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Efficient Algorithms for Array Redistribution

Rajeev Thakur” Alok Choudhary' J. Ramanujam?

Abstract

Dynamic redistribution of arrays is required very often in programs on distributed memory
parallel computers. This paper presents efficient algorithms for redistribution between different
cyclic(k) distributions, as defined in High Performance Fortran. We first propose special opti-
mized algorithms for a cyclic(z) to cyclic(y) redistribution when z is a multiple of y, or y is a
multiple of 2. We then propose two algorithms, called the GCD method and the LCM method,
for the general cyclic(z) to cyclic(y) redistribution when there is no particular relation between
z and y. We have implemented these algorithms on the Intel Touchstone Delta, and find that

they perform well for different array sizes and number of processors.

Index Terms: array redistribution, distributed-memory computers, High Performance

Fortran (HPF), data distribution, runtime support
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1 Introduction

In distributed-memory parallel computers, arrays have to be distributed among processors in some
fashion. The distribution can either be regular i.e. block, cyclic, or block-cyclic, as in Fortran D [2]
and High Performance Fortran (HPF) [4, 9], or irregular in which there is no simple arithmetic
function specifying the mapping of arrays to processors. The distribution of an array does not need
to remain fixed throughout the program. In fact, it is very often necessary to change the distribution
of the array at run-time, which is called array redistribution. This requires each processor to
calculate what portions of its local array to send to other processors, what portions of its local
array to receive from other processors, and perform the necessary communication. It is essential to
use efficient algorithms for redistribution, otherwise the performance of the program may degrade
considerably.

This paper describes efficient and practical algorithms for redistributing arrays between different
cyclic(k) distributions, as defined in HPF. The cyclic(k) distribution is the most general regular
distribution in which blocks of size k of the array are distributed among processors in a round-robin
fashion. It is also commonly known as a block-cyclic distribution. Redistribution from a cyclic(z)
to a cyclic(y) distribution, for any general z and y, is interesting because there is no direct algebraic
formula to calculate the set of elements to send to a destination processor and the local addresses

of these elements at the destination.

We first propose efficient algorithms for two special cases of the cyclic(z) to a cyclic(y)
redistribution—when z is a multiple of y, or y is a multiple of . We then propose two meth-
ods called the GCD Method and the LCM Method for the general case when there is no particular
relation between z and y. The GCD and LCM methods make use of the optimized algorithms
developed for the above special cases. The proposed algorithms have low runtime overhead, and
are simple and practical enough to be used in the runtime library of a compiler, or directly in
application programs requiring redistribution.

The rest of this paper is organized as follows. The notations, assumptions and definitions used
in this paper are given in Section 2. Section 3 describes the algorithm for the special case of a
cyclic(z) to cyclic(y) redistribution where 2 is a multiple of y. Section 4 describes the algorithm
for the special case where y is a multiple of 2. The GCD and LCM methods for the general case
are proposed in Section 5. Section 6 discusses related work in this area, followed by conclusions in

Section 7.



global array size

| =

number of processors

p; || logical processor ¢

p || logical number of the processor
executing the program

Ps source processor

pq || destination processor

L || local array size

m || block size

Figure 1: Notations

2 Notations and Definitions

The notations used in this paper are given in Figure 1. We assume that all arrays are indexed
starting from 1, while processors are numbered starting from 0. We also assume that the number of
processors on which the array is distributed remains the same before and after the redistribution. In
HPF, an array can be distributed as block(m) or cyclic(m), which are defined as follows. Consider an
array of size N distributed over P processors. Let us define the ceiling division function CD(j, k) =
(j + k —1)/k, and the ceiling remainder function CR(j, k) = j — k x C'D(j, k). Then, block(m)
distribution means that index j of the array is mapped to logical processor number C'D(j,m) — 1.
Note that for a valid block(m) distribution, m x P > N must be true. Block by definition means
the same as block(C'D(N, P)). In a cyclic(m) distribution, index j of the global array is mapped to

logical processor number mod(C D(j,m)— 1, P)!. Cyclic by definition means the same as cyclic(1).

