
Journal of Machine Learning Research 3 (2002) 621-650 Submitted 12/01; Published 12/02

Efficient Algorithms for Decision Tree Cross-validation

Hendrik Blockeel HENDRIK.BLOCKEEL@CS.KULEUVEN.AC.BE

Jan Struyf JAN.STRUYF@CS.KULEUVEN.AC.BE

Department of Computer Science

Katholieke Universiteit Leuven

Celestijnenlaan 200A, B-3001 Leuven, Belgium

Editors: Carla E. Brodley and Andrea Danyluk

Abstract

Cross-validation is a useful and generally applicable technique often employed in machine learn-

ing, including decision tree induction. An important disadvantage of straightforward implemen-

tation of the technique is its computational overhead. In this paper we show that, for decision

trees, the computational overhead of cross-validation can be reduced significantly by integrating

the cross-validation with the normal decision tree induction process. We discuss how existing de-

cision tree algorithms can be adapted to this aim, and provide an analysis of the speedups these

adaptations may yield. We identify a number of parameters that influence the obtainable speedups,

and validate and refine our analysis with experiments on a variety of data sets with two different im-

plementations. Besides cross-validation, we also briefly explore the usefulness of these techniques

for bagging. We conclude with some guidelines concerning when these optimizations should be

considered.

Keywords: Decision trees, cross-validation, inductive logic programming

1. Introduction

Cross-validation is a generally applicable and very useful technique for many tasks often encoun-

tered in machine learning, such as accuracy estimation, feature selection or parameter tuning. It

consists of partitioning a data set D into n subsets Di and then running a given algorithm n times,

each time using a different training set D−Di and validating the results on Di.

Cross-validation is used within a wide range of machine learning approaches, such as instance

based learning, artificial neural networks, or decision tree induction. As an example of its use within

decision tree induction, the CART system (Breiman et al., 1984) employs a tree pruning method that

is based on trading off predictive accuracy versus tree complexity; this trade-off is governed by a

parameter that is optimized using cross-validation.

While cross-validation has many advantages for certain tasks, an obvious disadvantage is that it

is computationally expensive. Indeed, n-fold cross-validation is typically implemented by running

the same learning system n times, each time on a different training set of size (n−1)/n times the size

of the original data set. Because of this computational cost, cross-validation is sometimes avoided,

even when it is agreed that the method would be useful.

It is clear, however, that when (for instance) a specific decision tree induction algorithm is run

several times on highly similar datasets, there will be redundancy in the computations. E.g., when

selecting the best test in a node of a tree, the test needs to be evaluated against each individual

example in the training set. In an n-fold cross-validation each example occurs n− 1 times as a

c©2002 Hendrik Blockeel and Jan Struyf.

BLOCKEEL AND STRUYF

1. function GROW TREE(T : set of examples)

2. returns decision tree:

3. t∗ := optimal test(T)

4. P := partition induced on T by t∗

5. if stop criterion(P)

6. then return leaf(info(T))

7. else

8. for all Pj in P :

9. tr j := GROW TREE(Pj)

10. return node(t∗,
⋃

j{(j, tr j)})

Figure 1: A generic algorithm for top-down induction of decision trees.

training example, which means that each test will be evaluated on each training example n−1 times.

The question naturally arises whether it would be possible to avoid such redundant computations,

thereby speeding up the cross-validation process. In this text we provide an affirmative answer to

this question.

Given this positive result, one might expect that similar speedups can be obtained in other con-

texts where algorithms are repeatedly run on similar data sets, such as bagging (Breiman, 1996).

We also briefly investigate this issue, reporting less positive results.

This paper is organized as follows. In Section 2 we focus on refinement of a single node of

the tree; we identify the computations that are prone to the kind of redundancy mentioned above,

indicate how this redundancy can be reduced, and analyse to what extent performance can thus be

improved. In Section 3 we discuss the whole tree induction process, showing how our adapted node

refinement algorithm fits in several tree induction algorithms. In Section 4 we present experimen-

tal results with several implementations that support our complexity analysis, confirming our main

claim that cross-validation can be integrated with decision tree induction in such a way that it causes

only a small overhead, and that in the bagging context the proposed techniques yield smaller effi-

ciency gains. In Section 5 we briefly discuss to what extent the results generalize to other machine

learning techniques, and mention the limitations of our approach. In Section 6 we conclude.

2. Efficient Cross-validation

We start this section with a description of the basic decision tree induction algorithm. We describe

it only in such detail as needed for the remainder of this text, for more details see Quinlan (1993a)

or Breiman et al. (1984). Next, we will focus on a specific step of this algorithm and discuss what

kind of redundancies it may cause and how these can be avoided.

2.1 Decision Tree Induction

Decision trees are usually built top-down, using an algorithm similar to the one shown in Figure 1.

Basically, given a data set, a node is created and a test t∗ is selected for that node. A test is a function

from the example space to some finite domain (e.g., the value of a discrete attribute, or the boolean

result of a comparison between an attribute and some constant). Each test induces a partition to

622

EFFICIENT ALGORITHMS FOR DECISION TREE CROSS-VALIDATION

1. for all candidate tests t associated with the node:

2. for all examples e in the training set T :

3. update statistics(S[t], t(e), target(e))

4. Q[t] := compute quality(S[t])

5. t∗ := argmaxt Q[t]
6. partition T according to t∗

Figure 2: Refinement of a single node in the tree.

the data set, with each subset of the partition corresponding to a single test result and containing

those data elements for which the test yields that result. Typically the test for which the subsets

of the partition are maximally homogeneous with respect to some target attribute (the “class”, for

classification trees) is selected. For each subset Pj of the partition P induced by t∗, the procedure

is repeated and the created nodes become children of the current node. The procedure stops when

stop criterion succeeds: this is typically the case when no good test can be found or when the data

set is sufficiently homogeneous already. In that case the subset becomes a leaf of the tree and in this

leaf information about the subset is stored (such as the majority class). The result of the initial call

of the algorithm is the full decision tree.

The refinement of a single node (selecting the test and partitioning the data) can in more detail

be described as shown in Figure 2. The computation of the quality of a test t is split into two

phases there: one phase where the statistics of t are computed and stored into an array S[t], and a

second phase where the quality of t is computed from the statistics (without looking back at the data

set). For instance, for classification trees, phase one could compute the class distribution for each

outcome of the test.1 Quality criteria such as information gain or gain ratio (Quinlan, 1993a) can

easily be computed from this in phase two. For regression, where variance is typically used as a

quality criterion (Breiman et al., 1984), a similar two-phase process can be defined : the variance

can be computed from ∑(y2
i ,yi,1) where the yi’s are the target values.

2.2 Removing Redundancy

In the remainder of this section we focus on the node refinement step itself, and show how it can

be optimized in certain specific (ideal) circumstances. In Section 3 we will discuss how this fits in

decision tree building algorithms (where these ideal circumstances may not always be present).

2.2.1 OVERLAPPING DATA SETS

Now assume that the node refinement process, as described above, is repeated several times, each

time on a slightly different data set Ti (that is, the Ti’s have many examples in common). We assume

here that the same set of tests is considered in all these nodes. Then instead of running the process

n times, with n the number of data sets, the algorithm in Figure 3 can be used.

The computations performed by this algorithm are the same as when the original algorithm is

run once on each data set, except for two differences:

1. S[t] is then a matrix indexed on classes and results of t, and update statistics(S[t], t(e), target(e)) just increments

S[t]t(e),target(e) by 1.

623

BLOCKEEL AND STRUYF

1. for each candidate test t associated with the node:

2. for each example e in
⋃

i Ti:

3. r := t(e)
4. s := target(e)

5. for each i such that e ∈ Ti:

6. update statistics(S[Ti, t], r, s)

7. for each Ti:

8. Q[Ti, t] := compute quality(S[Ti, t])
9. for each Ti:

10. t∗i := argmaxt Q[Ti, t]
11. for each different test t∗ among the t∗i :

12. partition
⋃

i{Ti|t
∗
i = t∗} according to t∗

Figure 3: Performing node refinement for multiple trees in parallel, exploiting overlap between data

sets (the OS algorithm).

