The measured time of the index algorithm as a function of mes-
sage sizes on a 64 node SP-1.

Fig. 5. The measured times of the index algorithm with r = 2, r = n = 64,
and optimal r among all power-of-two radices, respectively, on a 64
node SP-1.

Fig. 6. The measured times of the index algorithm as a function of radix
for various message sizes on a 64 node SP-1.

BRUCK ET AL.: EFFICIENT ALGORIITHMS FOR ALL-TO-ALL COMMUNICATIONS IN MULTIPORT MESSAGE-PASSING SYSTEMS 1151

transfers C2 = 2b(n - 1) units of data. The second known
concatenation algorithm is for the case when n is a power of
two and k = 1 (see [20]). This algorithm is based on the
structure of a binary hypercube and is optimal in both C1 and

C2. For a given k ≥ 1, this algorithm can be generalized to the
case where n is a power of k + 1 by using the structure of a
generalized hypercube [4]. However, for general values of n,
we do not know of any existing concatenation algorithm that
is optimal in both C1 and in C2, even when b = k = 1.

In this section, we present efficient concatenation algo-
rithms for the k-port communication model that, in most
cases of n and k, are optimal in both C1 and C2. Throughout
this section, we assume that k is in the range 1 £ k £ n - 2.
Notice that, for k ≥ n - 1, the trivial algorithm that takes a
single round is optimal.

The main structure that we use for deriving the algorithms
is that of circulant graphs. We note here that circulant graphs
are also useful in constructing fault-tolerant networks [7].

DEFINITION. A circulant graph G(n, S) is characterized by two
parameters: the number of nodes n, and a set of offsets S.
In G(n, S), the n nodes are labeled from 0 through n - 1,
and each node i is connected to node ((i - s) mod n) and
to node ((i+s) mod n) for all s Œ S (see [11]).

The concatenation algorithm consists of d rounds. Let

d nk= +log 1 , that is, (k + 1)d-1 < n £ (k + 1)d. Also let n =

n1 + n2, where n1 = (k + 1)d-1 and 1 £ n2 £ kn1. The rounds
of the algorithm can be divided into two phases. The first
phase consists of d - 1 rounds, at the end of which every
node has the concatenation result of the n1 - 1 nodes that
precede it in the numbering (in a circulant sense). The
second phase consists of a single round and completes the
concatenation operation among the n nodes.

4.1 The First d - 1 Rounds
For the first d - 1 rounds, we use a circulant graph G(n, S),
where

S = S0 < S1 < � < Sd-2,

Si = {(k + 1)i, 2(k + 1)i, º, k(k + 1)i}.

We identify the n processors with the n nodes of G(n, S),
which are labeled from 0 through n - 1.

The communication pattern related to broadcasting the
data item of each node can be described by a spanning
tree. Let Ti denote the spanning tree associated with the
data item B[i] of node i (namely, Ti is rooted at node i). We
describe the spanning tree associated with each node by
specifying the edges that are used in every communica-
tion round. The edges associated with round i are called
round-i-edges. First, we describe the tree T0, and then we
show how tree Ti, for 1 £ i £ n - 1, can be derived from
tree T0.

We start with an initial tree T0 which consists only of
node 0. In round 0, we add edges with offsets in S0 to T0
to form a partial spanning tree; the added edges are the
round-0-edges. (That is, in round 0, we add the set of

edges {(0, 1), (0, 2), �, (0, k)}.) In general, in round r,
where 0 £ r £ d - 2, we add edges with offsets in Sr to the
current partial spanning tree to form a new larger partial
spanning tree. It is easy to verify that, after d - 1 rounds,
the resulting tree spans the first n1 nodes starting from
node 0, namely, nodes 0 through n1 - 1. Fig. 7 illustrates
the process of constructing T0 for the case of k = 2 and n = 9.

