
Sādhan āVol. 27, Part 2, April 2002, pp. 129–162. © Printed in India

Efficient algorithms for approximate time separation of
events∗

SUPRATIK CHAKRABORTY1, DAVID L DILL 2 and
KENNETH Y YUN3

1Department of Computer Science and Engineering, Indian Institute of
Technology – Bombay, Mumbai 400 076, India
2Computer Science Department, Stanford University, Stanford, CA 94305, USA
3Electrical and Computer Engineering Department, University of California,
San Diego, La Jolla, CA 92093-0407, USA
e-mail: supratik@cse.iitb.ac.in; dill@cs.stanford.edu; kyy@paradise.ucsd.edu

Abstract. Finding bounds on time separation of events is a fundamental problem
in the verification and analysis of asynchronous and concurrent systems. Unfortu-
nately, even for systems without repeated events or choice, computing exact bounds
on time separation of events is an intractable problem when both min and max
type timing constraints are present. In this paper, we describe a method for approx-
imating min and max type constraints, and develop a polynomial-time algorithm
for computing approximate time separation bounds in choice-free systems with-
out repeated events. Next, we develop a pseudo-polynomial time technique for
analysing a class of asynchronous systems in which events repeat over time. Unlike
earlier works, our algorithms can analyse systems with both min and max type tim-
ing constraints efficiently. Although the computed bounds are conservative in the
worst-case, experimental results indicate that they are fairly accurate in practice.
We present formal proofs of correctness of our algorithms, and demonstrate their
efficiency and accuracy by applying them to a suite of benchmarks. A complete
asynchronous chip has been modelled and analysed using the proposed technique,
revealing potential timing problems (already known to designers) in the datapath
design.

Keywords. Asynchronous systems; timing analysis and verification; approxi-
mate algorithms; convex approximation; time separation of events; bounded delay
timing analysis.

1. Introduction

The behaviour of asynchronous and concurrent systems is naturally described in terms
of events and their interactions. A fundamental problem in analysing such systems is to

∗Parts of this work are based on “Timing Analysis of Asynchronous Systems using Time Separation of
Events” by Chakraborty, Dill and Yun 1999IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems, 18(8): 1061–1076 ©IEEE. Permission to publish this material has been obtained from IEEE

129

130 Supratik Chakraborty et al

determine bounds of the time separation of events. Stated informally, we seek answers
to questions such as: “How late can eventA occur after eventB?” for arbitrary events
A and B. Time separation bounds find use in a wide variety of applications, including
interface timing verification (Borriello 1988; Gahlinger 1990; Brzozowskiet al 1991;
McMillan & Dill 1992; Walkup 1995; Yenet al 1998), synthesis, optimization and ver-
ification of asynchronous circuits (Vanbekbergenet al 1992; Amon 1993; Lavagno &
Sangiovanni-Vincentelli 1994; Myers 1995; Hulgaard 1995; Chakrabortyet al 1999), and
performance analysis and scheduling of concurrent systems (Chou & Borriello 1995;
Hulgaard 1995; Yen & Wolf 1995; Chakrabortyet al 1999). In addition, it also has
applications in the synchronous domain, e.g., optimal clock scheduling in circuits with
latches (Sakallahet al 1990). The problem of computing time separation bounds is com-
pounded in practice by statistical variations in manufacturing and operating conditions that
introduce uncertainties in component delays. Consequently, finding bounds of time sepa-
ration of events in the presence of uncertain component delays is an important practical
problem.

Unfortunately, finding exact time separation bounds in systems with uncertain delays
is a computationally intractable problem in general (McMillan & Dill 1992). This moti-
vates the investigation ofefficient techniques for computing bounds that areapproximate
in the worst-case, but fairly accurate in practice. In this paper, we address this problem
in two parts. First, we describe a polynomial-time algorithm for computing approximate
time separation bounds in systems without repeated events. Next, we use this algo-
rithm to design a pseudo-polynomial-time algorithm for analysing a class of systems
with repeated events. All bounds computed by our algorithms are provably conserva-
tive. Nevertheless, experiments indicate that they are fairly accurate in practice. For
efficiency, we restrict our analysis to systems without choice or conditional behavior.
While this is a significant restriction, empirical evidence suggests that several impor-
tant applications can be modelled as choice-free systems and analysed by our technique.
We demonstrate the effectiveness of our approach by verifying interface timing con-
straints and by computing performance metrics of an asynchronous chip design (Yunet al
1998).

Several temporal logics described in the literature can also be used to specify proper-
ties expressible as time separation between events (see Alur & Henzinger 1992 for a sur-
vey). Typically, the specification is given as a formula in a suitable temporal logic, and the
system under verification is specified using one of several formalisms, e.g. timed transi-
tion systems, temporal logic formulae, etc. Depending on the formalisms used to specify
the system and the property, deductive or algorithmic techniques (like model checking)
can be used to verify that the system satisfies the specification. Time separation of events
analysis, on the other hand, starts from an event-based description of the system and com-
putes bounds of all relevant time separation of events. Comparison of the computed bounds
with required bounds then reveals whether specified timing constraints (properties) are vio-
lated. Clearly, this approach restricts the type of properties one can specify and verify
to only those expressible as time separation between events. In contrast, temporal logics
like TPTL, RTTL, RTCTL, TCTL etc. (Alur & Henzinger 1992) are significantly richer
in their expressive power. Nevertheless, the restriction allows us to design efficient algo-
rithms with a high degree of accuracy for an important class of problems that arise in the
analysis of asynchronous and concurrent systems. In addition, the computed time separa-
tion bounds also allow us to compute system performance metrics without any additional
effort.

Efficient algorithms for approximate time separation of events 131

The remainder of this paper is organised as follows. Section 2 describes a formalism for
representing timing constraints between events, and characterizes a class of systems called
tightly-coupled systems. Section 3 describes related work on time separation of events anal-
ysis. In § 4, we describe an approximation technique for min and max timing constraints,
and use this to design a polynomial-time algorithm for computing bounds on time separation
of events in systems without repeated events. Section 5 describes an algorithm for comput-
ing approximate bounds of time separation of events in tightly-coupled systems, while § 6
describes application of this algorithm to an asynchronous chip design. Section 7 explains
the drawbacks and limitations of our approach. Finally, we conclude the paper in § 8.

2. Problem representation and formalization

In this section, we describe a formalism for representing timing constraints between events.
We then characterize a class of choice-free systems with repeated events, and formalize the
time separation of events problem for such systems.

2.1 Timing constraint graph

Following existing convention (Borriello 1988; Brzozowskiet al1991; Burns 1991; McMillan
& Dill 1992; Vanbekbergenet al 1992), we represent timing constraints between events by
a directed, labeled graph,G = (V , E), called thetiming constraint graph. Vertices inV

represent events, and edges inE represent timing constraints between events. In the following,
we will use the termsverticesandeventsinterchangeably. We use acyclic graphs to model
systems without repeated events, and add cycles in the graphs to model events that repeat
over time.

Every eventv in a timing constraint graph is associated with a min or maxtypethat specifies
the nature of timing constraint associated with the event. An event with no incoming edges
is called asourceevent, while one with no outgoing edges is called asinkevent. Every edge
〈u, v〉, from u to v, is labeled with a delayδu,v that represents the delay in the propagation
of eventu’s effect to the component that generates eventv. The edge delays are constrained
to lie within fixed lower and upper bounds,du,v andDu,v, i.e., 0≤ du,v ≤ δu,v ≤ Du,v. For
notational convenience, we represent edge delays as [du,v, Du,v].

In order to model systems with repeated events, we add cycles in timing constraint graphs.
Thus, a general timing constraint graph has two components: a finite acyclic component

x y

b

ed

max

min

Reset

[2,3]

[0,1]
a

Component
Cyclic

Component
Acyclic

Figure 1. A cyclic timing constraint graph.
Square vertices represent max events, circles rep-
resent min events. Edge delays are shown in the
legend.

132 Supratik Chakraborty et al

modelling the behaviour of the system immediately after it is started, and a finite cyclic
component modelling the subsequent behaviour that repeats over time (see figure 1). A vertex
in the acyclic component represents a single occurrence of an event, whereas a vertex in
the cyclic component represents infinite occurrences of an event. The notation of Amon and
coworkers (Amonet al 1992; Hulgaardet al 1995) is used to distinguish between different
occurrences of the same event: thekth occurrence of eventv is denotedvk, andk is called the
occurrence indexof vk. By convention, the first occurrence ofv is denotedv1. In addition, it
is assumed that there exists a uniqueReset event with no incoming edges that represents the
start of operation of the system.

Every edge in a timing constraint graph is designated as eithermarkedor unmarked. A
marked edge fromu to v represents a dependency of the time of occurrence of eventvk+1 on
that of eventuk, for all occurrence indicesk. On the other hand, an unmarked edge fromu tov

denotes a dependence of the time of occurrence ofvk on that ofuk. A marked edge is depicted
by an edge with a• as shown in figure 1. For clarity, edges with different delay intervals are
represented by different arrow types in this paper (see, for example, the legend in figure 1).

Let τvk
denote the time of occurrence of eventvk andpreds(vk) denote the set of events

with an edge tovk, i.e., predecessors ofvk in the graph. Ifvk is of max type, thenτvk
is given

by maxu ∈ preds(vk)(τu + δu,vk
) wheredu,vk

≤ δu,vk
≤ Du,vk

. For brevity, we will henceforth
write this asτvk

= maxu∈preds(vk)(τu + [du,vk
, Du,vk

]). For a min type event, the expression
for τvk

is similar, with max replaced by min.
As an example, the graph of figure 1 represents the following set of timing constraints:

τx1 = τReset1 + [0, 1]; τy1 = τReset1 + [0, 1];
τa1 = τx1 + [2, 3]; τb1 = max(τx1 + [2, 3], τy1 + [0, 1]);
∀k ≥ 1; τdk

= min(τak
+ [2, 3], τbk

+ [2, 3]);
∀k ≥ 1; τek

= max(τak
+ [0, 1], τbk

+ [0, 1]);
∀k ≥ 1; τak+1 = max(τdk

+ [0, 1], τek
+ [0, 1]);

∀k ≥ 1; τbk+1 = τek
+ [0, 1].

Let T denote the set of all time variables in the system, i.e.,T = {τv : v ∈ V }. Let<+ be
the set of non-negative real numbers. Aconsistent timing assignment,T A : T → <+, is an
assignment of non-negative reals to the time variables, such that all constraints in the timing
constraint graph are satisfied.

Following the terminology of Amon and coworkers (Amonet al1992; Hulgaardet al1995)
and Myers & Meng (1993), a timing constraint graph is said to bewell-formedif

(1) there are no cyclic components, or
(2) there are one or more cyclic components with the following properties: (a) every cycle

has at least one marked edge, and (b) for every eventv on a cycle, there exists at least one
cycle with exactly one marked edge that containsv.

Given a well-formed graph, if we assign every edge a delay within the corresponding
bounds, the time of occurrence of every event is well-defined. Specifically, for graphs with
cyclic components, condition 2a ensures that no event is deadlocked, while condition 2b
ensures that the time of occurrence ofvk is well-defined for every occurrence indexk. All
graphs considered in this paper are assumed to be finite and well-formed.

A graphG = (V , E) with one or more cycles represents timing constraints between an
infinite set of event occurrences. These constraints can be equivalently represented by an

Efficient algorithms for approximate time separation of events 133

2
1

0

G
G

C2 3

G Subgraphs

CutsetsC1 C

2

b3

a3d

b

1d

1
b

min [0,1]

2e

a2

21 e

1

1

x
Reset1 a1

y

max [2,3]

Figure 2. Unfolded version of cyclic timing constraint graph in figure 1.

infinite acyclicgraphG∗ = (V ∗, E∗) constructed as follows. For every eventv in the acyclic
component ofG, we create a corresponding eventv1 in G∗. For every eventv in the cyclic
component ofG, we create an infinite set of events inG∗, namely{vi : i ≥ 1}. Each suchvi

in G∗ is associated with the same operator (min or max) asv is in G. Whenever there exists
a marked edge fromu to v in G, edges are drawn fromui to vi+1 for all occurrence indices
i in G∗. For every unmarked edge fromu to v in G, edges are drawn fromui to vi in G∗.
The edges thus drawn inG∗ are labeled with the same delay interval as the edge fromu to v

in G. We callG∗ theunfolded graphof G. As an example, figure 2 (ignoring the enclosing
boxesb1, a1, b2, a2 etc. and the annotations regarding subgraphs and cutsets) depicts the
initial portion of the infinite acyclic graph obtained by unfolding the timing constraint graph
in figure 1.