• for each test t, each single example e is tested only once instead of m(e) times, where m(e) is

the number of data sets the example occurs in.

• each single example e is assigned to a child node2 f (e) times, instead of m(e) times, with f (e)
the number of different best tests for all the data sets where the example occurred (obviously

∀e : f (e) ≤ m(e)).

Note that in each node of the tree multiple tests (at most n), and correspondingly multiple sets

of child nodes, may now be stored instead of just one. Also note that while the evaluation of each

test on each example is done only once, updating the statistics is still done m(e) times.

The algorithm in Figure 3, which we dub the OS algorithm (for Overlapping Sets), can be

applied in all contexts where multiple trees are being built from slightly different data sets. This does

not only include the cross-validation context. For instance, bagging (Breiman, 1996) consists of

learning multiple theories from slightly different subsets of a single original data set. The relatively

high computational cost of bagging might also be reduced using the proposed approach. The method

is not applicable to boosting (Freund and Schapire, 1996) because in that case the different trees have

to be learnt one after another (since the example weights for each consecutive run are known only

after the previous one is finished).

Note that because update statistics still has to be executed m(e) times, the efficiency gain that

can be obtained with the above algorithm is still limited (unless the time consumption of up-

date statistics is negligible; see below for a quantification of this). In the following we focus on

the special case of cross-validation, where due to the specific way in which the training sets for the

different folds are constructed, more redundancy can be removed from the computations.

2. This corresponds to partitioning the data set.

624

EFFICIENT ALGORITHMS FOR DECISION TREE CROSS-VALIDATION

2.2.2 CROSS-VALIDATION

For an n-fold cross-validation, each single example occurs exactly n− 1 times as a training exam-

ple. Hence, the time needed to evaluate all tests is reduced by a factor n− 1 compared to running

the original algorithm n times. The time needed to assign examples to child nodes is reduced by

n− 1 if the same test is selected in all folds, otherwise a smaller reduction occurs. Besides this

speedup there are no changes in the computational complexity of the algorithm (except for the extra

computations involved in, for instance, selecting elements from a two-dimensional array instead of

a one-dimensional array).

Specifically for cross-validation, the algorithm can be further improved if the employed statistics

S, for any data set D, can be computed from the corresponding statistics of its subsets in a partition.

This holds for all statistics that are essentially sums (such as those mentioned in Section 2.1), since

in that case S(D) = ∑i S(Di). Such statistics could also be called additive.

In an n-fold cross-validation, the data set D is partitioned into n sets Di, and the training sets Ti

can be defined as D−Di. It is then sufficient to compute statistics just for the Di; those for the Ti can

be easily computed from this without further reference to the data (first compute S(D) = ∑i S(Di);
then S(Ti) = S(D)−S(Di)). Since each example occurs in exactly 1 of the Di’s, updating statistics

has to be done only N times instead of N(n−1) times (with N the number of examples).

2.2.3 CROSS-VALIDATION COMBINED WITH ACTUAL TREE INDUCTION

In practice, cross-validation is usually performed in addition to building a tree from the whole data

set: this tree is then considered to be the actual hypothesis proposed by the algorithm, and the

cross-validation is done just to estimate the predictive accuracy of the hypothesis or for parameter

tuning. The algorithm for efficient cross-validation can be easily extended so that it builds a tree

from the whole data set in addition to the cross-validation trees (just add a virtual fold 0 where the

whole data set is used as training set; note that S(T0) = S(D)). Adopting this change, we obtain the

algorithm in Figure 4, which we name the CV (for Cross-Validation) algorithm. In the remainder

of this text we will also refer to the OS and CV algorithms as the parallel algorithms, as opposed

to the straightforward method of running all cross-validation folds and the actual tree induction

consecutively (the serial algorithm).

At this point, we have discussed the major issues related to the refinement of a single node. The

next step is to include this process into a full tree induction algorithm. This will be discussed in the

next section, but first we take a look at the complexity of the node refinement step.

2.3 Computational Complexity of Node Refinement

We analyse the computational complexity of the node refinement process for two cases: the gen-

eral algorithm for overlapping data sets (Figure 3), and the special-purpose algorithm for cross-

validation (Figure 4).

We will use the following notation. te denotes the time for extracting relevant information

from a single example (the example’s target value and test result). tu is the time needed to update

the statistics matrix S. tp is the time needed to assign an example to the correct subset during

partitioning. N is the number of examples in the data set, n the number of training sets (folds), and

a the number of tests. f denotes the average number of different folds a single example belongs

to. (The average number of examples in one fold is then N f/n.) The symbols ci denote terms

625

BLOCKEEL AND STRUYF

{ D is the set of all examples relevant for this node,

partitioned into n subsets Di, i = 1..n.

T0 = D, and for i > 0 Ti = D−Di }
1. for each candidate test t associated with the node

2. for each example e in D:

3. choose i such that e ∈ Di

4. update statistics(S[Di, t], t(e), target(e))

5. compute S[Ti, t] (i = 0..n) from all S[D j, t]
6. for each Ti:

7. Q[Ti, t] := compute quality(S[Ti, t])
8. for each Ti :

9. t∗i := argmaxt Q[Ti, t]
10. for each different test t∗ among the t∗i :

11. partition
⋃

i{Ti|t
∗
i = t∗} according to t∗

Figure 4: Performing cross-validation in parallel with induction of the actual tree (the CV algo-

rithm).

constant in N. Finally, we use subscripts S, OS and CV to refer to the serial execution (S), the use

of overlapping subsets (OS) and the cross-validation specific implementation (CV) respectively.

2.3.1 THE ALGORITHM FOR OVERLAPPING SETS

In general all a tests have to be evaluated on each example, but only for one test (the best one)

the partitioning actually has to be computed. This means there is a factor a(te + tu)+ (te + tp), the

time needed per example for evaluation of a tests plus partitioning according to a single test, to be

multiplied with the number of examples.

For serial execution we thus obtain the following times:

• T1 fold = f N
n

(a(te + tu)+ (te + tp))+ c1 .
TS = Tn folds = f N(a(te + tu)+ (te + tp))+ c2 .

For the OS algorithm the time complexity is as follows (note the main difference with TS: eval-

uation of tests is done only once per example instead of f times, so the factor f disappears from the

te term):

• worst case (all folds select different tests):

TOS = aN(te + f tu)+ N(f te + f tp)+ c5 = N(a(te + f tu)+ f (te + tp))+ c3 .

• best case (all folds select the same test):

T ′
OS = N(a(te + f tu)+ te + tp)+ c4 .

2.3.2 THE CROSS-VALIDATION ALGORITHM

The time complexity of serial execution is the same as in the previous case, but we can now substi-

tute n−1 for f :

626

EFFICIENT ALGORITHMS FOR DECISION TREE CROSS-VALIDATION

• building one tree from the full data set:

Tactual = aN(te + tu)+ N(te + tp)+ c1 = N(a(te + tu)+ (te + tp))+ c5 .

• performing cross-validation serially:

T1 fold = n−1
n

N(a(te + tu)+ (te + tp))+ c6 .
Tn folds = (n−1)N(a(te + tu)+ (te + tp))+ c7 .

• serially building the actual tree and performing a cross-validation:

TS = Tactual + Tn folds = nN(a(te + tu)+ (te + tp))+ c8 .

For the time complexity of the CV algorithm, note that the main difference with the OS version

is that updating the statistics is done only once for each example, instead of f times. Thus we obtain:

• worst case (all folds select different tests):

TCV = N(a(te + tu)+ n(te + tp))+ c9 .

• best case (all folds select the same test):

T ′
CV = N(a(te + tu)+ te + tp)+ c10 .

2.3.3 DISCUSSION

Our analysis gives rise to approximate upper bounds on the speedup factors that can be achieved.