In other words, in a block distribution, contiguous blocks of the array are distributed among
processors. In a cyclic distribution, array elements are distributed among processors in a round-
robin fashion. In a cyclic(m) distribution, blocks of size m are distributed cyclically. Block and
cyclic distributions are special cases of the general cyclic(m) distribution. A cyclic(m) distribution
with m = [N/ P] is a block distribution, and a cyclic(m) distribution with m = 1 is a cyclic distri-
bution. The formulae for conversion between local and global indices for the different distributions
in HPF are given in Table 1.

The redistribution algorithms proposed in this paper are intended to be portable. Hence, we
do not specify how data communication should be performed because the best communication
algorithms are often machine dependent. Redistribution requires all-to-many personalized commu-

nication in general, and in many cases it requires all-to-all personalized communication. Algorithms

mod(a,b) = a modulo b



Table 1: Data Distribution and Index Conversion

Note: This assumes that arrays are indezed starting from 1 and processors are numbered starting from 0

CD(j,k)=(G+k—1)/k and CR(j,k)=j—kxCD(j,k)

BLOCK(m) CYCLIC CYCLIC(m)
global index (¢)to | p=CD(g,m)—1 | p=mod(g—1,P) p =mod(CD(g,m)—1,P)
processor number (p)

global index (g) l=m+CR(g,m) | l=(¢9—1)/P+1 l=mod(g—1,m)+ 1+

to local index (1) (g/(mP))m
local index (1) to g=l+mp g=U—-1D)P+p+1|g=modll—1,m)+ 1+
global index (g) (P((I=1)/m)+p)m

to implement these communication patterns are described in detail in [15, 10, 17, 12, 13]. The per-
formance results presented in this paper were obtained using the communication algorithms given
in [15, 10, 17]. We do assume that all the data to be sent from any processor i to processor j has to
be collected in a packet in processor ¢ and sent in one communication operation, so as to minimize
the communication startup cost. The redistribution algorithms described in this paper are for one-
dimensional arrays. Multidimensional arrays can be redistributed by applying these algorithms to
each dimension of the array separately. In the rest of this paper, any division involving integers

should be considered as integer division unless specified otherwise.

3 Cyclic(z) to Cyclic(y) Redistribution: Special Case x = ky

For a general cyclic(z) to cyclic(y) redistribution, there is no direct algebraic formula to calculate
the set of elements to send to a destination processor, and the local addresses of these elements at
the destination. Hence, we consider two special cases where z is a multiple of y, or ¥ is a multiple
of z. For the general case where there is no particular relation between z and y, we propose
two algorithms called the GCD method and the LCM method, which make use of the optimized
algorithms developed for the above two special cases.

Let us first consider the special case where z is a multiple of y. Let z = k.

Theorem 3.1 In a cyclic(xz) to cyclic(y) redistribution where x = ky, if k < P, each processor

communicates with k or k — 1 processors. If k > P, each processor communicates with all other

Processors.

Proof: Assume k£ < P. Since & = ky, each block of size z is divided into k sub-blocks of size y
and distributed cyclically. Consider any processor p;. Assume that it has to send its first sub-block



of size y to processor p;. Then the remaining k& —1 sub-blocks of the first block are sent to the next
k —1 processors in order. The next k(P — 1) sub-blocks of the global array are located in the other
P — 1 processors. This results in a total of & P sub-blocks. Hence, the (k 4 1) sub-block of size
y in p; is also sent to p;. As a result, all sub-blocks from p; are sent to £ processors starting from
p;j. One of these processors may be p; itself, in which case p; has to send data to £ — 1 processors.

For the receive phase, consider the first £ P sub-blocks of size y in the global array corresponding
to the first P blocks of size x. Let us number these k P sub-blocks from 0 to kP — 1. Out of

these, the sub-blocks that are mapped to processor p; in the new distribution are numbered p; to

P(k — 1)+ p; with stride P. These sub-blocks come from ﬁ% + 1 = k processors. One
of these processors may be p; itself, in which case p; receives data from k — 1 processors.