2.2 Tightly-coupled systems

Given an unfolded graph,G∗ = (V ∗, E∗), a path fromu to v is defined as a sequence of
events(u, . . . x, y, . . . v) such that〈x, y〉 ∈ E∗ for every pair of consecutive eventsx andy.
By definition,(u) is a path from eventu to itself. We say thatv is reachablefrom u if there
exists a path fromu to v; otherwise,v is unreachablefrom u.

Given a set,X, of events, the set of events reachable from somev in X is denotedR(X).
The set of events unreachable from all events inX is denotedR′(X). A cutset,C, is a finite
set of events such that every path fromReset to every event reachable fromC passes through
at least one event inC. For example, the set{a1, b1} in figure 2 is a cutset of the infinite
unfolded graph.

DEFINITION 1

A timing constraint graph with cycles is said to betightly-coupledif the unfolded graph has
a sequence of cutsets,Ci for all i ≥ 1, such that:

P1: There are finitely many events that arenot reachable fromC1.
P2: There exists a finite, positive integerα such thatCi = {vk+(i−1)α : vk ∈ C1}.
P3: For all i different fromj , Ci is disjoint fromCj .
P4: For everyu in Ci and everyv in Ci+1, there exists at least one path fromu to v, such

that all events along the path are of max type.

134 Supratik Chakraborty et al

As an example, the sets of events enclosed within boxesC1, C2 andC3 in figure 2 represent
the first three cutsets in an infinite sequence satisfying propertiesP1 throughP4. Therefore,
the graph in figure 1 is tightly-coupled.

The reader may consider propertyP4 overly restrictive and wonder if removing min type
events, such asdi in figure 2, alters the temporal behaviour of the system. However, it can be
shown that removing thedi ’s in figure 2 indeed alters the maximum possible time separation
from bi to ai , for all i greater than or equal to 2.

Let Gi = (Vi, Ei) denote the subgraph “sandwiched” between cutsetsCi andCi+1, for all
i greater than or equal to 1. Formally,Vi = R(Ci) ∩ (R′(Ci+1) ∪ Ci+1) andEi = {〈u, v〉 :
u, v ∈ Vi and〈u, v〉 ∈ E∗}. For the sake of completeness, subgraphG0 = (V0, E0) is defined
as the component modelling the behaviour of the system fromReset to the events inC1, i.e.,
V0 = R′(C1) ∪ C1 andE0 = {〈u, v〉 : u, v ∈ V0 and〈u, v〉 ∈ E∗}. Due to the repetitive
structure of the unfolded graph, it is easy to see thatGi is isomorphicto G1, for all i greater
than or equal to 1. For a given choice of cutsets, the behaviour modelled byG0 is referred to
as theinitial behaviourof the system, and the behaviour modelled byGi (i ≥ 1) is referred
to asiteration i of the system.

If α in propertyP2 is chosen greater than 1 (see, for example, figure 8b below), subgraph
Gi may include multiple occurrences of the same event. To keep event labels unambiguous
and consistent, we relabel events after unfolding a graph as follows:

• All events inG0 andG1, except those in cutsetC2, are assigned unique labels with
occurrence index 1.

• For every event,v1, in G1, the corresponding event inGi (correspondence defined by
the isomorphism fromG1 to Gi) is labeledvi . This, of course, implies thatCi = {vi :
v1 ∈ C1}, so α in propertyP2 reduces to 1.

2.3 The problem

The problem we wish to address can now be stated as follows. Given a tightly coupled system
with subgraphsGi (i ≥ 0) of the unfolded graph,

(1) Determine upper bounds of time separations of all ordered pairs of events inG0.
(2) Determine upper bounds of time separations of all ordered pairs of events inGi , maximised

over alli ≥ 1.

Although both upper and lower bounds of time separations are of interest to us, a lower
bound of(τv − τu) can be obtained by reversing the sign of the upper bound of(τu − τv).
Therefore, it suffices to compute upper bounds for everyordered pairof events.

3. Related work

Borriello (1988) modelled the timing of interface signals using linear inequalities, and pro-
posed an exact timing verification algorithm based on computing shortest paths between
all pairs of vertices in a graph. Gahlinger (1990), Brzozowskiet al (1991) Mavaddat &
Gahlinger (1998) also used linear constraints to verify the consistency of interface timing
specifications and to check the satisfiability of timing requirements.

McMillan & Dill (1992) showed that computing exact bounds of time separation of events
is NP-complete even for acyclic graphs when both min and max type constraints are present.
They proposed a polynomial-time algorithm for systems with only max constraints, and a

Efficient algorithms for approximate time separation of events 135

pseudo-polynomial time algorithm for systems with max and linear constraints. They also
described a branch-and-bound technique, with complexity exponential in the number of min
type events, for analysing systems with both min and max constraints. Vanbekbergenet al
(1992) proposed a polynomial-time algorithm for computing bounds in acyclic graphs with
only max constraints. Burks & Sakallah (1993) posed the time separations problem for acyclic
graphs as amin-max linear programand showed it to be NP-complete. They proposed a
branch-and-bound technique and a mixed integer linear program formulation to solve the
problem. Unfortunately, both their techniques have worst-case exponential complexity.

Walkup and others (Walkup & Borriello 1994; Walkup 1995) proposed theShortCircuit
algorithm for analysing systems of max and linear constraints, with applications to interface
timing verification and interface logic synthesis. Subsequently, Yenet al (1998) proposed
theMaxSeparation algorithm for solving the same problem. Both these algorithms analyse
systems without repeated events and areconjecturedto run in polynomial-time. The exact
complexity of computing time separation bounds in systems with max and linear constraints
is, however, still an open question.

Amon & Borriello (1992) proposed a technique based onconstraint logic programming
(CLP) for timing analysis of systems with min, max and linear constraints. Subsequently,
Girodiaset al (1997) have also described a method based on CLP augmented with relational
interval arithmetic, for analysing similar systems. Although these techniques are exact, they
apply to systems without repeated events, and have worst-case exponential complexity.

Burns (1991) and Lee (1995) proposed techniques for determining the cycle time of asyn-
chronous systems with repeated events. Burns’ technique applies to max-only systems and
has polynomial time complexity, while Lee’s technique applies to more general systems at
the cost of worst-case exponential complexity. Gunawardena (1994) gave a theoretical frame-
work for analysing cyclic systems of min and max constraints with fixed delays. He studied
the periodic behaviour of such systems and gave an analytic formula for the period. Several
other researchers have also modelled asynchronous circuits as systems of repeated events
with different delay assumptions, and proposed techniques for computing their performance
metrics (Kudvaet al1994; Nielson & Kishinevsky 1994; Williams 1994; Tofts 1995; Xie &
Beerel 1997; Ebergen & Berks 1997; Berks & Ebergen 1997).

Myers & Meng (1993) described a polynomial-time algorithm for approximate tim-
ing analysis of max-only systems with repeated events and bounded delays. In their
method, a cyclic graph is used to represent timing constraints between events. Their
algorithm effectively unfolds this graph and analyses a finite subgraph of the unfolded
graph to compute approximate bounds of time separation between events. Our approach
differs from theirs in two important respects: (a) we propose a different algorithm for
computing approximate bounds in acyclic graphs, enabling us to analyse systems with
both min and max constraints, and (b) we define a notion of convergence and provide
an analytic upper bound of the number of iterations needed for our iterative algorithm
to converge.

Amon and coworkers (Amonet al 1992; Hulgaardet al 1995) also considered systems of
repeated events with only max constraints, and proposed an algebraic technique for computing
exact bounds of the time separation of events. Their technique implicitly unfolds a cyclic
graph into an infinite acyclic graph and uses algebraic techniques to determine the maximum
time separation between a pair of events, maximised over all unfoldings. Hulgaard and others
(Hulgaard & Burns 1994; Hulgaard 1995) also extended this work to systems with certain
types of choices. Recently, symbolic timing verification has been studied by Amon and others
(Amon et al 1997; Amon & Hulgaard 1999). Timing verification using difference decision

136 Supratik Chakraborty et al

diagrams has also been attempted by Mlleret al (1999). All these techniques, however, have
worst-case complexity that is at least exponential in the size of the system description.

4. Analysing acyclic graphs

In this section, we develop a polynomial-time algorithm for computing approximate bounds
on time separations of all pairs of events in an acyclic timing constraint graph. This algorithm
is then used in § 5 to develop a pseudo-polynomial time algorithm for analysing tightly-
coupled systems.

4.1 An approximation strategy

We start by approximating min and max constraints using systems of linear inequalities.
Consider a max constraint of the form:

τf = max(τi + δi,f , . . . τk + δk,f), where

di,f ≤ δi,f ≤ Di,f ,

...

dk,f ≤ δk,f ≤ Dk,f . (1)

Mathematically, this is equivalent to:

(τf ≥ τi + di,f) ∧
... ∧

(τf ≥ τk + dk,f) ∧

(τf ≤ τi + Di,f) ∨
... ∨

(τf ≤ τk + Dk,f)

 . (2)

Assuming that the number of time variables isn, the feasible regionof the above system
of inequalities is the set of points(τf , τi . . . , τk) in n-dimensional real space that satisfy the
system of inequalities. It is well-known that the feasible region of the conjunction of linear
inequalities inn variables is a convex polytope inn-dimensional real space. However, the
disjunctions in (2) cause the feasible region of (2) to be non-convex. As a consequence, effi-
cient convex optimization techniques, like linear programming or the shortest path algorithm
cannot be applied to determine bounds of the difference between time variables.

We, therefore, intend to approximate the non-convex feasible region by aconvex over-
approximationor envelope, and compute bounds of the difference between time variables
within the convex envelope. Since the original feasible region is contained in the envelope,
maximizing the difference between a pair of variables in the envelope always gives an upper
bound of the maximum separation in the original feasible space. Since the convex hull ofk

points is the smallest convex envelope containing all the points, using the convex hull of the

Efficient algorithms for approximate time separation of events 137

corners of the feasible region as the required envelope would give us the best approximation
results. Unfortunately, computing the convex-hull of ann-dimensional region has worst-case
complexity exponential inn. Consequently, it is necessary to develop more efficient techniques
for computing a reasonably small convex envelope of the feasible region.

In order to obtain the required convex envelope, we propose to approximate each max (and
min) constraint, as in (1), by conjunctions of linear inequalities. A naive way to do this would
be to retain all conjuncts in (2) of the formτf ≥ τi + di,f and to discard the disjunction of linear
inequalities. However, this leads to a crude over-approximation since the resulting system of
inequalities does not constrain the maximum value ofτf . Hence, for the approximation to be
good, the disjunction of inequalities in (2) must not be ignored. Our solution, therefore, is to
derive a system of inequalities from (2), in which only the conjunction operator is used.

Let s be an arbitrary event in the system. In the following, we wish to obtain bounds of
the time separation betweens andf , wheref is a max-type event, as in constraint (1). For
every predecessori of f , let1(i, s) and1(s, i) beanyreal numbers satisfying the following
inequalities:

τs ≤ τi + 1(i, s), (3)

τi ≤ τs + 1(s, i). (4)

The values of1(s, i) and1(i, s) can now be used in conjunction with inequalities (2) to
derive linear relations between the time of occurrence off and that of the arbitrary events.
Specifically,

τf ≥ τi + di,f , from (2), and

τi ≥ τs − 1(i, s), from (3), imply that

τf ≥ τs − 1(i, s) + di,f .

Similarly,

τf ≤ τi + Di,f , from (2), and

τi ≤ τs + 1(s, i), from (4) imply that

τf ≤ τs + 1(s, i) + Di,f .

