
Efficient Algorithms for Answering Reverse
Spatial-Keyword Nearest Neighbor Queries

Ying Lu† Gao Cong‡ Jiaheng Lu♯ Cyrus Shahabi†

†Integrated Media Systems Center, University of Southern California, Los Angeles, CA 90089
‡School of Computer Engineering, Nanyang Technological University, Singapore, 639798

♯School of Information, Renmin University of China, Beijing, 10087
†{ylu720, shahabi}@usc.edu ‡{gaocong}@ntu.edu.sg ♯{jiahenglu}@ruc.edu.cn

ABSTRACT

With the proliferation of local services and GPS-enabled mobile
phones, reverse spatial-keyword Nearest Neighbor queries are be-
coming an important type of query. Given a service object (e.g.,
shop) q as the query, which has a location and a text description,
we return customers such that q is one of top-k spatial-keyword rel-
evant service objects for each result customer. Existing algorithms
for answering reverse nearest neighbor queries cannot be used for
processing reverse spatial-keyword nearest neighbor queries due
to the additional text information. To design efficient algorithms,
for the first time we theoretically analyze an ideal case, which
minimizes the object/index node accesses, for processing reverse
spatial-keyword nearest neighbor queries. Under the derived theo-
retical guidelines, we design novel search algorithms for efficiently
answering the queries. Empirical studies show that the proposed
algorithms offer scalability and are orders of magnitude faster than
existing methods for reverse spatial-keyword nearest neighbor queries.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Spatial

databases and GIS; H.3.4 [Information Storage and Retrieval]:
Systems and Software—Performance evaluation

General Terms
Algorithms, Experimentation, Performance

Keywords
Reverse k nearest neighbor, Spatial-keyword query

1. INTRODUCTION
The Internet is acquiring a spatial dimension, with content (e.g.,

points of interest and Web pages) increasingly being geo-positioned
and accessed by mobile users. Therefore, the reverse spatial-keyword
nearest neighbor query [5], which considers the fusion of spatial in-
formation and textual description, is becoming an important type of
queries in the local services of search engines (e.g., Google Maps)
and many other websites (e.g., travel planning websites).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGSPATIAL’15, November 03 - 06 2015, Bellevue, WA, USA
2015 ACM ISBN 978-1-4503-3967-4/15/11$15.00
DOI: http://dx.doi.org/10.1145/2820783.2820873.

s1

s2

s4
q

s3

c3
c2

c4

c1

(a) Distribution of cus-
tomers and shops

Customers x y Specified Keywords

c1 4 1 (laptop, 1)

c2 3 4 (camera, 1)

c3 10 5.5 (laptop, 1)

c4 7 6 (sportswear, 1)

(b) Preferences of customers in (a)

Shops x y Textual Descriptions

s1 6 0 (laptop,8), (stationery,7)

s2 8 4 (laptop,4), (stationery,8)

s3 2 8 (camera,8), (sportswear,8)

s4 6 8 (laptop,12), (camera,4)

q 9 7 (laptop,1), (camera,1), (sportswear,8)

(c) Locations and text descriptions of shops in (a)

Figure 1: An example of BRSKkNN queries

Reverse spatial-keyword nearest neighbor queries come in two
flavors: Bichromatic Reverse Spatial-Keyword nearest neighbor
(BRSKkNN) queries and Monochromatic Reverse Spatial-Keyword
nearest neighbor (MRSKkNN) queries. BRSKkNN queries involve
two types of objects (e.g., customers and shops), while MRSKkNN

queries involve one type of objects (e.g., shops).
Next, we take the BRSKkNN query as an example to explain

reverse spatial-keyword nearest neighbor queries. Let C and S be
the customer set and service set, respectively. Each customer object
c in C has a location c.p and a set of keywords representing the
preference of the customer c.kw; each service object in S has a
location s.p and a textual description s.doc. Given a service object
q as the BRSKkNN query, the result will be a set of customers in
C that have q as one of their top-k most spatial-keyword relevant

objects among the objects in the service set S. Here, the spatial-

keyword relevance [3, 5] is measured by both the spatial proximity
to the query location and the text relevance to the query keywords.

