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ABSTRACT

Densest subgraph discovery (DSD) is a fundamental problem in
graph mining. It has been studied for decades, and is widely used in
various areas, including network science, biological analysis, and
graph databases. Given a graph G, DSD aims to find a subgraph D
of G with the highest density (e.g., the number of edges over the
number of vertices in D). Because DSD is difficult to solve, we
propose a new solution paradigm in this paper. Our main observa-
tion is that the densest subgraph can be accurately found through a
k-core (a kind of dense subgraph of G), with theoretical guarantees.
Based on this intuition, we develop efficient exact and approxima-
tion solutions for DSD. Moreover, our solutions are able to find the
densest subgraphs for a wide range of graph density definitions, in-
cluding clique-based- and general pattern-based density. We have
performed extensive experimental evaluation on both real and syn-
thetic datasets. Our results show that our algorithms are up to four
orders of magnitude faster than existing approaches.
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1. INTRODUCTION
Given a graph G with n vertices and m edges, the densest sub-

graph discovery (DSD) is the problem of discovering a “dense”
subgraph from G [11, 66, 28, 14]. For example, the densest sub-
graph of Figure 1(a) is S1, because its edge-density, or the average
number of edges over the number of vertices in S1, is the highest
among all possible subgraphs of G. The DSD problem is funda-
mental to graph mining [31], and is widely used in network science,
biological analysis, graph databases, and system optimization. In
network science, for instance, the densest subgroups discovered can
be used to find “cohesive groups” in social networks, for purposes
of community detection [11, 66]. In biology, as another example,
bioinformatics researchers have studied the use of DSD in identi-
fying regulatory motifs in genomic DNA [28] and gene annotation
graphs [55]. In graph databases, the DSD is a building block for
many graph algorithms, such as creating elegant index structures
for reachability and distance queries [14, 41] and supporting graph
visualization [71, 72]. In system optimization, DSD has been used
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Figure 1: Illustrating the densest subgraphs.

in social piggybacking [30, 31], which can be used to improve the
throughput of social networking systems (e.g., Facebook).

At present, two variants of DSD have been proposed. The first
problem is to find the subgraph with the highest edge-density in G.
In Figure 1(a), for example, S1 has the highest edge-density of 11/7
among all possible subgraphs of G. Recently, researchers have s-
tudied DSD by defining density based on h-clique, which is a com-
plete graph of h vertices, with h ≥ 2. Figure 1(b) shows a 3-clique
(or “triangle”) and a 4-clique. The goal of DSD is then to find the
subgraph of G that has the highest h-clique-density [65, 49], or the
average number of h-cliques that a vertex participates in. In Fig-
ure 1(a), subgraph S2 has the highest “3-clique-density”, in terms
of number of triangles. The DSD problem, based on clique-density,
can be used for detecting larger near-cliques [65, 49] (which can be
used for communication network analysis and automatic test pat-
tern generation [1]). The triangle-based densest subgraphs are use-
ful for finding research groups in the DBLP network and clusters
in senators’ network on US bill voting [65], and discovering com-
pact dense subgraphs from networks [57]. Note that an edge is a
2-clique, so edge-density is the 2-clique-density.

Our main goal is to solve the DSD problem with respect to edge-
and clique- densities. This problem is technically challenging [32,
65, 10, 72]. Existing DSD solutions, which often involve solving
the maximum flow problem, are computationally expensive. For
example, given a graph G with n vertices and m edges, a well-
known algorithm based on edge-density [32] may incur a time com-
plexity of O((mn + m3) log n), and is thus impractical for very
large graphs. The h-clique-based DSD problem is even more com-
plex [65, 49]. Moreover, our experiments show that existing DSD
solutions cannot handle large graphs very well, and there is consid-
erable room for developing faster solutions.

In this paper, our goal is to develop efficient algorithms for find-
ing the subgraph with the highest edge- and h-clique-density. We
leverage the k-core [62], or the largest subgraph of graph G, where
each vertex has at least k neighbors. We show that the densest sub-
graph (in terms of edge-density) is located in some k-cores, which
are often much smaller than the entire graph G. For example, in
Figure 1(a), the subgraph S1 is the 3-core, which is also the densest
subgraph of G, w.r.t. edge-density. To solve DSD w.r.t. h-clique-
density, we extend the k-core to the k-clique-core, or (k, Ψ)-core,
which incorporates an h-clique Ψ into the k-core definition. Based
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on the cores, we develop efficient exact and approximation algo-
rithms for finding the subgraphs with the highest edge-density and
h-clique-density. Notably, this “core-based solution” achieves the
same approximation ratio as the current state-of-the-art.

