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EFFICIENT ALGORITHMS FOR COMPUTING

THE L2-DISCREPANCY

S. HEINRICH

Abstract. The L2-discrepancy is a quantitative measure of precision for mul-
tivariate quadrature rules. It can be computed explicitly. Previously known
algorithms needed O(m2) operations, where m is the number of nodes. In this
paper we present algorithms which require O(m(logm)d) operations.

1. Introduction

Let A = ((x1, v1), . . . , (xm, vm)) be an array defining a quadrature formula on
G = [0, 1]d, i.e., xi ∈ G, vi ∈ R (i = 1, . . . ,m), and the quadrature is given by

Qf =
m∑
i=1

vif(xi)

for any continuous function f ∈ C(G). Given t = (t1, . . . , td) ∈ G, we let

e(t) =

∫
G

χ[0,t)(x) dx−
m∑
i=1

viχ[0,t)(xi),

where [0, t) =
d∏
k=1

[0, tk) and χ is the characteristic function. If vi = 1/m for all i,

then e(t) measures the local deviation of the empirical distribution of the point set
{xi : i = 1, . . . ,m} from the uniform distribution:

e(t) = meas ([0, t))− |{i : xi ∈ [0, t)}|
m

.

Here, |X | denotes the cardinality of a set X . The L2-discrepancy of A is defined
by

D2(A) =

(∫
G

e(t)2dt

)1/2

.

So D2(A) is the mean square error of the quadrature A, applied to characteristic
functions χ[0,t). Besides this meaning, the L2-discrepancy possesses further general
interpretations.
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1622 S. HEINRICH

Denote by BW 1
2 the set of all functions f ∈ L2(G) whose generalized mixed

derivative satisfies

∂rf(s)

∂s1 . . . ∂sd
∈ L2(G),

‖ ∂rf(s)

∂s1 . . . ∂sd
‖L2(G) ≤ 1

and f(s) = 0 whenever sk = 1 for some k = 1, . . . , d. Then

D2(A) = sup
f∈BW1

2

|If −Qf |,

where If stands for the integral
∫
G f(x)dx. So D2(A) is the worst-case error over

a Sobolev class with bounded mixed derivative (see, e.g., [13]). As recently proved
by Woźniakowski [15], the L2-discrepancy also appears as an average-case error
with respect to the Wiener sheet measure: So let µ denote the mean-zero Gaussian
measure on C(G) given by the covariance kernel

Rµ(s, t) =
d∏
k=1

min(sk, tk).

Then

D2(Ã) =

(∫
G

|If −Qf |2dµ(f)

)1/2

,

where Ã is obtained from A by replacing xi by x̃i = 1̄− xi, and 1̄ = (1, 1, . . . , 1).
The L2-discrepancy was studied in many papers. We refer to the surveys [8, 9]

as well as to [13]. The order of the smallest possible discrepancy was determined
in [11, 3, 12, 6, 2]:

inf{D2(A) : all possible A with m nodes} = Θ(m−1(logm)(d−1)/2).

By now, several ways are known of constructing quadratures which attain this
optimal rate or attain it up to powers of logm (see again the references above). So
the asymptotic order cannot distinguish between such quadratures, and one also
wants to have precise numerical information. By integrating over t ∈ [0, 1]d it is not
difficult to derive the following explicit formula for the square of the discrepancy:

D2(A)2 =

∫
G

(
d∏
k=1

tk

)2

dt− 2
m∑
i=1

vi

∫
G

d∏
k=1

tkχ[0,tk)(xik) dt

+
m∑

i,j=1

vivj

∫
G

d∏
k=1

χ[0,tk)(xik)χ[0,tk)(xjk) dt

=3−d − 21−d
m∑
i=1

vi

d∏
k=1

(1− x2
ik)