DST (c,s) = α(1−
Dist(c.p,s.p)

maxD
)+(1−α)

Rel(s.doc|c.kw)

maxR
, (1)

where parameter α ∈ [0,1] is used to adjust the importance of spa-
tial proximity and the textual relevance at the query time. Nor-
malization constants maxD and maxR denote the maximum spatial
distance and textual relevance between customers in C and shops
in S, respectively. Dist(c.p,s.p) is the Euclidian distance between
c.p and s.p. The text relevance Rel(s.doc|c.kw) of c to s is com-
puted by an information retrieval model. We use the Okapi BM25
model [7], a popular information retrieval model.

Fig. 1 displays the spatial layout and textual descriptions for a set
S of shops and a set C of customers. Points c1, · · · ,c4 (in C) shown
in Fig. 1(a) represent customers whose locations and keyword pref-
erences are given in Fig. 1(b), and points s1, · · ·s4,q (in S) repre-

sent shops with locations and texts given in Fig. 1(c) , where the
number following a word is the weight, intuitively representing the
relevance of a keyword to a shop. Given the shop q as the query
object, and k = 1, the results of the BRSKkNN query is {c4}.

The core problem for efficiently answering BRSKkNN queries is:
which objects or index nodes should be visited and in what order
to minimize the number of index node / object accesses and thus
I/O cost? None of the existing studies can effectively investigate
this key problem. The existing solutions (e.g., [2, 4, 8]) developed
for RkNN queries without text cannot be used to process RSKkNN

queries because they make use of the spatial geometry properties
to prune the search space without considering the textual informa-
tion [5,6]. The algorithm [5], to our knowledge, which is the state-
of-the-art solution for processing MRSKkNN queries (and can be
extended to process BRSKkNN queries), prioritizes traversing the
top-k spatial-keyword relevant service objects of customers. They
assume that visiting the union of these top-k objects will minimize
the I/O cost. However, if we consider the problem globally (rather
than focusing on a single node Ec), i.e., to find all the result nodes
and prune all the non-result nodes, it may suffice to visit a much
smaller set of service objects than the set of customer nodes visited
by the Algorithm [5]. We illustrate this with the earlier example.
The method [5] needs to visit two service objects: s1 and s3 (s1 and
s3 are the most relevant service object of c1 and c2, respectively) to
prune both customers c1 and c2. However, both c1 and c2 can be
pruned by visiting only s4, since s4 is more relevant than q for both
c1 and c2, though s4 is not their most relevant service object.

To this end, we analyze an ideal case that aims to minimize the
index node accesses for processing the BRSKkNN query. We de-
rive practical guidelines for the following questions, which are cru-
cial for the performance of algorithms for answering the BRSKkNN

query: Which customer (resp. service) index nodes or objects must
be visited? Which customer (resp. service) index nodes have higher
priority to be traversed first so that we can avoid visiting many other
nodes? Under the guidelines, we design an efficient solution for an-
swering BRSKkNN queries, which visits the must-be-visited nodes;
it prioritizes the visiting order for the other nodes, aiming to reduce
node accesses. Results of empirical studies demonstrate the scal-
ability and efficiency of the proposed algorithms: 1) the proposed
algorithm for BRSKkNN outperforms the baseline algorithm [5] by
1-2 orders of magnitude, and 2) our algorithm outperforms the al-
gorithm [5] for MRSKkNN by an order of magnitude.

2. BASELINES
Lu et al. [5, 6] proposed a branch-and-bound algorithm for pro-

cessing the MRSKkNN query, which is referred as our baseline al-
gorithm for the MRSKkNN query, denoted by MoBase. MoBase
can be extended to process the BRSKkNN query. We use IR-tree [3]
as the spatial-keyword index in the baseline methods and our pro-
posed algorithms for MRSKkNN and BRSKkNN queries. We use
two extended IR-trees to organize the two types of objects, cus-
tomer and service objects. For the baseline method of the BRSKkNN

query, denoted by BiBase, we extend the MoBase. BiBase vis-
its the top-k spatial-keyword relevant service objects for each cus-
tomer entry Ec to determine whether Ec contains the result cus-
tomers. Specifically, we traverse from the root of the customer in-
dex and the root of the service index simultaneously. For each vis-
ited customer entry Ec, we estimate the relevance between Ec and
all the service entries traversed currently, and use the estimation
to update the lower and upper bounds of the spatial-keyword rele-
vance between Ec and its k-th relevant service object. The bounds
are used to decide whether Ec can be pruned or contain results:
i) Ec is pruned if the maximum relevance between Ec and query

object q is smaller than its lower bounds; ii) All the customers
in Ec are reported as results if the minimum relevance between Ec

and q is larger than its upper bound. Note that BiBase is based on
the assumption that top-k spatial-keyword relevant service objects
of each customer entry Ec are discriminative in deciding whether
Ec contains results or can be pruned. However, if we consider the
problem globally as illustrated in Sec. 1, rather than focusing on the
top-k most relevant objects for each customer entry, it may suffice
to visit a much smaller set of service objects.

