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1 IntroductionIn distributed-memory parallel computers, arrays have to be distributed among processors in somefashion. The distribution can either be regular i.e. block, cyclic, or block-cyclic, as in Fortran D [2]and High Performance Fortran (HPF) [4, 9], or irregular in which there is no simple arithmeticfunction specifying the mapping of arrays to processors. The distribution of an array does not needto remain �xed throughout the program. In fact, it is very often necessary to change the distributionof the array at run-time, which is called array redistribution. This requires each processor tocalculate what portions of its local array to send to other processors, what portions of its localarray to receive from other processors, and perform the necessary communication. It is essential touse e�cient algorithms for redistribution, otherwise the performance of the program may degradeconsiderably.This paper describes e�cient and practical algorithms for redistributing arrays between di�erentcyclic(k) distributions, as de�ned in HPF. The cyclic(k) distribution is the most general regulardistribution in which blocks of size k of the array are distributed among processors in a round-robinfashion. It is also commonly known as a block-cyclic distribution. Redistribution from a cyclic(x)to a cyclic(y) distribution, for any general x and y, is interesting because there is no direct algebraicformula to calculate the set of elements to send to a destination processor and the local addressesof these elements at the destination.We �rst propose e�cient algorithms for two special cases of the cyclic(x) to a cyclic(y)redistribution|when x is a multiple of y, or y is a multiple of x. We then propose two meth-ods called the GCD Method and the LCM Method for the general case when there is no particularrelation between x and y. The GCD and LCM methods make use of the optimized algorithmsdeveloped for the above special cases. The proposed algorithms have low runtime overhead, andare simple and practical enough to be used in the runtime library of a compiler, or directly inapplication programs requiring redistribution.The rest of this paper is organized as follows. The notations, assumptions and de�nitions usedin this paper are given in Section 2. Section 3 describes the algorithm for the special case of acyclic(x) to cyclic(y) redistribution where x is a multiple of y. Section 4 describes the algorithmfor the special case where y is a multiple of x. The GCD and LCM methods for the general caseare proposed in Section 5. Section 6 discusses related work in this area, followed by conclusions inSection 7. 1



N global array sizeP number of processorspi logical processor ip logical number of the processorexecuting the programps source processorpd destination processorL local array sizem block sizeFigure 1: Notations2 Notations and De�nitionsThe notations used in this paper are given in Figure 1. We assume that all arrays are indexedstarting from 1, while processors are numbered starting from 0. We also assume that the number ofprocessors on which the array is distributed remains the same before and after the redistribution. InHPF, an array can be distributed as block(m) or cyclic(m), which are de�ned as follows. Consider anarray of size N distributed over P processors. Let us de�ne the ceiling division function CD(j; k) =(j + k � 1)=k, and the ceiling remainder function CR(j; k) = j � k � CD(j; k). Then, block(m)distribution means that index j of the array is mapped to logical processor number CD(j;m)� 1.Note that for a valid block(m) distribution, m� P � N must be true. Block by de�nition meansthe same as block(CD(N;P )). In a cyclic(m) distribution, index j of the global array is mapped tological processor number mod(CD(j;m)� 1; P )1. Cyclic by de�nition means the same as cyclic(1).In other words, in a block distribution, contiguous blocks of the array are distributed amongprocessors. In a cyclic distribution, array elements are distributed among processors in a round-robin fashion. In a cyclic(m) distribution, blocks of size m are distributed cyclically. Block andcyclic distributions are special cases of the general cyclic(m) distribution. A cyclic(m) distributionwith m = dN=Pe is a block distribution, and a cyclic(m) distribution with m = 1 is a cyclic distri-bution. The formulae for conversion between local and global indices for the di�erent distributionsin HPF are given in Table 1.The redistribution algorithms proposed in this paper are intended to be portable. Hence, wedo not specify how data communication should be performed because the best communicationalgorithms are often machine dependent. Redistribution requires all-to-many personalized commu-nication in general, and in many cases it requires all-to-all personalized communication. Algorithms1mod(a; b) = a modulo b 2