If £ > P, each block of size x has to be divided into k& sub-blocks and distributed cyclically,
where the number of sub-blocks is greater than or equal to the number of processors. So, clearly

each processor has to send to and receive from all other processors (all-to-all communication). O

The algorithm for cyclic(z) to cyclic(y) redistribution, where z = ky is given in Figure 2. We
call this the KY_TO._Y algorithm. In the send phase, each processor p calculates the destination
processor pg of the first element of its local array as pg = mod(k p, P). The first y elements have to
be sent to pg, the next y to mod(pqg+ 1, P), the next to mod(pq + 2, P) and so on till the end of the
first block of size . The next k£ sub-blocks of size y have to be sent to the same set of k processors
starting from py. The sequence of destination processors can be stored and need not be calculated

for each block of size z. In the receive phase, there are two cases depending on the value of & :-

1. (k < P) and (mod(P,k)=0) : In this case, each processor p calculates the source processor
of the first block of size y of its local array as p; = p/k. The next block of size y will come
from processor mod(ps+ P/k, P), the next from mod(ps+2(P/k), P) and so on till the first k
blocks. The above sequence of processors is repeated for the remaining sets of k blocks of size
x, and hence can be stored and reused. The data received from other processors cannot be
directly stored in the local array as it has to be stored with a stride. As a result, the data has
to be first stored in a temporary buffer in memory. This gives us two choices in implementing

the receive phase:-

e Synchronous Method: In this method, each processor waits till it receives data from

all other processors, before placing any data in the local array. This increases the memory
requirements of the algorithm and also increases the processor idle time. These problems

worsen as the number of processors is increased, so this method is not scalable.



Send Phase

. The destination processor (pq) of the

first element of the local array 1s

pa = mod(k p, P).

. For each block of size x in the local array

Fori=0tok—1
The destination processor of elements
(fy+ 1) to (¢ + D)y of this block of
size & is mod(pq + ¢, P).

. Send data to other processors.

Receive Phase

1. If (k < P) and (mod(P, k) = 0) then

2. The source processor (p,) of the first
element of the local array is ps = p/k.
Synchronous Method:
3. Receive data from all processors into
temporary buffers.
4. For j=1to [L/z] do
5. Fori=0to k—1do
6. Read the next block of size y from the
data received from processor
mod(ps + i(P/k), P).
Asynchronous Method:
3. The " block of size y, 0 < i < k — 1, is to be
received from processor mod(ps + i(P/k), P).
4. Fori=0tok—1do
5. Receive data from any processor p; into
a temporary buffer.
6. Place the first block of size y in the local
array starting from the location calculated
above, and the other blocks with stride x.
7. Else
8. Receive data from all processors into
temporary buffers.
9. TFori=0to [L/y] —1do
10. The source processor (p,) of the
first element (j = ¢y + 1) of this block of
size y is p; = mod[(i P+ p)/k, P]
11. Read this block of size y from

the data received from p;.

Figure 2: KY_TO.Y algorithm for cyclic(z) to cyclic(y) redistribution, where z = ky

e Asynchronous Method: In this method, the processors do not wait for data from

all processors to arrive.

Instead, each processor takes any packet which has arrived

and places the data into appropriate locations in the local array. This method overlaps

computation and communication. Fach processor posts non-blocking receive calls and

waits for data from any processor to arrive. As soon as a packet is received, it places

the data in appropriate locations in the local array. During this time, data from other

processors may have arrived. When the processor has placed all data from the earlier

packet into the local array, it takes up the next packet, and so on. This reduces processor

idle time. Since all packets do not have to be in memory at the same time, it also reduces

memory requirements. This method is scalable as neither processor idle time nor memory

requirements increase as the number of processors is increased.



If the synchronous method is used for receiving data, the local array needs to be scanned
only once and the 7" block, 0 < i < [L/y] — 1, of size y of the local array will be read from
the data received from processor mod(ps + i(P/k), P). If the asynchronous method is used,
the first block from the data received from some processor p; will be stored starting at the

location calculated above. The remaining blocks will be stored with stride z.