Next, we use tree T0 to construct the spanning trees Ti, for
1 £ i £ n - 1. We do this by translating each node j in T0 to
node (j + i) mod n in Ti. Also, the round id associated with
each tree edge in Ti (which represents the round during
which the corresponding communication is performed) is the
same as that of the corresponding tree edge in T0. Fig. 8 il-
lustrates tree T1 for the case of k = 2 and n = 9. It is easy to see
that T1 was obtained from T0 by adding one (modulo nine) to
the labels of the nodes in T0.

Fig. 7. The two rounds in constructing the spanning tree rooted at node 0
for n = 9 and k = 2.

Fig. 8. The two rounds in constructing the spanning tree rooted at node
1 for n = 9 and k = 2. They can be derived by translating node ad-
dresses of the spanning tree rooted at node 0 in Fig. 7.

The concatenation algorithm in each node is specified by
the trees Ti, for 0 £ i £ n - 1, as follows:

In round i, for 0 £ i £ d - 2, do:

• For all 0 £ j £ n - 1, if data item B[j] is present at the
node, then send it on all round-i-edges of tree Tj.

• Receive the corresponding data items on the round-i-
edges of all the n trees.

THEOREM 4.1. After d - 1 rounds of the above algorithm, every
node i, for 0 £ i £ n - 1, has the n1 data items B[j], where
i ≥ j ≥ i - n1 + j + 1 (mod n). Also, during these d-1
rounds, the measure C2 is optimal:

1152 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997

C
b
k n2 1 1= -c h .

PROOF. The spanning trees Ti, for 1 £ Ti £ n - 1, are derived
from T0 by shifting the indices in a cyclic manner.
Hence, it suffices to focus on the spanning tree T0. No-
tice that the algorithm can be implemented in a k-port
model, since, in every round i, we use only the set of
offsets Si, which consists of k offsets. Also, the tree T0 is
a spanning tree for the nodes pi, where 0 £ i £ n1 - 1, be-
cause every i in this range can be represented using a
set of distinct offsets from S. Hence, after d - 1 rounds
of the algorithm, the data items are distributed ac-
cording to the claim of the theorem.

Next, we need to prove that C2 associated with the
d - 1 rounds is as claimed. By induction on i, it fol-
lows that, before round i, any node has at most (k + 1)i

distinct data items. Hence, in round i, any node sends
at most (k + 1)i data items on any given edge. Thus,

C b k k k
b
k nd

2
2 2

11 1 1 1 1£ + + + + + + + = --b g b g b g c hL .

However, by the lower bound argument, we have
C nb

k2 1 1≥ -c h , and the claim follows. �

4.2 The Last Round
Before round d - 1, the last round of the algorithm, we have
the following situation: Every node i had broadcast its mes-
sage to the n1 - 1 nodes succeeding it in the circular graph
and had received the broadcast message from the n1 - 1
nodes preceding it in the circular graph. Consider tree T0
just before the last round. The first n1 nodes (nodes 0
through n1 - 1) are included in the current tree, and the re-
maining n2 nodes still need to be spanned. We bring the
following proposition.

PROPOSITION 4.2. The last round can be performed with

C bn
k2

2= , for any combination of n, b, and k, except for the

following range: b ≥ 3, k ≥ 3, and (k + 1)d - k < n < (k + 1)d,
for some d.

The proof of this proposition is somewhat complicated,
and we only give the main ideas here. The basic idea is to
transform the scheduling problem for the last round of the
algorithm into a table partitioning problem. (In the sense
that, if the table partitioning problem can be solved, then
we have an optimal algorithm by deriving an optimal
schedule for the last round.) The table partitioning prob-

lem is defined as follows. Let a = bn
k

2 . Given a table of b

rows and n2 columns, we would like to partition the table

into disjoint k areas, denoted by A1, A2, …, Ak, such that

• the column-span of Ai, for all 1 £ i £ k, is at most n1,
where the column-span of Ai is defined as Ri - Li + 1 if
Ri and Li are the rightmost and leftmost columns, re-
spectively, touched by Ai; and

• the number of table entries in Ai, for all 1 £ i £ k, is at
most a.