Table 1: Data Distribution and Index ConversionNote: This assumes that arrays are indexed starting from 1 and processors are numbered starting from 0CD(j; k) = (j + k � 1)=k and CR(j; k) = j � k � CD(j; k)BLOCK(m) CYCLIC CYCLIC(m)global index (g) to p = CD(g;m)� 1 p = mod(g� 1; P ) p = mod(CD(g;m)� 1; P )processor number (p)global index (g) l = m+ CR(g;m) l = (g � 1)=P + 1 l = mod(g � 1; m) + 1+to local index (l) (g=(mP ))mlocal index (l) to g = l +mp g = (l� 1)P + p+ 1 g = mod(l� 1; m) + 1+global index (g) (P ((l� 1)=m) + p)mto implement these communication patterns are described in detail in [15, 10, 17, 12, 13]. The per-formance results presented in this paper were obtained using the communication algorithms givenin [15, 10, 17]. We do assume that all the data to be sent from any processor i to processor j has tobe collected in a packet in processor i and sent in one communication operation, so as to minimizethe communication startup cost. The redistribution algorithms described in this paper are for one-dimensional arrays. Multidimensional arrays can be redistributed by applying these algorithms toeach dimension of the array separately. In the rest of this paper, any division involving integersshould be considered as integer division unless speci�ed otherwise.3 Cyclic(x) to Cyclic(y) Redistribution: Special Case x = k yFor a general cyclic(x) to cyclic(y) redistribution, there is no direct algebraic formula to calculatethe set of elements to send to a destination processor, and the local addresses of these elements atthe destination. Hence, we consider two special cases where x is a multiple of y, or y is a multipleof x. For the general case where there is no particular relation between x and y, we proposetwo algorithms called the GCD method and the LCM method, which make use of the optimizedalgorithms developed for the above two special cases.Let us �rst consider the special case where x is a multiple of y. Let x = k y.Theorem 3.1 In a cyclic(x) to cyclic(y) redistribution where x = k y, if k < P , each processorcommunicates with k or k � 1 processors. If k � P , each processor communicates with all otherprocessors.Proof: Assume k < P . Since x = k y, each block of size x is divided into k sub-blocks of size yand distributed cyclically. Consider any processor pi. Assume that it has to send its �rst sub-block3



of size y to processor pj . Then the remaining k�1 sub-blocks of the �rst block are sent to the nextk� 1 processors in order. The next k(P � 1) sub-blocks of the global array are located in the otherP � 1 processors. This results in a total of k P sub-blocks. Hence, the (k + 1)th sub-block of sizey in pi is also sent to pj . As a result, all sub-blocks from pi are sent to k processors starting frompj . One of these processors may be pi itself, in which case pi has to send data to k � 1 processors.For the receive phase, consider the �rst k P sub-blocks of size y in the global array correspondingto the �rst P blocks of size x. Let us number these k P sub-blocks from 0 to k P � 1. Out ofthese, the sub-blocks that are mapped to processor pi in the new distribution are numbered pi toP (k � 1) + pi with stride P . These sub-blocks come from fP (k�1)+pig�piP + 1 = k processors. Oneof these processors may be pi itself, in which case pi receives data from k � 1 processors.If k � P , each block of size x has to be divided into k sub-blocks and distributed cyclically,where the number of sub-blocks is greater than or equal to the number of processors. So, clearlyeach processor has to send to and receive from all other processors (all-to-all communication). 2The algorithm for cyclic(x) to cyclic(y) redistribution, where x = k y is given in Figure 2. Wecall this the KY TO Y algorithm. In the send phase, each processor p calculates the destinationprocessor pd of the �rst element of its local array as pd = mod(k p; P ). The �rst y elements have tobe sent to pd, the next y to mod(pd+1; P ), the next to mod(pd+2; P ) and so on till the end of the�rst block of size x. The next k sub-blocks of size y have to be sent to the same set of k processorsstarting from pd. The sequence of destination processors can be stored and need not be calculatedfor each block of size x. In the receive phase, there are two cases depending on the value of k :-1. (k � P ) and (mod(P; k) = 0) : In this case, each processor p calculates the source processorof the �rst block of size y of its local array as ps = p=k. The next block of size y will comefrom processor mod(ps+P=k; P ), the next frommod(ps+2(P=k); P ) and so on till the �rst kblocks. The above sequence of processors is repeated for the remaining sets of k blocks of sizex, and hence can be stored and reused. The data received from other processors cannot bedirectly stored in the local array as it has to be stored with a stride. As a result, the data hasto be �rst stored in a temporary bu�er in memory. This gives us two choices in implementingthe receive phase:-� Synchronous Method: In this method, each processor waits till it receives data fromall other processors, before placing any data in the local array. This increases the memoryrequirements of the algorithm and also increases the processor idle time. These problemsworsen as the number of processors is increased, so this method is not scalable.4