+
m∑

i,j=1

vivj

d∏
k=1

(1−max(xik , xjk)),

(1)

where xik is the kth coordinate of xi. This formula was first pointed out and used
for the numerical investigation of various low-discrepancy sets by Warnock [14].
Since then, many experimental investigations were based on it.
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The second term of (1) is computed in O(m) operations, the straightforward
computation of the third term requires O(m2) operations (by operation we mean
either an arithmetic operation or a comparison). This makes the computation of
D2(A) for large A a highly complex task. So far, no algorithms were known of
lower complexity. (Note that there were recent efforts to design efficient algorithms
for another type of discrepancy—the star-discrepancy, which is obtained by taking
the L∞ norm of e(t) instead of the L2 norm. See [4, 5].) The aim of the present
paper is to give an algorithm which is of worst-case complexity O(m(logm)d),
and an easier-to-implement modification of it which has average-case complexity
O(m(logm)d).

2. The algorithm and its worst-case analysis

We shall present an algorithm which computes the third term of (1) in
O(m(logm)d) operations. The algorithm D is defined recursively and will accom-
plish a slightly more general task. Given another arrayB = ((y1, w1) , . . . , (yn, wn))
with yj ∈ G, wj ∈ R (j = 1, . . . , n), the algorithm will compute

D(A,B, d) =
m∑
i=1

n∑
j=1

viwj

d∏
k=1

(1−max(xik, yjk)).(2)

Before we give a more formal description of the algorithm, let us first explain the
basic idea. Suppose we know that the first coordinates of A are all not greater than
those of B, i.e.,

xi1 ≤ yj1 (i = 1, . . . ,m, j = 1, . . . , n).

Then (2) simplifies to

D(A,B, d) =
m∑
i=1

n∑
j=1

v′iw
′
j

d∏
k=2

(1−max(xik, yjk)),

where v′i = vi and w′j = (1− yj1)wj . Hence, we have reduced the dimension of the
problem by 1. Suppose now that d = 1. Then after the reduction we are left with
the double sum

m∑
i=1

n∑
j=1

v′iw
′
j =

(
m∑
i=1

v′i

) n∑
j=1

w′j

 ,

which now can be computed in O(m + n) operations. The algorithm is recursive
and applies the divide-and-conquer strategy to reduce the dimension. Let us pass
to the details.

We assume that A is sorted in such a way that

x11 ≤ x21 ≤ · · · ≤ xm1.(3)

This can be achieved by an initial sorting in O(m logm) time. (This initial sorting
is not part of the algorithm D, but in the recursion the algorithm will take care of
such an ordering itself.)

We formally also include the case B = ∅ and the case d = 0. In the latter, we
assume A = (v1, . . . , vm) and B = (w1, . . . , wn).
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Algorithm D

Input: A,B, d as above, A satisfying A 6= ∅ and (3).

Output: D(A,B, d)

Case 1: n = 0 (i.e., B = ∅)

D(A,B, d) = 0

Case 2: d = 0 , n ≥ 1

D(A,B, 0) =

(
m∑
i=1

vi

) n∑
j=1

wj


Case 3: m = 1 , d ≥ 1, n ≥ 1

D(A,B, d) = v1

n∑
j=1

wj

d∏
k=1

(1−max(x1k, yjk))

Case 4: m > 1 , d ≥ 1 , n ≥ 1

Set p =
[
m
2

]
, ξ = xp1. Form new arrays A1, A2, B1, B2 as follows:

A1 = ((x1, v1), . . . , (xp, vp)),(4)

A2 = ((xp+1, vp+1), . . . , (xm, vm)).(5)

To define the arrays B1, B2, we treat the elements of B consecutively. All elements
whose first coordinate is not greater than ξ go into B1, the rest goes into B2.
Precisely, we put

B1 = ((yj1 , wj1), . . . , (yjq , wjq )),(6)

B2 = ((yjq+1 , wjq+1), . . . , (yjn , wjn)),(7)

where q and the jk are defined through the relations

yjk,1 ≤ ξ (k = 1, . . . , q),

yjk,1 > ξ (k = q + 1, . . . , n)

and

j1 < j2 < · · · < jq,

jq+1 < jq+2 < · · · < jn.