If a solution can be found to the table-partitioning
problem, then a schedule for the last round can be de-

rived as follows. Each of the n2 table columns corre-
sponds to one of the n2 nodes yet to be spanned, and
each of the b table rows represents one byte. Table ele-
ments in the same area, say Ai, will use the same offset,
which is determined by the index of the leftmost column
touched by Ai.

It can be shown that a straightforward algorithm for
partitioning the table satisfies the above two conditions for
any combination of n, b, and k, except for the following
range: b ≥ 3, k ≥ 3 and (k + 1)d - k < n < (k + 1)d, for some d.
For instance, Table 1 presents a partitioning example for
n1 = 3, n2 = 7, b = 3, and k = 3, which fall in the optimal range
of n. The area covered by Ai is marked by the number i. From
this table, one can derive the following scheduling for the
last round:

• The sum of the weighted edges with offset 3 (in area
A1) is 7. Thus, node p3 receives three bytes from p0,
node p4 receives three bytes from p1, and node p5 re-
ceives one byte from p2.

• The sum of the weighted edges with offset 5 (in area
A2) is 7. Thus, node p5 receives two bytes from p0,
node p6 receives three bytes from p1, and node p7 re-
ceives two bytes from p3.

• The sum of the weighted edges with offset 7 (in area
A3) is 7. Thus, node p7 receives one byte from p0, node
p8 receives three bytes from p1, and node p9 receives
three bytes from p2.

After rotation, to generate n spanning trees, each of which
is rooted at a different node, each node i needs to send
seven bytes to nodes (i + 3) mod n, (i + 5) mod n, and (i + 7)
mod n, and receive seven bytes from nodes (i - 3) mod n,
(i - 5) mod n, and (i - 7) mod n.

THEOREM 4.3. The above concatenation algorithm attains optimal

C nk1 1= +log and C b n
k2

1= -a f for any combination of

n, b, and k, except for the following range: b ≥ 3, k ≥ 3, and

(k + 1)d - k < n < (k + 1)d, for some integer d.

PROOF. By combining Theorem 4.1 and Proposition 4.2, we

have C nb
k

bn
k

b n
k2 1

11 2= - + = -c h a f , which matches

the lower bound of C2 in Proposition 2.2. �

Fig. 9 presents an example of the concatenation algo-
rithm for k = 1 and n = 5. Note that, to simplify the pseudo-
code included in Appendix A, we actually grow the span-
ning tree Ti using negative offsets. That is, in both the figure

TABLE 1
AN EXAMPLE OF THE TRANSFORMED PROBLEM FOR n1 = 3 (p0

THROUGH p2), n2 = 7 (p3 THROUGH p9), b = 3 (BYTES), AND k = 3
(PORTS)

BRUCK ET AL.: EFFICIENT ALGORIITHMS FOR ALL-TO-ALL COMMUNICATIONS IN MULTIPORT MESSAGE-PASSING SYSTEMS 1153

and in the pseudocode, left-rotations are performed instead
of right-rotations.

REMARK. For the nonoptimal range of n, it is easy to achieve opti-
mal C2 at the expense of increasing C1 by one round over the
lower bound. It is also easy to achieve optimal C1 and subop-
timal C2, where C2 is at most b - 1 more than the lower
bound.

APPENDIX A
PSEUDOCODE FOR THE INDEX ALGORITHM

This appendix presents pseudocode for the index algorithm
of Section 3 when k = 1. This pseudocode sketches the im-
plementation of the index operation in the Collective
Communication Library of the EUI [1] by IBM. In the pseu-
docode, the function index takes six arguments: outmsg is
an array for the outgoing message; blklen is the length in
bytes of each data block; inmsg is an array for the incoming
message; n is the number of processors involved; A is the
array of the n different processor ids, such that, A[i] = pi;
and r is the radix used to tune the algorithm. Arrays outmsg
and inmsg are each of length blklen * n bytes. Other routines
that appear in the code are as follows: Routine copy(A, B, len)
copies array A of size len bytes into array B. Routine
getrank(id, n, A) returns the index i that satisfies A[i] = id.
The routine mod(x, y) returns the value x mod y in the
range of 0 through y - 1, even for negative x. The function