Therefore, the inequalities in (2) imply the following:

(τf ≥ τs − 1(i, s) + di,f) ∧
... ∧

(τf ≥ τs − 1(k, s) + dk,f) ∧

(τf ≤ τs + 1(s, i) + Di,f) ∨
... ∨

(τf ≤ τs + 1(s, k) + Dk,f),

 . (5)

The conjunctions in (5) simplify to

τf ≥ τs + max
l ∈ preds(f)

(−1(l, s) + dl,f), (6)

138 Supratik Chakraborty et al

and the disjunctions are equivalent to

τf ≤ τs + max
l ∈ preds(f)

(1(s, l) + Dl,f). (7)

Since choosings to be the same asf in the above inequalities is uninteresting, it is henceforth
assumed thats is not equal tof . Thus, we obtain the following from inequalities (6) and (7):

∀s 6= f,

− max
l ∈ preds(f)

(1(s, l) + Dl,f) ≤ τs − τf , and

τs − τf ≤ min
l ∈ preds(f)

(1(l, s) − dl,f). (8)

The system of inequalities (8) is now used as an approximation of the max constraint in
(1), and inequalities (2) are discarded. The following important observation follows from
inequalities (8).

Observation1. Letf be a max-type event,s an arbitrary event different fromf and1(s, l)

and−1(l, s) upper and lower bounds respectively of(τl − τs), for each predecessorl of
f . Then, the value of(τs − τf) is bounded above by minl ∈ preds(f)(1(l, s) − dl,f) for
all consistent timing assignments. Similarly, the value of(τf − τs) is bounded above by
max l ∈ preds(f) (1(s, l) + Dl,f) for all consistent timing assignments.

Similar considerations for a min constraint lead to the following observation.

Observation2. Letf be a min-type event,s an arbitrary event different fromf and1(s, l)

and−1(l, s) upper and lower bounds respectively of(τl − τs), for each predecessorl of
f . Then, the value of(τf − τs) is bounded above by minl ∈ preds(f)(1(s, l) + Dl,f) for
all consistent timing assignments. Similarly, the value of(τs − τf) is bounded above by
max l ∈ preds(f) (1(l, s) − dl,f) for all consistent timing assignments.

Example1. Consider the following system of timing constraints:

τ3 = max(τ1 + δ1,3, τ2 + δ2,3),

1 ≤ δ1,3, δ2,3 ≤ 3,

1(1,2) = 1(2, 1) = 1.

Figure 3a shows the feasible region of this system. The space enclosed within the “V”-
shaped volume and extending infinitely in both directions along the ridge of the V represents
the feasible region. The approximation strategy described above gives the following linear
inequalities for this system:

τ3 ≥ τ1 + 1; τ3 ≤ τ1 + 4; τ3 ≥ τ2 + 1;
τ3 ≤ τ2 + 4; −1 ≤ τ2 − τ1 ≤ 1 .

The feasible region of this system of inequalities is shown in figure 3b. Clearly, this forms a
convex envelop of the original non-convex feasible region.

Efficient algorithms for approximate time separation of events 139

t2

t3

t2

t3

t1 t1

��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������

�������
�������
�������
��������������

�������
�������
�������

������
������
������
������

������
������
������
������

�
�
�
�
�
�
�

�
�
�
�
�
�
�

������
������
������
������

������
������
������
������

���������������
���������������
���������������
���������������

���������������
���������������
���������������
�����������������������������

��������������
��������������
��������������

��������������
��������������
��������������
���������������������

�������
�������
�������

�
�
�
�
�

�
�
�
�
�

������
������
������

������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

1

1

2 2

1

1 11

(a) (b)

Figure 3. Illustrating the inclusion of the original feasible space in the approximate convex space.

4.2 A polynomial-time algorithm

The observations made above are now used to design a polynomial-time algorithm for com-
puting approximate bounds of the time separation of all pairs of events in an acyclic graph.
The algorithm accepts as input a finite, acyclic timing constraint graph withn events. For
graphs with multiple source events, the minimum and maximum time separations between
all pairs of source events are also taken as inputs. The output of the algorithm is ann × n

matrix,1; the entry in rowi and columnj , denoted1(i, j), is an upper bound of(τj − τi).
It is assumed that the events in the timing constraint graph are topologically sorted and

every event has a topological index greater than those of its predecessors. For a graph with
m source events, the source events are assumed to have indices 0 throughm − 1.

In order to explain the way in which the algorithm works, we definelayer i of the1 matrix
as the set of all1(j, i) and1(i, j) entries, withj lying in the range 0 throughi. The1 matrix
is viewed as made up ofn layers, numbered 0 throughn − 1, as shown in figure 4 for a 4× 4
matrix. The proposed algorithm, calledAcyclicApproxSep, computes values of the entries in
the1 matrix in order of increasing layers. It starts with layer 0, i.e.,1(0, 0), which has the
value 0 trivially. It then computes the entries in layer 1, followed by the entries in layer 2, and
so on, until alln layers have been computed.

0,0

1,0

2,0

3,0

0,1 0,2 0,3

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,3

∆

Layer 0

Layer 1

Layer 2

Layer 3

Figure 4. Layer wise construction of the1 matrix.

140 Supratik Chakraborty et al

/* Source events have indices 0 throughm − 1, other events have indicesm throughn − 1.*/
/* preds(i) = set of events with an edge to eventi; 1: an n× n matrix;1(i, j) = upper */
/* bound ofτj − τi . */
/* Bounds of the time separations between all pairs of source events are given. */
/* Algorithm computes conservative bounds on the time separations between all other pairs*/
/* of events. */

AcyclicApproxSep (G : acyclic graph;1 : matrix)

InitializeDelta(1);
for each i in m to (n − 1)

1. ComputeInitialEstimates (i, 1);
2. for each j in 0 to i − 1

if (eventj is max type)
(2a)1(i, j) =

min(1(i, j), maxk ∈ preds(j)(1(i, k) + Dk,j));
(2b)1(j, i) =

min(1(j, i), mink ∈ preds(j)(1(k, i) − dk,j));
else if(eventj is min type)
(2c)1(i, j) =

min(1(i, j), mink ∈ preds(j)(1(i, k) + Dk,j));
(2d)1(j, i) =

min(1(j, i), maxk ∈ preds(j)(1(k, i) − dk,j));

InitializeDelta (1 : matrix)
for each i in 0 to (n − 1)

for each j in 0 to (n − 1)
if (i == j) 1(i, i) = 0;
else if(i < m AND j < m) /* Source events */

1(i, j) = given upper bound of(τj − τi);
else 1(i, j) = +∞;

ComputeInitialEstimates (i : index; 1 : matrix)

if (eventi is max type)
for each j in 0 to (i − 1)

(i) 1(i, j) = mink ∈ preds(i)(1(k, j) − dk,i);
(ii) 1(j, i) = maxk ∈ preds(i)(1(j, k) + Dk,i);

else if (eventi is min type)
for each j in 0 to (i − 1)

(iii) 1(i, j) = maxk ∈ preds(i)(1(k, j) − dk,i);
(iv) 1(j, i) = mink ∈ preds(i)(1(j, k) + Dk,i);

Figure 5. Algorithm for computing time separation of events in acyclic graphs.

Figure 5 shows the steps in the timing analysis algorithm1. After initialization, the algorithm
computes the entries of the matrix from layerm onwards. For each layeri, the algorithm first
invokes functionComputeInitialEstimates to compute initial estimates of the entries in layer
i using observations 1 and 2 of § 4.1. The type of eventi is used to determine the expressions
for the initial estimates. Referring to the pseudo-code in figure 5, note that the value ofj

in steps (i) through (iv) of functionComputeInitialEstimates is less thani. Moreover, all

1This is an improved version of the algorithm reported earlier by Chakraborty & Dill (1997)

Efficient algorithms for approximate time separation of events 141

predecessors of eventi have topological indices less thani. So, the entries from the1 matrix
that are used in the expressions for the initial estimates belong to layers numbered less thani.
Since the entries in the matrix are computed in order of increasing layers, these entries would
have already been computed by the time layeri is processed. After the initial estimates are
computed, they arerefinedin steps (2a) through (2d) of figure 5. Once again, observations 1
and 2 are used, but this time the type of eventj is used to determine the expressions for the
bounds. Note that refining an entry in layeri requires knowledge of values of other entries in
the same layer. However, by considering eachj in increasing order from 0 throughi − 1, the
required entries are estimated and refined before they are used.

Let p denote the maximum number of predecessors of an event in the timing constraint
graph. The complexity of theAcyclicApproxSep algorithm is easily seen to beO(n2.p). Since
p is usually bounded above by a small constant, the complexity isO(n2) for all practical
purposes. In the worst case,p is O(n), so the complexity isO(n3).

We now prove the correctness of algorithmAcyclicApproxSep. Given an acyclic timing
constraint graphG, let the maximum achievable time separation from eventi to eventj be
1∗(i, j).

Theorem 1. For every ordered pair of events(i, j), 1∗(i, j) is bounded above by1(i, j).

Proof. We show inductively that at the end of every step of the algorithm,1∗(i, j) ≤ 1(i, j).
The steps of the algorithm are assumed to be numbered in the sequence in which they are
executed. For notational convenience, the last step of initialization is referred to as step 0.
Basis:The claim is trivially true at the end of initialization.
Hypothesis:Let the claim be true at the end of stepk, wherek ≥ 0.
Induction:Consider stepk + 1. At most one entry of the1 matrix is modified in this step.
Let this be1(i, j). The new value of1(i, j) is given by the expression on the right hand
side of one of the assignments labelled (2a)–(2d) and (i)–(iv) in figure 5. By hypothesis, the
1 matrix entries used in these expressions are upper bounds of the corresponding maximum
achievable time separations. Therefore, by observations 1 and 2, the newly computed value
of 1(i, j) is an upper bound of1∗(i, j).

It has been further shown by Chakraborty (1998) that the bounds computed by algorithm
AcyclicApproxSep areexactif (i) the timing constraint graph has a single source event, and
(ii) all events are of the same type (either all max or all min). We omit the proof here due to
lack of space, and also because the result is not directly relevant to the algorithm developed
in § 5. Although experiments reported in § 4.3 indicate that our algorithm computes exact
bounds in several cases where the above conditions are not met, currently we do not have a
better characterization of systems for which our algorithm produces exact results.

4.3 Experiments with acyclic graphs

TheAcyclicApproxSep algorithm has been implemented and applied to several system speci-
fications. The benchmarks include cyclic timing constraint graphs from Hulgaardet al(1994)
and Myers & Meng (1993) unfolded to various degrees. These are named “hr-n” and “mr-n”
in table 1, where different values ofr indicate different cyclic graphs, andn denotes the degree
of unfolding. The benchmark “mcmill” has been adapted from McMillan & Dill’s (1992)
paper. The “diffeq” benchmark was obtained from analysis of an asynchronous differential
equation solver chip (explained in § 6). The graphs for “Sat-n” were obtained by generat-
ing random 3-SAT formulae inn variables and then transforming them to timing constraint

142 Supratik Chakraborty et al

Table 1. Computingall pairs of separations. Times shown are on a MIPS R5000, 150
MHz machine with 128 MB memory. Entries with “–” indicate that the algorithm did not
terminate within 24 h. Entries with “N/A” indicate unavailability of the corresponding
number.