Send Phase1. The destination processor (pd) of the�rst element of the local array ispd = mod(k p; P ).2. For each block of size x in the local array3. For i = 0 to k � 14. The destination processor of elements(i y + 1) to (i + 1)y of this block ofsize x is mod(pd + i; P ).5. Send data to other processors. Receive Phase1. If (k � P ) and (mod(P; k) = 0) then2. The source processor (ps) of the �rstelement of the local array is ps = p=k.Synchronous Method:3. Receive data from all processors intotemporary bu�ers.4. For j = 1 to dL=xe do5. For i = 0 to k � 1 do6. Read the next block of size y from thedata received from processormod(ps + i(P=k); P ).Asynchronous Method:3. The ith block of size y, 0 � i � k � 1, is to bereceived from processor mod(ps + i(P=k); P ).4. For i = 0 to k � 1 do5. Receive data from any processor pi intoa temporary bu�er.6. Place the �rst block of size y in the localarray starting from the location calculatedabove, and the other blocks with stride x.7. Else8. Receive data from all processors intotemporary bu�ers.9. For i = 0 to dL=ye � 1 do10. The source processor (ps) of the�rst element (j = i y + 1) of this block ofsize y is ps = mod[(i P + p)=k; P ]11. Read this block of size y fromthe data received from ps.Figure 2: KY TO Y algorithm for cyclic(x) to cyclic(y) redistribution, where x = k y� Asynchronous Method: In this method, the processors do not wait for data fromall processors to arrive. Instead, each processor takes any packet which has arrivedand places the data into appropriate locations in the local array. This method overlapscomputation and communication. Each processor posts non-blocking receive calls andwaits for data from any processor to arrive. As soon as a packet is received, it placesthe data in appropriate locations in the local array. During this time, data from otherprocessors may have arrived. When the processor has placed all data from the earlierpacket into the local array, it takes up the next packet, and so on. This reduces processoridle time. Since all packets do not have to be in memory at the same time, it also reducesmemory requirements. This method is scalable as neither processor idle time nor memoryrequirements increase as the number of processors is increased.5



