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Abstract

We consider alternate formulations of recently proposed hierarchical Nearest Neighbor Gaussian 

Process (NNGP) models (Datta et al., 2016a) for improved convergence, faster computing time, 

and more robust and reproducible Bayesian inference. Algorithms are defined that improve CPU 

memory management and exploit existing high-performance numerical linear algebra libraries. 

Computational and inferential benefits are assessed for alternate NNGP specifications using 

simulated datasets and remotely sensed light detection and ranging (LiDAR) data collected over 

the US Forest Service Tanana Inventory Unit (TIU) in a remote portion of Interior Alaska. The 

resulting data product is the first statistically robust map of forest canopy for the TIU.

1 Introduction

As spatial statisticians confront massive datasets with locations ~106 and increasingly 

demanding inferential questions, several existing approaches that once seemed attractive for 

locations in the order of 104 become impractical. Recent methodological developments 

within the burgeoning literature on this subject aim to deliver massively scalable spatial 

processes. Sun et al. (2011) and Banerjee (2017) provide background and more current work 

(also see references therein), respectively, in this area. A recent contribution by Heaton et al. 

(2017) is particularly useful as it provides an overview of modeling approaches for large 

spatial data that are under active development, and a comparison of these approaches based 

on the analysis of a common dataset in the form of a “friendly competition.” In addition to 

Nearest Neighbor Gaussian Process (NNGP: Datta et al., 2016a) models, the comparison 

presented by Heaton et al. (2017) considered reduced rank predictive processes (Banerjee et 

al., 2008; Finley et al., 2009), covariance tapering (Furrer and Sain, 2010; Furrer, 2016), 

gapfilling (Gerber, 2017), metakriging (Guhaniyogi and Banerjee, 2018), spatial partitioning 

(Sang et al., 2011; Barbian and Assunção, 2017), fixed rank kriging (Cressie and Johannes-

son, 2008; Zammit-Mangion and Cressie, 2017), multiresolution approximation (Katzfuss, 

2017), stochastic partial differential equations (Rue et al., 2017), lattice kriging (Nychka et 

al., 2015), and local approximate Gaussian processes (Gramacy and Apley, 2015; Gramacy, 
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2016). The comparison was based on out-of-sampled predictive performance and, to a lesser 

extent, computing time for a moderately sized simulated and real dataset comprising 

105,569 observations. Comparisons showed NNGP models yielded highly competitive 

predictive performance and computation time.

With a few exceptions, e.g., Furrer and Sain (2010) and Gramacy (2016), the literature on 

scalable spatial process models has focused primarily on theoretical and methodological 

developments with little attention to the algorithmic details needed for effectively applying 

them. For example, Datta et al. (2016a) implement a “sequential” Gibbs sampler that 

involves updating a high-dimensional latent random effect vector and is prone to high 

autocorrelations and slow convergence. Most of the aforementioned articles do not discuss 

how researchers can, in practice, exploit high-performance computing libraries to obviate 

expensive numerical linear algebra (e.g., expensive matrix multiplications and 

factorizations) and deliver full Bayesian inference for massive spatial datasets. We address 

this gap for the NNGP models here by outlining three alternate formulations that are 

significantly more efficient for practical implementation than Datta et al. (2016a). Along 

with the accompanying code supplied with this manuscript, our intended contribution is well 

aligned with recent emphasis on reproducible research for challenging data analysis in the 

context of massive spatial datasets.

Our motivating scientific application concerns forest resource monitoring efforts and, in 

particular, to create fine resolution canopy height predictions using remotely sensed data 

collected at over 5 million locations. Spatially explicit estimates of forest canopy height are 

key inputs to a variety of ecosystem and Earth system modeling efforts (Finney, 2004; Hurtt 

et al., 2004; Stratton, 2006; Lefsky, 2010; Klein et al., 2015). These and similar applications 

seek inference about forest canopy height model parameters and predictions that can be 

propagated through subsequent computer models of ecosystem function to yield more robust 

error quantification. Bayesian inference is attractive here as it supplies full posterior 

predictive distributions for the outcomes and for the latent process at arbitrary locations in 

the region of interest.

The remainder of this article proceeds as follows. Section 2 provides a brief overview of 

NNGP models and their computational aspects. This is followed by three distinct and 

efficient alternate formulations: the collapsed NNGP model, a NNGP model for the 

outcomes themselves (with no latent process), and a conjugate NNGP model that allows 

MCMC-free inference. Section 3 offers detailed simulation experiments on model 

performance and assessment and also presents a detailed analysis of the US Forest Service 

Tanana Inventory Unit (TIU) dataset. Finally, Section 4 concludes the manuscript with a 

summary and an eye toward future work.

2 Nearest Neighbor Gaussian Processes

Let y(si) and x(si) denote the response and the predictors observed at location si, i = 1, 2,…, 

n. A spatial linear mixed model posits y(si) = x(si)
⊤ β + w(si) + ϵ(si), where the random 

effect w(si) sums up the effect of unknown or unobserved spatial covariates, and ϵ(si) 

denotes the independent and identically observed noise. Gaussian Processes (GP) are 
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commonly used for modeling the unknown surface w(s). In particular, w(s) ~ GP (0, C(·,·|θ)) 

implies that w = (w(s1), w(s2),…, w(sn))⊤ is Gaussian with mean zero and covariance C = 

(cij), where cij = C(si, sj | θ) and θ denotes the GP covariance parameters. A popular choice 

for C(·, · | θ) is the Matérn covariance function specified as:

C si, s j; σ
2, ϕ, ν =

σ
2

2ν − 1 Γ (ν)
‖si − s j‖ϕ

ν
�ν ‖si − s j‖ϕ ; ϕ > 0, ν > 0, (1)

where θ = {σ2,ϕ,ν} and � denotes the Bessel function of second kind. Customary Bayesian 

hierarchical models are constructed as

p β, θ, τ
2 × N(w|0, C) × N(y|Xβ + w, τ

2I), (2)

where p(β,θ, τ2) is specified by assigning priors to β, θ and τ2. When n is very large, 

implementing (2) poses multiple computational roadblocks. Firstly, storing the matrix C 
requires O(n2) dynamic memory. Furthermore, evaluating N(w | 0,C) involves factorizations 

(e.g., Cholesky) that require O(n3) floating point operations (flops) to solve linear systems 

involving C and computing det(C). Finally, predicting the response at K new locations 

require an additional O(Kn2) flops. Alternative parametrizations such as integrating w out of 

(2) shrinks the size of the parameter space, but does not obviate these computational 

bottlenecks. Even for moderately large spatial datasets, say with with ~ 104−105 locations, 

these memory and storage demands become prohibitive. For the TIU dataset with 5 × 106 

locations, implementing (2) is practically impossible.

As mentioned in the Introduction, we pursue massive scalability for full Bayesian inference 

exploiting the NNGP. The underlying idea is familiar in graphical models (see, e.g., 

Lauritzen, 1996; Murphy, 2012). The joint distribution for a random vector w can be looked 

upon as a directed acyclic graph (DAG). We write p(w) = p w1 ∏
i = 2
n

p w
i
|Pa[i] , where wi ≡ 

w(si) and Pa[i] = {w1, w2,…, wi−1} is the set of parents of wi. We can construct sparse 

models for w by shrinking the size of Pa[i]. In spatial contexts, this can be done by defining 

Pa[i] to be the set of w(sj)’s corresponding to a small number m of nearest neighboring 

locations of si. Approximations resulting from such shrinkage were originally proposed by 

Vecchia (1988) and studied and exploited by Stein et al. (2004); Stroud et al. (2017); Datta 

et al. (2016a,c); Huang and Sun (2018). The NNGP builds upon previous ideas and extends 

finite-dimensional likelihood approximations to well-defined sparsity-inducing Gaussian 

processes for estimating (2).