3. GUIDE-BASED ALGORITHM
We analyze an ideal case for BRSKkNN queries in Sec. 3.1 and

present practical guidelines derived from the ideal case and design
efficient guide-based algorithms, denoted by BiGuide, in Sec. 3.2.

3.1 Ideal cases analysis
Many algorithms have been developed for RkNN queries (e.g.,

[2,4,8]). They focus on how to reduce the accesses to index nodes,
thus reducing I/O cost and computational cost, which is the key
problem for the algorithms of processing RkNN queries. However,
none of them tries to analyze the optimal solution such that the
accesses to index nodes are minimized.

Next, we define an ideal case for processing BRSKkNN queries,
which will identify which entries must be visited, and which entries
should be given priority to be visited first to reduce the cost. We
assume that customers and service objects are organized in two sep-
arate IR-trees. Note that the analysis and the proposed algorithms
are applicable if other indexes (e.g., [5]) are in place.

Given a BRSKkNN query q, the minimum set of (customer and
service) objects and index nodes that need to be visited to answer q

is called the ideal search region (ISR) of q. A search algorithm that
only visits the objects and index nodes in the ISR of q is called an
ideal case for processing query q. Let C and S be the customer and
service object databases, respectively. Let Cr be the result customer
set, i.e., ∀c∈Cr, query service object q is the t +1-th (t < k) nearest
object of c. Let Cp be the set of customers that are not results of
q. Next, we first define the ISR for BRSKkNN when objects are not
indexed, and then we analyze the case in the presence of indexes.

DEFINITION 1. Given a service object s and a customer c, we

say s contributes to c (or c is contributed by s) iff the spatial-

keyword relevance between s and c is no less than the relevance

between the query object q and c, i.e., DST (c,s) ≥ DST (c,q). ✷

In the absence of an index, all the customers must be visited since
each customer c∈ C needs to be accessed to determine whether c is
a result. The analysis for service objects is more complicated. Two
sets of service objects must be visited:

Service objects Customer objects

s1

s2

s3

s4

c1

c2

c3

c4

t1=3

t2=3

t4=1

t2=3

Figure 2: Illustration of the

two sets S1, S2 for BRSKkNN.

An edge from s to c denotes

s contributes to c. The num-

ber ti following a customer ci

is the number of service ob-

jects that contribute ci

1) S1 =
⋃

c∈Cr
ToptSK(c, t,S):

The top-t (t<k) service ob-
jects for each result in Cr. A
customer c can be confirmed
to be a result iif fewer than k

service objects can contribute
to c; thus the top-t nearest
service objects of each result
c in Cr must be visited to
identify c to be a result.

2) S2: The minimum con-
tributing set (MCS). To prune
the non-result customers in
Cp, ideally we visit the min-
imum set of service objects.
To prune a customer c we

need to find at least k service objects that can contribute to c. Ser-
vice objects in S1 may also contribute to some customers in Cp.
We define MCS as the minimum set S′ of service objects in S s.t.
∀c ∈ Cp, c can be contributed by at least k service objects in S′

∪ S1. Intuitively, MCS is the minimum set of service objects that
must be visited to prune customers in Cp. The example shown in
Fig. 2 illustrates the two parts, S1, S2. Suppose k=2, result customer
is Cr ={c4}, and non-result customers are Cp = {c1, c2, c3}. We
have S1 = {s1} since s1 is the top-1 service object for result cus-
tomer c4. And we have S2={s4} since {s4} is the minimum set of
service objects such that at least k (=2) service objects in S1 ∪ S2

contribute to each non-result customer in Cp.
We proceed to analyze the ISR of the BRSKkNN query q in the

presence of indexes. We first consider the ISR for customer index
nodes. We say an index node contains customer c if the subtree
rooted at the node contains c. If an index node contains any result
customer (in Cr), we must visit the node since the result customer
must be visited. Ideally, we do not visit the index nodes that do
not contain result customers. Hence, the ISR for customer index
consists of all the customer nodes that contain result customers.