If the synchronous method is used for receiving data, the local array needs to be scannedonly once and the ith block, 0 � i � dL=ye � 1, of size y of the local array will be read fromthe data received from processor mod(ps + i(P=k); P ). If the asynchronous method is used,the �rst block from the data received from some processor pi will be stored starting at thelocation calculated above. The remaining blocks will be stored with stride x.2. If k does not satisfy the above condition, it is necessary to calculate the source processor ofthe �rst element (j = i y+ 1) of each block of size y, 0 � i � dL=ye � 1, of the local array asps = mod[(i P + p)=k; P ]. The block is read from the data received from ps. The sequence ofprocessors does not repeat itself and hence cannot be stored. In this case, the synchronousmethod is used.In the synchronous method, the local array needs to be scanned only once to be �lled. Inthe asynchronous method, array elements are �lled with a certain amount of stride and the arrayhas to be scanned P times. So, clearly the synchronous method makes better use of the cachethan the asynchronous method. We have tested the performance of the KY TO Y algorithm usingboth synchronous and asynchronous methods on the Intel Touchstone Delta. Figure 3 comparesthe performance of the synchronous and asynchronous methods for a cyclic(4) to cyclic(2) redis-tribution of a global array of 1M integers for di�erent number of processors. We observe thatthe asynchronous method performs better than the synchronous method, even though in this caseeach processor communicates with at most two other processors. This is because the asynchronousmethod overlaps computation and communication, and thus reduces processor idle time. The bet-ter cache utilization of the synchronous method does not improve its overall performance. Figure 4shows the performance of the KY TO Y algorithm for a cyclic(4) to cyclic(2) redistribution on 64processors for di�erent array sizes. For small arrays, the di�erence in performance between thesynchronous and asynchronous methods is small, because of the small data sets. For large arrays,the di�erence is signi�cant because of the higher processor idle time in the synchronous method.4 Cyclic(x) to Cyclic(y) Redistribution: Special case y = k xWe now consider the special case where y is a multiple of x. Let y = k x. This is essentially thereverse of the case where x = k y.Theorem 4.1 In a cyclic(x) to cyclic(y) redistribution where y = k x, if k < P , each processorsends data to k or k � 1 processors and receives data from k or k � 1 processors. If k � P , eachprocessor has to communicate with all other processors (all-to-all communication).6



100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140

T
i
m
e
 
(
m
s
)

Processors

Synchronous Method
Asynchronous Method

Figure 3: Performance of the KY TO Y algorithm for a cyclic(4) to cyclic(2) redistribution on theIntel Touchstone Delta. The array size is 1M integers, and the number of processors is varied.
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Figure 4: Performance of the KY TO Y algorithm for a cyclic(4) to cyclic(2) redistribution on theIntel Touchstone Delta. The number of processors is 64, and the array size is varied.7



Proof: Assume k < P . Consider the �rst k P sub-blocks of size x in the global array correspondingto the �rst P sub-blocks of size y. Let us number these k P sub-blocks from 0 to k P � 1. Out ofthese, the sub-blocks that are located in processor pi are numbered from pi to P (k � 1) � 1 + piwith stride P . In the new distribution, these sub-blocks will be mapped to fP (k�1)�1+pig�piP +1 = kprocessors. One of these processors may be pi itself, in which case pi sends data to k�1 processors.In the receive phase, since y = k x, each block of size y in the new distribution consists of k sub-blocks of size x which will come from k processors. Consider any processor pi. Assume that itreceives its �rst sub-block of size x from processor pj . Then the remaining k � 1 sub-blocks of the�rst block are received from the next k� 1 processors in order. The other P � 1 processors receivethe next k(P � 1) sub-blocks of the global array. This results in a total of k P sub-blocks. Hencethe next sub-block in pi, which is the �rst sub-block of the next block of size y, is also receivedfrom pj . As a result, all sub-blocks from pi are received from k processors starting from pj . One ofthese processors may be pi itself, in which case pi receives data from k � 1 processors.If k � P , each block of size y will consist of k sub-blocks of size x, where the number of sub-blocks is greater than or equal to the number of processors. So, clearly each processor has to sendto and receive from all other processors (all-to-all communication). 2The algorithm for cyclic(x) to cyclic(y) redistribution, where y = k x, is given in Figure 5. Wecall this the X TO KX algorithm. In the send phase, there are two cases depending on the valueof k :-1. (k � P ) and (mod(P; k) = 0): In this case, each processor p calculates the destinationprocessor of the �rst block of size x of its local array as pd = p=k. The next block of size xhas to be sent to processor mod(pd + P=k; P ), the next to mod(pd + 2(P=k); P ), and so ontill the �rst k blocks. The above sequence of processors is repeated for the remaining sets ofk blocks of size x, and hence need not be calculated again.2. If k does not satisfy the above condition, it is necessary to individually calculate the destina-tion processor of each block i of size x, 0 � i � dL=xe � 1, as pd = mod[(i P + p)=k; P ].In the receive phase, each processor p calculates the source processor of the �rst element of its localarray as ps = mod[kp; P ]. As in the KY TO Y algorithm, the receive phase can be implementedusing either the synchronous method or the asynchronous method. If the synchronous method isused, for each block of size y of the local array, the k sub-blocks of size x are read from the packetsreceived from the k processors starting from ps in order of processor number. If the asynchronousmethod is used, we know that the ith block of size x of the local array, 0 � i � k � 1, will be8



