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Abstract—Sommerfeld-integrals (SIs) are ubiquitous in the anal-

ysis of problems involving antennas and scatterers embedded in

planarmultilayeredmedia. It is well known that the oscillating and
slowly decaying nature of their integrands makes the numerical

evaluation of the SI real-axis tail segment a very time consuming

and computationally expensive task. Therefore, SI tails have to be
specially treated. In this paper we compare two recently developed

techniques for their efficient numerical evaluation. First, a parti-

tion-extrapolation method, in which the integration-then-summa-
tion procedure is combined with a new version of the weighted av-

erages (WA) extrapolation technique, is summarized. The previous

variants of WA technique are also discussed. Then, a review of
double-exponential (DE) quadrature formulas for direct integra-

tion of the SI tails is presented. The efficient way of implementing

the algorithms, their pros and cons, as well as comparisons of their
performance are discussed in detail.

Index Terms—Double-exponential quadrature, extrapolation

techniques, multilayered Green’s functions, numerical analysis,

Sommerfeld integrals, weighted averages algorithm.

I. INTRODUCTION

A NTENNAS and scatterers embedded in planar stratified

media are frequently analyzed by means of Integral Equa-

tion (IE) formulations combined with a discretization proce-

dure, like the Galerkin method of moments (MoM). The IE

model can be cast in several variants, among which the mixed

potential integral equation (MPIE) is usually considered to be

more efficient because of its weakly-singular kernel [1]–[3]. The

application ofMoM for the solution ofMPIE, basically involves

two steps: first one is to fill up the MoM matrix, and the other

one is to solve the matrix. In the process of filling the MoMma-

trix, Sommerfeld integrals (SIs) are introduced in the evaluation

of the spatial-domain Green’s functions (GFs) from their spec-

tral-domain counterparts

(1)

Here, is the spectral domain Green’s function of the generic

layered media shown in Fig. 1, is the Bessel function of the

first kind of order , is the horizontal distance between the
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Fig. 1. Generic stratified media showing a point source (level ) and a field
observation point (level ) separated by a radial distance . The medium can be
terminated or not by PEC, PMC and impedance planes.

field and source points, and , are the vertical coordinates of

those points, respectively.

The oscillatory and slowly decaying kernels of the SIs, as well

as the occurrence of singularities on and/or near the integration

path in the complex -plane, make computation of the SIs very

difficult and time-consuming. Having in mind that SIs need to

be repeatedly evaluated in the process of filling the MoM ma-

trix, it is clear that, in the case of objects placed in multilayered

media, filling the MoM matrix might take the dominant part of

the computational load involved in the solution of the MPIE

via MoM. Therefore, efficient and fast computation of SIs is of

paramount relevance.

The problem of efficient evaluation of the SIs, although

nowadays a classic one, it is still attracting a lot of attention.

The numerous publications on this topic can be mainly catego-

rized in two classes. In the first class, SIs are approximated by

closed-form analytical formulas (see [4]–[11] among others).

A typical example is provided by the ”complex images”

formulations. There, spectral-domain GFs are represented as

finite sums of special functions which admit analytical so-

lution. These methods result in very fast algorithms and are

becoming increasingly popular. But, there will be always some

uncertainties about their range and precision. In a very recent

paper dealing with closed-from GFs [11] it was pointed out the

importance of alternative ”safer” schemes that can be always

used as benchmarks for testing purposes or for fine-tuning the

coefficients of an analytical approximation. These alternative

strategies are provided by a pure numerical evaluation of the

SIs. Indeed if the numerical algorithms are efficient enough,

this second class of methods, can also be used per se as a part

of a complete software tool implementing the IE-MoM model.

The main assets of these sophisticated numerical methods are

highly accurate results and error controllable behavior. The
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most known representative is the integration-then-summation

method combined with one of the numerous extrapolation

techniques, such as weighted averages (WA) method, Shanks

or generalized Levin transformation, among others [12], [13].

Also, several techniques for the direct integration of SI tails

exist [14]–[18].