send_and_recv takes six arguments: the outgoing message;
the size of the outgoing message; the destination of the out-
going message; the incoming message; the size of the in-
coming message; and the source of the incoming message.
The function send_and_recv is supported by IBM’s Mes-
sage Passing Library (MPL) [1] on SP-1 and SP-2, and the
recent MPI standard [24]. It can also be implemented as a
combination of blocking send and nonblocking receive.

In the following pseudocode, lines 3 and 4 correspond to
Phase 1, lines 5 through 20 correspond to Phase 2, and lines
21 through 23 correspond to Phase 3. In Phase 2, there are w
subphases, which are indexed by i. During each subphase,
each processor needs to perform the send_and_recv opera-
tion r - 1 times, except for the last subphase, where each
processor performs the send_and_recv operation only

n rw- -1 1 times. Lines 7 through 11 take into account the

special case for the last subphase. The routine pack is used
to pack those blocks that need to be rotated to the same
intermediate destination into a consecutive array. Specifi-
cally, pack(A, B, blklen, n, r, i, j, nblocks) packs some selected
blocks of array A into array B; each block is of size blklen in
bytes; those blocks, for which the ith digit of the radix-r
representation of their block ids are equal to j, are selected
for packing; and value of the number of selected blocks is
written to the argument nblocks. The routine unpack(A, B,
blklen, n, r, i, j, nblocks) is defined as the inverse function of

Fig. 9. An example of the one-port concatenation algorithm with five processors.

1154 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997

pack where B becomes the input array to be unpacked and
A becomes the output array.

Function index (outmsg, blklen, inmsg, n, A, r)

(1) w = Èlogr n˘
(2) my_rank = getrank (my_pid, n, A)
(3) copy (outmsg, tmp[(n - my_rank) * blklen], my_rank *

blklen)
(4) copy (outmsg [my_rank * blklen], tmp, (n - my_rank) *

 blklen)
(5) dist = 1
(6) for i = 0 to w - 1 do
(7) if (i == w - 1) then
(8) h n dist=
(9) else
(10) h = r
(11) endif
(12) for j = 1 to h - 1 do
(13) dest_rank = mod (my_rank + j * dist, n)
(14) src_rank = mod (my_rank - j * dist, n)
(15) pack (tmp, packed_msg, blklen, n, r, i, j,

 nblocks)
(16) send_and_recv (�packed_msg, blklen *

nblocks, A [dest_rank],
packed_msg, blklen *
nblocks, A [src_rank])

(17) unpack (tmp, packed_msg, blklen, n, r, i, j,
 nblocks)

(18) endfor
(19) dist = dist * r
(20) endfor
(21) for i = 0 to n - 1 do
(22) copy (tmp [mod (my_rank - i, n) * blklen], inmsg

 [i * blklen], blklen)
(23) endfor
(24) return

APPENDIX B
PSEUDOCODE FOR THE CONCATENATION
ALGORITHM

This appendix presents pseudocode for the concatenation
algorithm of Section 4 when k = 1. This pseudocode
sketches the implementation of the concatenation operation
in the Collective Communication Library of the EUI [1] by
IBM. In this pseudocode, the function concat takes five ar-
guments: outmsg is an array for the outgoing message; len is
the length in bytes of array outmsg; inmsg is an array for the
incoming message; n is the number of processors involved;
and A is the array of the n different processor ids, such that,
A[i] = pi. Array inmsg is of length len * n bytes. The function
concat sends and receives messages using the
send_and_recv routine. The routines copy, getrank,
send_and_recv, and mod were defined in Appendix A.