Working with multivariate Gaussian densities makes the connection between conditional 

independence in DAGs and sparsity abundantly clear. We can write the multivariate 

Gaussian density N(w | 0, C) as a linear model,

w1 = 0 + η1 and w
i

= a
i1w1 + a

i2w2 + ⋯ + a
i, i − 1w

i − 1 + η
i

for i = 2, …, n,
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w1 = 0 + η1 and wi = ai1w1 + ai2w2 + ⋯ + ai,i−1wi−1 + ηi for i = 2,…, n, or, more compactly, 

simply as w = Aw + η, where A is n × n strictly lower-triangular with elements aij = 0 

whenever j ≥ i and η ~ N(0, D) and D is diagonal with entries d11 = var(w1) and dii = Var(wi 

|{wj : j < i}) for i = 2,…, n.

From the structure of A it is evident that I − A is nonsingular and C = (I − A)−1D(I − A)−⊤, 

where for any matrix M, M−⊤ refers to the inverse of its transpose. For any matrix M and set 

of indices I1, I2 ⊆ {1, 2,…, n}, let M[I1, I2] denote the submatrix of M formed by the rows 

indexed by I1 and columns indexed by I2. With the addition of D[1,1] = C[1,1] and the first 

row of A = 0, the calculation of A and D is given in Pseudocode 1, where 1:i denotes the set 

{1, 2,…, i}, solve(B,b) computes the solution x for the linear system Bx = b, and dot(u,v) 

denotes the inner-product between two vectors u and v.

Pseudocode 1: Computation of A and D.

for(i in 1:(n-1)) {

 A[i+1,1:i] = solve(C[1:i,1:i], C[1:i,i+1])

 D[i+1,i+1] = C[i+1,i+1] - dot(C[i+1,1:i],A[i+1,1:i])

}

While Pseudocode 1 computes the Cholesky decomposition of C, there is no apparent gain 

to be had from the preceding computations since, as the loop runs into higher values of i 

closer to n, the dimension of C[1:i,1:i] increases. Consequently, one will need to solve larger 

and larger linear systems and the computational complexity remains O(n3). Nevertheless, it 

immediately shows how to exploit sparsity if we set some elements in the lower triangular 

part of A to be zero. For example, suppose we permit no more than m elements in each row 

of A to be nonzero. Let N[i] be the set of indices j < i such that A[i,j] ≠ 0. One can then 

compute the elements of A and D following Pseudocode 2.

Pseudocode 2: Sparsity inducing computation of A and D.

for(i in 1:(n-1)) {

 A[i+1,N[i+1]] = solve(C[N[i+1],N[i+1]], C[N[i+1],i+1])

 D[i+1,i+1] = C[i+1,i+1] - dot(C[i+1, N[i+1]], A[i+1,N[i+1]])

}

In Pseudocode 2 we solve n-1 linear systems of size at most m × m where m = max
i

|N(i)|. 

This can be performed in O(nm3) flops. Furthermore, these computations can be performed 

in parallel as each iteration of the loop is independent of the others. The above discussion 

provides a very useful strategy for constructing a sparse precision matrix. Starting with a 

dense n × n matrix C, we construct a sparse strictly lower-triangular matrix A with no more 

than m(≪ n) non-zero entries in each row, and the diagonal matrix D using Pseudocode 2 
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such that the matrix C = (I − A)−1
D(I − A)− ⊤ is a covariance matrix whose inverse 

C
−1 = (I − A)⊤D

−1(I − A) is sparse. Figure 1 presents a visual representation of the sparsity.

The factorization of C−1 facilitates cheap computation of quadratic forms u⊤
C

−1
v in terms 

A and D. The algorithm to evaluate such quadratic forms qf(u,v,A,D) is provided in 

Pseudocode 3, where ∗ and / denote multiplication and division by scalars, respectively.

Observe the algorithm in Pseudocode 3 only involves inner products of m × 1 vectors. So, 

the entire for loop can be computed using O(nm) flops as compared to O(n2) flops typically 

required to evaluate quadratic forms involving an n × n dense matrix. Also, importantly, the 

determinant of C is obtained with almost no additional cost—it is simply ∏
i = 1
n D[i, i].

Pseudocode 3: Computation of quadratic form.

qf(u,v,A,D) = u[1] * v[1] / D[1,1]

for(i in 2:n) {

 qf(u,v,A,D) = qf(u,v,A,D) + (u[i] - dot(A[i,N(i)], u[N(i)]))

  ∗(v[i] - dot(A[i,N(i)], v[N(i)]))/D[i,i]

 }

Hence, while C need not be sparse, the density N(w |0, C) is cheap to compute requiring only 

O(n) flops. This was exploited by Datta et al. (2016a) where the neighbor sets were 

constructed based on m nearest neighbors and the traditional GP prior for w in (2) was 

replaced with an NNGP prior N(w |0, C). The Markov chain Monte Carlo (MCMC) 

implementation of the NNGP model in Datta et al. (2016a) requires updating the n latent 

spatial effects w sequentially, in addition to the regression and covariance parameters. While 

this ensures substantial computational scalability in terms of evaluating the likelihood, the 

behavior of MCMC convergence for such a high-dimensional model is difficult to study and 

may well prove unreliable.

We observed that, for very large spatial datasets, sequential updating of the random effects 

often leads to very poor mixing in the MCMC (see Figures S2 and S3). The computational 

gains per MCMC iteration is thus o set by a slow converging MCMC. Liu et al. (1994) 

showed that MCMC algorithms where one or more variables are marginalized out tend to 

have lower autocorrelation and improved convergence behavior. Here we explore NNGP 

models that drastically reduce the parameter dimensionality of the NNGP models by 

marginalizing over the entire vector of spatial random effects. Three different variants are 

developed, including an MCMC free conjugate model, and their relative merits and demerits 

are assessed both in terms of computational burden as well as model prediction and 

inference. Simulation experiments using spatial datasets of up to 10 million locations are 

conducted to assess the models’ performance. Finally, we use the NNGP models to analyze 

the TIU dataset comprising over 5 million locations. To our knowledge, fully Bayesian 

analysis of spatial data at such scales is unprecedented.
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2.1 Collapsed NNGP

The hierarchical model (2) or its NNGP analogue impart a nice interpretation to the spatial 

random effects. The latent surface w(s) can provide a lot of information about the effect of 

missing covariates or unobserved physical processes. Hence, inference about w is often 

critical for the researchers in order to improve the understanding of the underlying scientific 

phenomenon. Here, we provide a collapsed NNGP model that enjoys the frugality of a low-

dimensional MCMC chain but allows for full recovery of the latent random effects. We 

begin with the two-stage hierarchical specification N(y |Xβ + w, τ
2
I) × N(w |0, C) and avoid 

sampling w in the Gibbs’ sampler by integrating out w to obtain the collapsed NNGP model

y N(Xβ, Λ ) where Λ = C + τ
2I (3)

This model has only p + 4 parameters compared to n + p + 4 parameters in the hierarchical 

model. We use a conjugate prior N(µβ, Vβ) for β, Inverse Gamma priors for the spatial and 

noise variances, and uniform priors for the range and smoothness parameters. We use the u | 

· notation to denote the full conditional distribution of any random variable u in the Gibbs’ 

sampler. Let N(i) denote the set of indices corresponding to neighbor set of si. Observe that, 

although from Section 2 we know C = (I − A)−1
D(I − A)− ⊤, Ʌ does not enjoy any such 

convenient factorization. In fact, Ʌ−1 is also not guaranteed to be sparse, but exploiting the 

Sherman Woodbury Morrison (SWM) identity, we can write Ʌ−1 = τ−2I − τ−4Ω−1 where 

Ω = C
−1 + τ

−2
I  enjoys the same sparsity as C−1. Also, using a familiar determinant 

identity, we have det ( Λ ) = τ
2n det (C) det ( Ω ).