It is non-trivial to use (k, Ψ)-core to solve the DSD problem.
Here we give an outline of this process. We denote by k the core

number. We first derive the lower and upper bounds on the h-
clique-density for each (k, Ψ)-core. Based on these tight bound-
s, we can compute the upper and lower bounds of ρopt, which is
the density of the densest subgraph, and further locate the densest
subgraph w.r.t. an h-clique in some specific (k, Ψ)-cores. These
(k, Ψ)-cores are often much smaller than the entire graph G, and
thus we can directly compute the densest subgraph from these s-
mall cores, resulting in high efficiency.

Specifically, to compute the exact densest subgraph D, we first
locate D in a specific (k, Ψ)-core. Then, we build a flow network
on this core, and find D by solving the maximum flow problem us-
ing binary search. During the binary search, whenever we obtain
a larger lower bound of ρopt, we can further locate D in anoth-
er core with higher core number and build an even smaller flow
network to compute D. The binary search process stops when we
have found D. We further show that the (kmax, Ψ)-core, which is
a (k, Ψ)-core with k attaining the maximum value, is a good ap-
proximation to the densest subgraph, with theoretical guarantees.
To find the (kmax, Ψ)-core, a straightforward method is to perfor-
m core decomposition, which computes all the (k,Ψ)-cores in an
incremental manner. This is costly and unnecessary because we
only need the (kmax,Ψ)-core, rather than all the (k,Ψ)-cores. We
thus develop another efficient method that extracts the (kmax, Ψ)-
core without computing all the (k, Ψ)-cores. This solution finds the
(kmax, Ψ)-core from a set of small subgraphs induced by vertices
with high degrees, and thus yields better performance.

In addition, we generalize the notion of density to allow arbitrary
“pattern graphs” (e.g., the diamond pattern in Figure 1(b)), and pro-
pose pattern-density to measure the average number of patterns in
which a vertex participates. We further extend k-clique-core to k-
pattern-core, and show that our solutions above can be smoothly
adapted to finding the densest subgraph w.r.t. pattern-density.

We have performed extensive experiments to evaluate our ap-
proaches. On both real and synthetic graph datasets ranging from a
few thousand to millions of vertices and edges, our new solutions
show high efficiency. For example, our core-based exact algorithm,
namely CoreExact, is up to four orders of magnitude faster than
the state-of-the-art exact DSD solution. Our best approximation al-
gorithm, called CoreApp, is up to two orders of magnitude faster
than the existing approximation solution. We further perform ex-
periments to find pattern-based densest subgraphs and our results
again confirm the superiority of our core-based approaches.

Contributions. In summary, our main contributions are:

• We present a new perspective on solving the DSD problem.
Particularly, we propose the (k, Ψ)-core by incorporating an
h-clique Ψ where h ≥ 2 (Section 5). We further establish the
lower and upper bounds of densities for (k, Ψ)-cores.

• Based on the (k, Ψ)-cores, we develop fast exact and approx-
imation DSD algorithms w.r.t. h-clique-density (Section 6).

• We generalize h-clique-density to pattern-density and adapt
our solutions to solving DSD w.r.t. pattern-density (Section 7).

• We conduct extensive experiments on ten real datasets and
three synthetic datasets to evaluate our algorithms. The results
reveal that our proposed DSD algorithms are several orders of
magnitude faster than existing ones (Section 8).

Organization. We review the related work in Section 2. The
DSD problem is stated in Section 3. In Sections 4-6 we present
different DSD solutions. In Section 7, we extend our algorithms

for finding densest subgraphs for general patterns. We report ex-
perimental results in Section 8, and conclude in Section 9. Due to

space limitation, for some lemmas, we do not show the complete

proof in this paper; instead, we give the proof sketch and show the

complete proof in the technical report [27].

2. RELATED WORK
The problem of dense subgraph computation has been extensive-

ly studied [31, 56, 11, 66]. In the following, we review existing
works that are highly related to our DSD problem.

Edge-based Densest Subgraph (EDS). The edge-density of an
undirected graph G(V,E) is defined as m

n
with n=|V | and m=|E|.

The EDS problem aims to find a subgraph such that its edge-density
is the highest among all subgraphs. This problem can be addressed
by solving a parametric maximum-flow problem [32, 29]. A typical
variant of EDS is to impose a size restriction on the returned sub-
graph, i.e., finding a subgraph of up to a given number of vertices
whose density is the highest. This problem is NP-hard [5, 4]. An-
other version of EDS, called optimal quasi-clique [66], extracts a
subgraph, which is more compact, with a smaller diameter than the
EDS. Again, this variant is NP-hard [9]. Qin et al. developed solu-
tions for finding the top-k locally densest subgraphs [54]. The EDS
problem on evolving graphs is studied in [19]. In [64, 18], the edge-
density-based graph decomposition is extensively studied. Kannan
and Vinay [43] modeled the density on directed graphs, and then
studied the DSD problem on directed graphs [10].