We start with the CV algorithm. Assuming large N so that the ci terms can be ignored (hence

“approximate”), for the worst case we get

TS

TCV

= n
a(te + tu)+ (te + tp)

a(te + tu)+ n(te + tp)
< n

and
TS

TCV

=
a(te + tu)+ (te + tp)

a(te+tu)
n

+(te + tp)
<

a(te + tu)+ (te + tp)

(te + tp)
= 1+ a

te + tu

te + tp

.

Hence the worst case speedup factor is bounded by min(n,1 + a te+tu
te+tp

). It will approximate n

when (a) N becomes large and (b) te + tp is small compared to a(te + tu). In the best case, where

the same test is selected for all folds, we just get TS/T ′
CV < n: the speedup factor approaches n as

soon as N becomes large. Another way to look at this is to observe that T ′
CV/Tactual approaches

one; in other words, for large N and a stable problem (where small perturbations in the data do not

lead to different tests being selected) the overhead caused by performing cross-validation becomes

negligible.

For the more generally applicable OS algorithm, note that the main difference is the fact that the

updates of the statistics have to be performed f times with f the number of folds, instead of once.

This is strictly more work, hence the upper bounds for the specific algorithm automatically apply

here as well. Moreover, it will be more difficult in this case to approximate the upper bounds. We

have

TS

TOS

=
(1+ f)(a(te + tu)+ (te + tp))

a(te + f tu)+ f (te + tp)

= 1+
(f −1)ate

(a+ f)te + a f tu + f tp

627

BLOCKEEL AND STRUYF

= 1+
f −1

f

ate

(1+ a/ f)te + atu + tp

< 1+
f −1

f

te

tu
,

which shows clearly that te/tu is also limiting the possible speedup. If tu and tp are indeed small

compared to te, the above equality can instead be simplified to

TS

TOS

< 1+
(f −1)a

(f + a)
,

which shows that when f is large and dominates a, the speedup approaches 1 + a; and when a

dominates f it approaches f − 1. These are essentially the same bounds as for the CV algorithm.

Summarising the above, we can say that the speedup for OS is bounded in the same way as for CV

but there is an additional restriction based on te/tu.

The result concerning te/tu indicates that the general algorithm for overlapping data sets will

yield significant speedups only when the time needed for accessing an example is much larger than

that for updating statistics for the example. In many settings this will not be the case (an exception

is for instance when the data reside on disk, or when the tests to be performed are very complex,

such as in an inductive logic programming (Muggleton and De Raedt, 1994) setting). This implies

that for instance in the context of bagging, where only the OS algorithm is applicable but not the

CV algorithm, speedups can be expected to be more limited.

3. An Algorithm for Building Trees in Parallel

We now describe how the above algorithms for node refinement fit in decision tree induction al-

gorithms. First we describe the data structures, which are more complicated than when growing

individual trees. Next we discuss several decision tree induction techniques and show how they can

exploit the above algorithms.

3.1 Data Structures

Since the parallel cross-validation algorithm builds multiple trees at the same time, we need a data

structure to store all these trees together. We refer to this structure as a “forest”, although this might

be somewhat misleading as the trees are not disjoint, but may share some parts.

An example of a forest is shown in Figure 5. In this figure two kinds of internal nodes are

represented. The small squares represent bifurcation points, points where the trees of different

folds start to differ because different tests were selected. The larger rectangles represent tests that

partition the relevant data set. The way in which the trees in the forest split the data sets is illustrated

by means of an example data set of 12 elements on which a three-fold cross-validation is performed.

Note that the memory consumption of a forest is (roughly) at most n+1 times that of a single tree

(this happens when at the root different tests are obtained for all n folds plus the actual tree), which in

practice is not problematic as long as n is relatively small. Cross-validation is often performed with

n = 10, which is OK; but for a leave-one-out evaluation procedure this memory consumption would

usually be prohibitive. We will examine memory consumption in some more detail in Section 3.3

and in the experiments.

628

EFFICIENT ALGORITHMS FOR DECISION TREE CROSS-VALIDATION

Figure 5: An example forest for a 3-fold cross-validation. At the root of the tree all folds select the

same Test A. In the right subtree the different folds disagree on which test to select, so

there is a bifurcation point: f3 selects Test B whereas f1 and f2 select Test C.

When in the following we refer to nodes in the forest, we always refer to the test nodes, ignoring

bifurcation points. For example, in Figure 5 the root node has five children, three of which are

leaves.

3.2 Tree Induction Algorithms

We distinguish two types of algorithms for decision tree induction: depth first and level-wise algo-

rithms.

3.2.1 DEPTH FIRST TREE INDUCTION

Probably the best known approach to decision tree induction is the ID3 algorithm (Quinlan, 1986),

later developed into C4.5 (Quinlan, 1993a). ID3 basically follows the depth-first approach of Fig-

ure 1.

629

BLOCKEEL AND STRUYF

The simplest way to adapt an ID3-like algorithm to perform cross-validation in parallel with

the actual tree building, is to make it use the node refinement algorithm of Figure 4 and call the

algorithm recursively for each child node created. Note that the number of such child nodes is now

∑ f
i=1 ri, with f the number of different tests selected as best test in some fold and ri the number of

possible results of the i-th test.

In this way, the above mentioned speedup is obtained as long as the same test is chosen in all

cross-validations and in the actual tree. The more different tests are selected, the less speedup is

achieved; and when in each fold a different test is selected, the speedup factor goes to 1 (all folds

are handled separately).

To see how this process influences the total forest induction time, let us define tr(i) as the average

time that is needed to refine all the nodes of a single tree on level i for a data set of size |D|, and f (i)
as the average number of different tests selected on level i of the forest (averaged over all nodes on

that level of the forest). The computational complexity of the whole forest building process for the

parallel versions can then be approximated as

TOS,CV = tr(1)+ f (1)tr(2)+ f (2)tr(3)+ · · ·

Assuming that the refinement time is linear in the number of examples of a node that is to be

refined,3 we have for the serial version

TS = ntr(1)+ ntr(2)+ ntr(3)+ · · ·

(we obtain ntr(i) and not (n+ 1)tr(i) because the n folds have size n−1
n
|D|).

Thus the total speedup will be between 1 and n, and will be higher for stable problems (low

f (i)) than for unstable problems (most f (i) close to n+ 1).

3.2.2 LEVEL-WISE TREE INDUCTION

Most decision tree induction algorithms assume that all data reside in main memory. When inducing

a tree from a large database, this may not be realistic: data have to be loaded from disk into main

memory when needed, and then for efficiency reasons it is important to minimize the number of

times each example needs to be loaded (thus minimizing disk access). To that aim alternative tree

induction algorithms have been proposed (Mehta et al., 1996, Shafer et al., 1996) that build the tree

one whole level at a time, where for each level one pass through the data is required. The idea is to

go over the data and for each example, update the statistics for all possible tests in the node (of the

currently lowest level of the tree) where the example belongs. For each node the best test is then

selected from these statistics without more access to the data.

Since in these approaches, too, the computation of the quality of tests is split up into two phases

(computing the statistics from the data, computing the test quality from the statistics), it is easy

to see how such level-wise algorithms can be adapted. When processing one example, instead of

looking up the single node in the tree where the example belongs, one should look up all the nodes

in the forest where the example belongs (for an example not yet in a leaf this is at least one node

and at most n−1 nodes, where n is the number of folds) and update the statistics in all these nodes.

When data reside on the disk, the number of examples is typically large and also te is large (due

to external data access). The constant terms ci then become negligible very quickly, and the speedup

3. From this it follows that in one fold of n-fold cross-validation the actual refinement time for level i is n−1
n

tr(i), thus

the total consumed on level i by the n folds together with the induction of the actual tree is ntr(i).

630

EFFICIENT ALGORITHMS FOR DECISION TREE CROSS-VALIDATION

factor can approach n if a ≥ n
te+tp

te+tu
. Assuming that tp and tu are comparable, this will be true as soon

as a ≥ n, which in practice often holds.