In the following pseudocode, each processor first initial-
izes some variables and copies its outmsg array into a tempo-
rary array temp (lines 1 through 5). Then, each processor per-
forms the first d - 1 rounds of the algorithm (lines 6 through
12). Then, each processor performs the last round of the algo-

rithm (lines 13 and 16). Finally, each processor performs a
local circular shift of the data such that all data blocks in its
inmsg array begin with the block B[0] (lines 17 and 18).

Function concat (outmsg, len, inmsg, n, A)

(1) d = Èlog2 n˘
(2) my_rank = getrank (my_pid, n, A)
(3) copy (outmsg, temp, len)
(4) nblk = 1
(5) current_len = len
(6) for r = 0 to d - 1 do
(7) dest_rank = mod (my_rank - nblk, n)
(8) src_rank = mod (my_rank + nblk, n)
(9) send_and_recv (�temp, current_len,

 A [dest_rank],temp [current_len],
 current_len, A [src_rank])

(10) nblk = nblk * 2
(11) current_len = current_len * 2
(12) endfor
(13) current_len = len * (n - nblk)
(14) dest_rank = mod (my_rank - nblk, n)
(15) src_rank = mod (my_rank + nblk, n)
(16) send_and_recv (temp, current_len,

 A [dest_rank], temp [current_len],
 current_len, A [src_rank])

(17) copy (temp, inmsg [len * my_rank],
 len * (n - my_rank))

(18) copy (temp [len * (n - my_rank)], inmsg,
 len * my_rank)

(19) return

APPENDIX C
PROOF OF A LEMMA

LEMMA C.1. Let c and m be integers such that 2 £ c £ m. Then, if

j
cm m

j

h e j ≥
=Â 2

0
, then h ≥ min(m/64, m/8 log c).

PROOF. Assume, for the sake of contradiction, that the
lemma does not hold. First, note that the lemma holds
if h ≥ m/64, so it must be the case that h < m/64. Also,

note that 0 1 2cm me j = < , so h ≥ 1 and m > 64. Therefore,

h + 1 £ 2m £ cm. Because h < m/64 £ cm/128, the terms

in the summation j
cm m

j

h e j ≥
=Â 2

0
 are monotonically

increasing, so

2 1 1
0

m h

j

h
cm
j h cm

j h cm h£ F
H

I
K £ + F

H
I
K £ +

=
Â b g b ga f !

Note that h! ≥ hh+1/2/eh, so

m £ log (h + 1) + h log (cm) + h log e - (h + 1/2) log h

 £ (h + 1) log (cm) + h log e - h log h.

Because h < m/64 £ m/(2 log e),

m/2 £ h (log (cm) - log h) + log (cm).

Because log (cm) £ 2 log m £ m/4, it follows that m/4 £
h (log (cm) - log h). Let h = m/x and note that x > 64, so

BRUCK ET AL.: EFFICIENT ALGORIITHMS FOR ALL-TO-ALL COMMUNICATIONS IN MULTIPORT MESSAGE-PASSING SYSTEMS 1155

m/4 £ (m/x)(log c + log x), which implies that x £ 4 log
c + 4 log x and x - 4 log x £ 4 log c. Note that x ≥ 8log x,
so x/2 £ x - 4 log x £ 4 log c. Therefore, x £ 8log c and h
= m/x ≥ m/8 log c, which is a contradiction. �

ACKNOWLEDGMENTS

We thank Robert Cypher for his help in deriving Lemma C.1.
Jehoshua Bruck was supported in part by U.S. National
Science Foundation Young Investigator Award CCR-
9457811, by the Sloan Research Fellowship, and by DARPA
and BMDO through an agreement with NASA/OSAT.

REFERENCES

[1] V. Bala, J. Bruck, R. Bryant, R. Cypher, P. deJong, P. Elustondo, D.
Frye, A. Ho, C.-T. Ho, G. Irwin, S. Kipnis, R. Lawrence, and M.
Snir, “The IBM External User Interface for Scalable Parallel Sys-
tems,” Parallel Computing, vol. 20, no. 4, pp. 445–462, Apr. 1994.