Example # Events # Min # Max Time (s) Time (s)a Accuracy
name (n) constr. constr. AcyclicApproxSep

h1-64 321 0 316 0.49 1.48 1.0

h1-256 1281 0 1276 8.65 26.31 1.0

h1-512 2561 0 2556 36.69 113.77 1.0

h2-64 385 0 379 0.75 2.21 1.0

h2-256 1537 0 1531 13.17 40.31 1.0

h2-512 3073 0 3067 55.63 171.86 1.0

m1-64 641 0 255 1.55 4.97 1.0

m1-256 2561 0 1023 27.87 92.05 1.0

m1-512 5121 0 2047 120.69 417.89 1.0

mcmill 13 1 4 <0.01 0.01 1.0

diffeq 288 4 42 0.21 12309.3 1.0

Sat-3 20 4 9 <0.01 0.9 0.997

Sat-6 36 7 16 <0.01 85.81 0.999

Sat-8 44 9 18 <0.01 287.42 1.0

c1355 948 252 285 2.78 – N/A

c7552 5258 1174 1169 133.14 – N/A

c6288 4189 1672 1684 65.38 – N/A

c3540 3162 417 413 33.31 – N/A

Min constr.: Number of min constraints with 2 or more arguments
Max constr.: Number of max constraints with 2 or more arguments
aTime using McMillan & Dill’s (1992) algorithm

graphs using the technique outlined by McMillan & Dill (1992). The other benchmarks were
obtained as systems of timing constraints during timing simulation of ISCAS85 circuits with
randomly generated input vectors. For each benchmark, table 1 reports the number of events
(n), and the number of min and max constraints with two or more arguments. To quantify the
accuracy of the computed results, we have also computed the fraction of alln2 time separa-
tions that were computed exactly by our algorithm. The exact time separation bounds for all
the benchmarks were obtained using McMillan & Dill’s algorithm (1992), whenever it ter-
minated successfully within 24 h. Comparing the exact bounds with those computed by the
proposed algorithm indicates that our results have a fairly high degree of accuracy in practice.

Table 1 also shows the time taken by theAcyclicApproxSep algorithm to analyse each
benchmark on a MIPS R5000 processor running at 150 MHz with 128 MB of main mem-
ory. These times do not include the time required to read in the timing constraint graph
and topologically sort the events, which are not significant. For max-only problems, the
performances of theAcyclicApproxSep algorithm and McMillan & Dill’s algorithm (1992)
are comparable. The larger run-times of McMillan & Dill’s (1992) algorithm are possi-
bly attributable to a non-optimal implementation. However, for systems with both min
and max timing constraints, the run times of theAcyclicApproxSep algorithm are signifi-

Efficient algorithms for approximate time separation of events 143

[0, 0] [0, 0][1, 2]

s

c

d
g

e

f

b

a

h

[1, 2]

[0, 0]

max

min

g

e

s

a b c

d

f

h

(a) (b)

Figure 6. Pathological example:(a) Circuit and stimulus. Gate delays are [min, max]. Wires have
zero delay.(b) Timing constraing graph.

cantly smaller than the those of the exact branch-and-bound technique of McMillan &
Dill (1992).

4.4 Pathological example

Although the results in the previous subsection indicate that our algorithm generates results
with a high degree of accuracy in practice, there are pathological cases as well. This is not
surprising since the problem of computing exact time separation bounds is NP-complete,
while our algorithm generates approximate solutions in polynomial time. In this section, we
describe a pathological example for which theAcyclicApproxSep algorithm fails to compute
all pairs of time separations exactly.

Consider the combinational circuit and input stimulus shown in figure 6a; where a↑ indi-
cates a rising transition. Gate delays are assumed to vary within the intervals shown, and
wires are assumed to have zero delays. Figure 6b shows the timing constraint graph for this

Table 2. 1 matrix for pathological example.

s a b c d e f g h

s 0 2 2 2 2 2 2 2 2

a -1 0 1 1 0 1 1 1 1

b -1 1 0 1 0 0 1 0 0

c -1 1 1 0 1 0 1 1 1

d -1 1 1 1 0 1 1 1 1

e -1 1 1 1 1 0 1 1 1

f -1 0 1 0 0 0 0 0 0

g -1 1 1 1 0 0 1 0 1

h -1 1 1 1 0 0 1 0 0

For clarity, the↑s have been omitted from the
row and column headings.

144 Supratik Chakraborty et al

system – vertices represent signal transitions and edge delays represent delays of gates. The
1 matrix computed by applying theAcyclicApproxSep algorithm is shown in table 2.

It may be verified that all bounds except1(g, h) are exact. The computed value of1(g, h)

is 1; however, the maximum achievable separation from the rising transition ong to that on
h is 0. To see why the algorithm fails to compute the correct bound, observe that the rising
transition onh is a min type event whereas that ong is a max type event. Therefore, the
value of1(g, h), computed by theAcyclicApproxSep algorithm, is given by min(1(g, f) +
Df,h, 1(g, b) + Db,h). In order for this to represent the maximum achievable time separation
from g rising toh rising, one of the following conditions must be satisfied.

• f rises1(g, f) (= 1) time units afterg, and the rising transition onf causesh to rise
afterDf,h (= 0) time units,

• b rises1(g, b) (= 1) time units afterg, and the rising transition onb causesh to rise
afterDb,h (= 0) time units.

Unfortunately, it can be seen from the dependencies in the timing constraint graph, that if
f rises 1 time unit afterg, thenb must rise 1 time unit beforef . Since the rising transition on
h is a min-type event, the transition onb, not that onf , causesh to rise. Similarly, ifb rises
1 time unit afterg, f must rise 1 time unit beforeb, and therefore, the transition onb, not
that onf , causesh to rise. The min expression used by the algorithm to compute the value of
1(g, h) fails to take into account this complex dependency between the times of occurrence
of the transitions onf , b, g andh. Consequently, the value given by the min expression is a
conservative upper bound of the corresponding maximum achievable separation.

5. Analysing tightly-coupled systems

We now use algorithmAcyclicApproxSep to develop an efficient technique for computing
time separation bounds in tightly-coupled systems. Recall from § 2.2 that subgraphGi of
the infinite unfolded graph is isomorphic toG1 for all i ≥ 1. It therefore suffices to analyse
subgraphsG0 andG1 to compute the bounds of interest in tightly-coupled systems.

Our approach consists of two phases, as follows.

• The first phase uses a successive refinement approach to compute bounds of the time
separation of events after the system has run for a sufficiently long period of time.
Specifically, ifK denotes the number of successive refinement iterations, the computed
bounds apply to every subgraphGi for i ≥ K. This is explained in § 5.1. Since the
bounds computed in this phase apply only after the system has run for some time, these
are calledlong-term time separation boundsand this phase is calledlong-term behaviour
analysis.

• Assuming that the algorithm iteratesK times in the first phase, the second phase com-
putes time separations between events in the finite acyclic graph modelling the behavior
of the system fromReset to the events in cutsetCK .

Bounds of the time separation of events inG0 are obtained directly from the second phase.
To obtain an upper bound of the time separation of a pair of events inGi , maximised over all
i ≥ 1, the maximum of the corresponding bounds computed for subgraphsG1 throughGK

is determined. The bounds forG1 throughGK−1 are obtained from the second phase, and the
bounds forGK (and for allGi with i > K) are obtained from the first phase. The following
subsections describe each phase of the algorithm in greater detail.

Efficient algorithms for approximate time separation of events 145

5.1 Phase I of analysis

We first concentrate on computing bounds of the time separation of events in subgraphG1.
The isomorphism betweenG1 andGi for all i ≥ 1 is then exploited to compute bounds of
the time separation of events in subgraphsGi for i ≥ 1.

Given an eventv in G1, let5(v) denote the set of paths from events in cutsetC1 to v. The
shortestandlongest path lengthsto v, denotedl(v) andL(v), are defined as follows:l(v) =
minP∈5(v)

(∑
〈x,y〉 alongP

dx,y

)
, andL(v) = maxP∈5(v)

(∑
〈x,y〉 alongP

Dx,y

)
. Note that if

v is inC1, there exists a degenerate path(v) from v to itself, sol(v) is at most 0 andL(v) is at
least 0. Since edge delays in a timing constraint graph model component delays in a system
or its environment, edge delay bounds may be finite or infinite in general. An infinite delay
bound may be required, for example, to model the response time of an environment whose
delay characteristics are unknown. In this paper, however, all systems and environments are
assumed to have finite, non-negative delay bounds. Since subgraphG1 is finite, it follows
thatl(v) andL(v) are non-negative and finite for all eventsv in G1. A brief discussion of the
implications of infinite edge delay bounds is given in § 7.

SinceG1 lies between cutsetsC1 andC2, the source events ofG1 are elements of cutset
C1. Therefore, in order to apply algorithmAcyclicApproxSep to G1, the values of1(a1, b1)

for every pair of events,a1 andb1, in C1 are required. Normally, this may be obtained by an
analysis of subgraphG0. However, we choose to decouple the analysis of the initial behaviour
from the long-term behaviour analysis and assume that the initial behaviour is unknown during
phase I of the analysis. Thus, the entries1(a1, b1) for everya1 andb1 in C1 are conservatively
set to+∞ and algorithmAcyclicApproxSep is invoked. As will be seen later, this ensures that
the long-term behaviour analysis terminates within a pseudo-polynomial number of steps,
while producing finite, conservative bounds of the long-term time separation of events. Since
no assumptions are made about the initial behaviour of the system, the time separation bounds
computed in this phase apply regardless of the actual initial behaviour. Therefore, an upper
bound computed in this phase can be viewed as maximised over all possible initial behaviours.

In general, setting the upper bound of the time separation between every pair of source
events to+∞ can lead to the computed bounds between other pairs of events being+∞ as
well. However, we have the following result for tightly-coupled systems.

Theorem 2. For every pair of eventsu andv in C2, 1(u, v) computed by algorithmAcyclic-
ApproxSep is bounded above byL(v) − l(u).

Proof. Let there ben events in graphG1. Let |C1| = |C2| = k. Without loss of generality,
we assign indices 0 throughk −1 to events inC1, andn− k throughn−1 to those inC2. The
theorem is proved by establishing a stronger result:1(i, j) ≤ L(j)−l(i) forn−k ≤ i ≤ n−1,
and 0≤ j ≤ n − 1.

Let n − k ≤ i ≤ n − 1. Our proof consists of three parts, corresponding to three partitions
of the range [0, n − 1].
Part I. Let 0 ≤ j ≤ k − 1. Sincei > j , 1(i, j) is computed in theith iteration of the
outermost loop of algorithmAcyclicApproxSep (see figure 5).

By property P4 in definition 1, there exists a pathP from eventj to eventi such that all
events alongP are of max type. Letv be the predecessor ofi alongP . It follows from step
(i) of function ComputeInitialEstimates (see figure 5) that

1(i, j) ≤ 1(v, j) − dv,i . (9)

146 Supratik Chakraborty et al

Since eventv lies on pathP , it must be of max type by property P4. In addition, if eventj is not
the same as eventv, we must havej < v sinceP is a path from eventj through eventv to event
i. Let u be the predecessor ofv alongP . From step (i) of functionComputeInitialEstimates,
we again have

1(v, j) ≤ 1(u, j) − du,v. (10)

Continuing this argument and adding the resulting inequalities, we obtain

1(i, j) ≤ 1(j, j) −
∑

〈x,y〉 alongP

dx,y

≤ −l(i) (11)

≤ L(j) − l(i). (12)

Inequality (11) follows from the observation that1(j, j) is 0 by definition andl(i) is at most∑
〈x,y〉 alongP

dx,y . Inequality (12) follows from the observation thatj is in C1, soL(j) is at
least 0 by definition.
Part II. Let k ≤ j ≤ i − 1. Once again,i > j and1(i, j) is computed in theith iteration of
the outermost loop of algorithmAcyclicApproxSep.

The proof is by induction onj .
Basis. From part I,1(i, j) ≤ L(j) − l(i) for 0 ≤ j ≤ k − 1.
Hypothesis. Letk ≤ j ≤ i − 1. For allr in 0 throughj − 1, let1(i, r) ≤ L(r) − l(i).
Induction. It follows from steps (2a) and (2c) of algorithmAcyclicApproxSep that

1(i, j) ≤ max
k ∈ preds(j)

(1(i, k) + Dk,j)

≤ max
k ∈ preds(j)

(L(k) − l(i) + Dk,j) (13)

≤ L(j) − l(i). (14)

Inequality (13) follows from the hypothesis, and inequality (14) follows from the observation
that the longest path length toj is no smaller than the longest path length to any predecessor
of j plus the maximum delay of the corresponding edge toj .
Part III. Finally, consideri + 1 ≤ j ≤ n − 1. The proof is by induction onj .
Basis. Follows from parts (I) and (II).
Hypothesis. Leti + 1 ≤ j ≤ n − 1. For allr in 0 throughj − 1, let1(i, r) ≤ L(r) − l(i).
Induction. Sincei < j , 1(i, j) is computed in thej th iteration of the outermost loop of
algorithmAcyclicApproxSep. It follows from steps (ii) and (iv) of functionComputeInitialEs-
timates that

1(i, j) ≤ max
k ∈ preds(j)

(1(i, k) + Dk,j). (15)

Using an argument similar to that used in the induction step of part (II), the value of1(i, j)

is seen to be bounded above byL(j) − l(i).