3.3 Space Complexity

The space requirements of the OS and CV algorithms differ from those of the serial algorithm in

three major points: the statistics arrays are larger, we need to build a forest instead of one tree at a

time, and there is a need to know for each example which data sets it is part of.

• The statistics arrays for OS and CV are indexed with Ti (and Di). This implies that their size

increases by a factor O(n) compared to algorithm S. In practice, this is acceptable because

these arrays are small (e.g., two numbers for a binary classification problem, independent

of the data set size). Depending on the implementation, CV may need more memory for

statistics compared to OS because separate statistics are stored for Ti and Di and because

certain intermediate sums must be stored.

• OS and CV store the cross-validation forest in memory. In the worst case, the size of this

forest can increase up to O(n) times the size of a single decision tree. This happens if different

tests are selected for all folds in the root node of the forest (so no sharing takes place). In

practice this increase can be problematic for large trees and large n. For typical tree sizes and

n = 10, no problems would normally arise.

• Both OS and CV must know for each example to which training set it belongs (for instance,

for the test e ∈ Ti in Fig. 3). We consider first the case of CV. Because Di are disjoint, one

can store the data in memory partitioned according to Di. This partition requires the same

amount of memory as is necessary for storing D when building the actual tree. This trick can

not be used in the OS algorithm because we do not have the notion of Di. The OS algorithm

must store for each example to which sets it belongs. This can be done by adding n Booleans

to each example, or n integers in the case of bagging (where a single example can occur

multiple times in a given set). The total memory consumption increases with O(n×N), with

a relatively small constant factor (size of a boolean or integer).

Except for large n, we expect the extra memory needed by the parallel versions to be quite

reasonable, and usually smaller than the memory that is taken by the data set itself (unless it has

less than n attributes, in which the O(n×N) factor may dominate). This expectation remains to be

validated empirically.

3.4 Handling Numerical Attributes

The above description of the tree induction process still has an important shortcoming when com-

pared to practical systems: it ignores the way in which numerical attributes are usually handled.

This procedure is somewhat complicated, but due to its importance in practice we cannot avoid dis-

cussing it here. We will see that this procedure, too, can be adapted for making an efficient parallel

cross-validation possible.

A binary split of the form A ≤ v is typically used for numeric attributes. The first step in finding

a good split point v for A is to sort the training examples based on the values of A. After that, the

algorithm (see Figure 6) iterates over the examples in ascending order of A and evaluates each useful

631

BLOCKEEL AND STRUYF

split. Each of the different values of A is in general a useful split, though for classification tasks an

optimization is possible: splits can only occur between class changes (Fayyad and Irani, 1993).

The algorithm uses total T S and left branch LS statistics. The total statistic is the class distribu-

tion of the training examples in the node to be split. The left branch statistic is the class distribution

of the examples for which the test A ≤ v succeeds. (The right branch statistic can be computed from

these as T S−LS.) Because the training examples are sorted it is possible to evaluate all useful splits

in one pass over the data. For each possible split, the left branch statistic LS is updated incremen-

tally from the previous split, and the test’s quality is calculated based on T S and LS. For example,

if some test A ≤ vi yielded the distribution LS = [15,27] (that is, out of 42 examples with A ≤ vi 15

are positive and 27 are negative), and the following three examples (sorted according to A) all have

a positive class, then the next test to be evaluated is A ≤ vi+3 and it has LS = [18,27].

1. sort(T , A)

2. Q∗ := −∞ ; t∗ := none

3. for each example e in T

4. update statistics(LS, target(e))

5. if useful split(e[A]) then

6. Q := compute quality(T S, LS)

7. if Q > Q∗ then Q∗ := Q ; t∗ := “A ≤ e[A]”

Figure 6: Finding the best split point for a numeric attribute.

The algorithm from Figure 6 can be adapted for parallel cross-validation as shown in Figure 7.

The first step is again sorting the examples. Note that the time for finding a split is dominated by

the sorting time as the number of examples increases. This is because sorting takes O(N log N).
Algorithms designed to handle large data sets (e.g., SLIQ (Mehta et al., 1996), SPRINT (Shafer

et al., 1996)) solve this problem by sorting numeric attributes only once before the actual induction

starts. Algorithms like C4.5 (Quinlan, 1993a), that keep all the data in the main memory, do not use

pre-sorting because this takes more memory (one needs at least an extra list with example indices

for each numeric attribute) and because N is small. In both settings the sorting step will be more

efficient for parallel cross-validation because we sort the original data set D and not the overlapping

training sets Ti.

After sorting, the algorithm iterates over the examples and evaluates useful splits for each fold.

This can be implemented in two ways: either by updating the training set statistics (similar to

the OS algorithm) or by updating the statistics on Di (similar to the CV algorithm). If the set of

useful splits for a numeric attribute is much smaller than the number of examples, then the second

approach is better. This is the case for many (but not all) practical data sets because they either have

many examples with identical values or because the class does not change often (e.g., if the class is

correlated with the numeric attribute).

Algorithm 7 implements the version for finding the best split for a numeric attribute for each

fold with statistics on Di. For each possible split, it first updates the left branch statistic for the

corresponding Di. After that it considers e[A] as possible split point for each fold j except for j = i

because e is left out for that fold. If e[A] is a useful split, then the algorithm has to calculate its

quality. This is done by first calculating the left branch statistic on Tj and then calculating the

632

EFFICIENT ALGORITHMS FOR DECISION TREE CROSS-VALIDATION

quality based on T S[Tj] and LS[Tj]. If the quality is better than the current best quality Q∗[Tj] then

the algorithm updates Q∗[Tj] and t∗[Tj]. When the algorithm finishes, t∗ contains the best split for

each fold.

1. sort(D, A)

2. Q∗[T0 . . .Tn] := −∞ ; t∗[T0 . . .Tn] := none

3. for each example e in D

4. choose i such that e ∈ Di

5. update statistics(LS[Di], target(e))

6. for j := 0 to n

7. if i 6= j and useful split(e[A], j) then

8. compute LS[Tj] from LS[Dk], k = 1 . . .n

9. Q := compute quality(T S[Tj], LS[Tj])
10. if Q > Q∗[Tj] then

11. Q∗[Tj] := Q ; t∗[Tj] := “A ≤ e[A]”

Figure 7: Finding the best splits for attribute Ai for all folds in parallel.

a
i

min max

v
1

v
2

v
3

test succeeds for all folds

test fails for all folds

test succeeds for folds {3}
test succeeds for folds {2,3}

Figure 8: Different splits for a numeric attribute.

A problem with numeric attributes is that different folds are likely to select splits that appear

different but are practically the same. Suppose for instance that two folds respectively select A <
42.3 and A < 42.4 as optimal tests. These tests essentially indicate the same bound, even though

the outcome of the computation is slightly different. Such slightly different splits still cause a

bifurcation, and hence reduced sharing of computations. One would prefer a less strict test for

equivalence of tests than just equality.

The solution we propose for this problem is as follows. Consider for example a 3-fold cross-

validation as illustrated in Figure 8 (virtual fold 0 is not shown here). Fold 1 selects v1 as split point,

fold 2 v2 and fold 3 v3. The split points divide the range of A in three important intervals. The first

one is [min,v1], the second one (v1,v3] and the last one (v3,max]. Instead of creating a bifurcation

point for folds 1, 2 and 3 we can add a regular node to the forest and store the 3 split points in this

node. This way the algorithm can continue to share computations. The examples in [min,v3] (i.e.,

{e | e[A] ∈ [min,v3]}) are moved to the left sub-tree and the examples in (v1,max] are moved to the

633

BLOCKEEL AND STRUYF

right sub-tree. Consider the examples in the left sub-tree. The test A ≤ vi succeeds for all folds i

and for all examples in S1 = [min,v1]. The examples in S2 = (v1,v3] are more difficult. Only some

of the tests succeed for these examples. But if the thresholds selected by different folds differ only

slightly, S2 will be small. We mark each of the examples of S2 with the set of folds for which the

corresponding test succeeds (see Figure 8). The examples in S1 can be split at lower levels of the

forest by calculating statistics on Di. This is not possible anymore for the examples of S2. The

algorithm has to keep training set statistics for each fold for this type of examples and combine

these when evaluating a test’s quality. The benefit of this extra book-keeping is that no bifurcation

point is introduced in the forest when slightly different splits are selected for one numeric attribute.