For service index, the ISR consists of two parts: 1) For each
customer c in result Cr, the service index nodes whose maximum
spatial-keyword relevance to a customer c in result Cr is equal to
or larger than the relevance of query object q to c must be visited
to identify c is a result. 2) The minimum contributing set (MCS)
of service index nodes. Similar to the analysis without index, we
want to identify the minimum set of index nodes, denoted by MCS,
and we can identify the set of non-result customers Cp by visiting
nodes in MCS and nodes in part 1).

The problem of finding MCS is computationally intractable since
it can be reduced from the minimum Set-Cover problem, which is
an NP-hard problem. Note that the purpose of our analysis is not
to develop an algorithm for achieving the ideal case. Nevertheless,
the analysis on the ideal case indicates what types of index entries
should be visited and the orders of visiting them. These offer prac-
tical guidelines for developing efficient algorithms, which have not
been explored by the existing studies on BRSKkNN queries.

3.2 Search Algorithm for BRSKkNN

Based on the analysis in Section 3.1, we derive three guidelines:
Guideline 1 ∀c ∈Cr, we must identify its top-t (t<k) most spatial-
keyword relevant service objects to identify c as a result customer.
Thus, we must visit all the service entries whose maximum spatial-
keyword relevance to c is no less than the relevance between c and
q. Note that it is non-trivial to estimate the maximum relevance
and this will be covered in the full version [1]. Guideline 2 Cus-
tomer index nodes that contain result customers must be visited.
Guideline 3 We need to visit service objects that can prune more
non-result customers. Ideally, we can visit only the objects in MCS.
It is desirable to visit such service objects that can contribute more
non-result customers to reduce the accesses of service entries.

Under the guidelines, we develop a novel algorithm for BRSKkNN

queries. We design different search strategies to process potential
result and non-result customers. The algorithm is in two steps: Pre-
liminary Diagnose (PD) Step and Confirmed Diagnose (CD) Step.

In PD Step, we aim to 1) identify customer entries that are likely
to contain result customers (which will be further checked and con-
firmed in CD Step) (guideline 2), 2) identify the service entries that
must be visited (guideline 1), and 3) prune non-result customer en-
tries as much as possible by visiting a minimum set of service ob-
jects (guideline 3). In CD Step, we aim to 1) find the top-t service
objects for result customer entries from the PD step to confirm them
to be results (guideline 1), and 2) selectively visit a minimum set

of service entries such that they can contribute to the non-result
customer entries, thus pruning non-result customers (guideline 3).

3.2.1 Algorithm PD

We first introduce several definitions and lemmas.
DEFINITION 2. Given a customer entry Ec, its contribution

number is the number of service objects that contribute to each

customer in Ec. Further given service entry Es, we say that service

entry Es “contributes to” Ec if ∀s ∈ Es, ∀c ∈ Ec, s can contribute

to c; Es “cannot contribute to” Ec if ∀s ∈ Es, ∀c ∈ Ec, s cannot

contribute to c; otherwise, we say Es “may contribute to” Ec. ✷

DEFINITION 3. Let T be a set of service entries that do not
have ancestor-descendant relationship. For a customer entry Ec,
the lower bound of the contribution number of Ec, denoted as LCNEc

,
is defined in Eqn(2). And the upper bound of the contribution num-
ber of Ec, denoted as UCNEc

, is defined in Eqn(3), where |Es| is the
number of service objects contained in Es.

LCNEc = ∑
Es ∈ T

Es contributes toEc

|Es| (2)

UCNEc = ∑
Es ∈ T

Es may contribute toEc

|Es| (3)

LEMMA 1. Given a customer entry Ec, if LCNEc
≥ k, then Ec

does not contain any result customer and can be pruned.

LEMMA 2. Given a customer entry Ec, if UCNEc
< k, then all

the customers in Ec belong to results.