Let P ′ be the projection of Rd onto Rd−1 given by omitting the first coordinate.
Put

x′i = P ′xi (i = 1, . . . ,m),
y′j = P ′yj (j = 1, . . . , n),
v′i = vi (i = 1, . . . , p),
v′i = vi(1− xi1) (i = p+ 1, . . . ,m),
w′jk = wjk (k = 1, . . . , q),
w′jk = wjk(1− yjk1) (k = q + 1, . . . , n).

Form the sets A′1, A
′
2, B

′
1, B

′
2 defined by literally putting primes to the symbols

in (4)–(7). Obtain A′′1 , A
′′
2 from A′1, A

′
2 by sorting with respect to the (new) first

coordinate, so that (3) holds for these new arrays. In the case d = 1 the definitions
above have to be interpreted in the appropriate way: the primed arrays consist only
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of the v′i and w′j . In this case the sorting step is omitted, so A′′1 = A′1, A
′′
2 = A′2.

Finally, we set

D(A,B, d) = D(A1, B1, d) +D(A2, B2, d) +D(A′′1 , B
′
2, d− 1) +D(A′′2 , B

′
1, d− 1).

This recursion completes case 4 and the algorithm.
It is readily checked that

D(A′′1 , B
′
2, d− 1) = D(A1, B2, d),

D(A′′2 , B
′
1, d− 1) = D(A2, B1, d),

and hence the algorithm indeed computes the desired quantity (2).
Let us estimate the maximal number of operations L(m,n, d) over all possible

inputs of size m,n and dimension d. Let us assume that we use a sorting algorithm
with (worst-case) number of operations at most csortn logn (the logarithm to the
base 2), with some constant csort > 0.

Proposition 1. For each d ≥ 0 there exists a constant cd > 0 such that for all
m ≥ 1, n ≥ 0

L(m,n, d) ≤ cd(m+ n)(logm+ 1)d.(8)

Proof. For n = 0 we have L(m, 0, d) = 0, and (8) holds trivially. For d = 0, n ≥ 1,
we are in case 2 and have

L(m,n, 0) = m+ n− 1,

so we put c0 = 1. For d ≥ 1 we define

cd = max(3d+ 1, (log 1.5)−1(cd−1 + csort + 3)).(9)

By induction over m we shall prove that (8) holds for all d ≥ 1, n ≥ 1. For m = 1,
which is case 3, it follows that

L(1, n, d) = (3d+ 1)n ≤ cd(n+ 1).

Now we fix m > 1, put p =
[
m
2

]
and σ(d) = 1 if d > 1 , σ(d) = 0 if d = 1. From

case 4 we deduce

L(m,n, d) ≤ max
0≤q≤n

{n+ 2(m− p+ n− q)

+ σ(d)csort(p log p+ (m− p) log(m− p))
+ L(p, q, d) + L(m− p, n− q, d)

+ L(p, n− q, d− 1) + L(m− p, q, d− 1) + 3} .

(10)

Observe that , since m > 1,

max(p,m− p) =

[
m+ 1

2

]
≤ 2m/3.
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Using this and the induction hypothesis, we obtain

L(m,n, d) ≤ max
0≤q≤n

{
3(m+ n) + σ(d)csortm(logm+ 1)

+ cd(p+ q)(log p+ 1)d + cd(m− p+ n− q)(log(m− p) + 1)d

+ cd−1(p+ n− q)(log p+ 1)d−1

+ cd−1(m− p+ q)(log(m− p) + 1)d−1
}

≤(3 + csort)(m+ n)(logm+ 1)d−1 + cd(m+ n)(log(2m/3) + 1)d

+ cd−1(m+ n)(logm+ 1)d−1.

Since

(log(2m/3) + 1)d = (logm+ 1− log 1.5)d

≤ (logm+ 1− log 1.5)(logm+ 1)d−1

= (logm+ 1)d − log 1.5(logm+ 1)d−1,

we conclude

L(m,n, d) ≤(3 + csort + cd−1)(m+ n)(logm+ 1)d−1

+ cd(m+ n)(logm+ 1)d − cd log 1.5(m+ n)(logm+ 1)d−1

≤cd(m+ n)(logm+ 1)d.