In general, exact EDS solutions work well for small graphs, but
they perform poorly for large graphs. Thus, researchers have devel-
oped approximation algorithms, in order to achieve higher efficien-
cy. In [10], Charikar et al. proposed a greedy 0.5-approximation
algorithm for solving the EDS problem. Bahmani et al. [6] devised
a 1/(2 + 2ε)-approximation algorithm under the streaming model,

which takes O(m log(n)
ε

) time. The densest subgraph on directed
graphs can also be computed by an approximation algorithm [44].

Our solution is based on computing k-cores, which can then be
used to find the EDS. Based on this intuition, we have develope-
d exact and approximation algorithms, and show using extensive
experiments that they are much faster than existing EDS solutions.

h-clique Densest Subgraph (CDS). In [65, 49], Tsourakakis et
al. modeled graph density based on h-cliques, and studied the h-
clique densest subgraph (CDS) problem. It generalizes the EDS
problem, which is a special case of CDS for h=2. They found that
the 3-clique densest subgraphs (a 3-clique is a triangle) help identi-
fy cohesive researcher groups in a bibliographical network, as well
as clusters of republicans in the network of US senators. Recently,
a variant based on the 3-clique, called top-k local triangle-densest
subgraphs discovery, has been investigated [57].

There are four key differences between existing works [65, 49]
and our work. (1) Our algorithms, based on (k, Ψ)-cores where Ψ
is an h-clique, are substantially different from existing CDS solu-
tions. (2) Whereas [65, 49] can only handle h-cliques, our work
supports any general pattern (e.g., 4-vertex subgraph [40, 68]). (3)
The approximation algorithm in [49] is a randomized algorithm
which has a failure probability to obtain an approximation solution,
while our core-based approximation algorithms are deterministic
algorithms. (4) Our empirical evaluation shows that our algorithm-
s significantly outperform previous exact algorithms [65, 49] and
deterministic approximation algorithm [65].

Other Dense Subgraphs. Recently, many other dense subgraph
models [24], such as k-core [7, 47, 51, 23, 22, 20, 25, 26, 67,
12], k-truss [15, 37, 69, 39, 38], k-(r, s) nucleus [60, 58, 61, 59]
(a generalization of k-core and k-truss), k-clique [16, 34], k-edge
connected components [35, 36]. and k-plexes [63], have also been
explored. However, these dense subgraphs are different from EDS
and CDS, which attain the highest edge-density and clique-density.
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3. PROBLEM DEFINITION
Data model. In this paper, we consider an undirected, unweight-

ed, and simple graph G(V,E) with vertex set V and edge set E,
where n=|V | and m=|E|. The degree of a vertex v in G, denot-
ed by degG(v), is the number of its neighbors, and we denote the
maximum degree by d. Table 1 summarizes all the notations fre-
quently used in this paper. Next, we first introduce two prominent
notions of density that were employed in the DSD literature, name-
ly edge-density and h-clique-density.

DEFINITION 1 (EDGE-DENSITY [32, 29]). Given a graph G

(V, E), its edge-density is τ(G)= |E|
|V |

.

DEFINITION 2 (CLIQUE INSTANCE). Given a graph G(V, E)
and an integer h≥2, we say a set of h vertices, S∈V , is an h-clique

instance, if each pair of vertices u, v ∈ S is connected by an edge.

DEFINITION 3 (CLIQUE-DEGREE). Given a graph G(V,E)
and an h-clique Ψ, the clique-degree of a vertex v in G, or degG(v,

Ψ), is the number of clique instances containing v.

Note that for each of these instances, we do not consider per-
mutations of vertices. For example, let Ψ be the triangle (i.e., 3-
clique). Then in Figure 1(a), the subgraph S2 contains two clique
instances of Ψ, which share an edge. The clique-degrees of vertices
A, B, and C are 2, 1, and 2 respectively.

DEFINITION 4 (h-CLIQUE-DENSITY [65]). Given a graph G
(V,E) and an h-clique Ψ(VΨ, EΨ) with h≥2, the h-clique-density

of G w.r.t. Ψ is

ρ(G,Ψ) =
µ(G,Ψ)

|V |
, (1)

where µ(G,Ψ) is the number of clique instances of Ψ in G.