Send Phase1. If (k � P ) and (mod(P; k) = 0) then2. The destination processor (pd) of the�rst element of the local array is pd = p=k.3. For j = 0 to dL=ye � 14. For i = 0 to k � 15. The destination processor of thenext block of size x of the localarray is mod(pd + i(P=k); P ).6. Else7. For i = 0 to dL=xe � 18. The destination processor (pd) of the�rst element (j = i x+ 1) of this blockof size x is pd = mod[(i P + p)=k; P ].9. Send data to other processors.
Receive Phase1. The source processor (ps) of the �rstelement of the local array is ps = mod[k p; P ].Synchronous Method:2. Receive data from all processors intotemporary bu�ers.3. For each block of size y in the local array do4. For i = 0 to k � 1 do5. Read elements (i x + 1) to (i+ 1)x ofthe current block of size y from the packetreceived from processor mod(ps + i; P ).Asynchronous Method:2. The ith block of size x, 0 � i � k � 1, is to bereceived from processor mod(ps + i; P ).3. For i = 0 to k � 1 do4. Receive data from any processor pi intoa temporary bu�er.5. Place the �rst block of size x in the localarray starting from the location calculatedabove, and the other blocks with stride y.Figure 5: X TO KX algorithm for cyclic(x) to cyclic(y) redistribution, where y = k xreceived from processor mod(ps + i; P ). Thus the local index of the �rst block received from anysource processor can be calculated. The remaining blocks have to be stored with stride y.We have tested the performance of the X TO KX algorithm on the Intel Touchstone Deltafor di�erent array sizes and number of processors. Figure 6 compares the performance of thesynchronous and asynchronous methods for a cyclic(2) to cyclic(4) redistribution of an array of1M integers for di�erent number of processors. Figure 7 compares the performance of the twomethods for di�erent array sizes on 64 processors. The results are similar to those obtained for theKY TO Y algorithm. The asynchronous method is found to perform better in all cases.5 General Cyclic(x) to Cyclic(y) Redistribution:Let us consider the general case of a cyclic(x) to cyclic(y) redistribution in which there is noparticular relation between x and y. One algorithm for doing this is to explicitly calculate thedestination and source processor of each element of the local array, using the formulae given inTable 1. We call this the General Method and is described below.9
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Figure 6: Performance of the X TO KX algorithm for a cyclic(2) to cyclic(4) redistribution on theIntel Touchstone Delta. The array size is 1M integers, and the number of processors is varied.
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Figure 7: Performance of the X TO KX algorithm for a cyclic(2) to cyclic(4) redistribution on theIntel Touchstone Delta. The number of processors is 64, and the array size is varied.10