The aim of this paper is to discuss two recently developed

techniques for the efficient numerical evaluation of SI tails,

with the target of assessing the advantages and disadvantages

of their application. These two techniques are a new version of

the weighted averages (WA) algorithm and a specially tailored

double exponential (DE) quadrature formula.

WAmethod was originally introduced in the early eighties by

Mosig [19]–[21]. It was later further extended and improved in

a very complete paper by Michalski [13], who found WA to be

a sophisticated version of the Euler transformation. Since then

it has been widely used in the EM community. The method

has been proven to be one of the most efficient extrapolation

methods for the convergence acceleration of the sequences ob-

tained when the integration-then-summation technique is ap-

plied to SIs. In this paper we use the classic Mosig-Michalski

version but also a very interesting and recently introduced new

version of WA [22].

The double exponential (DE) quadrature formula is a pow-

erful numerical tool proposed by Takahashi and Mori in 1974

for the integration of the functions with singularities at the end-

points of the integration interval [23]. It is based on a change

of variables that guarantees a DE decay of the integrand. Un-

fortunately, the original formula was not efficient in computing

slowly decaying oscillatory functions over . Hence, to

overcome this weakness, Ooura and Mori proposed a robust

DE formula for Fourier-type integrals [24]. The key idea of the

new transformation was slightly different: the nodes of the new

quadrature approach rapidly (double exponentially) the zeros of

sine/cosine function, thus allowing computation of the Fourier-

type integrals with a small number of function evaluations. A

variant with Bessel function zeros as nodes was proposed in

[25]–[27]. Finally, following similar ideas, a very efficient tool

for the evaluation of semi-infinite integrals with Bessel function

kernels was suggested in [28] and then adapted to the SI tails in

[18] by the authors.

This paper is organized as follows. A brief overview of the

WA and DE methods is presented in Section II. The efficiencies

of the methods are compared throughout a series of numerical

examples in Section III, with a special attention to the efficient

way of implementing the algorithms. Finally, some conclusions

and recommendations are drawn in Section IV.

II. SOMMERFELD INTEGRAL TAILS

Among various integration paths that can be employed for

the evaluation of the SIs (1), the real-axis path intended into

the first quadrant (see Fig. 2) for avoiding branch points and

pole singularities has been proven to be most convenient for

multilayered media [29], since it obviates the need to extract

the poles.

There are mainly two difficulties arising when computing SIs.

The first one is related to the possible presence of singularities

in the integrand. The second difficulty is due to the oscillating

Fig. 2. Deformed integration path for the computation of Sommerfeld inte-
grals.

integrand which converges slowly, or even diverges, and which

has to be considered over an infinite interval. Luckily enough,

these two problems can be always treated separately, by ade-

quately splitting the integral into two parts and

(2)

The first part of the integral, , joins the origin to the first break

point , where is appropriately selected in order to en-

sure that the remaining integral, is free of singu-

larities. Although techniques for adaptively selecting the inte-

gration path and numerically evaluating are out of the scope

of this paper, the approach followed here inspired from [29] is

briefly recalled for the sake of completeness. The first part of

the integral is again split into two parts.

(3)

is the integral over the interval . Its path is deformed

into the first quadrant and the exact shape is not important as far

as the singularities are circled around and we are at the proper

Riemann sheet. Here we have used a half-sine shape, but other

contours (for example semi-elliptical [30]) could be used as

well. The following parameters are selected:

, where (see

Fig. 1), and the maximum sine height is limited by the expo-

nential growth of the Bessel functionwhen becomes complex

and is set to

if

otherwise.
(4)

is the real-axis integral from to the first break point .

Exact zero crossings, extremum points and asymptotic half-pe-

riods of Bessel functions are common choices of break points

[13]. Both integrals, and , are computed by an adap-

tive quadrature based on the Paterson rule [31]. The remaining

integral

(5)
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is the semi-infinite SI tail on the real axis. Although it is free

of singularities, it calls for a special treatment because of its os-

cillatory and slowly decaying integrand. Below, we discuss two

recently developed methods for the fast and accurate numerical

evaluation of the SI tails (5).