3.5 Further Optimizations

As soon as different tests are selected for different folds, the forest induction process bifurcates in

the sense that from that point onwards different trees in the forest will be handled independently.

A further optimization that comes to mind, is removing redundancy among computations in these

independently handled trees as well. Note that this is somewhat similar to what we just discussed

concerning numerical attributes. The main difference is that up till now we handled “similar” tests,

which differ only on few examples. The question we address here concerns tests that are entirely

different.

Referring to Figure 5, among the different branches created by a bifurcation point (square node)

there may still be some overlap with respect to the tests that will be considered in the child nodes,

as well as the relevant examples. For instance, in the lower right of the forest in Figure 5, in the

children of the “test B” node one needs to consider all tests except A and B, and in the children of

the test C node one needs to consider all tests except A and C. Since the relevant example set for

fold f3 at that point ({2,3,5}) overlaps with that of folds f1 and f2 ({2,3,5,10,12}), all tests besides

A, B and C will give rise to some redundant computations.

As the amount of redundancy is lower here in this case than for very similar tests, we expect

these optimizations to yield some, but not much, efficiency gain. Struyf and Blockeel (2001) have

explored this idea in the context of an ILP (inductive logic programming) (Muggleton and De Raedt,

1994) system, and their results confirm this.

Finally, note that when a level-wise tree building method is adopted instead of a depth-first

method, bifurcations automatically have a smaller effect in that data are still accessed only once.

However, the statistics updates still need to be done multiple times. As mentioned before, this will

yield a significant gain only if te > tu, which is typically not the case when the data reside in main

memory. Hence, the level-wise method does not seem to be a good optimization except in those

cases where it would be considered anyway (data residing in external memory).

Here we will not discuss these optimizations any further but focus on the above described al-

gorithm, which is simple and compatible with both tree induction approaches and can easily be

integrated in existing tree induction systems.

4. Experimental Evaluation

Our experimental evaluation aims at gaining more insight in the speedups that can be obtained on

practical problems. We give an overview of the main issues in this investigation:

634

EFFICIENT ALGORITHMS FOR DECISION TREE CROSS-VALIDATION

• We distinguish three different algorithms, which we refer to as the unoptimized serial algo-

rithm (S), the overlapping sets algorithm (OS) which exploits overlap in different data sets,

and the cross-validation algorithm (CV) which is tuned specifically for cross-validation and

is the most optimized of these three.

• We look at both the ILP setting, which is characterized by a high te/tu and hence should

exhibit the highest efficiency gains, and the propositional setting, where gains are expected to

be lower. Consequently, two different implementations will be used.

• The main sources of speedup that we can distinguish are

– removing redundancy in the evaluation of tests : present in the OS and CV algorithms;

– removing redundancy in the updating of statistics: present only in the CV algorithm.

– removing redundancy in the procedure for handling numerical attributes: in practice this

is an important component in the propositional setting (present in both OS and CV)

• We have mentioned that the OS algorithm is also usable for bagging, but the CV algorithm is

not; hence we expect a smaller positive effect in the bagging context. We perform separate

experiments to measure this.

• The proposed algorithms essentially trade time complexity for space complexity. Their scal-

ing properties with respect to the latter are therefore of some concern. For this reason, mem-

ory consumption of the algorithms will also be measured.

Based on this we structure the experimental section as follows. In the first subsection we in-

troduce the used materials (implementations and data sets). In the second subsection we present

timings for the cross-validation context. A breakdown of these timings into several components

is presented and discussed; this gives more insight in the relative importance of the different opti-

mizations. In the third subsection we present timing results for the bagging context, and in the last

subsection we investigate the space complexity of the algorithms. In all cases we distinguish ILP

and propositional results.

4.1 Materials

We have used the following data sets and implementations.

4.1.1 DATA SETS

For our ILP experiments we have used the following data sets:

• SB (Simple Bongard) and CB (Complex Bongard): some artificially generated sets of the so-

called “Bongard” problems (De Raedt and Van Laer, 1995) (pictures are classified according

to simple geometric patterns). SB contains 1453 examples with a simple underlying theory,

CB 1521 examples with a more complex theory.

• Muta: the Mutagenesis data set (Srinivasan et al., 1996), an ILP benchmark (230 examples)

• ASM: a subset of 999 examples of the so-called “Adaptive Systems Management” data set,

kindly provided to us by Perot Systems Nederland.

635

BLOCKEEL AND STRUYF

Name #Rows #Nominal #Numeric #Classes

Connect-4 66617 42 0 3

Adult 30162 8 6 2

Letter 20000 0 16 26

Nursery 12960 8 0 5

LED 10000 7 0 10

Pen Digits 7494 0 16 10

Mushroom 5644 22 0 2

Spam 4601 0 57 2

Abalone 4177 1 7 num.

Internet Ads 2359 1555 3 2

Car 1728 6 0 4

Yeast 1484 0 8 10

Table 1: The propositional data sets used.

• Mach: “Machines”, a tiny data set of 15 examples (Blockeel and De Raedt, 1998) that here

serves as a kind of limit case for situations where few examples are available.

For the propositional experiments we made a selection of the largest data sets available at the

UCI Machine Learning Repository (Merz and Murphy, 1996). In Table 1 the data sets are listed in

order of decreasing size. Most data sets are classification tasks except for “Abalone” where we try

to predict the number of rings. The 1555 nominal attributes of “Internet Ads” form a sparse binary

matrix.

4.1.2 IMPLEMENTATIONS

The systems we have used for these experiments consist of previously existing decision tree systems

to which minimal modifications have been made to implement the algorithms described in this text.

More specifically, for the ILP experiments we use the first order decision tree learner TILDE

(Blockeel and De Raedt, 1998) as implemented in the ACE-ILPROLOG data mining tool (Blockeel

et al., 2002).4 Briefly, first order decision trees are decision trees where a test in a node is a first

order literal or conjunction, and a path from root to leaf can be interpreted as a Horn clause. Literals

belonging to different nodes in such a path may share variables. The reader is referred to Blockeel

and De Raedt (1998) for details.

For the experiments in the propositional setting we use the program CLUS, which in some sense

is a specialized propositional version of TILDE capable of constructing classification, regression

and clustering trees (Blockeel et al., 1998). CLUS is implemented in Java and is available from the

authors upon request.

In both cases the changes to the original system consisted of implementing the algorithms in

Figures 3 and 4 as well as the “forest” data structure and the corresponding induction procedure.

In addition the optimized procedure for handling numerical attributes was added to CLUS. (TILDE

does not have a special procedure for numerical attributes, for reasons not relevant here.) Except for

these points, the different versions of TILDE / CLUS use exactly the same implementation.

4. Available from http://www.cs.kuleuven.ac.be/˜dtai/ACE/

636

EFFICIENT ALGORITHMS FOR DECISION TREE CROSS-VALIDATION

4.1.3 SETTINGS

All programs were run with default settings except for the following. We set the stopping criterion of

CLUS so that no leaves smaller than 10 examples can be generated. This is a reasonable value given

the data set sizes. TILDE, like other ILP systems, employs a declarative language bias formalism

to specify which tests can occur in nodes. The details of this formalism are out of the scope of this

article, but we mention that with the employed language specification, the number of tests evaluated

in each node (the a parameter) varied from 3 to a few hundred (as tests are first-order clauses, their

number may vary greatly even among nodes of the same tree).