2. If k£ does not satisfy the above condition, it is necessary to calculate the source processor of
the first element (j = iy + 1) of each block of size y, 0 < < [L/y] — 1, of the local array as
ps = mod[(¢ P+ p)/k, P]. The block is read from the data received from p,;. The sequence of
processors does not repeat itself and hence cannot be stored. In this case, the synchronous

method is used.

In the synchronous method, the local array needs to be scanned only once to be filled. In
the asynchronous method, array elements are filled with a certain amount of stride and the array
has to be scanned P times. So, clearly the synchronous method makes better use of the cache
than the asynchronous method. We have tested the performance of the KY_TO_Y algorithm using
both synchronous and asynchronous methods on the Intel Touchstone Delta. Figure 3 compares
the performance of the synchronous and asynchronous methods for a cyclic(4) to cyclic(2) redis-
tribution of a global array of 1M integers for different number of processors. We observe that
the asynchronous method performs better than the synchronous method, even though in this case
each processor communicates with at most two other processors. This is because the asynchronous
method overlaps computation and communication, and thus reduces processor idle time. The bet-
ter cache utilization of the synchronous method does not improve its overall performance. Figure 4
shows the performance of the KY_TO._Y algorithm for a cyclic(4) to cyclic(2) redistribution on 64
processors for different array sizes. For small arrays, the difference in performance between the
synchronous and asynchronous methods is small, because of the small data sets. For large arrays,

the difference is significant because of the higher processor idle time in the synchronous method.

4 Cyclic(x) to Cyclic(y) Redistribution: Special case y =k«

We now consider the special case where y is a multiple of z. Let y = kx. This is essentially the

reverse of the case where z = k.

Theorem 4.1 In a cyclic(xz) to cyclic(y) redistribution where y = kz, if k < P, each processor
sends data to k or k — 1 processors and receives data from k or k — 1 processors. If k > P, each

processor has to communicate with all other processors (all-to-all communication).
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Figure 3: Performance of the KY_TO_Y algorithm for a cyclic(4) to cyclic(2) redistribution on the

Intel Touchstone Delta. The array size is 1M integers, and the number of processors is varied.
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Figure 4: Performance of the KY_TO_Y algorithm for a cyclic(4) to cyclic(2) redistribution on the

Intel Touchstone Delta. The number of processors is 64, and the array size is varied.



Proof: Assume k < P. Consider the first k P sub-blocks of size z in the global array corresponding
to the first P sub-blocks of size y. Let us number these k& P sub-blocks from 0 to £ P — 1. Out of
these, the sub-blocks that are located in processor p; are numbered from p; to P(k—1) -1+ p;

with stride P. In the new distribution, these sub-blocks will be mapped to {P(k_l);l'i'pi}_pi +1=k

processors. One of these processors may be p; itself, in which case p; sends data to k — 1 processors.
In the receive phase, since y = k x, each block of size y in the new distribution consists of £ sub-
blocks of size x which will come from k processors. Consider any processor p;. Assume that it
receives its first sub-block of size x from processor p;. Then the remaining & — 1 sub-blocks of the
first block are received from the next £ — 1 processors in order. The other P — 1 processors receive
the next k(P — 1) sub-blocks of the global array. This results in a total of £ P sub-blocks. Hence
the next sub-block in p;, which is the first sub-block of the next block of size y, is also received
from p;. As a result, all sub-blocks from p; are received from £ processors starting from p;. One of
these processors may be p; itself, in which case p; receives data from k& — 1 processors.