We exploit these matrix identities in conjunction with sparse matrix algorithms to obtain 

posterior distributions of the parameters {β,θ,τ2}. In fact, the necessary computations can be 

done by entirely avoiding expensive matrix computations and is described in detail in 

Algorithm 1. In addition to the inner product function dot(·, ·) introduced earlier, we require 

a fill-reducing permutation matrix and a sparse Cholesky factorization (sparsechol(·)) for a 

sparse positive-definite matrix (note, dot(·, ·), sparsechol(·), and subsequent functions that 

share this font are pseudocode). Large matrix-matrix and matrix-vector multiplications 

either involve at least one triangular matrix (trmm(·, ·) or trmv(·, ·), where mm and mv 

denote matrix-matrix and matrix-vector operations) or at least one sparse matrix 

(sparsemm(·, ·) or sparsemv(·, ·)). We also use diagsolve(·, ·) and trsolve(·, ·) to solve linear 

systems with a diagonal or triangular coefficient matrix, respectively. We perform Cholesky 

decompositions, matrix-vector multiplications and solve linear equations involving general 

unstructured matrices using chol(·), gemv(·, ·) and solve(·, ·), respectively, only for small p × 

p or m × m matrices where both p and m are much less than n. Other utilities used in 

Algorithm 1 are diag(·) to extract the diagonal elements of a matrix, prod(·) to compute the 

product of the elements in a vector and rnorm(·) to generate a specified number of random 

variables (as an integer argument) from a standard N(0, 1) distribution. Algorithm 1

Collapsed NNGP: Sampling from the posterior
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MCMC steps for updating{β, θ, τ
2

1: Gibb’s sampler update for β:

β | · N B
−1

b, B
−1 , where B = X

⊤
Λ

−1
X + V

β
−1 and b = X

⊤
Λ

−1
y + V

β
−1

μ
β

a Use Pseudocode 1 to obtain A and D using C and {N i | i = 1, 2, …, n O nm
3 flops

b Ω = trmm (I − A)⊤, diagsolve(D, I − A) + τ
−2 * I O nm

2 flops

c Find a fill reducing permutation matrix P for Ω

(d) L = sparsechol (sparsemm (sparsemm(P, Ω ), P⊤))

(e) for (j in 1:n) {

u
j

= trsolve (L, sparsemv (P, X[, j])); v
j

= trsolve L⊤, u
j

(f) F = solve V
β

, I ; f = solve V
β

, μ
β

O p
3 flops

g Solve for p × p matrix B and p × 1 vector b: O np
2 flops

for (j in 1:p) {

b[j] = dot (y, X[, j])/τ2 − dot y, sparsemv P, v
j

/τ4 + f[j]

for (i in 1:p) {

B i, j = dot X , i , X , j /τ2 − dot X , i , sparsemv P, v
j

/τ4 + F i, j

(h) β = solve(B, b) + trsolve( chol (B), rnorm (p)) O p
3 flops

2: Metropolis − Hastings (MH) update for θ, τ
2

p θ, τ
2 | ⋅ ∝ p θ, τ

2 ×
1

det ( Λ )
exp −

1
2

(y − Xβ)⊤ Λ
−1 (y − Xβ)

(a) r = y − gemv (X, β); u = trsolve(L, sparsemv(P, r)); v = trsolve L⊤, u O(np)flops

(b) q = dot (r, r)/τ2 − dot (r, sparsem(P, v))/τ4

(c) d = τ
2 * n * prod (diag (D)) * prod diag L 2

(d) Generate p θ, τ
2 | ⋅ ∝

exp( − q/2) * p θ, τ
2

sqrt(d)

3: Repeat Steps(1)and(2)(except Step1(c)) N times to obtain N MCMC samples for β, θ, τ
2

Observe that the entire Algorithm 1 is devoid of any expensive operations like solve, chol or 

gemv on dense n × n matrices. All such operations are limited to m × m or p × p matrices, 

where both m and p are small. The computational costs in terms of flops of all such steps are 

listed in the algorithm and are linear in n. However, the exact cost of the steps involving L in 

Algorithm 1 (Steps 1(c)-(e)) depends on the data design. Although Ω is sparse O(nm2) non-

zero entries, the sparsity of its Cholesky factor L actually depends on the location of the 

non-zero entries. Hence we used a fill reducing permutation P that increases the sparsity of 

the Cholesky factor. Although P needs to be evaluated only once before the MCMC, finding 

the optimal P yielding the least fill-in is an NP-complete problem. Hence algorithms have 

been proposed to improve sparsity patterns based on a variety of fill-in minimizing 
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heuristics, see, e.g., Amestoy et al. (1996), Karypis and Kumar (1998), Hager (2002) (also 

see Section 3).

When flops per iteration of MCMC are considered, computational requirements for the 

collapsed NNGP model is data dependent and may exceed the exact linear flops usage for 

the hierarchical NNGP Algorithm. We also observed this in simulation experiments 

described in Section 3. However, the improved MCMC convergence for the collapsed 

NNGP, as observed in Figures S2 and S5, implies that substantial computational gains 

accrue by truncating the MCMC run. Furthermore, all the for loops in Algorithm 1 can be 

evaluated independent of each other using parallel computing resources.

The collapsed model nicely separates the MCMC sampler for parameter estimation from 

posterior estimation of spatial random effects and subsequent predictions. Computational 

benefits accrue from using the quantities L and u already computed in Steps 1(d) and 2(a) of 

Algorithm 1 corresponding to the post-convergence samples of {β,θ, τ2}. This is presented 

in the algorithm below. Algorithm 2

Collapsed NNGP: Posterior predictive inference

Post − MCMC steps using L and u from Steps 1(d) and 2(a) of Algorithm 1 for post −

convergence samples of β, θ, τ
2

1:Sample from p(w | ⋅ ) one − for − one for each post − convergence sample of β, θ, τ
2

w | ⋅ N (B−1
b, B

−1), where B = C
−1 + τ

−2
I and b = (y − Xβ)/τ2

(a) z = rnorm(n) O(n)Aops

(b) w = sparsemv P⊤, trsolve  L⊤, u/τ2 + z

2: Prediction at a new location s0:

y s0 | · N(x s0
⊤

β + w s0 , τ
2)

(a) Find N0 − set of m nearest neighbors of s0 among  s1, s2, …, s
n

O(n) flops 

(b) c = C s0, N0; θ O(m) flops 

(c) m = dot c, solve  C N0, N0 , w N0 O m
3 flops 

v = C s0, s0; θ − dot c, solve  C N0, N0 , c

(d) w s0 = m + sqrt(v) * rnorm(1) O(p) flops

y s0 = dot x s0 , β + w s0 + τ * rnorm(1) O(p) flops

Algorithm 2 demonstrates how inference on w(s) and y(s) can be easily achieved for any 

spatial location using the post burn-in samples of {β,θ, τ2}. We first sample the spatial 

random effects p(w | y) for the observed locations, use them to sample from p(w(s0) | y) and 

then from p(y(s0) | y).