4.2 Breakdown of Computational Cost

In a first series of experiments, we try to gain insight in the speedups that the proposed algorithms

may yield in a number of specific practical cases. Our main question is: how much more efficiently

can cross-validation be performed by using the proposed algorithms? From this question several

more detailed questions arise, such as how speedups in the ILP setting compare to those in the

propositional setting, what the contributions of the different optimizations are, and how the speedups

vary with the number of examples and number of folds.

4.2.1 RESULTS FOR THE ILP SETTING

Figure 9 plots cross-validation timing results for tenfold cross-validation for all data sets, as well

as for n-fold cross-validation with varying n for two selected data sets. The three consecutive bars

always represent TS, TOS and TCV (the times needed for cross-validation plus induction of the actual

tree), relative to Tactual (the time needed for induction of the actual tree). Each bar indicates the

average run time of 10 different runs; 90% confidence intervals for this average are plotted.

The bars are broken down into components indicating the proportion of time spent on statistics

updates, running tests on the data set to determine the best test, and “other”, that is, all other com-

putations (including the partitioning step).5 The proposed optimizations mostly influence the first

two components. More specifically, for the OS algorithm the test time is strongly reduced, while

the CV algorithm adds to this a strong reduction in statistics update time.

In general the graphs in Figure 9 confirm our expectations. Comparing the total time to Tactual,

the lowest overhead is achieved for Simple Bongard, which has a relatively large number of exam-

ples and a simple theory. The simplicity of the true theory causes the induced trees to be exactly

the same in most folds, yielding little bifurcation. For Complex Bongard, the effect of bifurcation

is more prominent. For ASM, a real-world data set for which a perfect theory may not exist, the

overhead of cross-validation is relatively high (but still better than that for the serial algorithm). For

Machines, the overhead is relatively large but still smaller than for the serial algorithm. This shows

that even for very small example sets the parallel algorithm yields a speedup.

For Mutagenesis we obtained less good results. Two factors turned out to be responsible for

this: instability of the trees, and high variance in the complexity of testing examples. The latter is

due to the fact that first-order queries have exponential worst-case complexity; most of them are

reasonably fast, but very few of them may time-wise dominate the others. Such behaviour typically

occurs at lower levels of the tree, as will be confirmed when we look at Figure 10.

5. The re-evaluation of the best test, on which the partitioning is finally based, is included in “other’ in our timings.

637

BLOCKEEL AND STRUYF

Figure 9: Timings for cross-validation experiments in an ILP setting; upper graph: for all data sets,

with n = 10; lower graphs: for selected data sets with n varying from 3 to 20.

The lower part of Figure 9 shows how cross-validation overhead varies with the number of

folds for the CB and ASM data sets. The result for CB confirms our expectation that n has a small

influence on the total time, but for ASM the overhead increases with increasing n.

The latter result can be understood by looking at the graphs in Figure 10, where the total time

spent on each level of the tree by the parallel and the serial procedure is plotted, together with the

f (i−1) values as defined previously. The graphs confirm that when f goes up, the per-level speedup

factor tends to go down (although other factors are at work too; for instance, if leaves are constructed

near the root of the tree, fewer examples are left to process on lower levels and the speedup factor

goes down). For CB, the increase of f happens at a point where the total refinement time is already

small, so it does not influence the overall speedup factor much; but for ASM and Muta f increases

almost immediately. Note that in the part where f is high, many folds are handled independently

and cross-validation becomes linear in n, which explains the increase for the ASM data in Figure 9.

It is also clear from the Mutagenesis graph in Figure 10 how the time spent on some lower levels

suddenly goes up; this is the effect of stumbling upon some very complex tests.

638

EFFICIENT ALGORITHMS FOR DECISION TREE CROSS-VALIDATION

Figure 10: For four different data sets, the graphs show the total refinement time spent at each level

i of the forest by the different algorithms (upper part of each graph) and the number of

folds f (i−1) handled independently by the parallel algorithms at that level (lower part

of graph).

639

BLOCKEEL AND STRUYF

Figure 11: Timings for cross-validation experiments in a propositional setting, for all data sets, with

n = 10.

4.2.2 RESULTS FOR THE PROPOSITIONAL SETTING

Results for the propositional setting are shown in Figure 11. The same breakdown into components

has been made as in the previous figures, but now an extra component has been singled out: the time

consumed by the numerical attribute handling procedure. Due to the sorting process that it entails,

this procedure consumes a reasonably large proportion of the total induction time and consequently

optimizations in this procedure have a large effect on the total runtimes.

In general these timings show the same tendencies as for the ILP setting, with the following

notable differences:

• The different components are more balanced than in the ILP case: the proportion of time

dedicated to running tests on examples tends to be lower, while the proportion dedicated to

statistics updates is higher.

• Optimizing the numerical attribute handling procedure turns out to play an important role.

For data sets with many numerical attributes a significant speedup is obtained in this way.

• The time for the statistics updates tends to slightly increase with the OS optimization. This is

due to the fact that more administrative work is needed (e.g., more lookups are necessary to

find the correct counter to be incremented). This effect is not unexpected; in the ILP setting

it was less obvious because of the proportionally smaller time that statistics updates take.

• In a few cases (most notably Abalone) the statistics update time increases for the CV opti-

mization. The reason for this is the procedure for handling numerical attributes. As men-

tioned in Section 3.4, when the number of splits considered for a single numerical attribute is

in the same order of magnitude as the number of examples, this causes a significant overhead

compared to updating Ti directly.6

6. Note that for each example one needs to update only 1 Di statistic instead of n−1 Tj statistics, but for each possible

threshold one needs to compute all n− 1 Tj from Di in order to evaluate the test for all folds. So if the number of

possible thresholds is close to the number of examples, no gain is achieved.

640

EFFICIENT ALGORITHMS FOR DECISION TREE CROSS-VALIDATION

Figure 12: 90% confidence intervals (one per data set) for the mean speedup obtained during n-fold

cross-validation for varying n.

• For the Car data set, OS yields an efficiency loss. To interpret this, we have to mention that

the induction process for this data set finished very quickly. One problem is that this makes

accurate timing more difficult. Careful checking revealed however that the increase of the

total runtime as shown on the graph is accurate: the OS optimization causes a small increase

in runtime and this is due to the increased statistics update time. In absolute terms the increase

is very small, but compared to the small total time it represents a clear overhead.

Our overall conclusions from this are that all optimizations together definitely have a positive

effect (this was so in all data sets we used), but the individual impact of a single optimization varies:

• For data sets with many numerical attributes, the optimization for handling numerical at-

tributes plays an important role, while the CV optimization has a limited or even negative

effect.

• For data sets without numerical attributes, the CV optimization yields a significant extra gain

over the OS version.

Figures 12 and 13 give an idea of how the measured speedups depend on parameters such as the

number of examples and the number of folds. Consistent with expectations, there is a clear increase

in the speedup factor with increasing number of folds, and a small increase with the data set size.

In an attempt to identify any further influences on the speedup factor, we have grown a small

meta decision tree7 with as target a 2-D vector containing the measured speedup for the CV and OS

algorithms. This tree is shown in Figure 14. Note that the generalisability of the precise speedup

predictions is not evaluated here. We are mainly interested in interpreting the tests in the tree. The

influences revealed by the tree can be generalized with high confidence, in the sense that we can

explain them using our knowledge of the problem and implementation.

The tree confirms that the existence of numerical attributes and the number of examples play a

role, and identifies in addition the following influences:

7. Our use of the term meta decision trees is different from that by Todorovski and Džeroski (2000), although there are

some similarities.

641

BLOCKEEL AND STRUYF

Figure 13: 90% confidence intervals (one per data set) for the mean speedup obtained during 10-

fold cross-validation for varying sample sizes (indicated as percentage of the original

data set).

• tree size (number of nodes in the tree): smaller trees are usually more stable, and the number

of examples considered in each node is on average relatively large in this case, so we can

expect higher gain for smaller trees.