COROLLARY 1

For every pair of eventsu andv in C2, 1(u, v) computed by algorithmAcyclicApproxSep is
finite.

Efficient algorithms for approximate time separation of events 147

Proof. Follows from theorem 2 and the observation that1(i, j) 6= −∞. The latter is true
because the1 matrix is initialized with+∞ and other finite values, and then finite edge delay
bounds are added or subtracted finitely many times.

The repetitive structure of the unfolded graph now suggests the following iterative procedure
for computing bounds of the time separation of events in subgraphsGi for i ≥ 1. Although
the algorithm actually analyses subgraphG1 in each iteration, successive iterations may be
viewed as analysis of subgraphsG1, G2, G3 and so on, each of which is isomorphic toG1.
It is assumed that the bounds computed in iterationi are stored in ann × n matrix,1i . The
first iteration starts by setting11(a1, b1) to +∞, for every pair of eventsa1 andb1 in C1.
Algorithm AcyclicApproxSep is then invoked and bounds of the time separations of all pairs
of events inG1 are obtained. By corollary 1, the computed bounds between events inC2 are
finite. Let a2 andb2 be events inC2 anda1 andb1 be the corresponding events inC1. The
value of11(a2, b2) is now copied to12(a1, b1) for every pair of eventsa2 andb2 in C2, and
algorithmAcyclicApproxSep re-invoked to compute bounds of the time separations of all pairs
of events inG2. The intuition behind this operation is that the second iteration corresponds
to analysis of subgraphG2, and the source events inG2 are elements of cutsetC2. In general,
this process can be repeated: at the end of iterationi, the value of1i(a2, b2) is copied to
1i+1(a1, b1) for every pair of eventsa2 andb2 in C2, as input conditions for iterationi + 1.
Bounds of the time separations of all pairs of events inGi+1 are then computed in iteration
i + 1 by invoking algorithmAcyclicApproxSep.

The iterative analysis may be terminated when one of the following conditions is satisfied.

(a) 1i(a1, b1) equals1i(a2, b2), for all pairs of events,a1 andb1, in C1. The analysis is said
to haveconvergedin this case.

(b) The number of iterations reaches a user-specified upper bound,Kmax .

If all edge delay bounds are integers, an upper bound on the number of iterations required
to converge can be derived (see lemma 2 below). However, in practice, the analysis usually
converges within a small number of iterations – at most 5 in our experiments. We conjecture
that by choosingKmax to lie in the range 10 to 20, the analysis can be expected to converge
in most practical systems. Condition (b) ensures that the analysis terminates after a pre-set
number of iterations if it has not already converged by then.

The pseudo-code in phase I of figure 7 describes the iterative algorithm outlined above. If
there aren events inG1 andp denotes the maximum number of predecessors of an event, the
complexity of algorithmAcyclicApproxSep, as noted in § 4.2, isO(n2.p). The complexity of
phase I is thereforeO(Kmax.n

2.p).
In order to characterize the bounds computed in phase I, the≤M relation for1 matrices

is defined as follows. Let1 and1′ be twon × n matrices.1 is said to be bounded above by
1′, denoted1 ≤M 1′, if for all u andv in 0 throughn − 1, the value of1(u, v) is no larger
than the value of1′(u, v).

Lemma1. For all iteration indicesi in phase I,1i+1 ≤M 1i . This property is calledmono-
tonic convergenceof the time separation intervals.

Proof. We start with the following observation about algorithmAcyclicApproxSep.

Observation3. After initialization, the only steps in which the1matrix is updated are steps (i)
through (iv) inComputeInitialEstimates and steps (2a) through (2d) inAcyclicApproxSep. The
expressions on the right hand side of assignments in each of these steps involve non-negated

148 Supratik Chakraborty et al

CyclicApproxSep (C1, C2: cutsets;G0, G1: acyclic subgraphs;Kmax : integer)
Phase I:
1. /* Initialization */

(a) i = 1;
(b) for all ordered pairs(a1, b1) in C1

11(a1, b1) = +∞;
2. do

(a) AcyclicApproxSep (G1, 1i);
(b) if ((1i(a1, b1) == 1i(a2, b2) for every ordered pair(a1, b1) in C1) OR

(i == Kmax))

(i) K = i; /* no. of iterations so far */
(ii) go to Phase II;

else
(iii) for all ordered pairs(a1, b1) in C1

1i+1(a1, b1) = 1i(a2, b2);
(iv) i = i + 1;

Phase II:
1. ConstructGstartup, the acyclic graph composed ofG0 followed by

K − 1 instances ofG1.
/* Note thatGstartup has only one source event */

2. AcyclicApproxSep (Gstartup, 1);

Figure 7. Timing analysis algorithm for tightly-coupled systems.

1 matrix entries. Therefore, if all edge delay bounds are left unchanged and bounds between
every pair of source events are either decreased or left unchanged, the bounds computed by
algorithmAcyclicApproxSep cannot increase.

The lemma is now proved by induction oni.
Basis(i = 1). In the first iteration,11(a1, b1) = +∞ for every pair of eventsa1 andb1 in
C1. In the second iteration,12(a1, b1) = 11(a2, b2), wherea2 andb2 are the corresponding
events inC2. However, by corollary 1,11(a2, b2) is finite, so12(a1, b1) is finite. It follows
from observation 3 that12 ≤M 11.
Hypothesis. For i≥ 1, let1i+1 ≤M 1i .
Induction. By hypothesis,1i+1(a2, b2) ≤ 1i(a2, b2) for every pair of eventsa2 and
b2 in C2. However, by step 2(b)(iii) of phase I of algorithmCyclicApproxSep (see fig-
ure 7), 1i+1(a2, b2) equals1i+2(a1, b1) and 1i(a2, b2) equals1i+1(a1, b1). Therefore,
1i+2(a1, b1) ≤ 1i+1(a1, b1), for every pair of eventsa1 andb1 in C1. The proof then follows
from observation 3.

Lemma2. For eventv in subgraphG1, let l(v) andL(v) be the shortest and longest path
lengths from events inC1 tov. If cutsetC2 hasr events, and all edge delay bounds are integers,
Phase I converges in at most(2 + (r − 1) · ∑

v ∈ C2
(L(v) − l(v))) iterations.

Proof. The constant 2 accounts for the first iteration and the final iteration in which con-
vergence is detected. The lemma is proved by showing that there can be at most(r − 1) ·∑

v ∈ C2
(L(v) − l(v)) iterations in between.

First, note that for every pair of eventsa andb in G1, −1(b, a) ≤ τb − τa ≤ 1(a, b).
Therefore,1(a, b) ≥ −1(b, a).

Efficient algorithms for approximate time separation of events 149

From theorem 2, we know that for every pair of distinct eventsu andv in C2, 1(u, v) ≤
L(v) − l(u) after the first iteration. Lemma 1 implies that in every subsequent iteration, the
value of1(u, v) either remains unchanged or decreases. The minimum value to which it
can decrease is−1(v, u), which is bounded below byl(v) − L(u). Therefore, the range of
variation of1(u, v) is (L(v)− l(v))+ (L(u)− l(u)). The same range applies to the variation
of 1(v, u) as well.

Since all edge delay bounds are integral,1(u, v) and1(v, u) can decrease only by integral
amounts. Therefore, after the first iteration, there can be at most(L(v)− l(v))+(L(u)− l(u))

iterations in which the values of1(u, v) and1(v, u) decrease. Summing this over all pairs of
distinct events inC2 gives(r −1)·∑v ∈ C2

(L(v)− l(v)) as the maximum number of iterations
after the first iteration during which any entry1(u, v), with u andv in C2, can decrease. Since
the algorithm converges when none of the entries1(u, v) decrease any further, this proves
the lemma.

Theorem 3. Let phase I terminate afterK iterations, withK at least2. The bounds computed
in iteration K are finite and apply to events in every subgraphGi for i ≥ K, regardless of
the initial behaviour of the system.

Proof. If at least two iterations are made, corollary 1 and step 2(b)(iii) of phase I of algorithm
CyclicApproxSep (see figure 7) imply that the bounds between every pair of source events in
C1 are finite. Since all edge delay bounds are also finite, it is easy to see from the steps in
algorithmAcyclicApproxSep that all1 matrix entries computed by the algorithm are finite.

The remainder of the theorem is proved by showing that if the analysis is allowed to continue
for i iterations wherei > K, then the upper bounds of time separations computed in iteration
i apply to the events in subgraphGi . Since1i ≤M 1K for all i ≥ K (by lemma 1), the
theorem follows.
Basis(i = 1). The first iteration is viewed as analysis ofG1. Note that the source events of
G1 belong to cutsetC1. Since11(a1, b1) is set to+∞ for everya1 andb1 in C1, the value
of 11(a1, b1) is indeed an upper bound of the actual time separation from eventa1 to event
b1. Therefore, by theorem 1,1(u1, v1) computed by algorithmAcyclicApproxSep is an upper
bound of the exact maximum separation fromu1 to v1, for every pair of eventsu1 andv1 in
G1. Similarly, the separation froma2 to b2 is bounded above by11(a2, b2) for every pair of
eventsa2 andb2 in cutsetC2.
Hypothesis. Let the bounds computed in iterationi − 1 apply to all events inGi−1, for i ≥ 2.
Induction. Theith iteration is viewed as analysis ofGi . The source events ofGi belong to
cutsetCi . By hypothesis, the separation fromai to bi , for every pair of eventsai andbi in Ci ,
is bounded above by1i−1(a2, b2). Since the value of1i−1(a2, b2) is copied to1i(a1, b1) at
the end of iterationi − 1, the value of1i(a1, b1) is an upper bound of the time separation
fromai tobi . The proof then follows from the fact that algorithmAcyclicApproxSep computes
conservative upper bounds of time separation of events.

5.2 Phase II of analysis

Suppose phase I terminates afterK iterations. By theorem 3, the bounds in1K apply to events
in every subgraphGi for i ≥ K. To compute bounds of the time separation of events inG0

throughGK−1, the initial segment of the unfolded graph, consisting of subgraphsG0 through
GK−1 is constructed and analysed using theAcyclicApproxSep algorithm. This is shown in
phase II of the pseudo-code in figure 7.

If subgraphG0 hasm events and subgraphG1 hasn events, constructing the acyclic sub-
graph comprised ofG0 throughGK−1 requires at mostO(m2 +Kmax.n

2) time. The resulting

150 Supratik Chakraborty et al

graph has at mostm + Kmax.n events. Ifp denotes the maximum number of predecessors of
an event, algorithmAcyclicApproxSep takesO((m+Kmax.n)2.p) time to analyse this graph.
Therefore, the complexity of phase II isO((m + Kmax.n)2.p). To compute bounds of the
time separation of a pair of events inGi , maximised over alli ≥ 1, at mostKmax additional
comparisons are needed to determine the maximum of the corresponding bounds computed
for G0 throughGK . Repeating this for every pair of events inGi requiresO(Kmax.n

2) com-
parisons. Therefore, the complexity of the entire procedure isO((m + Kmax.n)2.p).

There are three sources of conservativeness in the above analysis.

(1) Since we set the time separation of every ordered pair of events inC1 to +∞ at the
beginning of phase I, the computed long-term time separation bounds may be conservative.
This can happen if, for example, the exact long-term bounds depend on the initial behaviour
of the system. The reader may wonder why we need to start the analysis assuming no
knowledge of the initial behaviour. However, as may be seen from the basis case of the
proof of lemma 1, this guarantees monotonic convergence of the bounds in phase I, which,
in turn, guarantees that the analysis converges within a finite number of steps (see proof
of lemma 2).