2.2 NNGP for the response

Both the sequential NNGP Algorithm in Datta et al. (2016a) or the collapsed version in 

Section 2.1 accomplishes prediction at a new location via recovering the spatial random 

effects first, proceeded by kriging at the new location. This differed from Vecchia (1988)’s 
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original approach which applied nearest neighbor approximation directly to the marginal 

likelihood of y. The recovery of the spatial random effects becomes necessary if inference on 

the latent process is of interest. Although recovering w, as discussed earlier, has its own 

importance, if spatial interpolation of the response is the primary objective, this intermediate 

step is often a computational burden. In this Section, we propose a NNGP model for the 

response y that sacrifices the ability to recover w and directly predicts the response at new 

locations.

Datta et al. (2016a) demonstrated that a NNGP model can be derived from any Gaussian 

Process. If w(s) ~ GP (0, C(·, ·)) then the response y(s) ~ GP(x(s)⊤ β, Σ(·, ·)) is also a 

Gaussian Process where Σ(si, sj) = C(si, sj) + τ2 I(si = sj). Hence, we can directly derive an 

NNGP for the response process y(s). For finite dimensional realizations y, likelihood under 

the response NNGP model is identical to Vecchia’s composite likelihood. Datta et al. 

(2016a) extend this notion to a fully Bayesian setup. The key observation is that Vecchia’s 

approximation corresponds to a proper multivariate Gaussian distribution obtained by 

simply replacing the covariance matrix Σ = C + τ2I with its nearest-neighbor approximation 

Σ as described in Section 2. The sparsity properties documented in Section 2 apply to Σ as 

well. MCMC steps for parameter estimation and prediction using this response NNGP 

model are provided in Algorithm 3. Algorithm 3

Response NNGP model: Sampling from the posterior

MCMC steps for updating β, θ, τ
2

1: Gibb’s sampler update for β:

β | · N B
−1

b, B
−1 , where B = X

⊤
Σ

−1
X + V

β
−1 and b = X

⊤
Σ

−1
y + V

β
−1

μ
β

(a) Use Pseudocode 1 to obtain A and D using ∑ and {N(i) | i = 1, 2, …, n O nm
3  flops 

(b) F = solve V
β

, I ; f =  solve  V
β

, μ
β

O p
3 flops

(c) Solve for p × p matrix B and p × 1 vector b using Pseudocode 3 O nmp
2 flops

for  (i  in  1:p) {

b[i] = qf(X[, i], y, A, D) + f[i]

for  (j in 1:p) {

B [1 , j] = qf (X [, i], X [, j], A , D) + F [1,  j]

(d) β =  solve (B, b) +  trsolve ( chol (B), rnorm (p)) O p
3  flops 

 2:  Metropolis − Hastings (MH) update for θ, τ
2 :

p θ, τ
2 | ⋅ ∝ p θ, τ

2 ×
1

det (Σ)
exp −

1
2

(y − Xβ)⊤ Σ
−1(y − Xβ)

(a) e = y − gemv (X, β); Using Pseudocode 3, q = qf(e, e, A, D) O(n(p + m)) flop 

(b) d = prod ( diag (D)) O(n) flops 

(c) Generate p θ, τ
2 | ⋅ ∝

exp( − q/2) * p θ, τ
2

sqrt (d)
O(1)flops

3:  Repeat Steps (1) and (2) N times to obtain N MCMC samples for  β, θ, τ
2
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Unlike the collapsed NNGP model, the computational cost for each step of Algorithm 3 does 

not depend on the spatial design of the data and is exactly linear in n. This is a result of the 

complete absence of the latent spatial effects w in the model. Once again, parallel computing 

can be leveraged to evaluate all the for loops. A caveat with the response model is that 

recovery of w is not possible as highlighted in Datta et al. (2016a). However, if that is of 

peripheral concern, the response model offers a computationally parsimonious solution for 

fully Bayesian analysis of massive spatial datasets. Posterior predictive inference, therefore, 

consists only of predicting the outcome y(s) at any arbitrary location s. This is achieved 

easily through Algorithm 4 given below, where yN(s0) represents the subvector of y 

corresponding to the points in N(s0), X
N s0

 is the corresponding design matrix, and Σ0 is the 

m × m covariance matrix for y
N s0

. Algorithm 4

Response NNGP model: Posterior predictive inference

Post − MCMC steps using post − convergence samples of β, θ, τ
2

1:  Sample from p y s0 | ⋅ one − for − one for each post − convergence sample of β, θ, τ
2

y s0 | ⋅ N (x(s0)⊺ β + c0
⊺∑0

−1(y
N(s0) − X

N(s0) β), ∑ (s0, s0) − c0
⊺∑0

−1
c0)

(a)  Find N0 −  set of m nearest neighbors of s0 among  s1, s2, …, s
n

O(n) flops 

(b) c = Σ s0, N0; θ O(m) flops

c m = dot(c, solve ∑ N0, N0 , y N0 − dot X N0, , β O m
3  flops

v = Σ s0, s0 − dot c,  solve  Σ N0, N0 , c

(d)  y s0 = dot x s0 , β + m + sqrt(v) * rnorm (1) O(n) flops

2.3 MCMC-free exact Bayesian inference using conjugate NNGP

The fully Bayesian approaches developed in Datta et al. (2016a) and in Sections 2.1 and 2.2 

provide complete posterior distributions for all parameters. However, for massive spatial 

datasets containing millions of observations, running the Gibbs’ samplers for several 

thousand iterations may still be prohibitively slow. One advantage of NNGP over similar 

scalable statistical approaches for large spatial data is that it offers a probability model. 

Here, we exploit this fact to achieve exact Bayesian inference.

We define α = τ2/σ2 and rewrite the marginal model from Section 2.2 as N(y | Xβ, σ2M), 

where M = G + αI and G denotes the Matern correlation matrix corresponding to the 

covariance matrix C i.e. G[i, j] = C(si, sj, (1,ν, ϕ)⊤). Once again, the analogous NNGP 

model can be obtained by replacing the dense matrix M with its nearest-neighbor 

approximation M. Note that M depends on α, the spatial range ϕ and smoothness ν. 

Empirically, in spatial regression models, the spatial process parameters ϕ and ν are often 

not well estimated due to multimodality issues. In fixed domain asymptotic settings (see, 

e.g., Zhang, 2004) it is impossible to jointly identify the spatial covariance parameters. 

Consequently, if inference for the covariance parameters is not of interest, it might be 

possible to fix them at reasonable values with minimal effect on prediction or point 
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estimates of other model parameters. For example, the smoothness parameter ν could be 

fixed at 0.5, which reduces(1) to the exponential covariance function, and ϕ and α could be 

estimated using K-fold cross-validation.

For fixed α and ϕ, we obtain the familiar conjugate Bayesian linear regression model 

IG σ
2 |a

σ
, b

σ
× N(β | μ

β
, σ

2
V

β
) × N(y | Xβ, σ

2
M) with joint posterior distribution

p β, σ
2 |y ∝ IG σ

2 |a
σ
*, b

σ
*

p σ
2 |y

× N(β |B−1
b, σ

2
B

−1)

p(β |σ2, y)

,

where a
σ
* = a

σ
+ n/2, b

σ
* = b

σ
+

1
2

μ
β
⊤

V
β
−1

μ
β

+ y
⊤

M
−1

y − b
⊤

B
−1

b , B = V
β
−1 + X

⊤
M

−1
X and 

b = V
β
−1

μ
β

+ X
⊤

M
−1

y It is easy to directly sample σ2
IG a

σ
*, b

σ
*  and then sample β ~ N(B

−1b, σ2B−1) one-for-one for each drawn σ2. This produces samples from the marginal 

posterior distributions β |y MVS‐t2a
σ
* B

−1
b,

b
σ
*

a
σ
*

B
−1  and σ2 |y IG a

σ
*, b

σ
*  where MVS-tκ(B−1b, 

(b/a)B−1) denotes the multivariate non-central Student’s t distribution with degrees of 

freedom κ, mean B−1b and variance bB−1/(a − 1). The marginal posterior mean and variance 

for σ2 are b
σ
*/ a

σ
* − 1  and b

σ
* 2/ a

σ
* − 1 2

a
σ
* − 2 , respectively.