[2] V. Bala, J. Bruck, R. Cypher, P. Elustondo, A. Ho, C.-T. Ho, S.
Kipnis, and M. Snir, “CCL: A Portable and Tunable Collective
Communication Library for Scalable Parallel Computers,” IEEE
Trans. Parallel and Distributed Systems, vol. 6, no. 2, pp. 154–164,
Feb. 1995.

[3] A. Bar-Noy and S. Kipnis, “Designing Broadcasting Algorithms in
the Postal Model for Message-Passing Systems,” Mathematical Sys-
tems Theory, vol. 27, no. 5, pp. 431-452, Sept./Oct. 1994.

[4] L. Bhuyan and D. Agrawal, “Generalized Hypercube and Hyper-
bus Structures for a Computer Network,” IEEE Trans. Computers,
vol. 33, no. 4, pp. 323–333, Apr. 1984.

[5] S. Bokhari, “Multiphase Complete Exchange on a Circuit-
Switched Hypercube,” Proc. 1991 Int’l Conf. Parallel Processing, vol. I,
pp. 525–528, Aug. 1991.

[6] J. Bruck, R. Cypher, L. Gravano, A. Ho, C.-T. Ho, S. Kipnis, S.
Konstantinidou, M. Snir, and E. Upfal, “Survey of Routing Issues
for the Vulcan Parallel Computer,” IBM Research Report, RJ-8839,
June 1992.

[7] J. Bruck, R. Cypher, and C.-T. Ho, “Fault-Tolerant Meshes and
Hypercubes with Minimal Numbers of Spares,” IEEE Trans. Com-
puters, vol. 42, no. 9, pp. 1,089–1,104, Sept. 1993.

[8] C.Y. Chu, “Comparison of Two-dimensional FFT Methods on the
Hypercubes,” Proc. Third Conf. Hypercube Concurrent Computers
and Applications, pp. 1,430–1,437, 1988.

[9] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken, “LogP: Towards a Realistic
Model of Parallel Computation,” Proc. Fourth SIGPLAN Symp. Prin-
ciples and Practices Parallel Programming, ACM, May 1993.

[10] W.J. Dally, A. Chien, S. Fiske, W. Horwat, J. Keen, M. Larivee, R.
Lethin, P. Nuth, S. Wills, P. Carrick, and G. Fyler, “The J-Machine:
a Fine-Grain Concurrent Computer,” Proc. Information Processing
‘89, pp. 1,147–1,153, 1989.

[11] B. Elspas and J. Turner, “Graphs with Circulant Adjacency Matri-
ces,” J. Combinatorial Theory, no. 9, pp. 297–307, 1970.

[12] G. Fox, M. Johnsson, G. Lyzenga, S. Otto, J. Salmon, and D.
Walker, Solving Problems on Concurrent Processors, Vol. I. Prentice
Hall, 1988.

[13] P. Fraigniaud and E. Lazard, “Methods and Problems of Com-
munication in Usual Networks,” Discrete Applied Math., vol. 53,
pp. 79–133, 1994.

[14] G.A. Geist, M.T. Heath, B.W. Peyton, and P.H. Worley, “A User’s
Guide to PICL: A Portable Instrumented Communication Li-
brary,” ORNL Technical Report no. ORNL/TM-11616, Oct. 1990.

[15] G.A. Geist and V.S. Sunderam, “Network Based Concurrent
Computing on the PVM System,” ORNL Technical Report no.
ORNL/TM-11760, June 1991.

[16] S.M. Hedetniemi, S.T. Hedetniemi, and A.L. Liestman, “A Survey
of Gossiping and Broadcasting in Communication Networks,”
Networks, vol. 18, pp. 319-349, 1988.

[17] R. Hempel, “The ANL/GMD Macros (PARMACS) in FORTRAN
for Portable Parallel Programming Using the Message Passing
Programming Model, User’s Guide and Reference Manual,” tech-
nical memorandum, Gesellschaft für Mathematik und Datenvera-
beitung mbH, West Germany.