(2) Algorithm AcyclicApproxSep may return conservative bounds in the worst-case.
(3) If we terminate phase I by hittingKmax , rather than by converging, the computed bounds

may be conservative.
In our experiments, however, all the computed bounds were found to be exact.

max

1

1b 1d

1c 1

a

1f

e

1Reset

c d

e

f

(a) (b)Reset

b a

 G
 G

 G
2

1
0

a

b d

c a e

b d f

eac

b d f

eac

2

2 2

2 3 2

3 3 2

3 4 3

4 4 3

4 5 4

C2

C1

[0,0]

[1,1]

[3,3]

λ, λ[]

Figure 8. Analysing the example by Amon (1993). Edge delays are as in the legend.(a)Cyclic timing
constraint graph;(b) initial part of unfolded graph.

Efficient algorithms for approximate time separation of events 151

Table 3. Time separation bounds for system of figure 8.Mi denotes the
exact upper bound ofτai

− τai−1 for i ≥ 2 .

If λ = 6: If λ = 9:

Meven Modd M2 M3 M4 M5 M6 M7 M8 M9 M≥10

4 8 4 8 4 8 4 8 8 9 9

5.3 An example

Example2. The example, shown in figure 8a, is adapted from the work by Amon (1993).
This example demonstrates that the number of iterations required to converge depends on the
edge delay bounds in general.

Let Mi denote the exact upper bound ofτai
− τai−1, maximised over alli, for i greater than

or equal to two.2 It has been shown by Amon (1993) thatMi depends on bothi andλ, as
indicated in table 3.

Figure 8b shows an initial fragment of the unfolded graph. For clarity, the events inG1 have
not been relabelled to have occurrence index 1 – the relabelling was simply an artifact for
maintaining consistent notation when proving properties of the algorithm. The time separation
of interest is that froma3 to a4.

Applying algorithmCyclicApproxSep, we find that phase I converges after 2 iterations
whenλ is 6, and the computed value of12(a3, a4) equals 8. Withλ = 9, phase I converges
after 5 iterations and15(a3, a4) equals 9. This demonstrates that the number of iterations
depends on the edge delay bounds in general.

From the above results and theorem 3, we conclude that ifλ equals 6,Mi is bounded above
by 8 for all eveni greater than or equal to 4. Similarly, ifλ equals 9, thenMi is bounded
above by 9. Now, it is easy to see that if the cutsets are shifted by one occurrence index, so
thatC1 is {b3, d3, f2} andC2 is {b5, d5, f4}, the same analysis applies and12(a4, a5) equals
8 whenλ is 6, and15(a4, a5) equals 9 whenλ is 9. Therefore,Mi is bounded above by these
numbers for all oddi greater than or equal to 5. These match the exact bounds computed by
Amon (1993).

6. Analysing an asynchronous chip

We now apply theCyclicApproxSep algorithm to verify timing constraints and to
estimate performance bounds of an asynchronous differential equation solver chip.
A known timing bug in a preliminary version of the design, that could be detected
only after several hours of SPICE simulation, was uncovered in a few seconds by
the analysis.

6.1 Chip overview

Figure 9, adapted from Yunet al (1998), shows the architecture of the chip and the
dataflow graph for one iteration of operation. The system iterates through the operations
depicted in the dataflow graph until a termination condition is satisfied. In this paper,

2Mi in this notation equals1i−1 in the notation of Amon (1993)

152 Supratik Chakraborty et al

A1Done A2Done

M1Done

LX

LY

seldx

C

selYM2

C

LB

LA
LU

M1A

2 dx Y U dx M1

AU

0 1

0 1

0 1

0 1

B

ALU1
opcode

U Port

A1Prech

M1Prech M2Prech

M2Done

dx

M2

MUL2

U

Y dxX M2 a

X Port Y Port

0 1

01

01

X

0 1

1 0

Y

1 0

X1

ALU2
opcode

A2Prech

M1A

A1M M2A2A2M
UB A

M1

0 10 1

MUL1

X1

start

start done

start

CTRL
ALU2

EndP

ALU1
CTRL

CTRL
MUL1

CTRL
MUL2

(b)

u

y

M1

A

M1

u

u dx dx

M2

y

x

X

X1

x1

Shadow
Register

C

a

+

<

**

*

−

+

Y

U

+

3 dx

(a)

Figure 9. (a)Dataflow graph;(b) Architecture of Yunet al’s
(1998) differential equation solver.

however, we are interested only in the behaviour of the system as it iterates through
the dataflow graph, so the termination condition is ignored. This, of course, implies
that the computed results do not apply to the final iteration when the system chooses to
terminate the computation. The behaviour in the final iteration must be analysed sepa-
rately, and is not addressed in this paper. Details of theDiffEq design are described by
Yun et al (1998).

The control logic ofDiffEq is implemented using four distributedextended burst-mode
(XBM) controllers (Yun 1994):ALU1Ctrl, ALU2Ctrl, MUL1Ctrl andMUL2Ctrl. The controllers
communicate with one another using a handshaking protocol that implicitly assumes safe
timing bounds in signaling. Like synchronous systems, the control is responsible for generat-
ing ALU opcodes, multiplexer selects, register load enables, and precharge/evaluate signals.
However, there are implicit assumptions on the timing of datapath signals, e.g., data inputs
to domino circuits must stabilize before evaluation begins.

Efficient algorithms for approximate time separation of events 153

S1

S2

S0

M2Done+
A1M* /
M2Prech+
M2A2+

A1M+
A2M+ /
M2Prech-

S0

M2Done-
A1M-
A2M- /
M2A2-

S2

S1

S2

S0

S1

A1M+
A2M+ /
M2Prech-

M2Done+
A1M* /
M2Prech+
M2A2+

M2Done-
A1M-
A2M- /
M2A2-

A1M+

M2Prech-

A2M+

m1

[0,0][0,0]

[2,3]

M2Done+

M2A2+

[0,0]

[2,3][2,3]
m2

M2Prech+

M2Done-

M2A2-

A2M-A1M-

[0,0][0,0] [0,0]

[2,3]
m3

(a) (b)

Figure 10. Modelling temporal behaviour of MUL2 CTRL.(a)MUL2 controller;(b) timing constraint
graph fragments (controller delay = [2, 3]).

6.2 Modelling controller timing

We view each controller as a “black box” that receives input stimuli from its environment
and responds by asserting values on its output ports after some internal delay. This model
suffices for performance analysis, and datapath and inter-controller protocol timing verifica-
tion. Other timing constraints required for correct operation of individual XBM controllers
may be obtained by the technique described by Chakrabortyet al (1997) and are assumed to
be satisfied.

Without the check for the termination condition, each XBM controller inDiffEq cycles
through a deterministic sequence of states. To model a controller, we examine its state tran-
sition diagram. For each state transitionSi → Sj , let I be the set of input transitions andO
the set of enabled output transitions. XBM semantics require that allterminatingtransitions
(Yun 1994) inI must occur before the state transition is enabled, and all transitions inO
are concurrently enabled once all terminating transitions inI have occurred. To model this
behaviour, we create a max type event, saym, and draw zero-delay edges from the events
representing the terminating transitions inI to m. We also draw edges fromm to each event
representing the concurrently enabled transitions inO, and label these edges with the delay
incurred by the controller in generating the corresponding output transition after the last ter-
minating transition inI has occurred.

As an example, figure 10a shows the XBM state transition diagram ofMUL2Ctrl in DiffEq.
A signal name with a+ indicates a rising transition, a name with a− indicates a falling
transition, while one with a∗ denotes adirected don’t care. Details of the semantics of these
transition types are described in Yun’s dissertation (Yun 1994). Figure 10b shows how each
state transition is modelled using timing constraint graphs. Note thatA1M is a directed don’t
care during the state transitionS1 → S2. By XBM semantics, the controller need not wait for
a transition onA1M before changing state fromS1 to S2. This is reflected in figure 10b by the
absence of an edge from a transition onA1M to m2. However,A1M has a terminating falling
transition during the next state transitionS2 → S0. So the controller must wait forA1M to

154 Supratik Chakraborty et al

fall before changing state fromS2 to S0. This is represented by drawing an edge fromA1M−
to m3 in figure 10b.

The procedure outlined above generates timing constraint graph fragments for individual
state transitions of XBM machines. Different fragments from the same machine as well as
fragments from different machines are now “stitched” together by connecting input events
in one fragment to output events in other fragments. For example, consider the following
sequence of operations:MUL2Ctrl raisesM2prech and in response, theMUL2 unit lowers
M2done. If the delay fromM2prech going high toM2done going low, plus the signal prop-
agation delay fromMUL2Ctrl to MUL2 and back lies between 4 and 5 time units, an edge is
drawn fromM2prech+ to M2done− and labelled [4,5]. Continuing this process, the timing
constraint graph fragments of the different controllers can be stitched together to obtain a
single graph modelling the behaviour of the four interacting controllers for one iteration of
operation ofDiffEq.

The above discussion concentrated on modelling choice-free XBM controllers. In general,
timing constraint graphs can also be used to model other choice-free controllers if the temporal
dependencies between all events can be expressed using min and max type constraints. Each
input and output signal transition is represented by distinct events and if the output transition
occurs only after all the inputs have transitioned, a max type constraint is used to connect
them. This is the case, for example, in event-rule systems (Burns 1991), signal graphs (Nielsen
& Kishinevsky 1994), choice-free XBM controllers etc. If the output transitions as soon as
one of the inputs has transitioned (e.g., in some extended event-rule systems (Lee 1995)), a
min type constraint is used instead.

6.3 Modelling datapath timing

This section describes a modelling technique for one important datapath component.
The behaviour of other datapath components can be modelled similarly (see for example
Chakrabortyet al1998, 1999).

6.3a Arithmetic circuits designed in domino logic:Figure 11a shows theALU2 unit of
DiffEq implemented in domino logic. TheA2Done signal is used to notify other units that all
internal nodes inALU2 have been precharged (A2Done−) or that evaluation has completed
(A2Done+). The value of theopcode input determines the type of operation (addition or
subtraction) to be performed. When the precharge signal is asserted (A2Prech+), internal
nodes of the circuit are pulled up toVDD after some precharging delay. This drives the outputs
of the domino circuit low and also drivesA2Done low. This behaviour is modelled by the
directed edge fromA2Prech+ to A2Done− in figure 11b.

The signalopcode at the output of the NOR gate in figure 11a falls as soon as one of its inputs
rises. Therefore, the falling ofopcode is modelled by a min type event (circle in figure 11b).
This demonstrates the need for min type constraints when modelling datapath components
at a low level of abstraction. EventsOp1Stable andOp2Stable represent the stabilization
of data operands, whereasInputsStable represents the stabilization of all inputs (both data
operands andopcode). Evaluation begins as soon asA2Prech is de-asserted (A2Prech−).
Assuming thatInputsStable occurs beforeA2Prech− (this is checked during timing veri-
fication), the circuit computes the sum/difference of the operands and raisesA2Done after
some data-dependent computation delay. This is modelled as shown in figure 11b. The
event InputsChanged in figure 11b represents a change in the value of one of the inputs
after evaluation.

Efficient algorithms for approximate time separation of events 155

A2Prech+

A2Done-

A2Prech-

A2Done+

[5,10]

[2,3]

O
p1

S
ta

bl
e

O
p2

S
ta

bl
e

InputsStable
opcode-

in1+ in2+

[1,2]

InputsChanged

(b)

Circuit
Domino

opcode

in1 in2Op1 Op2

DataOut

A2Prech

A2Done

Precharge Delay: [2,3]

NOR Gate Delay: [1,2]

Evaluation Delay: [5,10]

(a)

Figure 11. Modelling a domino circuit.(a)Circuit; (b) timing constraint graph: dotted edges represent
connections to/from other parts of timing constraint graph. Unlabelled edges imply [0, 0]. Squares
represent max-type events, circles represent min-type events.

6.4 Formulating performance metrics and timing constraints

In this section, performance metrics and timing constraints for correct operation ofDiffEq are
formulated as time separations between events. The objective is to apply theCyclicApproxSep
algorithm to verify all timing constraints and obtain bounds on performance metrics of the
system.

6.4a Performance metrics: We concentrate on two performance metrics.

• Loop delay– The delay from the start of the first operation in an iteration of the dataflow
graph to the end of the last operation in the same iteration.

• Cycle time– The delay between similar events in successive iterations of the dataflow
graph.