A. Partition-Extrapolation Method Involving WA Technique

Partition-extrapolation procedure stands for the traditional

and most popular approach for calculating SI tails. Indeed, ap-

plying the integration-then-summation procedure, the SI tail is

transformed into an infinite sum of partial integrals over the fi-

nite subintervals

(6)

The conventional approach for the evaluation of (6) consists in

finding the limit of the sequence of partial sums

(7)

As this sequence converges extremely slowly, i.e., remainders

do not decay rapidly as , in order to

achieve high accuracy via direct sum we need to evaluate ex-

tremely large number of partial integrals, , which is unac-

ceptable in terms of computational cost. Instead, application

of one of the extrapolation techniques allows us to infer the

limit value in (7) by calculating just a few partial integrals .

As mentioned in the introduction, WA is a generalization of

the Euler transformation, which instead of simple means uses

weighted means of consecutive partial sums

(8)

where are the weights to be chosen. Since ,

(8) can be written in a following form:

(9)

Obviously, the optimal solution would come from the annihila-

tion of the remainders of the linearly transformed sequence

by imposing an appropriate ratio of the weights

(10)

In this point theWAmethod could be considered complete if the

remainders were explicitly known, which is, unfortunately,

not the case for the sequences of our interest. Instead, we use

their asymptotic expansion

(11)

where are remainder estimates and are the associated co-

efficients, as given in [13]. Based on the asymptotic behavior of

the spectral domain GFs

(12)

and using equidistant break points separated by asymptotic half-

periods of Bessel function, , as limits of partial inte-

grals , the following analytical expression for the remainder

estimates is obtained

(13)

for , where . In special cases, when ,

the interval length is suggested in [13] for the

partial integrals , and accordingly the factor in (13)

vanishes. Finally, incorporating these remainder estimates into

the WA transformation (8), the following recursive WA scheme

is obtained

(14)

with

(15)

(16)

where the plus and minus sign apply to and cases,

respectively and . The aforementioned recursion can

be represented by a triangular scheme

... . .
.

(17)

where in the first column and is the best ap-

proximation of , given the partial sums .

In the original version of theWAmethod [19], the remainders

are expanded into infinite series using integration by parts,

which is truncated for numerical purposes

(18)

where

(19)

The weights obtained in this way, although different, are

asymptotically equivalent to those in (15). In the new WA

method [22], the same remainder expansion is used. But now,

instead of acting always on two consecutive partial integrals

, the new WA method acts simultaneously on members
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of the sequence in (7). Indeed, the system of equations obtained

by writing (18) for different values of is solved using

Cramer’s rule, yielding after some algebraic manipulations to

the following final expression for the best possible estimation

that can be found, out of the , according the new WA

method [22]

(20)

where weights are given as

(21)

Equidistant separated by and should be used

for and cases, respectively.

This approach was suggested already in [21] as very powerful

from the theoretical point of view. For a long time it was consid-

ered inefficient for practical purposes, since it calls for compu-

tation of the determinants, which is usually a cumbersome and

time-consuming task. Then in [22] it was noticed that those de-

terminants, in the case of SIs, are indeed Vandermonde’s type

determinants, for which an analytical solution exists.

B. DE Technique

Based on the original study of Ogata and Sugihara [28],

double exponential quadrature formulas, specially tailored for

the SI tails of our interest, are developed in [18]. For the sake of

internal coherence, the main developments are briefly recalled

here. The main idea of the method is as follows. By applying

the variable transformation

(22)

where

(23)

the nodes of the final quadrature formulas approach double ex-

ponentially to the zeros of the corresponding Bessel function.

Therefore, the accurate calculation of the integral (5) can be

done by using a moderate number of function evaluations. In

(23), is the parameter of the algorithm, called step size, which

directly influences its performance, and therefore has to be care-

fully chosen.