Algorithm 1 PD (SR: the root of shop index tree, CR: the root of
customer index tree, q: query service object)

Output: result: the set of BRSKkNN result objects.
1: Us ← InitPriorityQueue(SR); Lc ← InitList(CR)
2: while Lc 6= /0 do

3: (Us, kNew)←FindNextkNN(Us, q)
4: nkOld← nkOld ∪ kNew; Ln = /0
5: for each entry Ec in Lc do

6: Lc ← Lc \ Ec

7: case← PreferCase(Ec, kNew, q)
8: if(case = CannotContribute) then Lca←Lca ∪ {Ec}
9: else if (case = MayContribute) then

10: if (Ec is an index node) then

11: for each child entry CEc of Ec do

12: LCNCEc = LCNEc ; UCNCEc = LCNEc

13: Ln ← Ln ∪ {CEc}
14: else Lca ← Lca ∪ {Ec}
15: Lc ← Lc ∪ {Ln}
16: result← CD(EnQueue(Us, nkOld), Lca, q)

Procedure PreferCase(Ec: Customer entry, kNew, q)
17: for each service s in kNew do

18: if LB∆((Ec,s)− (Ec,q)) ≥ 0 then

19: LCNEc ← LCNEc +1; UCNEc ← UCNEc +1;
20: if LCNEc = k then Return CanContribute;
21: if ∀s∈kNew, UB∆((Ec,s)− (Ec,q)) < 0 then Return CannotContribute;
22: Return MayContribute;

Next we introduce Algorithm PD (see Algorithm 1). PD works
in an iterative manner. In each iteration, it first identify the k most
spatial-keyword relevant service objects of query object q to pro-
cess customer entries to see if a customer entry contains results.
Intuitively, service objects that are most spatial-keyword relevant
to q are likely to contribute a result customer, and also they are
likely to be effective in pruning non-result customers. Then we use
the k most relevant service objects to process each customer entry
Ec by invoking PreferCase (Line 7). The result of PreferCase
will be one of the following three cases:

• CanContribute: The k service objects can contribute to Ec.
In this case, Ec can be pruned according to Lemma 1 (Line 20).

• CannotContribute: All the k service objects cannot con-
tribute to Ec. In this case, we move Ec to CD Step (Line 8).
Customer entry Ec satisfying this heuristic follows two possibil-
ities. Consider Fig. 3 as an example, let k=2 and consider spatial
information only for intuitive illustration. 1) Ec is likely to be a
result entry. As shown in Fig. 3(a), both s1 and s2, which are the
2NN of q, cannot contribute to customer c1 and thus c1 satisfies
the heuristic. We move c1 to CD Step, which will find q is the
nearest neighbor of c1 and thus identify c1 as the RkNN result
of q. In this way, we can avoid visiting the rest service objects
s3, · · · ,s6. 2) Ec is not a result entry which cannot be pruned ef-
fectively by the service objects near query object q. As shown in
Fig. 3(b), the 2NN of q: s1 and s2 cannot contribute to customer
entry Ec, and then we move Ec to CD Step. Therefore, we can
avoid visiting service objects s1, · · · ,s6 which are close to q but
cannot be used to prune Ec, while in CD Step, service objects s7

and s8 near Ec will be visited to prune Ec.

• MayContribute: The k service objects may contribute to Ec.
In this case, we visit the child of Ec if Ec is an index node
(Line 12); otherwise move Ec to CD Step (Line 14).

s6

s4

q

s5

c1

s3

s1

s2

(a) Ec (i.e., c1) contains results

s3

q

Ec

(b) Ec does not contain results

Figure 3: Heuristic illustration for customer entry Ec

3.2.2 Algorithm CD

Algorithm CD (see Algorithm 2) progressively computes the lower
and upper bounds of contribution number for the customer entries
moved from PD by visiting service entries in a branch-and-bound
manner to determine whether the customer entries are results. The
challenge here is how we can visit as few as possible service entries.
To achieve this, CD selectively visits a set of service and customer
entries and accesses them in an order based on two priority queues:

1) a max-priority queue Us2 which maintains the service entries
to be traveled. Each element Es in Us2 is associated with a set Es.C

of customer entries that may be contributed by Es. The rationale for
maintaining Es.C for Es is that Es and its descendant entries are not
necessary to be visited for the customer entries that are not in Es.C.
In other words, CD only needs to consider the customer entries
in Es.C when processing Es. The key of an element Es in Us2 is
the total contribution number of customer entries in Es.C. This is
because service entries contributing to more customer entries are
likely to prune more non-result customers (under Guideline 3).

2) CD maintains a max-priority queue Uca on the customer en-
tries that need to be checked whether to be results. Each customer
entry Ec is associated with a set Ec.S of service entries that may
contribute to Ec. The key of an element Ec in Uca is the total
contribution number of service entries in Ec.S to Ec. Intuitively,
a customer entry associated with a large number of service entries
is likely to be diverse in their spatial and textual information, and
thus it is difficult to process the entry as a whole. Hence we priori-
tize processing such entries (i.e., visiting their component entries).
In contrast, the bounds for customer entries associated with fewer
service entries are more likely to be tight, and thus it is more likely
to determine if such a entry as a whole contains results or not with-
out accessing its component entries.