Since the dataflow graph has multiple threads of computation which do not necessarily start
or end simultaneously (see figure 9a), the loop delay is not the same as the cycle time. The
inverse of the cycle time gives the rate at which successive values of intermediate variables in
the computation are generated by the system. However, if the values of all variables at the end
of n iterations are needed, then the total time required is((n − 1) · cycle time+ loop delay).

To compute the loop delay, the timing constraint graph for a generic iteration (as opposed
to a specific iteration, such as the first iteration) of the dataflow graph is constructed. Since
there are multiple parallel threads of computation, this timing constraint graph has multiple
source events. The starting time of an iteration is represented by taking the minimum of the
times of occurrence of all source events. A min type event,StartOfIter, is therefore added to
the timing constraint graph. Similarly, the end of computation in an iteration is represented by
taking the maximum of ending times of all threads. In this case, a max type event,EndOfIter,
is added. Bounds of the time separation betweenStartOfIter andEndOfIter give the best and
worst-case loop delays of the dataflow graph. Note that both min and max type constraints
are needed to model the loop delay.

To estimate the cycle-time, the time separation between the start of two consecutive iter-
ations of the dataflow graph is computed. Two generic iterations of the dataflow graph are

156 Supratik Chakraborty et al

considered. The start of one iteration has already been modelled above. The start of the next
iteration is modelled similarly by taking the minimum start times of the threads in the next
iteration. Another min-type event, calledStartOfNextIter, is therefore added to the timing
constraint graph. Bounds of the time separation betweenStartofIter andStartOfNextIter give
estimates of the best case and worst case cycle time of the system. Note that “cycle time” is
sometimes used to denote the average time forn iterations. If such a metric is desired, one
must construct the timing constraint graph forn iterations and determine the time separation
between similar events spacedn iterations apart. This separation divided byn then gives the
average cycle time.

6.4b Timing constraints: Timing constraints in theDiffEq datapath consist of setup, hold
and minimum clock pulse-width constraints of registers, and setup constraints of domino
circuits. In order to check register timing constraints, we examine every instance of a register
loading data during a generic iteration of the dataflow graph. Setup-time violations are checked
by computing the minimum time separation from the stabilization of the data inputs to the
latching edge of the clock signal. If this separation exceeds the setup-time of the register,
no setup-time violation can occur. Similarly, register hold-time constraints are checked by
computing the minimum time separation from the latching edge of the clock to the subsequent
change of the input data. Finally, the minimum clock pulse-width is obtained by determining
the minimum time separation from the latching edge of the clock to the subsequent transition
on the clock signal.

To verify the timing of a domino circuit, we consider every instance of the circuit performing
some computation during a generic iteration of the dataflow graph. We determine the minimum
time separation between the stabilization of all inputs and the start of the evaluation phase
(InputsStable to A2Prech− in figure 11b). A negative value of this separation indicates that
the data inputs can potentially change after evaluation begins. This can lead to accidental
discharge of the internal nodes, resulting in incorrect outputs. Note that if the input data lines
are guaranteed to rise monotonically, the internal nodes cannot be accidentally discharged even
if the inputs stabilize during the evaluation phase. However, the monotonic rising constraint
is often too restrictive; hence ensuring that the data inputs stabilize before evaluation begins
is a robust way of ensuring the correct operation of the domino circuit.

Finally, we consider verifying timing constraints in the inter-controller communication
protocol. InDiffEq, these constraints arise from XBM requirements. For example, in the state
transition diagram ofMUL2Ctrl (figure 10a), rising transitions on bothA2M andA1M enable
the S0 → S1 state transition and trigger a falling transition onM2prech. XBM semantics
require thatA2M subsequently remain high until theS1 → S2 state transition has occurred
andM2prech andM2A2 have risen. This gives rise to the constraint that the minimum time
separation from each ofM2A2+ andM2prech+ to A2M− must be at least 0. Other timing
constraints in the inter-controller communication protocol ofDiffEq are of a similar nature,
i.e., they are needed to ensure that an event always occurs some time after another event. Such
constraints can be easily formulated in terms of time separations between events, as explained
above. Note, however, that with non-XBM controllers, inter-controller protocol constraints
may be complex, and it might not be possible to represent them simply as time separations
between events.

6.5 Experimental results

We have manually constructed a cyclic timing constraint graph modelling the behaviour of
DiffEq from a Register Transfer Level (RTL) description of the system. Since some time

Efficient algorithms for approximate time separation of events 157

Table 4. Timing verification results for typical-case SPICE delays with±5% (top table) and±10%
(bottom table) variations.

All times are in ns. The entries marked with a* were obtained from timing verification experiments in
which the delay of the buffer drivingA1M was deliberately reduced

Event1 Event2 Required min. Computed [d, D] Timing

(e1) (e2) (t2 − t1) d ≤ (t2 − t1) ≤ D violations?

Register A1done+ LA+ Setup-time (tsu) [1.1875, 1.3125] None iftsu < 1.1875

Timing LA+ A1done− Hold-time (th) [3.5135, 4.1465] None ifth < 3.5135

Domino DataStable M1 M1prech− 0 [0.7215, 2.2620] None

Logic DataStable A1 A1prech− 0 [0.9520, 1.4880] None

Timing DataStable A2 A2prech− 0 [2.4360, 3.5240] None

*DataStable M14 M1prech− 0 [−0.2285, 2.2620] Potential violation

Controller M2prech+ A2M− 0 [2.2465, 9.8465] None

Protocol M2A2+ A2M− 0 [2.4985, 10.0175] None

Timing M2prech− A1M− 0 [15.8785, 23.2325] None

Event1 Event2 Required min. Computed [d, D] Timing

(e1) (e2) (t2 − t1) d ≤ (t2 − t1) ≤ D violations?

Register A1done+ LA+ Setup-time (tsu) [1.1250, 1.3750] None iftsu < 1.1250

Timing LA+ A1done− Hold-time (th) [3.1970, 4.4630] None ifth < 3.1970

Domino DataStable M1 M1prech− 0 [0.1930, 3.2330] None

Logic DataStable A1 A1prech− 0 [0.6750, 1.7560] None

Timing DataStable A2 A2prech− 0 [1.8920, 4.0680] None

*DataStable M1 M1prech− 0 [−0.7070, 3.2330] Potential violation

Controller M2prech+ A2M− 0 [2.0430, 11.5430] None

Protocol M2A2+ A2M− 0 [2.3670, 11.7050] None

Timing M2prech− A1M− 0 [14.8870, 25.2550] None

separations of interest involved events in two consecutive iterations of the dataflow graph,
cutsetsC1 andC2 were chosen such that: (a) subgraphG0 models the behaviour of the system
from Reset to the end of the second iteration, and (b) subgraphG1 models two subsequent
iterations of the dataflow graph.

Nominal delays of the circuit components were obtained from SPICE simulations under
typical-case conditions (22◦C, 3.3V and typical-case parasitics). A percentage variation, such
as±10%, was then introduced to obtain bounds of the delay intervals. For datapath com-
ponents, delays for the best-case and worst-case data were also taken into account when
determining the delay bounds.

SubgraphG1 has 288 events. During phase I, bounds of the time separation of 129 pairs
of events were monitored to check for timing constraint violations and to estimate bounds

158 Supratik Chakraborty et al

Table 5. Performance analysis results. All times are in ns.

0% variation [37.4600, 51.5800]

Loop delay 5% variation [35.5870, 54.8060]

10% variation [33.7140, 59.3944]

0% variation [35.2200, 45.8400]
Cycle time 5% variation [33.4590, 48.7790]

10% variation [31.6980, 54.1580]

of performance metrics. Phase I converged after 2 iterations and took 0.46s on a 150 MHz
MIPS R5000 machine with 128 MB of memory3. In comparison, the symbolic performance
analysis technique of Xie & Beerel (1997) took 16.5 minutes on a SPARC-20 with 64 MB
of memory to analyse the performance of the same system. In phase II, the behaviour of
DiffEq from Reset till the end of the fourth iteration of the dataflow graph was modelled and
analysed. This graph contains 680 events, and bounds of the time separation of 441 pairs of
events were monitored to check for timing constraint violations. This phase of analysis took
1.37s on the same computing platform as described above.

Since algorithmAcyclicApproxSep, used in both phases of the analysis, produces conser-
vative results in the worst case, bounds computed in phases I and II could be inexact. For
purposes of comparison, the analysis with±5% delay variations was repeated with McMillan
& Dill’s (1992) branch-and-bound algorithm (an exact algorithm for acyclic timing constraint
graphs) used in place of theAcyclicApproxSep algorithm. All the bounds were found to be
identical to those obtained withAcyclicApproxSep. However, the complete analysis (phases
I and II) using McMillan & Dill’s (1992) algorithm took more than 11 hours on the same
computing platform.

We present two subsets of our timing verification results, corresponding to±5% and
±10% variations of delays, in table 4. Each entry lists a pair of events, the required min-
imum separation between these events, and the computed bounds of the separation during
phases I and II (lower and upper bounds shown are the minimum of the lower bounds and
the maximum of the upper bounds obtained in the two phases). Table 5 shows the loop delay
and cycle time ofDiffEq obtained with 0%,±5% and±10% variations in delays. The 0%
entries indicate the loop delay and cycle time variations solely due to data-dependent delay
variations.

Experiments have also been performed to determine how the correctness of the design
depends on the delay of theA1M signal (an inter-controller synchronization signal) in fig-
ure 9b. This was motivated by feedback from the designers, who had observed from exten-
sive SPICE simulations that in a preliminary version of the design, where the delay of the
buffer drivingA1M was small, the circuit could potentially malfunction. To investigate this,
experiments were performed in which the delay of the buffer driving theA1M signal was
deliberately reduced. The computed bounds immediately indicated potential setup-time vio-
lations of domino circuits in the system. The entries marked with a* in table 4 show some of
these results. Note that the current analysis uncovered the potential errors within a few sec-
onds, whereas it took several hours of SPICE simulations to detect the same problems. This
demonstrates the practical utility of the approach.

3The time reported for “diffEq” in table 1 of § 4.3 is for one iteration of phase I

Efficient algorithms for approximate time separation of events 159

7. Drawbacks and limitations

Despite its advantages, there are drawbacks and limitations of the proposed method. These
are summarized below.

• Currently, timing constraint graphs are manually constructed from descriptions (e.g.
RTL description) of the system behaviour. For large and complex systems such asDiffEq,
this is a tedious and error-prone task. Additional research on automating generation
of timing constraint graphs from standard system descriptions needs to be pursued in
order to facilitate widespread use of the proposed methodology. Note, however, that
constructing a timing constraint graph from a standard system description is expected to
be considerably easier, in general, than verifying complex timing constraints between
events.

• Choice or conditional behaviour is an important feature of many practical asynchronous
systems. Since we can neither model choice with timing constraint graphs, nor extend
our algorithms in a straightforward way to deal with choice without considering all
possibilities explicitly (exponential blowup in the worst-case), this is a severe limitation
of the current work.

• Even for systems without choice, propertyP4in the definition of tightly-coupled systems
(Definition 1) restricts the types of systems that can be analysed to those with few min
and mostly max constraints. Yet another restriction is that the delays of all components,
both in the system and its environment, must be finitely bounded. The second restriction
makes it difficult to model interface circuits, where, for example, a system might interact
with an environment with unknown delay characteristics. However, both propertyP4and
finite edge delays are needed to ensure that finite bounds on the long-term time separation
of events can be obtained in pseudo-polynomial time even without any knowledge of the
initial system behaviour. This may be seen from the proofs of theorem 2 and corollary 1,
which, in turn, are needed to prove lemma 2 and theorem 3. Systems satisfying properties
P1 throughP3, but notP4, or systems with infinite edge delay bounds may still be
analysed using the proposed algorithm. However, there is no guarantee that the computed
bounds will be finite. Since infinite bounds are not very useful in general, the usefulness
of analysing such systems with the proposed algorithm is unclear.

• Although the iterative refinement in phase I of algorithmCyclicApproxSep can be ter-
minated after a pre-set number of iterations, it is usually desirable to let the analysis
converge since that gives tighter bounds by the monotonic convergence property. A
drawback of the current method is that for pathological cases, the number of iterations
required to converge may depend on edge delay bounds, and hence, can be large.