• number of classes : if a dataset has more classes then the statistics arrays are larger and the

proportional time for computing the Ti statistics from the Di and for computing the heuristics

becomes greater. This part is not affected by the optimizations. Therefore having more classes

causes the speedup ratio to decrease.

• existence of numerical attributes : the tree confirms that the existence of numerical attributes

increases the speedup obtainable with OS but decreases that with CV.

Finally, the tree suggests that the CV optimization yields the largest gain over the OS optimization

(6.30 versus 2.06) in the case of large data sets and small trees, that is, where the theoretically

derived upper bounds (influenced by n, a and for OS also te/tu) on the speedups are most easily

achieved.

4.3 Usefulness of These Algorithms for Bagging

As mentioned, the OS algorithms can also be used in a bagging context but the CV version cannot.

Our theoretical analysis suggests that the OS algorithm may still yield substantial speedups for the

ILP case but less so for the propositional case.

Figures 15 and 16 present results of experiments where the OS algorithm in TILDE and CLUS is

run on n sets, each constructed by randomly drawing with replacement N elements from a data set

of N elements, exactly as is normally done for bagging. The figures show the timings for bagging

experiments with n = 25 for all data sets, and for varying n on a number of selected data sets.

The results confirm our expectations. In the ILP setting there is a substantial speedup for all data

sets except Mutagenesis, and the total speedup increases with n. In the propositional setting there

is usually a smaller gain, and for two data sets even a loss of efficiency because the gain in the test

642

EFFICIENT ALGORITHMS FOR DECISION TREE CROSS-VALIDATION

Rows > 4,601
+--yes: TreeSize > 48
| +--yes: Numeric > 0
| | +--yes: [2.57, 2.74]
| | +--no: [1.90, 4.09]
| +--no: [2.06, 6.30]
+--no: Classes > 2

+--yes: [1.31, 1.51]
+--no: [1.64, 2.00]

Figure 14: Meta decision tree that predicts the speedup; the first number is the predicted speedup

for the OS version, the second for the CV version.

evaluation is offset by the more complex statistics updates. In those cases where a relatively high

gain (say, a factor 2 speedup) is obtained, it turns out this can largely be attributed to the optimized

procedure for handling numerical attributes.

Figure 17 shows how the speedup evolves with the number of bags and the sample size. The

dependency of the speedup on the number of sets is smaller than for cross-validation because in

contrast to the latter, the sets do not become more similar when there are more of them. There is

again a small positive effect of sample size, indicating that for larger data sets the probability of

the OS optimization actually slowing down the systems becomes small. Nevertheless, speedups are

limited to a factor of about 3.

4.4 Space Complexity

The space complexity issue, from a practical point of view, boils down to the following: how much

extra memory will a decision tree learning system need if it employs the OS or CV algorithms

instead of the serial one?

For both TILDE and CLUS, the memory consumption of the process (as reported by the Unix

tool ps) was measured at three points in time: after loading the system, after loading the data, and

after running an n-fold cross-validation. Like previously, this was done for all data sets for n = 10,

and for selected data sets with varying n.

Results of these measurements are shown in Figures 18 and 19. In the ILP setting, memory con-

sumption turns out to be relatively independent of the number of folds. This is because the memory

allocated for loading the system and the data and for running the queries outweighs the memory

consumption of the trees themselves. The total memory consumption monotonically increases with

the number of folds, but at such a low rate that performing for instance a 20-fold cross-validation

with one of the parallel algorithms barely increases memory consumption, compared to the serial

version.

The propositional experiments give a more accurate view because the memory consumption

caused by the execution of first order queries is not present here. Nevertheless the results are sim-

ilar. The forests themselves usually consume a relatively small proportion of the total memory,

compared to the memory consumed by the data sets and the system. The most obvious exception

is the Connect-4 problem, which has large trees (typically over 1000 nodes). As Figure 20 shows,

643

BLOCKEEL AND STRUYF

Figure 15: Timings for Bagging experiments in an ILP setting; upper graph: for all data sets, with

n = 25; lower graphs: for selected data sets with n varying from 10 to 100.

Figure 16: Timings for Bagging experiments in a propositional setting, for all data sets, with n = 25.

644

EFFICIENT ALGORITHMS FOR DECISION TREE CROSS-VALIDATION

Figure 17: Timings for Bagging experiments in a propositional setting, 90% confidence intervals

shown for the mean speedup for all datasets; left: with n=10, 25, 50, 100, right: with n

= 25 and different samples sizes.

increasing n quickly becomes problematic for this data set, but has a very small effect for the other

data sets.

4.5 A Summary of the Experimental Results

Summarising our findings in this experimental section, we list the following conclusions:

• Both in the propositional and the ILP setting, the proposed optimizations almost always yield

efficiency gains.

• The efficiency gains are highest for cross-validation. For bagging smaller efficiency gains are

to be expected.

• We identified two factors that are detrimental to the efficiency gain: high variance of test

complexity (which occurs typically in the ILP setting, not in the propositional setting) and

instability of the problem (different folds yielding very different trees). Note that since bag-

ging is most useful for unstable problems, the latter factor imposes a further limitation on the

usefulness of the techniques for bagging.

• For data sets with many numerical attributes, the CV optimization may yield little or no gain

over the OS optimization, while the optimization related to numerical attribute handling has

a large effect.

• The memory usage of the parallel algorithms is in general not problematic. We have encoun-

tered one case where it would become so if n becomes large.

Our general conclusion would be that implementing these techniques in a decision tree learner

may not be very worthwhile for the purpose of bagging alone, but it probably is for cross-validation

(and then they might as well be used for bagging too, of course). The implementation effort defi-

nitely seems worthwhile for ILP systems.

645

BLOCKEEL AND STRUYF

Figure 18: Memory consumption of the ILP system ACE during cross-validation of TILDE; upper

graph: all data sets using 10 folds; lower graphs: selected data sets using a varying

number of folds.

Figure 19: Memory consumption of CLUS during cross-validation measured for all data sets with

10 folds.

646

EFFICIENT ALGORITHMS FOR DECISION TREE CROSS-VALIDATION

Figure 20: Memory consumption of CLUS during cross-validation as a function of folds.

5. Applicability of the Techniques

Although we have studied efficient cross-validation in the context of decision trees, the principles

explained here are also applicable outside this domain. For instance, rule set induction systems

(e.g., Quinlan, 1993b, Clark and Niblett, 1989) typically build a rule by consecutively adding a

“best” condition to it until no further improvement occurs. Similar to our forest-building algorithm,

cross-validation of such rules could be performed in parallel with the construction of the actual rule

set, avoiding redundant computations.

It is less clear, however, how the technique could be used with models that contain only continu-

ous parameters, such as neural networks. We obtain the greatest speedups for stable trees, where the

same test is chosen in different folds. With continuous models, no computations will ever be exactly

the same, hence removal of exactly redundant computations as explained here will in general not be

possible.

It should be pointed out that the proposed techniques concern the tree building phase only. This

phase is typically followed by tree post-pruning, and may be preceded by data pre-processing, such

as discretization of attributes (Fayyad and Irani, 1993). While these other phases usually take much

less time than the tree building phase, when they are not negligible and n is large they may become

the bottleneck, limiting the usefulness of our approach (unless optimizations similar to the ones

discussed here are also possible in these phases).

6. Conclusions

We have shown that in the context of decision tree induction the benefits of cross-validation are

available for a relatively low overhead, if the cross-validation is carefully integrated with the normal

tree building process. The overhead is smallest if data access is slow (complex tests, or data residing

on disk), but even for the case that is hardest to improve (propositional data in main memory) a clear

efficiency gain compared to straightforward implementations of cross-validation can be obtained.