[18] C.-T. Ho and M.T. Raghunath, “Efficient Communication Primi-
tives on Hypercubes,” Concurrency: Practice and Experience, vol. 4,
no. 6, pp. 427–458, Sept. 1992.

[19] S.L Johnsson and C.-T. Ho, “Matrix Multiplication on Boolean
Cubes Using Generic Communication Primitives,” Parallel Proc-
essing and Medium-Scale Multiprocessors, A. Wouk, ed., pp. 108–
156. SIAM, 1989.

[20] S.L. Johnsson and C.-T. Ho, “Spanning Graphs for Optimum
Broadcasting and Personalized Communication in Hypercubes,”
IEEE Trans. Computers, vol. 38, no. 9, pp. 1,249–1,268, Sept. 1989.

[21] S.L. Johnsson and C.-T. Ho, “Optimizing Tridiagonal Solvers for
Alternating Direction Methods on Boolean Cube Multiprocessors,”
SIAM J. Scientific and Statistical Computing, vol. 11, no. 3, pp. 563–
592, 1990.

[22] S.L. Johnsson, C.-T. Ho, M. Jacquemin, and A. Ruttenberg,
“Computing Fast Fourier Transforms on Boolean Cubes and Re-
lated Networks,” Advanced Algorithms and Architectures for Signal
Processing II, vol. 826, pp. 223–231. Soc. Photo-Optical Instrumen-
tation Engineers, 1987.

[23] O.A. McBryan and E.F. Van de Velde, “Hypercube Algorithms
and Implementations,” SIAM J. Scientific and Statistical Computing,
vol. 8, no. 2, pp. 227–287, Mar. 1987.

[24] Message Passing Interface Forum, MPI: A Message-Passing Inter-
face Standard, May 1994.

[25] J.F. Palmer “The NCUBE Family of Parallel Supercomputers,”
Proc. Int’l Conf. Computer Design, 1986.

[26] F.P. Preparata and J.E. Vuillemin, “The Cube Connected Cycles: A
Versatile Network for Parallel Computation,” Comm. ACM, vol. 24,
no. 5, pp. 300–309, May 1981.

[27] A. Skjellum and A.P. Leung, “Zipcode: A Portable Multicomputer
Communication Library Atop the Reactive Kernel,” Proc. Fifth
Distributed Memory Computing Conf., pp. 328–337, Apr. 1990.

[28] P.N. Swarztrauber, “The Methods of Cyclic Reduction, Fourier
Analysis, and the FACR Algorithm for the Discrete Solution of Pois-
son’s Equation on a Rectangle,” SIAM Rev., vol. 19, pp. 490–501,
1977.

[29] Connection Machine CM-5 Technical Summary. Thinking Machines
Corporation, 1991.

[30] L.G. Valiant, “A Bridging Model for Parallel Computation,”
Comm. ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990.

[31] Express 3.0 Introductory Guide. Parasoft Corporation, 1990.

Jehoshua Bruck received the BSc and MSc
degrees in electrical engineering from the Tech-
nion, Israel Institute of Technology, in 1982 and
1985, respectively, and the PhD degree in elec-
trical engineering from Stanford University in
1989.

He is an associate professor of computation
and neural systems and electrical engineering at
the California Institute of Technology. His re-
search interests include parallel and distributed
computing, fault-tolerant computing, error-

correcting codes, computation theory, and neural and biological sys-
tems. Dr. Bruck has extensive industrial experience including, serving
as manager of the Foundations of Massively Parallel Computing Group
at the IBM Almaden Research Center from 1990-1994, a research staff
member at the IBM Almaden Research Center from 1989-1990, and a
researcher at the IBM Haifa Science center from 1982-1985.