The densest subgraph of G w.r.t. edge-density (resp., h-clique-
density), i.e., EDS [32] (resp., CDS [65, 49]), is the subgraph D=
(VD , ED) of G whose edge-density (resp., h-clique-density) is the
highest. Clearly, if the h-clique is a single edge (i.e., h=2), the h-
clique-density reduces to edge-density. For ease of exposition, in
the following we simply focus on the h-clique-density with h ≥ 2.
We use the term CDS when we refer to the DSD problem using the
edge-, or h-clique-based density. Where necessary, we make the
distinction between EDS and CDS.

Now we formally introduce the problem studied in this paper.

PROBLEM 1 (CDS PROBLEM [65, 49]). Given a graph G(V
,E) and an h-clique Ψ(VΨ, EΨ) (h ≥ 2), return the subgraph D
of G(V,E), whose h-clique-density ρ(D,Ψ) is the highest.

We denote the h-clique-density of D by ρopt, i.e., ρopt=ρ(D,Ψ),
where D is the CDS. For the graph G of Figure 1(a), if we let Ψ be
the single edge, we will return S1 as the densest subgraph; if we let
Ψ be the 3-clique (i.e., triangle), then, S2 is the subgraph with the
highest 3-clique-density.

4. EXISTING APPROACHES
In this section, we review existing algorithms for the EDS and

CDS problems, and then discuss their limitations.

4.1 The Exact Method
Generally, the algorithms for finding exact EDS and CDS [32,

65, 49] follow the same framework by solving a maximum flow
problem using binary search. A flow network [33] is a directed
graph F(VF , EF ), where there is a source node1 s, a sink node

1We use “node” to mean “flow network node” in this paper.

Table 1: Notations and meanings.
Notation Meaning

G(V,E) a graph with vertex set V and edge set E

n, m n=|V |, m=|E|

degG(v) (classical edge-based) degree of vertex v in G

d the maximum (classical edge-based) degree of G

G[T ] a subgraph of G induced by vertex set T

Ψ(VΨ, EΨ) an h-clique (vertex set: VΨ, edge set EΨ)

degG(v,Ψ) clique-degree of vertex v in G w.r.t. Ψ

µ(S,Ψ) number of clique instances of Ψ in the graph S

ρ(G,Ψ) h-clique-density of graph G w.r.t. an h-clique Ψ

D(VD, ED) the CDS whose h-clique-density is ρopt

F(VF , EF ) a flow network with node set VF and edge set EF

t, and some intermediate nodes; each edge has a capacity and the
amount of flow on an edge cannot exceed the capacity of the edge.
The maximum flow of a flow network equals the capacity of its
minimum st-cut, (S, T ), which partitions the node set VF into two
disjoint sets, S and T , such that s ∈ S and t ∈ T .

Algorithm 1: The algorithm: Exact.

Input: G(V,E), Ψ(VΨ, EΨ);
Output: The CDS D(VD, ED);

1 initialize l← 0, u← max
v∈V

degG(v,Ψ);

2 initialize Λ←all the instances of (h–1)-clique in G, D ← ∅;

3 while u− l ≥ 1
n(n−1)

do

4 α← l+u
2

;

5 VF ← {s} ∪ V ∪ Λ ∪ {t}; // build a flow network

6 for each vertex v ∈ V do
7 add an edge s→v with capacity degG(v,Ψ);
8 add an edge v→t with capacity α|VΨ|;

9 for each (h–1)-clique ψ ∈ Λ do
10 for each vertex v ∈ ψ do
11 add an edge ψ→v with capacity +∞;

12 for each (h–1)-clique ψ ∈ Λ do
13 for each vertex v ∈ V do
14 if ψ and v form an h-clique then
15 add an edge v→ψ with capacity 1;

16 find minimum st-cut (S, T ) from the flow network F(VF , EF );
17 if S={s} then u← α;
18 else l← α, D ← the subgraph induced by S\{s};

19 return D;

We present the state-of-the-art algorithm from [49] in Algorith-
m 1, where the input is a graph G and an h-clique Ψ. First, it
initializes lower and upper bounds of ρopt and collects all the in-
stances of (h–1)-clique (lines 1-2). Then, it finds D by using binary
search (lines 3-18). Specifically, in each binary search (lines 4-18),
it tries to find a subgraph with density larger than a guessed value α,
by computing the minimum st-cut using Gusfield’s algorithm [2] in
a flow network F(VF , EF ). To build F(VF , EF ), it first creates a
node set VF (line 5), and then links its nodes by directed edges with
different capacities (lines 6-15). The binary search stops when the
gap between the upper and lower bounds of α is less than 1

n(n−1)
.