Instead of sampling from the posterior directly, we prefer a fast evaluation of the marginal 

posterior distributions to effectively implement the aforementioned cross-validatory 

approach. Steps for efficiently evaluating the above is provided in Algorithm 5. The 

marginal posterior predictive distribution at a new location s0 is given by 

y s0 |y t2a
σ
* m0, b

σ
*v0/a

σ
* , where expressions for m0 and v0 are provided in Step 3 of 

Algorithm 5. We deploy hyper-parameter tuning based on K-fold cross-validation to choose 

the optimal α and ϕ from a grid of possible values. In our data analysis, we have chosen 

broad endpoints of the grid using exploratory variograms. However, as suggested by one 

reviewer, reparametrizing α* = α/(1 + α) and ϕ* = ϕ/(1 + ϕ) would ensure that the new 

hyper-parameters are within [0, 1] and can facilitate a more automated grid-search. In 

applications, where the exploratory variograms are inaccurate, the latter parametrization will 

possibly be more useful.

We denote the indices and locations corresponding to the k-th fold of the data by I(k) and 

S(k) respectively whereas I(−k) and S(−k) respectively denote the analogous quantities when 

the kth fold is excluded from the data. Also, let N(i, k) denote the neighbor set for a location 

si constructed from the locations in S(−k). Details of the cross-validation procedure are also 

provided in Algorithm 5. Algorithm 5

MCMC free posterior sampling for conjugate NNGP model
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Hyper parameter tuning

 1: Fix α and ϕ,  split the data into K folds .

  (a) Find the collection of neighbor sets � = {N(i, k): i = 1, 2, …, n; k = 1, 2, …, K

 2: Obtain posterior means for β and σ2 after removing the kth fold of the data: 

  (a) Use Pseudocode 1 to obtain A(k) and D(k) from M[S( − k), S( − k)] and � O nm
3  flops

(b) F =  solve  V
β

, I ; f = solve V
β

, μ
β

O p
3  flops 

(c) Solve for p × p matrix B(k) and p × 1 vector b(k) using Pseudocode 3: O nmp
2  flops  

  for (i in 1:p) {

b(k) [i] = qf(X[S( − k), i], y[S( − k)], A(k), D(k)) + f[i]

for  (j  in  1:p) {

B(k)[i, j] = qf (X[S( − k), i], X[S( − k), j], A (k), D(k)) + F[i, j]

(d) V(k) = solve (B(k), I); g(k) = gemv (V(k), b(k)) O p
3  flops 

a
σ
*(k) = a

σ
+ (n − n/K)/2

b
σ
*(k) = b

σ
+ dot μ

β
, f + qf(y[S( − k)], y[S( − k)], A(k), D(k)) − dot (g(k), b(k)) /2

(e) β = g(k); σ
2 = b

σ
*(k)/ a

σ
*(k) − 1

3: Predicting posterior means of y[S(k))]: O nm
3/K  flops 

  for (s in S(k)) {

N(s, k) = m‐nearest neighbors of s from S( − k)

z = M(s, N(s, k))

w =  solve (M[N(s, k), N(s, k)], z)

m0 = y(s) = dot (x(s), g(k)) + dot (w, (y[N(s, k)] − dot (X[N(s, k), ], g(k))))

u = x(s) − dot (X[N(s, k), ], w)

v0 = dot (u, gem v(V(k), u)) + 1 + α − dot (w, z)

Var (y(s)) = b
σ
*(k)v0/ a

σ
*(k) − 1

 4: Root Mean Square Predictive Error (RMSPE) over K folds:  O(n)flops

  (a) Initialize e = 0

  for  (k in 1:K)  for   s
i
  in  S[k] {

e = e + y s
i

− y s
i

2

 5: Cross validation for choosing α and ϕ

  (a) Repeat steps (2) and (3) for G values of α and ϕ O GKnm p
2 + m

2  flops 

  (b) Choose α0 and ϕ0 as the value that minimizes the average RMSPE O(G) flops  

Parameter estimation and prediction

 6: Repeat step (2) with  α0, ϕ0
⊤

 and the full data to get  β, σ
2 |y O nmp

2 + nm
3 flops

 7: Repeat step (3) with  α0, ϕ0
⊤

 and  the full data to predict at a new location s0 to obtain the 

  mean and variance of y s0 |y O m
3  flops
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Algorithm 5 completely circumvents MCMC based iterative sampling and only requires at 

most O(n) flops per step. Although the calculations need to be replicated for every (ϕ, α) 

combination, unlike the MCMC based algorithms that run serially, this step can be run in 

parallel. Moreover, kriging is often less sensitive to the choice of the covariance parameters 

so cross-validation can be done at a moderately crude resolution on the (ϕ, α) domain. 

Hence, the Algorithm remains extremely fast. This incredible scalability makes the 

conjugate NNGP model an attractive choice for ultra high-dimensional spatial data. 

Although this approach philosophically departs from the true Bayesian paradigm, often 

inference about covariance parameters is of little interest and this hybrid cross-validation 

approach offers a pragmatic compromise.

3 Illustrations

3.1 Implementation

This section details two simulation experiments and the analysis of a large remotely sensed 

dataset. In the analyses, we consider the candidate models labeled: Sequential defined in 

Datta et al. (2016a); Collapsed defined in Section 2.1; Response defined in Section 2.2, and; 

Conjugate defined in Section 2.3.

Two additional analyses are provided in the web supplement. The first, Section S3, 

compares full GP and NNGP model parameter estimates and predictive performance. The 

second, Section S4, moves beyond the typical geostatistical setting where s indexes data in 

two-dimensions, e.g., latitude and longitude, to a more general settings where data are 

indexed in N-dimensions. Such data are common in computer experiments, where s indexes 

outcomes associated with a set of values on N computer model inputs. Here too, we apply a 

Matérn covariance function. Response and Conjugate model out-of-sample predictive 

performance is shown to be comparable with that achieved using a local approximate 

Gaussian processes as implemented in the laGP R package (Gramacy and Sun, 2017; 

Gramacy, 2016). Samplers were programmed in C++ and used openBLAS (Zhang, 2016) 

and Linear Algebra Package (LAPACK; www.netlib.org/lapack) for efficient matrix 

computations. openBLAS is an implementation of Basic Linear Algebra Subprograms 

(BLAS; www.netlib.org/blas) capable of exploiting multiple processors. Additional 

multiprocessor parallelization used openMP (Dagum and Menon, 1998) to improve 

performance of key steps within the samplers. In particular, substantial gains were realized 

by distributing the calculation of NNGP precision matrix components using the openMP 

omp for directive. Updating these matrices is necessary for each MCMC iteration in the 

Sequential, Response, and Collapsed models, and for each Conjugate model cross-validation 

iteration. An omp for directive with reduction clause was also effectively used to evaluate 

the Pseudocode 3 found in all models.