If £ > P, each block of size y will consist of & sub-blocks of size z, where the number of sub-
blocks is greater than or equal to the number of processors. So, clearly each processor has to send

to and receive from all other processors (all-to-all communication). O

The algorithm for cyclic(z) to cyclic(y) redistribution, where y = k 2, is given in Figure 5. We
call this the X_TO_KX algorithm. In the send phase, there are two cases depending on the value
of k :-

1. (k < P) and (mod(P,k) = 0): In this case, each processor p calculates the destination
processor of the first block of size x of its local array as py = p/k. The next block of size x
has to be sent to processor mod(ps + P/k, P), the next to mod(pq + 2(P/k), P), and so on
till the first k& blocks. The above sequence of processors is repeated for the remaining sets of

k blocks of size z, and hence need not be calculated again.

2. If k does not satisfy the above condition, it is necessary to individually calculate the destina-

tion processor of each block ¢ of size z, 0 < ¢ < [L/x] — 1, as pg = mod[(i P+ p)/k, P].

In the receive phase, each processor p calculates the source processor of the first element of its local
array as ps = mod[kp, P]. As in the KY_TO_Y algorithm, the receive phase can be implemented
using either the synchronous method or the asynchronous method. If the synchronous method is
used, for each block of size y of the local array, the & sub-blocks of size x are read from the packets

received from the k processors starting from p; in order of processor number. If the asynchronous

method is used, we know that the ¥ block of size x of the local array, 0 < i < k — 1, will be



Send Phase Receive Phase

1. If (k < P) and (mod(P, k) = 0) then 1. The source processor (p;) of the first
2. The destination processor (pg) of the element of the local array is p; = mod[k p, P].
first element of the local array is pg = p/k. Synchronous Method:
3. TForj=0¢to[L/y] -1 2. Receive data from all processors into
4. Fori=0tok—1 temporary buffers.
5. The destination processor of the 3. For each block of size y in the local array do
next block of size x of the local 4. Fori=0to k—1do
array is mod(pq + {(P/k), P). 5. Read elements (i 4+ 1) to (i + 1)z of
6. Else the current block of size y from the packet
7. Fori=0to [L/x] -1 received from processor mod(p;s + ¢, P).
8. The destination processor (pgq) of the
first element (j = ¢ + 1) of this block Asynchronous Method:
of size x is pg = mod[(i P + p)/k, P]. 2. The i** block of size x, 0 < i < k — 1, is to be
9. Send data to other processors. received from processor mod(p;s + ¢, P).
3. Fori=0tok—1do
4. Receive data from any processor p; into
a temporary buffer.
5. Place the first block of size z in the local

array starting from the location calculated
above, and the other blocks with stride y.

Figure 5: X_TO_KX algorithm for cyclic(z) to cyclic(y) redistribution, where y = kz

received from processor mod(p,; + ¢, P). Thus the local index of the first block received from any
source processor can be calculated. The remaining blocks have to be stored with stride y.

We have tested the performance of the X_TO_KX algorithm on the Intel Touchstone Delta
for different array sizes and number of processors. Figure 6 compares the performance of the
synchronous and asynchronous methods for a cyclic(2) to cyclic(4) redistribution of an array of
1M integers for different number of processors. Figure 7 compares the performance of the two
methods for different array sizes on 64 processors. The results are similar to those obtained for the

KY_TO_Y algorithm. The asynchronous method is found to perform better in all cases.

5 General Cyclic(z) to Cyclic(y) Redistribution:

Let us consider the general case of a cyclic(z) to cyclic(y) redistribution in which there is no
particular relation between z and y. One algorithm for doing this is to explicitly calculate the

destination and source processor of each element of the local array, using the formulae given in
Table 1. We call this the General Method and is described below.
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Figure 6: Performance of the X_TO_KX algorithm for a cyclic(2) to cyclic(4) redistribution on the

Intel Touchstone Delta. The array size is 1M integers, and the number of processors is varied.
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5.1 General Method

In the send phase, the destination processor of each element of the local array can be determined by
first calculating its global index based on the current distribution and then the destination processor
based on the new distribution. These two calculations can be combined into a single expression to
give  the  destination processor  of  element ¢ of the local array  as
pa = mod[{mod(i — 1,z) + (P((i — 1)/2) 4+ p)z + y}/y — 1, P]. Similarly in the receive phase,
the source processor of each element of the local array can be determined by first calculating its
global index based on the new distribution and then the source processor based on the old distribu-
tion. These two calculations can be combined into a single expression to give the source processor
of element ¢ of the local array as p, = mod[{mod(i— 1,y)+ (P((i — 1)/y) + p)y+ z}/z — 1, P].
The drawback of this algorithm is that calculations are needed individually for all elements of
the array. We propose two algorithms called the GCD method and the LCM method, which make
use of the optimized KY_TO_Y and X_TO_KX algorithms, and hence require a lot less calculations.