5.1 General MethodIn the send phase, the destination processor of each element of the local array can be determined by�rst calculating its global index based on the current distribution and then the destination processorbased on the new distribution. These two calculations can be combined into a single expression togive the destination processor of element i of the local array aspd = mod[fmod(i � 1; x) + (P ((i � 1)=x) + p)x + yg=y � 1; P ]. Similarly in the receive phase,the source processor of each element of the local array can be determined by �rst calculating itsglobal index based on the new distribution and then the source processor based on the old distribu-tion. These two calculations can be combined into a single expression to give the source processorof element i of the local array as ps =mod[fmod(i� 1; y) + (P ((i� 1)=y) + p)y + xg=x� 1; P ].The drawback of this algorithm is that calculations are needed individually for all elements ofthe array. We propose two algorithms called the GCD method and the LCM method, which makeuse of the optimized KY TO Y and X TO KX algorithms, and hence require a lot less calculations.5.2 GCD MethodThis method takes advantage of the fact that we have developed special optimized algorithms fora cyclic(x) to cyclic(y) redistribution when x = k y (the KY TO Y algorithm) and y = k x (theX TO KX algorithm). In the GCD method, the redistribution is done as a sequence of two phases| cyclic(x) to cyclic(m) followed by cyclic(m) to cyclic(y), where m = GCD(x; y). Since both xand y are multiples ofm, the KY TO Y algorithm can be used for the cyclic(x) to cyclic(m) phase,and the X TO KX algorithm can be used for the cyclic(m) to cyclic(y) phase. This is describedin Figure 8. The GCD method involves the cost of having to do two separate redistributions. Forsmall arrays, the increased communication may outweigh the savings in computation, but for largearrays in some cases, the performance is better than that of the general method. This can beobserved from Figure 9 which shows the performance of a cyclic(15) to cyclic(10) redistribution,for an array of size 1M integers on the Delta. We see that for small number of processors, theGCD method performs considerably better than the general method because of the saving in theamount of computation per processor. Since the size of the global array is kept constant, as thenumber of processors is increased, the size of the local array in each processor becomes smaller andeach processor spends less time on address calculation. Hence the performance improvement of theGCD method over the general method is also small.One disadvantage of the GCD method is that in the intermediate cyclic(m) distribution, theblock size m is smaller than both x and y. In the KY TO Y and X TO KX algorithms, all theaddress and processor calculations are done for blocks of size x or y. Since m is the GCD of x and11



GCD Method1. Let m = GCD(x; y).2. Redistribute from cyclic(x) to cyclic(m)using the KY TO Y algorithm.3. Redistribute from cyclic(m) to cyclic(y)using the X TO KX algorithm. LCM Method1. Let m = LCM (x; y).2. Redistribute from cyclic(x) to cyclic(m)using the X TO KX algorithm.3. Redistribute from cyclic(m) to cyclic(y)using the KY TO Y algorithm.Figure 8: GCD and LCM methods for the general cyclic(x) to cyclic(y) redistributiony, m can even be equal to 1 in some cases (when x and y are relatively prime). When m = 1,calculations have to be done for each element, which is no better than in the general method. Inthis case, the general method is expected to perform better than the GCD method. Figure 10shows the performance of cyclic(11) to cyclic(3) redistribution on the Delta for an array of size 1Mintegers. Since the GCD of 11 and 3 is 1, we �nd that the general method always performs betterthan the GCD method.5.3 LCM MethodThe key to getting good performance in this two-phase approach for redistribution is to have alarge value for m. One way of ensuring that m is always large is by choosing m as the LCM of xand y. Since m is a multiple of both x and y, the X TO KX algorithm can be used for the cyclic(x)to cyclic(m) phase and the KY TO Y algorithm can be used for the cyclic(m) to cyclic(y) phase.This is described in Figure 8. Also, since m is larger than both x and y, all calculations are donefor this larger block size. This results in fewer calculations than in the GCD and general methods.Figures 9 and 10 compare the performance of the LCM, GCD, and general methods for an arrayof 1M integers on di�erent number of processors. We observe that the LCM method performsbetter in all cases. Figure 11 compares the performance of the LCM and general methods for acyclic(11) to cyclic(3) redistribution keeping the number of processors �xed at 64 and varying thearray size. We observe that for small arrays, the general method performs better because it hasless communication, but for large arrays the LCM method performs better because the saving incomputation is higher than the increase in communication.Note that the timings for the GCD and LCM methods in Figures 9, 10, and 11 include the timefor calculating the GCD and LCM. For the cyclic(15) to cyclic(10) redistribution, both the special-case redistributions within the GCD and LCM algorithms were performed using the asynchronousmethod, since the condition ((k � P ) and (mod(P; k) = 0)) is satis�ed in this case. For thecyclic(11) to cyclic(3) redistribution, however, the synchronous method was used in the KY TO Y12
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Figure 10: Comparison of the GCD, LCM, and general methods for a cyclic(11) to cyclic(3) redis-tribution on the Intel Touchstone Delta. The array size is 1M integers.13
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Figure 11: Comparison of the LCM and general methods for a cyclic(11) to cyclic(3) redistributionon the Intel Touchstone Delta. The number of processors is 64, and the array size is varied.algorithm, since the condition ((k � P ) and (mod(P; k) = 0)) is not satis�ed, and the asynchronousmethod was used in X TO KX algorithm, since it does not require the above condition.6 Related WorkGupta et al. [3] and Koelbel [8] provide closed form expressions for determining the send and receiveprocessor sets and data index sets for redistributing arrays between block and cyclic distributions.E�cient algorithms for block(m) to cyclic, and cyclic to block(m) redistributions are describedin [16]. A model for evaluating the communication cost of data redistribution is given in [6]. Avirtual processor approach for the general block-cyclic redistribution is proposed in [3]. Wakataniand Wolfe [18] describe a method of array redistribution, called strip mining redistribution, inwhich parts an array are redistributed in sequence, instead of redistributing the entire array atone time as a whole. The reason for doing this is to try to overlap the communication involved inredistribution with some of the computation in the program. Kalns and Ni [5] present a technique formapping data to processors so as to minimize the total amount of data that must be communicatedduring redistribution. A multiphase approach to redistribution is discussed in [7]. Algorithms forredistribution, based on a mathematical representation for regular distributions called PITFALLS,are proposed in [11] .There has also been some research on the closely related problem of determining the local14