For the Collapsed model, SuiteSparse version 4.4.5 (Davis, 2016a) provided an interface to: 

fill-in minimizing algorithms, e.g., AMD (Amestoy et al., 2004) and METIS (Karypis and 

Kumar, 1998); CHOLMOD (Chen et al., 2008) version 3.0.6 used for supernodal 

openBLAS-based Cholesky factorization to obtain L of P C
−1 + τ

−2
I P

⊤, and solvers for 

sparse triangular systems. Also see the text by Davis (2006).
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For each analysis using the Collapsed model, nine fill-in algorithms were considered (for 

details see Chen et al., 2008; Davis, 2016b, pages 4 and 16, respectively) for formation of 

the permutation matrix P. Assessment of the various fill-in algorithms is based on the 

resulting pattern of non-zero matrix elements. This is important for our setting because the 

initial pattern of the NNGP precision matrix is determined by the neighbor set and, hence, 

discovery of an optimal permutation matrix need only be done once prior to sampling.

Implementing NNGP models requires a neighbor set for each observed location. For a given 

location si, a brute force approach to finding the neighbor set calculates Euclidean distances 

to s1, s2 and si−1, sorts these distances while keeping track of locations’ indexes, then selects 

the m minimum distance neighbors. This brute force approach is computationally 

demanding. Subsequent analyses use a relatively simple to implement fast nearest neighbor 

search algorithm proposed by Ra and Kim (1993) that provides substantial efficiency gains 

over the brute force search (see supplemental material for details).

All subsequent analyses were conducted on a Linux workstation with two 18-core Intel 

processors and 512 GB of memory. Unless otherwise noted, posterior inference used the last 

1 × 104 iterations from each of three chains of 2.5 × 104 iterations. Chains run for a given 

model were initiated at different values and each chain was given a unique random number 

generator seed. Following Datta et al. (2016a), all models were fit using m=15 neighbors 

unless noted otherwise.

Code and data needed to reproduce the analyses are provided in the web supplement.

3.2 Experiment #1

The aim of this experiment was to assess NNGP model run time. To achieve this, we 

selected data subsets for a range of n from the TIU dataset described in Sections 1 and 3.4. 

The posited model follows (2) and includes an intercept and slope regression coefficients, 

and an exponential covariance function with parameters σ2, ϕ, and residual variance τ2. A 

“flat” improper prior distribution was assigned to each regression coefficient, β’s, which 

places equal weight on all possible values of the parameter. The variance components τ2 and 

σ2 were assigned inverse-Gamma IG(2, 10) priors, and a uniform U(0.1, 10) prior for the 

decay parameter ϕ. The support on the decay corresponds to an effective spatial range (i.e., 

the distance where the spatial correlation is 0.05) between 0.3 to 30 km (see Section 3.4 for 

specifics on the TIU domain and dataset).

Figure 2(a) shows run time for a dataset of n=5 × 104 and number of CPUs used to complete 

one MCMC iteration (not including the initial nearest neighbor set search time, which is 

common across models). Two versions of the Collapsed model are shown, one assumes the 

permutation matrix P is diagonal (labeled no perm) and the other allows CHOLMOD to 

select an approximately optimal permutation matrix (labeled perm). Here, and in other 

experiments, using a fill-in reducing permutation matrix provides substantial time efficiency 

gains. The Response model provides full posterior inference on all parameters, with the 

exception of w, and dramatically faster run time compared to the Collapsed model. Inference 

for the Conjugate model, including β and σ2 (Algorithm 5), requires about the same amount 

of time as one Response model MCMC iteration. Explicitly updating w is relatively slow; 
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hence, the Sequential model’s computing time falls somewhere between that of the 

Collapsed and Response models.

For all models, Figure 2(a) show marginal improvement in run time beyond ~6 CPUs and 

negligible improvement beyond ~12 CPUs. We attribute the slight increase in run time 

beyond ~12 CPU seen in some models to communication overhead. Run time is actual 

execution time, or “wall clock time”, of the specified number of MCMC iterations. Points of 

diminishing return on number of CPUs used will change with n; however, exploratory 

analysis across the range of n considered here suggested 12 CPUs is the bound for 

substantial gains (clearly this also depends on computing environment and programming 

decisions).

Figure 2(b) shows time required to execute one sampler iteration by n. The Response and 

Conjugate models deliver inference across n in ~1/3 and ~1/10 the time required by the 

Sequential and Collapsed models, respectively. For n=1 × 107 the run time is approximately 

28, 13, 13, and 95 seconds for the Sequential, Response, Conjugate, and Collapsed, 

respectively.

3.3 Experiment #2

This experiment compared parameters estimates and predictive performance among the 

NNGP models for a large dataset. Also, the potential to identify optimal values of ϕ and α 
via cross-validation was assessed for the Conjugate model. We generated observations at 6 × 

104 locations within a unit square domain from model (2), the n × n spatial covariance 

matrix C was formed using (1) with ν fixed at 0.5, and the mean comprised an intercept and 

covariate x1 drawn from independent N(0, 1). Observations were then generated using the 

parameter values given in the column labeled True in Table 1. Observations at n = 5 × 104 of 

these locations, selected at random, were used to estimate model parameters. Observations at 

the remaining 1 × 104 holdout locations were used to assess model predictive performance.

Following Section 2.3, five-fold cross-validation aimed at minimizing RMSPE and 

continuous rank probability score (CRPS; Gneiting and Raftery, 2007) for the Conjugate 

model are given in Figure 3. We observe that a broad range of ϕ and α values deliver 

comparable predictive performance, and minimization of RMSPE and CRPS yield 

approximately the same estimates of ϕ and α.

In addition to RMSPE and CRPS, percent of holdout observations covered by their 

corresponding predictive distribution 95% credible interval (PCI), and mean width of the 

predictive distributions’ 95% credible interval (PIW) were used to assess NNGP model 

predictive performance. Results given in Table 1 show the NNGP models yield comparable 

parameter estimates and prediction. Here, the Conjugate model’s ϕ and α were selected to 

minimize RMSPE (results are comparable for minimization of CRPS).

Candidate models’ Gelman-Rubin (Gelman and Rubin, 1992) potential scale reduction 

factor figures and MCMC chain trace plots are given in Figures S2 - S5 of the web 

supplement. These figures show the Response and Collapsed models provide faster chain 

convergence for the intercept and spatial covariance parameters compared to Sequential 
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model. Additional analysis in Section S3 of the web supplement reveal that for a smaller 

dataset generated using the same model, the Sequential model parameter posteriors do not 

match well that of the full GP.

3.4 Tanana Inventory Unit forest canopy height

Our goal is to create a high-resolution forest canopy height data product, with accompanying 

uncertainty estimates for prediction and spatial correlation parameters, for the US Forest 

Service Tanana Inventory Unit (TIU) that covers a large portion of Interior Alaska using a 

sparse sample of LiDAR data from NASA Goddard’s LiDAR, Hyperspectral, and Thermal 

(G-LiHT) Airborne Imager (Cook et al., 2013).

For remote forested regions, combining sparse airborne LiDAR data with a sparse network 

of forest inventory data provides a cost-effective means to deliver predictive maps of forest 

canopy height. In this study, LiDAR data were acquired across the US Forest Service Tanana 

Inventory Unit (TIU) in Interior Alaska, approximately 140,000 km2, using the NASA 

Goddard’s LiDAR, Hyperspectral, and Thermal (G-LiHT) Airborne Imager (Cook et al., 

2013). The G-LiHT instrument package simultaneously acquires data from a suite of remote 

sensing instruments to collect complementary information on forest structure (LiDAR), 

vegetation composition (hyperspectral), and forest health (hyperspectral and thermal).