For the sake of brevity, we show here only the final quadrature

formulas for the SI tails, for the two most used indexes,

of the Bessel functions

(24)

and

(25)

In (24) and (25), is the -th zero of the Bessel function ,

and the weights can be calculated as

(26)

Moreover, function is given as follows:

(27)

III. NUMERICAL RESULTS

In this section we present various numerical results in order

to compare accuracy and efficiency of the recently developed

methods for the computation of SI tails, discussed in Section II.

From the WA family, we have used the Mosig-Michalski trans-

formation [13] known to be the most efficient version. More-

over, the asymptotic evaluation of remainder estimates (16) is

used, since it was shown to lead to faster convergence [13].

All the methods were implemented in MATLAB programming

language, and all the calculations are done in double precision

arithmetic.

First, we consider the family of SIs for which the exact solu-

tions are known thanks to the well-known Sommerfeld identity

(28)

where . Our test cases also include the deriva-

tive of (28)

(29)

its -derivative:

(30)

as well as its the second derivative with respect to and

(31)

Integrals on the left-hand side of (28)–(31) are split into two

parts, as explained in Section II. The first parts of the integrals

are evaluated close to machine precision [29], [30]. Therefore,

when assessing precision of the methods, we can consider that

all the error in computation of the integrals (28)–(31) comes

from the evaluation of the SI tail.
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Step size in (24)–(25) is the key parameter of the DE algo-

rithm since it directly influences the behavior of the algorithm.

Hence, its proper choice is very important. While, for the gen-

eral semi-infinite integrals involving Bessel function kernels the

appropriate value of depends on the problem at hand [28], in

[18] it was experimentally found that stands as the

best trade-off between accuracy and computational cost for SI

tails. Considering the partition-extrapolation method involving

WA extrapolation techniques, the partial integrals in (6) are

computed using Gauss-Legendre quadrature of order 16, as sug-

gested in [29].

First we consider the most challenging case, , in which

the exponential function vanishes, and consequently the inte-

grands in (28)–(31) have the slowest decay. Since the accu-

racy achieved after certain number of integration points is a

good indicator of the efficiency of the method, we plot in Fig. 3

the number of significant digits obtained by using 160 integra-

tion points (ten integration intervals for WA) as a function of

. The number of significant digits is computed as

. From the presented results, one can see that

for the first three examples, all the methods provide very ac-

curate results, with more than 10 exact digits for all the values

of studied. However, for (31), the accuracy of the new WA

method is significantly higher than that obtained by using the

other two methods. The poorest performance is provided by the

DE method, which yields to only 7 significant digits accuracy

for some values of .

We have also considered the behavior of the DE, newWA and

Mosig-Michalski WA methods, when applied to SIs (28)–(31),

for a wide range of the distances between the source and obser-

vation points, , . The obtained

results are presented in Figs. 4–7. Again, the best accuracy is

achieved by using the new WA technique. But, the other two

methods lead to very good results as well: more than 8 signifi-

cant digits accuracy for all the distances considered.

Finally, as a real-life example, we have considered a four-

layer geometry:

� layer-0: PEC;

� layer-1: , ;

� layer-2: , ;

� layer-3: free-space.

with the source (HED) placed at the interface between the di-

electric stack and the free-space. Fig. 8 depicts the scalar po-

tential GF and the component of the vector potential

dyadic GF, when the source and the observer belong to the same

plane at . There is a perfect agree-

ment between the three techniques with the curves on top of

each other for the full range of distances. Furthermore, since the

analytical solution does not exist in this case, in order to asses

the accuracy of the obtained results, we took as reference the

results obtained applying the Mosig-Michalski algorithm until

machine precision was reached. The results obtained using the

other two methods were then compared with the reference re-

sult. Fig. 9 gives the number of significant digits of relative

error. The standard number of 160 points has been used. The

three methods agree in more than 11 significant digits.