5.2 GCD Method

This method takes advantage of the fact that we have developed special optimized algorithms for
a cyclic(z) to cyclic(y) redistribution when 2 = ky (the KY_TO_.Y algorithm) and y = k2 (the
X_TO_KX algorithm). In the GCD method, the redistribution is done as a sequence of two phases
— cyclic(z) to cyclic(m) followed by cyclic(m) to cyclic(y), where m = GCD(z,y). Since both z
and y are multiples of m, the KY_TO_Y algorithm can be used for the cyclic(z) to cyclic(m) phase,
and the X_TO_KX algorithm can be used for the cyclic(m) to cyclic(y) phase. This is described
in Figure 8. The GCD method involves the cost of having to do two separate redistributions. For
small arrays, the increased communication may outweigh the savings in computation, but for large
arrays in some cases, the performance is better than that of the general method. This can be
observed from Figure 9 which shows the performance of a cyclic(15) to cyclic(10) redistribution,
for an array of size 1M integers on the Delta. We see that for small number of processors, the
GCD method performs considerably better than the general method because of the saving in the
amount of computation per processor. Since the size of the global array is kept constant, as the
number of processors is increased, the size of the local array in each processor becomes smaller and
each processor spends less time on address calculation. Hence the performance improvement of the
GCD method over the general method is also small.

One disadvantage of the GCD method is that in the intermediate cyclic(m) distribution, the
block size m is smaller than both 2 and y. In the KY_TO.Y and X_TO_KX algorithms, all the

address and processor calculations are done for blocks of size & or y. Since m is the GCD of z and

11



GCD Method LCM Method

1. Let m = GCD(z,y). 1. Let m = LCM (z,y).

2. Redistribute from cyclic(z) to cyclic(m) 2. Redistribute from cyclic(z) to cyclic(m)
using the KY_TO_Y algorithm. using the X_TO_KX algorithm.

3. Redistribute from cyclic(m) to cyclic(y) 3. Redistribute from cyclic(m) to cyclic(y)
using the X_TO_KX algorithm. using the KY_TO_Y algorithm.

Figure 8: GCD and LCM methods for the general cyclic(z) to cyclic(y) redistribution

y, m can even be equal to 1 in some cases (when z and y are relatively prime). When m = 1,
calculations have to be done for each element, which is no better than in the general method. In
this case, the general method is expected to perform better than the GCD method. Figure 10
shows the performance of cyclic(11) to cyclic(3) redistribution on the Delta for an array of size 1M
integers. Since the GCD of 11 and 3 is 1, we find that the general method always performs better
than the GCD method.

5.3 LCM Method

The key to getting good performance in this two-phase approach for redistribution is to have a
large value for m. One way of ensuring that m is always large is by choosing m as the LCM of «
and y. Since m is a multiple of both # and y, the X_TO_KX algorithm can be used for the cyclic(z)
to cyclic(m) phase and the KY_TO_Y algorithm can be used for the cyclic(m) to cyclic(y) phase.
This is described in Figure 8. Also, since m is larger than both z and y, all calculations are done
for this larger block size. This results in fewer calculations than in the GCD and general methods.
Figures 9 and 10 compare the performance of the LCM, GCD, and general methods for an array
of 1M integers on different number of processors. We observe that the LCM method performs
better in all cases. Figure 11 compares the performance of the LCM and general methods for a
cyclic(11) to cyclic(3) redistribution keeping the number of processors fixed at 64 and varying the
array size. We observe that for small arrays, the general method performs better because it has
less communication, but for large arrays the LCM method performs better because the saving in
computation is higher than the increase in communication.