By comparing experimental results with an analytical estimate of this overhead, we have iden-

tified a number of disturbing factors, such as variance in test complexity (which causes variance

in the time the different folds need) and tree instability (which causes the overhead to increase on

average). Both these factors increase the overhead induced by cross-validation, but in practically all

647

BLOCKEEL AND STRUYF

cases it was still smaller than for the serial cross-validation procedure, and in the best cases there

was only a small overhead over the normal tree induction process. Further experiments have shown

that in practice, significant speedups can be obtained even for relatively small data sets (a few thou-

sand examples), and that the speedups become larger when smaller trees are learnt (which typically

indicates better stability).

In the context of bagging, a similar technique can be used, although here it can be less optimized

than for cross-validation. Experimental results indicate that typically only relatively small gains

are obtained in this case. The main exception to this is when the data contains many numerical

attributes: in that case having a single sorting pass over the full training data set is advantageous.

A number of guidelines have been distilled from this work. They can be summarized as follows:

implementing the proposed techniques is most worthwhile for ILP systems; it may be worthwhile

for propositional systems if one expects frequent use of cross-validation; it is probably less worth-

while for bagging alone, but can fruitfully be exploited in that context if it is available anyway.

The ideas underlying our approach are also applicable outside the decision tree context, e.g., for

rule induction, but not immediately for induction of models that have only continuous parameters.

Related work includes that of Moore and Lee (1994), who discuss efficient cross-validation in

the context of model selection. Their approach differs substantially from ours in that they obtain

efficiency by quickly abandoning models that have a low probability of ever becoming the best

model after a few examples have been seen. That is, they save on the number of cases a model

is evaluated on during cross-validation, whereas our work focuses on removing redundancy in the

model building process itself.

Kohavi (1995) and Utgoff (1997) note that incremental learning systems have the advantage

that leave-one-out cross-validation can be performed efficiently by learning once using the whole

data set and then “decrementally” adapting the theory, each time leaving one example out from the

data set. In the case of Utgoff’s incremental decision tree learner, the computations involved in this

seem quite similar to the ones performed by our procedure. However, no experimental results are

reported by Utgoff (the cross-validation procedure is not the main topic of that article).

Blockeel et al. (2002) discuss a technique similar to the one described here. The main difference

is in the kind of redundancies that are removed; here the redundancies arise from running the same

test in different folds of a cross-validation, whereas Blockeel et al. (2002) consider redundancies

caused by similarities in different tests (the tests being first-order conjunctions, which might be

similar up to one literal). Both approaches can easily be combined, as shown by Struyf and Blockeel

(2001).

It is somewhat unclear to what extent the proposed methods are also useful for other tasks than

cross-validation. For instance, while our first algorithm seems easily applicable for bagging, our

complexity analysis suggests that it might not provide great speedups, except when data access is

expensive. A more promising application is the following one (Kohavi, 2001). Wrapper methods

(Kohavi and John, 1995) also have the property of running the same algorithm several times, varying

some parameters that influence the algorithm. This is often combined with cross-validation to select

the best values for the parameters. There is then redundancy, not only because of the similarities in

different data sets, but also because of certain similarities in the induction process. In such cases

larger speedups might be obtained than are demonstrated in this paper.

648

EFFICIENT ALGORITHMS FOR DECISION TREE CROSS-VALIDATION

Acknowledgements

The authors are respectively a post-doctoral fellow and research assistant of the Fund for Scien-

tific Research of Flanders (Belgium). They wish to thank Ron Kohavi for providing very useful

pointers and comments on this work, as well as an ICML-2001 attendant who pointed out the pos-

sible usefulness of this technique for bagging. They also thank the anonymous reviewers for their

extensive comments on a previous version of this text. The authors gratefully acknowledge Perot

Systems Nederland / Syllogic for providing the ASM data. The cooperation between Perot Systems

Nederland and the authors was supported by the European Union’s Esprit Project 28623 (Aladin).

References

H. Blockeel and L. De Raedt. Top-down induction of first order logical decision trees. Artificial

Intelligence, 101(1-2):285–297, 1998.

H. Blockeel, L. De Raedt, and J. Ramon. Top-down induction of clustering trees. In Proceedings of

the Fifteenth International Conference on Machine Learning, pages 55–63. Morgan Kaufmann,

San Francisco, California, 1998.

H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens, J. Ramon, and H. Vandecasteele. Improving the

efficiency of inductive logic programming through the use of query packs. Journal of Artificial

Intelligence Research, 16:135–166, 2002.

L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Regression Trees.

Wadsworth, Belmont, 1984.

P. Clark and T. Niblett. The CN2 algorithm. Machine Learning, 3(4):261–284, 1989.

L. De Raedt and W. Van Laer. Inductive constraint logic. In Proceedings of the Sixth International

Workshop on Algorithmic Learning Theory, volume 997 of Lecture Notes in Artificial Intelli-

gence, pages 80–94. Springer-Verlag, Berlin, 1995.

U.M. Fayyad and K.B. Irani. Multi-interval discretization of continuous-valued attributes for clas-

sification learning. In Proceedings of the Thirteenth International Joint Conference on Artificial

Intelligence, pages 1022–1027. Morgan Kaufmann, San Francisco, California, 1993.

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In Proceedings of the

Thirteenth International Conference on Machine Learning, pages 148–156. Morgan Kaufmann,

San Francisco, California, 1996.

R. Kohavi. The power of decision tables. In Proceedings of the 8th European Conference on Ma-

chine Learning, volume 912 of Lecture Notes in Artificial Intelligence, pages 174–189. Springer-

Verlag, Berlin, 1995.

R. Kohavi. Personal communication, 2001.

649

BLOCKEEL AND STRUYF

R. Kohavi and G. John. Automatic parameter selection by minimizing estimated error. In Ma-

chine Learning: Proceedings of the Twelfth International Conference, pages 304–312. Morgan

Kaufmann, San Francisco, California, 1995.

M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classifier for data mining. In

Proceedings of the Fifth International Conference on Extending Database Technology, volume

1057 of Lecture Notes in Computer Science, pages 18–32. Springer-Verlag, Berlin, 1996.

C.J. Merz and P.M. Murphy. UCI repository of machine learning databases

[http://www.ics.uci.edu/˜mlearn/mlrepository.html]. Department of Information and

Computer Science, University of California, Irvine, California, 1996.

A.W. Moore and M.S. Lee. Efficient algorithms for minimizing cross validation error. In Pro-

ceedings of the 11th International Conference on Machine Learning, pages 190–198. Morgan

Kaufmann, San Francisco, California, 1994.

S. Muggleton and L. De Raedt. Inductive logic programming : Theory and methods. Journal of

Logic Programming, 19,20:629–679, 1994.

J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann series in machine learn-

ing. Morgan Kaufmann, San Francisco, California, 1993a.

J.R. Quinlan. FOIL: A midterm report. In Proceedings of the 6th European Conference on Machine

Learning, volume 667 of Lecture Notes in Artificial Intelligence, pages 3–20. Springer-Verlag,

Berlin, 1993b.

J.C. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classifier for data mining.

In Proceedings of the 22th International Conference on Very Large Databases, pages 544–555.

Morgan Kaufmann, San Francisco, California, 1996.

A. Srinivasan, S.H. Muggleton, M.J.E. Sternberg, and R.D. King. Theories for mutagenicity: A

study in first-order and feature-based induction. Artificial Intelligence, 85(1,2): 277–299, 1996.

J. Struyf and H. Blockeel. Efficient cross-validation in ILP. In Proceedings of the Eleventh Interna-

tional Conference on Inductive Logic Programming, volume 2157 of Lecture Notes in Artificial

Intelligence, pages 228–239. Springer-Verlag, Berlin, 2001.

L. Todorovski and S. Džeroski. Combining multiple models with meta decision trees. In Pro-

ceedings of the Fourth European Conference on Principles and Practice of Data Mining and

Knowledge Discovery (PKDD-2000), volume 1910 of Lecture Notes in Artificial Intelligence,

pages 54–64. Springer-Verlag, Berlin, 2000.

P. E. Utgoff. Decision tree induction based on efficient tree restructuring. Machine Learning, 29(1):

5–44, 1997.

650