A final word must be said on the computational time and on

the efficient implementation of the above described methods

Fig. 3. Number of significant digits obtained by using 160 integration points
(a) Sommerfeld identity tail (28) (b) -derivative of the Sommerfeld identity tail
(29) (c) -derivative of the Sommerfeld identity tail (30) (d) Second derivative
of the Sommerfeld identity tail with respect to and (31).

for numerical evaluation of SI tails. Since the value of the

step-size parameter of DE quadrature is chosen a priori, the
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Fig. 4. Number of significant digits for the SI (28), obtained by using 160
integration points, for a wide range of distances from the source (a) Mosig-
Michalski transformation (b) New WA algorithm (c) DE algorithm.

associated weights and abscissas can be precomputed. There-

fore, the direct application of the formulas (24)–(25) using as

default the maximal number of points (160, corresponding to

Fig. 5. Number of significant digits for the SI (29), obtained by using 160
integration points, for a wide range of distances from the source (a) Mosig-
Michalski transformation (b) New WA algorithm (c) DE algorithm.

10 iterations with a quadrature order of 16) can be implemented

in MATLAB as a simple matrix multiplication, which is very

convenient and indeed leads to lower computational time than
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Fig. 6. Number of significant digits for the SI (30), obtained by using 160
integration points, for a wide range of distances from the source (a) Mosig-
Michalski transformation (b) New WA algorithm (c) DE algorithm.

the iterative procedure proposed in [18], while resulting in the

same accuracy for the final results. Under these assumptions,

the DE transformation needs, approximately 5 times less com-

putational time than the two other methods, as can be seen from

Fig. 7. Number of significant digits for the SI (31), obtained by using 160
integration points, for a wide range of distances from the source (a) Mosig-
Michalski transformation (b) new WA algorithm (c) DE algorithm.

Fig. 10. In the WA technique, the main part of the computation

time is consumed by the evaluation of the 10 partial integrals.

The overhead associated to the WA algorithms themselves is

very reduced, which makes the total time almost the same in
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Fig. 8. Spatial domain Green’s function of four layer media problem at 30 GHz
(a) (b) .

Fig. 9. Number of significant digits of relative error for four-layer geometry at
30 GHz.

both cases (Mosig-Michalski and new WA). On the other hand,

DE is noticeably faster for the same SI tail. The

Fig. 10. Time comparison for the SI tail (28).

weights (15)–(16) involved in the Mosig-Michalski WA tech-

nique are very easy to evaluate, but the method calls for the

recursion (17). On the other hand, the evaluation of the weights

(21) involved in new WA algorithm is more complex, since it

calls for the computation of the binomial coefficients. However,

this is not a problem since many programming languages have

built-in functions for the evaluation of binomial coefficients.

Alternatively, an iterative procedure might be used. Roughly,

this amounts to say that the overhead of the Mosig-Michalski

WA transformation is time-wise equivalent to the evaluation of

more complicated weights in the new WA method. However

the dominant part of computational time goes to the accurate

evaluation of the sequence of partial sums, .

IV. CONCLUSION

In this paper we have discussed two recently developed tech-

niques for the efficient numerical evaluation of SI tails, mainly

a new version of the Weighted Averages (WA) algorithm and a

specially tailored Double Exponential (DE) quadrature formula.

The performances of the methods are compared throughout a

series of representative numerical examples, with the target of

assessing the advantages and disadvantages of their application.

In general, the new WA algorithm is shown to be the winner in

terms of accuracy. It converges faster towards the final values,

when compared to Mosig-Michalski WA technique. This may

be an important asset, as the dominant part of the computa-

tional time is usually due to the evaluation of the partial inte-

grals in the sequence. Hence, the new WA can be used advanta-

geously as an alternative to the classic (Mosig-Michalski) WA

algorithm, today the most currently used extrapolation method

in integration-then-summation techniques. On the contrary, the

DE quadrature formula, although it gives in average lower ac-

curacy when compared withWAmethods, still yields very good

results. More precisely, it always provides more than 9 signif-

icant digits of accuracy of relative error, except in the case of

(26), when it leads to only 7 digits accuracy for some combina-

tion of and values. However, in the MPIE formulation this

type of integrals arises only in the post-processing related to

the fields evaluations. Properly implemented, DE always per-

formed significantly faster than both versions of WA (up to 5

times). This is to be considered in applications where speed is

the primordial parameter.
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