(11)

Clearly, the constants are overestimated by (9)—for the sake of convenience in
the proof. Tight upper bounds could be calculated numerically on the basis of
(10). Having algorithm D, it is clear how to compute D2(A): We determine the
first two terms of (1), then we sort A so that it has nondecreasing first coordinates,
and finally we apply D(A,A). Clearly, this takes not more than O(m(logm)d)
operations.

3. A modification efficient on the average

The second algorithm is a simplification of D in that it avoids the sorting. In
multivariate integration one studies quadrature formulas whose nodes are as close
to equidistribution as possible. So looking at the first coordinate, one should expect
that for about one half of the nodes it is below 1/2. This is exploited in algorithm
D′, which is close to D, but sets the (initial) ξ to 1/2. It seems that algorithm
D′ is better suited for practical purposes. Of course “bad” node sets can spoil the
performance of D′, but we shall prove later that on the average it still finishes after
O(m(logm)d) operations.

Algorithm D′

Input: A,B, d as above (A needs not to be sorted), reals a, b ∈ [0, 1],
a < b, and we assume that xi1, yj1 ∈ [a, b] (i = 1, . . . ,m,
j = 1, . . . , n).

Output: D′(A,B, d, a, b) = D(A,B, d)

The cases d = 0 , m = 0 or n = 0 are handled in analogy with algorithm D, so
we restrict our description to the essential case:

Recursion: Assume d ≥ 1,m, n ≥ 1.
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Set ξ = (a+ b)/2 and put an element of A into A1, if its first coordinate does not
exceed ξ, otherwise into A2. Form B1 and B2 in the same way. If max(|A1|, |A2|) >
2m/3, then we compute D(A,B, d) directly by (2) (that means in O(mn) opera-
tions). Otherwise we define A′1, A

′
2, B

′
1, B

′
2 as in algorithm D and set

D′(A,B, d, a, b) =D′(A1, B1, d, a, ξ) +D′(A2, B2, d, ξ, b)

+D′(A′1, B
′
2, d− 1, 0, 1) +D′(A′2, B

′
1, d− 1, 0, 1).

(12)

Now we shall study the average behavior of D′. First we consider the case of
independent sets A and B; the case A = B is treated afterwards. So assume
that xi (i = 1, . . . ,m) and yj (j = 1, . . . , n) are independent random variables,
uniformly distributed in [a, b] × [0, 1]d−1. Let E(m,n, d) be the expected number
of operations of algorithm D′ (it is obvious that this number does not depend on a
and b).

Proposition 2. For each d ≥ 0 there exists a constant c′d > 0 such that for all
m ≥ 1, n ≥ 0

E(m,n, d) ≤ c′d(m+ n)(logm+ 1)d.(13)

Proof. The case d = 0 is treated as above. Let m0 ∈ N be a constant fixed in
such a way that 2m exp(−m/18) ≤ 1 whenever m > m0. Clearly, for m ≤ m0,
algorithm D′ needs O(n) operations, so an appropriate choice of c′d ensures (13) for
all m ≤ m0 and all n. Now we shall proceed by induction over m and assume that
m > m0.

We make use of a special case of Chernoff’s technique (see, e.g., [7, Th. A.1.1]),
also called Kolmogorov-Bernstein inequality. For a sequence η1, . . . , ηm of indepen-
dent random variables, each taking the values 1 and −1 with probability 1/2, we
have for all ε > 0

Prob

{
m∑
i=1

ηi > εm

}
≤ exp(−ε2m/2).

Setting ηi = 1 if xi1 ≤ ξ and ηi = −1 otherwise, we obtain with ε = 1/3

Prob
{
|A1| > 2m/3

}
≤ exp(−m/18).