• Each event in a timing constraint graph is associated with either a min or a max type
constraint, but not both. However, in certain systems, the time of occurrence of an event
depends on the min of the times of some of its predecessors and on the max of the
times of other predecessors. In addition, linear constraints may exist between the time
of occurrence of the current event and those of other events. Unfortunately, systems
with multiple types of constraints associated with the same event cannot be modelled or
analysed with the proposed technique.

8. Conclusion

In this paper, we presented two algorithms for timing analysis of asynchronous systems
without choice or conditional behaviour.

160 Supratik Chakraborty et al

(1) A polynomial-time algorithm for computing approximate bounds of time separation of
events in acyclic timing constraint graphs, and

(2) a pseudo-polynomial time algorithm for computing the same bounds in a class of cyclic
timing constraint graphs.

Both algorithms are capable of analysing systems with both min and max type constraints
without incurring exponential complexity. This makes our algorithms more efficient and
more general in their applicability compared to algorithms proposed earlier by Amonet al
(1992), Hulgaardet al (1995) and Myers & Meng (1993). Although the results produced by
our algorithms are conservative in the worst-case, experiments indicate that they are fairly
accurate in practice. This is clearly borne out in the table of results for the acyclic algorithm.
While we have described the results of applying theCyclicApproxSep algorithm to only
DiffEq, application of the algorithm to a few other examples adapted from the literature
(Amon 1993; Hulgaard 1995; Myers 1995) (which could not be described here due to lack
of space) also yielded exact results. This suggests that carefully designed algorithms for
efficient and approximate timing analysis of asynchronous systems is a promising alternative
to more expensive exact techniques. Such techniques are also useful in design-verify-redesign
environments where multiple passes of analysis may be required. Alternatively, efficient and
approximate techniques can also be used as fast filters to narrow down the set of potential
timing problems in large and complex designs. We believe that such techniques will play an
important role in helping asynchronous circuits and systems gain wider acceptance.

While efficient analysis of asynchronous and concurrent systems was the primary moti-
vation behind the work presented in this paper, one can also envisage applying the same
techniques to synchronous systems in which different components interact with each other.
The delays involved in such an application, e.g., the delay for a component to react in
response to a message from another component, could be expressed in terms of the number
of clock ticks involved. Hence, all delays would be integer valued. The analysis techniques
presented above, however, continue to remain applicable for computing time separation
between events in such communicating synchronous systems. Needless to say, the computed
time separations would also be in terms of the number of clock ticks.

We thank Julio Arceo of Qualcomm Inc., San Diego, CA for helping us with SPICE sim-
ulations. We also thank IEEE for granting us permission to use material from our earlier
publication (Chakrabartyet al 1999). We would like to thank the anonymous reviewers for
their comments, which helped in improving the paper.

This work was supported by gifts from Sun Microsystems and Intel Corporation.

References

Alur R, Henzinger T A 1992 Logics and models of real-time: A survey. InReal time: Theory in
practice. Lecture Notes in Computer Science #600(eds) J W de Bakker, K Huizing, W P de Roever,
G Rosenberg (Berlin: Springer-Verlag) pp. 74–106

Amon T 1993Specification, simulation and verification of timing behavior. Ph D thesis, University
of Washington, Seattle, WA

Amon T, Borriello G 1992 An approach to symbolic timing verification. InProceedings of the
ACM/IEEE Design Automation Conference(Los Alamitos, CA: IEEE Comput. Soc. Press) pp.
410–413

Efficient algorithms for approximate time separation of events 161

Amon T, Hulgaard H 1999 Symbolic time separation of events. InProceedings of International
Symposium on Advanced Research in Asynchronous Circuits and Systems(Los Alamitos, CA: IEEE
Comput. Soc. Press) pp 83–93

Amon T, Hulgaard H, Borriello G, Burns S 1992 Timing analysis of concurrent systems. Tech. Rep.
UW-CS-TR-92-11-01, University of Washington, Seattle, WA

Amon T, Borriello G, Hu D, Liu J 1997 Symbolic timing verification of timing diagrams using Pres-
burger formulas. InProceedings of the ACM/IEEE Design Automation Conference(Los Alamitos,
CA: IEEE Comput. Soc. Press) pp 226–231

Berks R, Ebergen J 1997 Response time properties of linear pipelines with varying cell delays. In
Proceedings of the ACM/IEEE International Workshop on Timing Issues in the Specification and
Synthesis of Digital Systems(Los Alamitos, CA: IEEE Comput. Soc. Press) pp 179–188

Borriello G 1998A new interface specification methodology and its application to transducer synthesis.
Ph.D thesis, University of California at Berkeley, CA

Brzozowski J A, Gahlinger T, Mavaddat F 1991 Consistency and satisfiability of waveform timing
specifications.Networks21: 91–107

Burks T M, Sakallah K A 1993 Min-max linear programming and the timing analysis of digital circuits.
In Proceedings of the International Conference on Computer-Aided Design(Los Alamitos, CA:
IEEE Comput. Soc. Press) pp 152–155

Burns S M 1991Performance analysis and optimization of asynchronous circuits. Ph D thesis, Cali-
fornia Institute of Technology, Pasadena, CA

Chakraborty S 1998Polynomial-time techniques for approximate timing analysis of asynchronous
systems, Ph D thesis, Stanford University, CA

Chakraborty S, Dill D L 1997 Approximate algorithms for time separations of events. InProceeding
of the IEEE/ACM Internation Conference on Computer-Aided Design(Los Alamitos, CA: IEEE
Comput. Soc. Press) pp 190–194

Chakraborty S, Dill D L, Yun K Y, Chang K-Y 1997 Timing analysis for extended burst-mode circuits.
In Proceedings of the Third International Symposium on Advanced Research in Asynchronous
Circuits and Systems(Los Alamitos, CA: IEEE Comput. Soc. Press) pp 101-111

Chakraborty S, Yun K Y, Dill D L 1998 Practical timing analysis of asynchronous circuits using time
separations of events. InProceedings of the IEEE Custom Integrated Circuits Conference(Los
Alamitos, CA: IEEE Comput. Soc. Press) pp 455-458

Chakraborty S, Yun K Y, Dill D L 1999 Timing analysis of asynchronous systems using time separation
of events.IEEE Trans. Comput. Aided Design18: 1061–1076

Chou P, Borriello G 1995 Interval scheduling: Fine-grained code scheduling for embedded systems. In
Proceeding of the ACM/IEEE Design Automation Conference(Los Alamitos, CA: IEEE Comput.
Soc. Press) pp. 462–467

Ebergen J, Berks R 1997 Response time properties of some asynchronous circuits. InProceedings
of the 3rd International Symposium on Advanced Research in Asynchronous Circuits and Systems
(Los Alamitos, CA: IEEE Comput. Soc. Press) pp 76–86

Gahlinger T 1990Coherence and satisfiability of waveform timing specifications. Ph D thesis, Uni-
versity of Waterloo, Waterloo, Ontario

Girodias P, Cerny E, Older W J 1997 Solving linear, min and max constraint systems using CLP based
on relational arithmetic.Theor. Comput. Sci.173: 253–281

Gunawardena J 1994 Timing analysis of digital circuits and the theory of min-max functions. Tech.
Rep. HPL-94-39, Hewlett-Packard Laboratory, Palo Alto, CA

Hulgaard H 1995Timing analysis and verification of timed asynchronous circuits. Ph D thesis, Uni-
versity of Washington, Seattle, WA

Hulgaard H, Burns S M 1994 Bounded delay timing analysis of a class of CSP programs with choice.
In Proceedings of the 1st International Symposium of Advanced Research in Asynchronous Circuits
and Systems(Los Alamitos, CA: IEEE Comput. Soc. Press) pp 2–11

Hulgaard H, Burns S M, Amon T, Borriello G 1994 An algorithm for exact bounds on time separation
of events in concurrent systems. Tech. Report, No. UW-CSE-94-02-02, Dept. of Computer Sci.
Eng., Univ. of Washington, Seattle, WA

162 Supratik Chakraborty et al

Hulgaard H, Burns S M, Amon T, Borriello G 1995 An algorithm for exact bounds on time separation
of events in concurrent systems.IEEE Trans. Comput.44: 1306–1317

Kudva P, Gopalakrishnan G, Brunvand E 1994 Performance analysis and optimization for asyn-
chronous circuits. InProceedings of the IEEE International Conference on Computer Design: VLSI
in Computers and Processors, Oct. 1994, pp 221–225

Lavagno L, Sangiovanni-Vincentelli A L 1994 Linear programming for optimum hazard elimination
in asynchronous circuits.J. VLSI Signal Process.7: 137-60

Lee T K 1995A general approach to performance analysis and optimization of asynchronous circuits.
Ph D thesis, California Institute of Technology, Pasadena, CA

Mavaddat F, Gahlinger T 1998 On deducing timing constraints in the verification of interfaces.Formal
Methods Syst. Design12: 223–239

McMillan K L, Dill D L 1992 Algorithms for interface timing verification. InProceedings of the IEEE
International Conference in Computer Design: VLSI in Computers and Processors(Los Alamitos,
CA: IEEE Comput. Soc. Press) pp. 48–51

Mller J, Lichtenberg J, Andersen H R, Hulgaard H 1999 Difference decision diagrams. Tech. Rep. IT-
TR-1999-023, Department of Information Technology, Technical University of Denmark, Lyngby

Myers C J 1995Computers-aided synthesis and verification of gate-level timed circuits. Ph D thesis,
Stanford University, Stanford, CA

Myers C J, Meng T H-Y 1993 Synthesis of timed asychronous circuits.IEEE Trans. VLSI Syst.1:
106–119

Nielsen C D, Kishinevsky M 1994 Performace analysis based on timing simulation. InProceedings
of the ACM/IEEE Design Automation Conference(Los Alamitos, CA: IEEE Comput. Soc. Press)
pp. 70–76

Sakallah K A, Mudge T N, Olukotun O A 1990 CheckTc and minTc: Timing verification and optimal
clocking of digital circuits. InProceedings of the 1990 IEEE/ACM International Conference on
Computer Aided Design(New York: ACM Press)

Tofts C 1995 A compositional analysis of the performance of asynchronous pipelines. InProceedings
of the ACM/IEEE International Workshop on Timing Issues in the Specification and Synthesis of
Digital Systems(Los Alamitos, CA: IEEE Comput. Soc. Press)

Vanbekbergen P, Goossens G, De Man H 1992 Specification and analysis of timing constraints in signal
transition graphs. InProceedings of the European Design Automation Conference(Los Alamitos,
CA: IEEE Comput. Soc. Press) pp 302–306

Walkup E A 1995Optimization of linear Max-Plus systems with application to timing analysis. Ph D
thesis, University of Washington, Seattle, WA

Walkup E A, Borriello G 1994 Interface timing verification with application to synthesis. InProceed-
ings of the ACM/IEEE Design Automation Conference(Los Alamitos, CA: IEEE Comput. Soc.
Press) pp 106–112

Williams T E 1994 Performance of iterative computation in self-timed rings.J. VLSI Signal Process.
7: 17–31

Xie A, Beerel P A 1997 Symbolic techniques for performance analysis of timed systems based on
average time separation of events. InProceedings of the 3rd International Symposium on Advanced
Research in Asynchronous Circuits and Systems(Los Alamitos, CA: IEEE Comput. Soc. Press) pp
64–75

Yen T-Y, Wolf W 1995 Performance estimation of real-time distributed embedded systems. InPro-
ceedings of IEEE International Conference on Computer Design: VLSI in Computers and Proces-
sors(Los Alamitos, CA: IEEE Comput. Soc. Press) pp. 64–69

Yen T-Y, Ishii A, Casavant A, Wolf W 1998 Efficient algorithms for interface timing verification.
Formal Methods Syst. Design12: 241–265

Yun K Y 1994Synthesis of asynchronous controllers for heterogeneous systems. Ph D thesis, Stanford
University, Stanford, CA

Yun K Y, Beerel P A, Vakilotojar V, Dooply A E, Arceo J 1998 The design and verification of a high-
performance low-control-overhead asynchronous differential equation solver.IEEE Trans. VLSI
Syst.6: 643–655