Here, we consider G-LiHT LiDAR data collected during a 2014 TIU flight campaign. The 

campaign collected a systematic sample covering ~8% of the TIU, with 78 parallel flight 

lines spaced ~9 km apart, Figure 4(a), along with incidental measurements to-and-from the 

transects. The nominal flying altitude of data collection in the TIU was 335 m above ground 

level, resulting in a sample swath width of ~180 m (30° field of view) and sample density of 

3 laser pulses m2. Point cloud data were classified and used to generate bare earth elevation 

and canopy height models at 1 m ground sample distance, as described in Cook et al. (2013). 

G-LiHT point cloud data and derived products are available online at http://

gliht.gsfc.nasa.gov. The data was processed following methods in Cook et al. (2013), such 

that 28,751,400 LiDAR-based estimates of forest canopy height were available on a 15 × 15 

m grid along the flight lines. Each grid cell yielded an estimate of canopy height calculated 

as the height below which 95% of the pulse data was recorded. The subsequent analysis uses 

a random sample of 5.025 × 106 observations from the larger LiDAR dataset.

Two predictors that completely cover the TIU were considered. First, a Landsat derived 

percent tree cover data product developed by Hansen et al. (2013), shown as the gray scale 

surface in Figure 4(a). This product provides percent tree cover estimates for peak growing 

season in 2010 (most recent year available) and was created using a regression tree model 

applied to Landsat 7 ETM+ annual composites. These data are provided by the United States 

Geological Survey (USGS) on an approximate 30 m grid covering the entire globe (Hansen 

et al., 2013). Second, the perimeters of past fire events from 1947–2014 were obtained from 

the Alaska Interagency Coordination Center Alaska fire history data product (AICC, 2016). 

Forest recovery/regrowth following fire is very slow in Interior Alaska. Hence we discretized 

the fire history data to 1 if the fire occurred within the past 20 years and 0 otherwise, Figure 

4(b).
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We explored the relationship between canopy height, tree cover and fire history using a non-

spatial regression model and NNGP Response, Collapsed, and Conjugate models. We did 

not consider the Sequential model here because of the convergence issues seen in the 

preceding experiments. Exploratory analysis using the non-spatial regression suggested both 

predictors explain a substantial portion of variability in canopy height (Table 2), with a 

positive association between canopy height and tree cover (TC) and negative association 

between canopy height and recent fire occurrence (Fire). These results are consistent with 

our understanding of the TIU forest system. The tree cover variable captures forest canopy 

sparseness—with sparser canopies resulting in LiDAR height percentiles shifted toward the 

ground. Recently burned areas are typically replaced with regenerating, shorter stature, 

forests.

For all models, the intercept and slope regression parameters were given flat prior 

distributions. The variance components τ2 and σ2 were assigned inverse-Gamma IG(2, 10) 

priors. We assumed an Exponential spatial correlation function with a uniform U(0.1, 10) 

prior on the decay parameter. The support on the decay corresponds to an effective spatial 

range between 0.3 to 30 km. Observations at n=5 × 106 locations, selected at random, were 

used to estimate model parameters. Observations at the remaining 2.5 × 104 holdout 

locations were used to assess model predictive performance. Parameter estimates and 

prediction performance summaries for candidate models are given in Table 2. Results for the 

m=15 and m=25 models were indistinguishable, hence only m=15 results are presented. 

Here, NNGP models provide approximately the same predictive performance, and a 

substantial improvement over the non-spatial regression.

As suggested by Figure 2(b), and seen again here, the Collapsed model using a fill reducing 

permutation and 12 CPU requires an excessively long run time, i.e., about two weeks to 

generate 25 × 103 MCMC samples. If one is willing to forgo estimates of spatial random 

effects, the Response model offers greatly improved run time, i.e., about 1.5 days, and 

parameter and prediction inference comparable to the Collapsed model. The Conjugate 

model delivers the shortest run time and predictive inference comparable to the other NNGP 

models.

Figure 4(b) identifies two example areas selected to illustrate how LiDAR and the other data 

inform forest canopy height prediction. As suggested by the prediction metrics in Table 2, all 

three NNGP models delivered nearly identical prediction map products. Figure 5 shows the 

posterior predictive distribution mean and standard deviation from the Response model with 

m=15 for the two areas. Here, the left subplots identify LiDAR data locations as black points 

along the flight lines. The presence of strong residual spatial autocorrelation results in fine-

scale prediction within, and adjacent to, the flight lines (Figures 5(a)(c)) and more precise 

posterior predictive distributions as reflected in the standard deviation maps (Figures 5(b)

(d)). Predictions more than a km from the flight lines are informed primarily by tree cover 

and fire occurrence predictors.

The TIU forest’s vertical and horizontal structure is highly heterogeneous due, in large part 

to topography, hydrology, and disturbance history, e.g., fire. This heterogeneity is reflected 

in the relatively short estimated effective range of just over 1 km (Table 2).
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These results provide key input needed for planning future LiDAR campaigns to collect data 

to inform canopy height models. Using more informative predictor variables would certainly 

improve prediction across the TIU; however, few complete-coverage high spatial resolution 

data layers exist, other than those produced using moderate spatial resolution remote sensing 

products, e.g., the Landsat based tree cover predictor used here.

As seen here, high spatial resolution wall-to-wall map predictions can be achieved with 

sufficient LiDAR coverage and use of fine-scale residual spatial structure. The G-LiHT 

LiDAR data—spatially dense along the 180 m swath widths—could better inform canopy 

height prediction across the TIU if it covered a larger swath width. This could be 

accomplished by increasing the flight altitude. While a higher nominal flying altitude will 

increase the swath width, it will also decrease the spatial density of LiDAR observations. 

Our results suggest that LiDAR density is less important than coverage width, given models 

were fit using only ~17% (5 × 106/28,751,400) of available data and even then it appears we 

had ample information to inform prediction within flight lines. This observation has 

implications for the other LiDAR collection campaigns, e.g., ICESat-2 (Abdalati et al., 

2010; ICESat-2, 2015) and Global Ecosystem Dynamics Investigation LiDAR (GEDI, 

2014), when they choose between pulse density and swath width.

4 Summary

Our aim has been to propose alternate formulations and derivatives of Bayesian NNGP 

models developed by Datta et al. (2016a) to substantially improve computational efficiency 

for fully process-based inference. These improvements make it feasible to bring a rich set of 

hierarchical spatial Gaussian process models to bear on data intensive analyses such as the 

TIU forest canopy mapping e ort. Analysis of simulated data shows that compared with the 

Sequential specification of Datta et al. (2016a), the Response and Collapsed models offer 

improved MCMC chain behavior for the intercept and spatial covariance parameters. If full 

inference about the spatial random effects is of interest, then the Response or Conjugate 

models are not appropriate. So while the Collapsed model can be computationally intensive, 

depending on the burden imposed by the sparse Cholesky decomposition, it is the only fully 

Bayesian alternative to the sequential Gibbs sampler developed in Datta et al. (2016a) and 

should generally be selected over the latter due to its significantly improved chain 

convergence. Furthermore, recent work by Katzfuss and Guinness (2017) shows that the 

collapsed model provides a better approximation of the full GP than the Response model in 

the sense of Kullback-Leibler divergence from the full GP model. If model parameter 

estimation and/or spatial interpolation of the response is the primary objective, the Response 

model offers substantial computational gains over the Collapsed model. Finally, relative to 

the other NNGP models, the Conjugate model delivers massive gains in computational 

efficiency and seemingly uncompromised predictive inference, but requires specification of 

the models’ spatial decay and α parameters. However, as demonstrated in the simulation and 

TIU analyses, these parameters can be effectively selected via cross-validation. The response 

and conjugate NNGP models are available for public use in the spNNGP package (Finley et 

al., 2017) in R.
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The Response model emerges a viable option for obtaining full Bayesian inference about 

spatial covariance parameters and prediction units. A fully Bayesian kriging model capable 

of handling 5 × 106 observations on standard computing architectures is an exciting 

advancement and opens the door to using a rich set of process models to tackle complex 

problems in big data settings. For example, the Response and Collapsed NNGP models can 

seamlessly replace Gaussian Processes within multivariate, space-varying coefficients, and 

space-time settings (see, e.g., Datta et al., 2016a,c,b). The Conjugate model provides a new 

tool for delivering fast interpolation with few inferential concessions. Extension of the 

Conjugate model to some of the more complex hierarchical frameworks noted above 

provides an additional avenue for development.