By symmetry

Prob{|A2| > 2m/3} ≤ exp(−m/18),

so we get

Prob {max(|A1|, |A2|) > 2m/3} ≤ 2 exp(−m/18).(14)

Next let us fix some further notation.
Set

µ` = Prob{|A1| = `} ,
ν` = Prob{|B1| = `}

and

S = {(p, q) : p ∈ {0, 1, . . . ,m} , max(p,m− p) ≤ 2m/3, q ∈ {0, 1, . . . , n}},

T = {0, 1, . . . ,m} × {0, 1, . . . , n}\S.
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Then (14) gives∑
(p,q)∈T

µpνq =
∑

max(p,m−p)>2m/3

µp

n∑
q=0

νq ≤ 2 exp(−m/18).(15)

Consider now (12). Fix p ∈ {0, 1, . . . ,m}. Under the condition that |A1| = p, the
conditional distribution of those xi1 which fall into [a, ξ] is that of a sequence of
p independent equidistributed over [a, ξ] random variables. An analogous relation
holds for q ∈ {0, 1, . . . , n} and |B1| = q. So under the condition |A1| = p and
|B1| = q the expected number of operations to accomplish D′(A1, B1, d, a, ξ) is
just E(p, q, d). Similar remarks apply to the remaining three parts of the recursion
(12). Note further that the recursion switches to the direct computation if and
only if (p, q) ∈ T . Summing first over j, then over i, we can accomplish this direct
evaluation in m(3d+ 1)n+m− 1 operations. Summarizing this, we get

E(m,n, d) =
∑

(p,q)∈S
µpνq{m+ n+ 2(m− p+ n− q) +E(p, q, d)

+E(m− p, n− q, d) +E(p, n− q, d− 1)

+E(m− p, q, d− 1) + 3}

+ (m(3d+ 1)n+m− 1)
∑

(p,q)∈T
µpνq.

The induction hypothesis and (15) imply

E(m,n, d) ≤
∑

(p,q)∈S
µpνq{4(m+ n) + c′d(p+ q)(log p+ 1)d

+ c′d(m− p+ n− q)(log(m− p) + 1)d

+ c′d−1(p+ n− q)(log p+ 1)d−1

+c′d−1(m− p+ q)(log(m− p) + 1)d−1
}

+ 2 exp(−m/18)m((3d+ 1)n+ 1).

Since m > m0, the last term can be estimated by (3d+ 1)(m+n), according to the
choice of m0 at the beginning of the proof. For (p, q) ∈ S we have max(p,m− p) ≤
2m/3, hence

E(m,n, d) ≤ (3d+ 5)(m+ n) + c′d(m+ n)(log(2m/3) + 1)d

+c′d−1(m+ n)(logm+ 1)d−1.

Using (11), we get

E(m,n, d) ≤ c′d(m+ n)(logm+ 1)d

+(3d+ 5 + c′d−1 − c′d log 1.5)(m+ n)(logm+ 1)d−1.

To complete the induction, we arrange c′d in such a way that the second term is not
positive.

Now we turn to the case B = A. Here the recursion (12) can be simplified, since

D′(A′1, A
′
2, d− 1, 0, 1) = D′(A′2, A

′
1, d− 1, 0, 1).
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Note that for B = A the direct computation (2) can also be arranged in a more
economical way:

m∑
i,j=1

vivj

d∏
k=1

(1−max(xik, xjk))

=
m∑
i=1

v2
i

d∏
k=1

(1− xik) + 2
m∑
i=1

vi

m∑
j=i+1

vj

d∏
k=1

(1−max(xik, xjk)),

requiring a total of

3d+ 1

2
m(m− 1) + (2d+ 3)m

operations. Now we assume that x1, . . . , xm are drawn independently and uni-
formly distributed over G and we denote the expected number of operations for
D′(A,A, d, a, b) by E∗(m, d).

Proposition 3. For each d ≥ 0 there exists a constant c∗d > 0 such that for all
m ≥ 1

E∗(m, d) ≤ c∗dm(logm+ 1)d.