Note that the timings for the GCD and LCM methods in Figures 9, 10, and 11 include the time
for calculating the GCD and LCM. For the cyclic(15) to cyclic(10) redistribution, both the special-
case redistributions within the GCD and LCM algorithms were performed using the asynchronous

method, since the condition ((k < P) and (mod(P,k) = 0)) is satisfied in this case. For the

cyclic(11) to cyclic(3) redistribution, however, the synchronous method was used in the KY_TO_.Y
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Figure 9: Comparison of the GCD, LCM, and general methods for a cyclic(15) to cyclic(10) redis-

tribution on the Intel Touchstone Delta. The array size is 1M integers.
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Figure 10: Comparison of the GCD, LCM, and general methods for a cyclic(11) to cyclic(3) redis-

tribution on the Intel Touchstone Delta. The array size is 1M integers.
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Figure 11: Comparison of the LCM and general methods for a cyclic(11) to cyclic(3) redistribution

on the Intel Touchstone Delta. The number of processors is 64, and the array size is varied.

algorithm, since the condition ((k < P) and (mod(P, k) = 0)) is not satisfied, and the asynchronous

method was used in X_TO_KX algorithm, since it does not require the above condition.

6 Related Work

Gupta et al. [3] and Koelbel [8] provide closed form expressions for determining the send and receive
processor sets and data index sets for redistributing arrays between block and cyclic distributions.
Efficient algorithms for block(m) to cyclic, and cyclic to block(m) redistributions are described
in [16]. A model for evaluating the communication cost of data redistribution is given in [6]. A
virtual processor approach for the general block-cyclic redistribution is proposed in [3]. Wakatani
and Wolfe [18] describe a method of array redistribution, called strip mining redistribution, in
which parts an array are redistributed in sequence, instead of redistributing the entire array at
one time as a whole. The reason for doing this is to try to overlap the communication involved in
redistribution with some of the computation in the program. Kalns and Ni [5] present a technique for
mapping data to processors so as to minimize the total amount of data that must be communicated
during redistribution. A multiphase approach to redistribution is discussed in [7]. Algorithms for
redistribution, based on a mathematical representation for regular distributions called PITFALLS,
are proposed in [11] .

There has also been some research on the closely related problem of determining the local
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addresses and communication sets for array assignment statements like A(ly : hy :51) = B(l3 : ha :
s2) where A and B have different cyclic(m) distributions. Chatterjee et al [1] present an approach
to calculate the sequence of local memory addresses that a given processor must access while doing
a computation involving the regular array section A(l : h : s), when the array A has a cyclic(k)
distribution. They show that the local memory access sequence is characterized by a finite state
machine of at most k states. Stichnoth [14] defines a cyclic(k) distribution as a disjoint union of
slices, where a slice is a sequence of array indices specified by a lower bound, upper bound and
stride (I : h : s). The processor and index sets for array assignment statements are calculated in

terms of unions and intersections of slices.

7 Conclusions

We have presented efficient and practical algorithms for redistributing arrays between different
cyclic(k) distributions, which is the most general form of redistribution. The algorithms are portable
and independent of the communication mechanism used.

We find that the asynchronous method performs better than the synchronous method in all
cases, because it reduces processor idle time. For the general case where there is no particular
relation between x and y, the general method performs well for small arrays because it requires
communication only once. However, for large arrays, the LCM method performs much better than
the general method, because it requires a lot less address calculation. The GCD method also
performs better than the general method for large arrays, provided the GCD of z and ¥ is greater
than 1. The LCM method always performs better than the GCD method because the LCM of x
and y is always greater than their GCD.

The relative performance of the three methods may be affected by changes in the underlying
architecture of the system. For example, in a system with very high communication costs, the
general method may perform better since it has only one communication phase. Improved scalar
compilers that optimize expensive index calculations may also improve the performance of the

general method.
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