Dr. Bruck is the recipient of a 1995 Sloan Research Fellowship, a
1994 National Science Foundation Young Investigator Award, six IBM
Plateau Invention Achievement Awards, a 1992 IBM Outstanding Inno-
vation Award for his work on “Harmonic Analysis of Neural Networks,”
and a 1994 IBM Outstanding Technical Achievement Award for his con-
tributions to the design and implementation of the SP-1, the first IBM
scalable parallel computer. He has published more than 120 journal and
conference papers in his areas of interests and he holds 20 patents. Dr.
Bruck is a senior member of the IEEE and a member of the editorial
board of the IEEE Transactions on Parallel and Distributed Systems.

1156 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 11, NOVEMBER 1997

Ching-Tien Ho received a BS degree in electri-
cal engineering from National Taiwan University
in 1979 and the MS, MPhil, and PhD degrees in
computer science from Yale University in 1985,
1986, and 1990, respectively.

He joined IBM Almaden Research Center as a
research staff member in 1989. He was manager of
the Foundations of Massively Parallel Computing
group from 1994-1996, where he led the develop-
ment of collective communication, as part of IBM
MPL and MPI, for IBM SP-1 and SP-2 parallel sys-

tems. His primary research interests include communication issues for
interconnection networks, algorithms for collective communications, graph
embeddings, fault tolerance, and parallel algorithms and architectures. His
current interests are data mining and on-line analytical processing. He has
published more than 80 journal and conference papers in these areas.

Dr. Ho is a corecipient of the 1986 “Outstanding Paper Award” of
the International Conference on Parallel Processing. He has received
an IBM Outstanding Innovation Award, two IBM Outstanding Technical
Achievement Awards, and four IBM Plateau Invention Achievement
Awards. He has 10 patents granted or pending. He is on the editorial
board of the IEEE Transactions on Parallel and Distributed Systems.
He will be one of the program vice chairs for the 1998 International
Conference on Parallel Processing. He has served on program com-
mittees of many parallel processing conferences and workshops. He is
a member of the ACM, the IEEE, and the IEEE Computer Society.

Shlomo Kipnis (M’87) received a BSc in mathe-
matics and physics in 1983 and an MSc in com-
puter science in 1985, both from the Hebrew Uni-
versity of Jerusalem, Israel. He received a PhD in
electrical engineering and computer science in
1990 from the Massachusetts Institute of Technol-
ogy. From 1990-1993, he worked as a research
staff member at the IBM T. J. Watson Research
Center in Yorktown Heights, New York. From 1993-
1995, he worked as a research staff member at the
IBM Haifa Research Laboratory in Israel. Currently,

he is working as manager of new technologies at NDS Technologies Israel.
In addition, since 1994, Dr. Kipnis has been an adjunct professor of com-
puter science at Bar Ilan University and at Tel Aviv University. His research
interests include parallel and distributed processing, efficient communica-
tion structures and algorithms, and system security. Dr. Kipnis is a member
of the IEEE, the IEEE Computer Society, ACM, and ILA. He has published
in numerous journals and presented his work in many conferences and
workshops. He is also an inventor and coinventor of two U.S. patents.

Eli Upfal received a BSc in mathematics from the
Hebrew University in 1978, an MSc in computer
science from the Weizmann Institute in 1980, and
a PhD in computer science from the Hebrew Uni-
versity in 1983. During 1983-1984, he was a re-
search fellow at the University of California at
Berkeley, and, in 1984-1985, a postdoctoral fellow
at Stanford University. In 1985, Dr. Upfal joined
the IBM Almaden Research Center, where he is
currently a research staff member in the Founda-
tions of Computer Science Group. In 1988, he also

joined the Faculty of Applied Mathematics and Computer Science at the
Weizmann Institute, where he is currently the Norman D. Cohen Profes-
sor of Computer Science. Dr. Upfal’s research interest include theory of
algorithms, randomized computing, probabilistic analysis of algorithms,
communication networks, and parallel and distributed computing. He is a
senior member of the IEEE.

W. Derrick Weathersby is a PhD candidate in
the Department of Computer Science at the
University of Washington, Seattle, Washington.
His current research involves compiler optimiza-
tions for collective communication primitives,
portable software support for efficient collective
communication libraries, and parallel program-
ming language design.