Proof. We start with the following observation: Fix p and indices i1 < i2 < · · · <
ip , ip+1 < ip+2 < · · · < im, with

{i1, . . . , im} = {1, . . . ,m}
(as sets). Under the condition that xik1 ∈ [0, 1/2] (k = 1, . . . , p) and xik1 ∈(

1
2 , 1
]

(k = p+ 1, . . . ,m), the random variables xi1 , . . . , xip and xip+1 , . . . , xim are

independent and equidistributed in [0, 1
2 ]×[0, 1]d−1 and [1

2 , 1]×[0, 1]d−1, respectively.
From this observation one easily derives

E∗(m, d) =
∑

max(p,m−p)≤2m/3

µp{m+m− p+E∗(p, d) +E∗(m− p, d)

+ E(p,m− p, d− 1) + 3}

+

(
3d+ 1

2
m(m− 1) + (2d+ 3)m

) ∑
max(p,m−p)>2m/3

µp.

Using Proposition 2 and relation (14), an inductive argument analogous to the
previous one completes the proof.

4. Generalizations

Instead of rectangles with lower left corner fixed at the origin one may consider
all rectangles in G with sides parallel to the axes. This leads to the so-called
unanchored L2-discrepancy, defined as follows: Put

e(s, t) =

∫
G

χ[s,t)(x) dx−
m∑
i=1

viχ[s,t)(xi)

whenever sk ≤ tk for all k = 1, . . . , d, and

∆2(A) =

(∫
G

∫
[0,t]

e(s, t)2dsdt

)1/2

.
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Calculating the integrals gives

∆2(A)2 =12−d − 2 · 6−d
m∑
i=1

vi

d∏
k=1

(1− x3
ik − (1− xik)3)

+
m∑

i,j=1

vivj

d∏
k=1

min(xik, xjk)(1−max(xik, xjk)),

and it is clear that algorithms D and D′ have immediate extensions to this case
of about the same efficiency. Another generalization is that to higher smoothness.
Instead of testing the quadrature on characteristic functions χ[0,t)(x) we fix an
integer r > 0 and test on

Br(x, t) = (r!)−d
d∏
k=1

(tk − xk)r+,

where (tk − xk)+ stands for (tk − xk) if tk ≥ xk and for 0 otherwise. Setting

er(t) =

∫
G

Br(x, t) dx−
m∑
i=1

viBr(xi, t)

and

D
(r)
2 (A) =

(∫
G

er(t)
2dt

)1/2

,(16)

we obtain an r-smooth analogue of the discrepancy, which was considered in [13, 10].

The quantity D
(r)
2 (A) can be interpreted again as a worst-case error of Q over a

certain Sobolev class of functions f ∈ L2(G) which satisfy∥∥∥∥ ∂(r+1)df(s)

∂sr+1
1 . . . ∂sr+1

d

∥∥∥∥
L2(G)

≤ 1

and certain boundary conditions (see [13, 10]). The analogy to r = 0 extends

also to the average case. The quantity D
(r)
2 (Ã) can be shown to be equal to the

average error of Q with respect to a certain “r-smooth” Wiener measure. For details
we refer to [10]. Expanding the integral in relation (16), we get after elementary
calculations

D
(r)
2 (A)2

= ((r + 1)!)−2d(2r + 3)−d − 2(r!(r + 1)!)−d
m∑
i=1

vi

d∏
k=1

∫ 1

xik

τr+1(τ − xik)rdτ

+
m∑

i,j=1

vivj

d∏
k=1

ϕ(xik, xjk),

where

ϕ(a, b) = (r!)−2

∫ 1

max(a,b)

(τ − a)r(τ − b)rdτ(17)
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for a, b ∈ [0, 1]. Proceeding as in the case r = 0, we seek to compute

D(r)(A,B) =
m∑
i=1

n∑
j=1

viwj

d∏
k=1

ϕ(xik , yjk).

Assume now

xi1 ≤ yj1 (i = 1, . . . ,m, j = 1, . . . , n).

Then the dimension reduction can be done in the following way: It is easily checked
that for a ≤ b the function ϕ(a, b) can be represented as

ϕ(a, b) =
r∑
`=0

a`p`(b)(18)

with certain polynomials p` of degree not exceeding 2r + 1− `. Hence,

D(r)(A,B) =
r∑
`=0

m∑
i=1

n∑
j=1

v
(`)
i w

(`)
j

d∏
k=2

ϕ(xik, yjk)

with

v
(`)
i = vix

`
i1,

w
(`)
j = wjp`(yj1).