The TIU analysis shows the advantage of embedding the NNGP as a sparsity-inducing prior 

within a hierarchical modeling framework. The proposed NNGP specifications yield 

complete coverage forest canopy height prediction maps with associated uncertainty 

estimates using sparsely sampled but locally dense n = 5 × 106 LiDAR data. The resulting 

data product is the first statistically robust map of forest canopy for the TIU. Insight into 

residual spatial dependence will help guide planning for upcoming LiDAR data collection 

campaigns at global and local scales to improve prediction by leveraging information in 

more optimally located canopy height observations.

There remains much to be explored in NNGP models. Recent investigations by Guinness 

(2018) suggest that the Kullback-Leibler divergence between full Gaussian process likeli-
hoods and Vecchia-type nearest neighbor approximations can be sensitive to topological 

ordering. Our preliminary explorations seem to suggest that while the Kullback-Leibler 

divergence from the truth may be a ected, substantive inference in the form of parameter 

estimates and predictive performance (based upon root-mean-square-predictions) are very 

robust. Guinness (2018) also demonstrated empirically that certain carefully chosen 

orderings of the locations lead to a better approximation of the full GP by NNGP, than what 

is achieved by the simple co-ordinate based ordering. All the algorithms we propose here are 

flexible to the choice of ordering. While we have continued to use co-ordinate based 

ordering for all the data analysis here, we could as easily use any of the orderings proposed 

by Guinness (2018). We are currently conducting further investigations with the ordering 

suggested by Guinness (2018) and intend to report on our findings in a subsequent work.

A limiting factor for the hybrid approach adopted in the conjugate NNGP model is the cross-

validation procedure for selecting the hyper-parameters. For most spatial applications, the 

isotropic Matérn functions are often the preferred choice for the covariance kernel, and is 

convenient for implementing the conjugate model as it only involves two or three unknown 

parameters. Hence, cross-validation using a grid search on a three dimensional space is 

computationally feasible. However, as pointed out by one reviewer, many other GP-based 

applications use more complex covariance functions involving several parameters. For 

example, in computer model emulations, separable Gaussian covariance functions are 

commonly used, for which there is a co-ordinate specific range parameter. As with all cross-

validation based procedures, the conjugate model will also suffer from the curse of 

dimensionality in such richly parametrized settings, as searching for optimal or near-optimal 
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points in a high-dimensional space is highly inefficient. Newer strategies need to be 

conceived for hyper-parameter estimation in such settings.

Another pertinent matter concerns the performance of NNGP models for nonstationary 

processes. Naive implementations using neighbor selection based on simple Euclidean 

metrics may not be desirable. Here, the dynamic neighbor-finding algorithms proposed by 

Datta et al. (2016c) in spatiotemporal contexts may offer a better starting point than finding 

suitable metrics to choose neighbors. Still, work needs to be done in developing and 

analyzing analogous algorithms for nonstationary processes. Finally, there is scope to 

explore NNGP models for high-dimensional multivariate outcomes using spatial factor 

models (Taylor-Rodriguez et al., 2018) or Graphical Gaussian models and assessing their 

efficiency for highly complex multivariate spatial datasets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 

Structure of the factors making up the sparse C−1 matrix for n=200 and m=10.
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Figure 2: 
(a) Run time required for one sampler iteration using n=5 × 104 by number of CPUs (y-axis 

is on the log scale). (b) Run time required for one sampler iteration by number of locations.
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Figure 3: 
Conjugate model cross-validation results for selection of α and ϕ using the simulated 

dataset. Parameter combination with minimum scoring rule indicated with open circle 

symbol ◦ and true combination used to generate the data indicated with a plus symbol +.
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Figure 4: 
TIU, Alaska, study region. (a) G-LiHT flight lines where canopy height was measured at 5 × 

106 locations and percent tree cover predictor variable. (b) Occurrence of forest fire within 

the past 20 years predictor variable and two example areas for prediction illustration.
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Figure 5: 
95th LiDAR percentile height posterior predictive distribution summary at a 30 m pixel 

resolution for the two example areas identified in Figure 4(b).
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Table 1:

Simulated dataset, parameter credible intervals 50% (2.5%, 97.5%) and predictive validation. Bold entries 

indicate where the true value is not within the 95% credible interval.

Parameter True Sequential (metrop) Sequential (slice) Response Collapsed Conjugate

β0 1 0.64 (0.53, 0.75) 0.56 (0.44, 0.79) 0.84 (0.70, 0.99) 1.10 (0.51, 1.79) 0.84

β1 5 5.00 (5.00, 5.01) 5.00 (5.00, 5.01) 5.01 (5.00, 5.01) 5.00 (5.00, 5.01) 5.01

σ2 1 1.95 (1.44, 2.21) 1.68 (1.11, 2.19) 1.03 (0.91, 1.21) 1.69 (1.16, 2.24) 0.98

τ2 1 1.00 (0.98, 1.01) 1.00 (0.98, 1.01) 1.00 (0.98, 1.01) 1.00 (0.98, 1.01) 1.02

ϕ 6 3.39 (3.03, 4.54) 3.98 (3.04, 6.05) 6.26 (4.88, 7.78) 3.95 (3.01, 5.83) 4.05

CRPS 0.59 0.59 0.6 0.59 0.59

RMSPE 1.04 1.04 1.05 1.04 1.05

95% PIC 93.13 92.63 93.08 92.77 94.94

95% PIW 3.87 3.85 3.93 3.84 4.11
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Table 2:

TIU dataset results. Parameter credible intervals, 50% (2.5%, 97.5%), predictive validation, and run time for 

25 × 103 MCMC iterations.

Parameter Non-spatial regression Response Collapsed Conjugate minimize RMSPE

β0 −2.46 (−2.47,−2.45) 2.37 (2.31,2.42) 2.41 (2.35, 2.47) 2.51

βTC 0.13 (0.13, 0.13) 0.02 (0.02, 0.02) 0.02 (0.02, 0.02) 0.02

βFire −0.13 (−0.14, −0.12) 0.43 (0.39, 0.48) 0.39 (0.34, 0.43) 0.35

σ2 – 17.29 (17.13, 17.41) 18.67 (18.50, 18.81) 23.21

τ2 17.39 (17.37, 17.41) 1.55 (1.54, 1.55) 1.56 (1.55, 1.56) 1.21

ϕ – 4.15 (4.13, 4.19) 3.73 (3.70, 3.77) 3.83

α – – – 0.052

CRPS 2.3 0.86 0.86 0.84

RMSPE 4.19 1.72 1.73 1.71

95% PIC 93.43 94.29 94.25 94.85

95% PIW 16.27 6.58 6.56 6.73

Run time (hours) – 38.29 318.81 0.002
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