addresses and communication sets for array assignment statements like A(l1 : h1 : s1) = B(l2 : h2 :s2) where A and B have di�erent cyclic(m) distributions. Chatterjee et al [1] present an approachto calculate the sequence of local memory addresses that a given processor must access while doinga computation involving the regular array section A(l : h : s), when the array A has a cyclic(k)distribution. They show that the local memory access sequence is characterized by a �nite statemachine of at most k states. Stichnoth [14] de�nes a cyclic(k) distribution as a disjoint union ofslices, where a slice is a sequence of array indices speci�ed by a lower bound, upper bound andstride (l : h : s). The processor and index sets for array assignment statements are calculated interms of unions and intersections of slices.7 ConclusionsWe have presented e�cient and practical algorithms for redistributing arrays between di�erentcyclic(k) distributions, which is the most general form of redistribution. The algorithms are portableand independent of the communication mechanism used.We �nd that the asynchronous method performs better than the synchronous method in allcases, because it reduces processor idle time. For the general case where there is no particularrelation between x and y, the general method performs well for small arrays because it requirescommunication only once. However, for large arrays, the LCM method performs much better thanthe general method, because it requires a lot less address calculation. The GCD method alsoperforms better than the general method for large arrays, provided the GCD of x and y is greaterthan 1. The LCM method always performs better than the GCD method because the LCM of xand y is always greater than their GCD.The relative performance of the three methods may be a�ected by changes in the underlyingarchitecture of the system. For example, in a system with very high communication costs, thegeneral method may perform better since it has only one communication phase. Improved scalarcompilers that optimize expensive index calculations may also improve the performance of thegeneral method.AcknowledgmentsThis work was supported in part by NSF Young Investigator Award CCR-9357840 with a matchinggrant from Intel SSD. J. Ramanujam is supported in part by NSF Young Investigator Award CCR-9457768, NSF grant CCR-9210422, and by the Louisiana Board of Regents through contract LEQSF(1991-94)-RD-A-09. This research was performed in part using the Intel Touchstone Delta Systemoperated by Caltech on behalf of the Concurrent Supercomputing Consortium. Access to thisfacility was provided by the Center for Research on Parallel Computation.15
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