So we are left with r + 1 problems of dimension d− 1. On this basis one can show

again that D
(r)
2 (A,B) can be computed in O((m + n)(logm)d) operations. This

time, however, each dimension reduction multiplies the effort by (r+ 1), so a heavy
dependence of the constants on the dimension can be expected, which still makes
the O(mn) algorithm preferable except for small r and small d.

5. Numerical experiments

Here we present the results of a few first tests which were carried out for algorithm
D′. The aim was to understand the speed-up, so we did not list the discrepancies,
but the number of operations of the recursive algorithm. This number depends
not only on m and d, but also on the concrete sequence considered, and was deter-
mined in the process of computation. The number of operations of the direct
algorithm can be calculated as a function of m and d only, by the formula
(3d + 1)m(m − 1)/2 + (2d + 3)m, mentioned in §3. The nodes were formed by
the Halton sequence with m = 1024, m = 8192 and m = 65536, respectively. We
tested dimensions d = 1, 2, 4, 6 and 8. The program was a first implementation
of algorithm D′, so none of the possible optimizations discussed in §6 below had
yet been tried. Consequently, these experiments were meant more to give a first
impression rather than a conclusive picture. More detailed findings will be reported
elsewhere.
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number of dimension number of operations number of operations
points m d of direct computation of algorithm D′

1024 1 2.1 E 6 6.8 E 4
2 3.7 E 6 3.3 E 5
4 6.8 E 6 2.4 E 6
6 1.0 E 7 6.3 E 6
8 1.3 E 7 1.0 E 7

8192 1 1.3 E 8 7.0 E 5
2 2.3 E 8 4.3 E 6
4 4.4 E 8 5.3 E 7
6 6.4 E 8 2.2 E 8
8 8.4 E 8 4.6 E 8

65536 1 8.6 E 9 6.8 E 6
2 1.5 E 10 5.2 E 7
4 2.8 E 10 9.5 E 8
6 4.1 E 10 5.9 E 9
8 5.4 E 10 1.8 E 10

The calculations were done on an HP 9000/735 workstation.

6. Remarks and open problems

It is seen from the experiments, and it is to be expected from the theoretical
analysis, that the recursive algorithms are particularly advantageous in low dimen-
sion. In high dimension only little is gained, and storage management, which is not
reflected in the table above, may become an additional problem. So efficient data
structures should be an issue of further investigation.

Both algorithms leave enough space for various speed-up strategies. For example,
both methods could switch from recursion to the direct computation if the number
of elements in the actual A gets smaller than a certain threshold. A possible
candidate could be 2d, where d is the actual dimension, since with less elements in
A the recursion hardly gets down to dimension 0 before the sets reach cardinality
0 or 1. The switch to direct computation in algorithm D′ is sufficient for the
theoretical average analysis, but could be modified for practical purposes. Even if
A1 is large compared to A2, it might be advantageous to divide A1 further. Other
strategies for the choice of ξ could be conceived as well, for example the arithmetic
mean of the first coordinates of A. The O(m logm) sorting of algorithm D could
be replaced by an order statistics procedure which determines the

[
m
2

]
th smallest

element ξ of A in O(m) operations (see [1, Ch. 3]) and then produces A1 and A2 as
in algorithm D′. This might improve the practical behavior; the power of logarithm
in the total cost estimate will not be decreased, however.

The case r ≥ 1 leaves open even more questions. In each step a large number
of subproblems arises, so the total effort, as compared to r = 0, gets multiplied
by a factor exponential in d. More efficient ways of handling the integral (17) are
needed, e.g. more economical splittings (18) of the function ϕ into products of
polynomials of one variable.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EFFICIENT ALGORITHMS FOR COMPUTING THE L2-DISCREPANCY 1633

Finally, there arises an interesting problem in algebraic complexity. Is
O(m(logm)d) also a lower bound for any algorithm computing the L2-
discrepancy?
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