Algorithm 2 CD (Ls, Lca, q)

1: Initialize two max-priority queues Us2 and Uca

2: for each customer entry Ec in Lca do

3: for each service entry Es in Ls do

4: UpdateBounds(Ec, Es, q, Us2)
5: if (IsHitOrDrop(Ec) = false) then EnQueue(Uca, Ec)

6: while Uca 6= /0 do

7: Es←DeQueue(Us2)
8: for each customer entry Ec in Es.C do

9: UCNEc ← UCNEc − |Es|
10: for each child entry CEs of Es do

11: UpdateBounds(Ec, CEs, q, Us2)
12: if (IsHitOrDrop(Ec) = true) then Uca ←Uca \ Ec

13: Ec←DeQueue(Uca)
14: for each child entry CEc of Ec do

15: LCNCEc = LCNEc ; UCNCEc = LCNEc

16: for each service entry Es in Ec.S in increasing order of UB∆((Ec,Es)−
(Ec,q)) do

17: UpdateBounds(CEc, Es, q, Us2)
18: if (IsHitOrDrop(CEc) = false) then EnQueue(Uca, CEc)
19: Return results

Procedure UpdateBounds(Ec, Es, q, Us2)
20: if LB∆((Ec,Es)− (Ec,q)) ≥ 0 then //Es contributes to Ec

21: LCNEc ← LCNEc + |Es|; UCNEc ← UCNEc + |Es|
22: else if UB∆((Ec,Es)− (Ec,q))≥0 then //Es may contribute to Ec

23: UCNEc ← UCNEc + |Es|
24: Add Ec into Es.C; Add Es into Ec.S
25: if ((Es is an index node) ∧ (∃ce∈Es.C, Es∈ce.S)) then

26: EnQueue(Us2, Es)

Procedure IsHitOrDrop(Ec)
27: if (LCNCEc≥k or UCNCEc<k) then

28: ∀se∈CEc.S,se.C=se.C\CEc;
29: if(UCNCEc<k) then results.add(subtree(Ec))
30: return true

31: else return false

4. CONCLUSION
In this paper, we study the reverse spatial-keyword nearest neigh-

bor query. We analyze an ideal case, which minimizes the page
accesses, for processing BRSKkNN queries. Under the derived
guidelines, we design an efficient search algorithm based on a novel
search strategy. The search algorithm can also be successfully ap-
plied to process MRSKkNN queries. We conducted experimen-
tal studies to evaluate the efficiency of our proposed algorithm.
The experimental results show that the proposed algorithms signif-
icantly outperform the state-of-the-art methods for both BRSKkNN

and MRSKkNN queries. Due to space limitation, we included the
details of the experiments and the proofs of Lemmas 1 and 2 in our
technical report [1].

5. REFERENCES
[1] Efficient Algorithms for Answering Reverse Spatial-Keyword Nearest

Neighbor Queries. http://www.cs.usc.edu/research/
technical-reports-list.htm?#2015.

[2] E. Achtert, H.-P. Kriegel, P. Kröger, M. Renz, and A. Züfle. Reverse
k-nearest neighbor search in dynamic and general metric databases. In
EDBT, pages 886–897, 2009.

[3] G. Cong, C. S.Jensen, and D. Wu. Efficient retrieval of the top-k most
relevant spatial web objects. In PVLDB, pages 337–348, 2009.

[4] I.Stanoi, M.Riedewald, D.Agrawal, and A.E.Abbadi. Discovery of
influence sets in frequently updated databases. In VLDB, pages
99–108, 2001.

[5] J. Lu, Y. Lu, and G. Cong. Reverse spatial and textual k nearest
neighbor search. In SIGMOD, pages 349–360, 2011.

[6] Y. Lu, J. Lu, G. Cong, W. Wu, and C. Shahabi. Efficient algorithms
and cost models for reverse spatial-keyword k-nearest neighbor
search. ACM Trans. Database Syst., 39(2):13:1–13:46, May 2014.

[7] S. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and
M. Gatford. Okapi at trec-3. In TREC, pages 109–126, 1994.

[8] Y. Tao, D. Papadias, and X. Lian. Reverse knn search in arbitrary
dimensionality. In VLDB, pages 744–755, 2004.