We denote this algorithm by Exact.
Note that if Ψ is the single edge, the flow network F(VF , EF )

can be simplified such that [32]: VF={s} ∪ V ∪ {t}, and for each
vertex v ∈G, there is a directed edge from s to v with capacity
m and a directed edge from v to t with capacity m+2α-degG(v);
for each edge (v, u)∈G, there is a directed edge from u to v with
capacity 1 and a directed edge from v to u with capacity 1.
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Figure 2: Illustrating the flow network (Ψ is a triangle).

EXAMPLE 1. Let Ψ be the triangle and G be the graph in Fig-
ure 2(a). The graph contains 4 edges (see Figure 2(b)). By Algo-
rithm 1, we construct the flow network, as depicted in Figure 2(c),
where the value on each edge denotes its capacity.

LEMMA 1. Given a graph G(V ,E) and an h-clique Ψ(VΨ,EΨ),

Exact takes O
(

n ·
(

d−1
h−1

)

+ (n|Λ|+min (n, |Λ|)3) log n
)

time

and O (n + |Λ|) space, where Λ is set of (h−1)-clique instances

in G [65].

PROOF SKETCH: In the worst case, we will consider n ·
(

d−1
h−1

)

h-clique instances, and each binary search of Exact takes O(n ·

|Λ|+min (n, |Λ|)3) time. These are the main cost of Exact.
In practice, h is often small and the number of clique instances,

|Λ|, is often much larger than the number n of vertices, so the sec-
ond summand dominates the overall computational cost.

4.2 The Approximation Method
The approximation method of computing the EDS [10] and CD-

S [65] follows the peeling paradigm and achieves an approxima-
tion ratio of 1

|VΨ|
. Here, the approximation ratio is the ratio of

the h-clique-density of subgraph returned, over ρopt, which is at
most 1.0. Specifically, given a graph G of n vertices, it works in n
rounds. In each round, it removes the vertex that participates in the
minimum number of h-cliques, and recomputes the density of the
residual graph. Finally, the subgraph of the largest h-clique-density
is returned. Algorithm 2 outlines the steps. Because the algorithm
removes vertices one by one, we call it PeelApp.

Algorithm 2: The algorithm: PeelApp.

Input: G(V,E), Ψ(VΨ, EΨ);
Output: A subgraph S∗;

1 initialize S ← G, S∗ ← ∅;
2 compute the clique-degree for each vertex of G;
3 while S 6= ∅ do
4 v ← the vertex with the minimum clique-degree in S;
5 S ← remove the vertex v from S;
6 if ρ(S,Ψ)>ρ(S∗,Ψ) then S∗ ← S;

7 return S∗;

LEMMA 2. Given a graph G and an h-clique Ψ(VΨ,EΨ), then

PeelApp takes O
(

n ·
(

d−1
h−1

)

)

time and O (m) space [65].

PROOF SKETCH: The main time cost comes from enumerating
clique instances, whose number is n ·

(

d−1
h−1

)

in the worst case.

4.3 Limitations of Existing Algorithms
From the above lemmas, we see that while PeelApp is faster

than Exact, it also sacrifices some accuracy. For example, when
Ψ is an edge, Exact finds the exact EDS in O((mn+m3) log n)
time, while PeelApp returns a subgraph with 0.5-approximation
ratio in linear time, i.e., O(m). Both solutions can be inefficient on

larger graphs with more complex cliques. We found that Exact
suffers from several problems: (1) the initial lower and upper bound-
s of α are not very tight; (2) the size of the flow network can be
large when the graph is large and there are many clique instances
of Ψ; and (3) the flow network F is always built on the entire graph
G in each iteration, while the CDS is often in a small subgraph
of G. The PeelApp algorithm also involves a lot of unneces-
sary computation: for the first few iterations, the graph contains
many vertices with lower clique-degrees, which are unlikely to be
in the CDS, but PeelApp still computes the h-clique-density. As
shown in our experiments later, on a moderate-size graph (n≈26K
and m≈100K), Exact takes more than 5 days to find the dens-
est subgraphs for 6-clique; on a million-scale graph (n≈19M and
m≈298M), PeelApp takes more than 2 days to find the CDS for
6-clique. Thus, there is room for improving their efficiency.

We next propose a core-based approach for locating a CDS, by
quickly converging on smaller dense subgraphs that contain the
CDS. To make our approach applicable for processing all the h-
clique-density definitions (h≥2), we lift the notion of k-cores to k-
clique-cores and study how to exploit them in the DSD solution.

5. THE CLIQUE­BASED CORES
We now study the k-clique-core, or (k, Ψ)-core, which is a gen-

eralization of the classical k-core [62, 7] for an h-clique Ψ (Sec-
tion 5.1). As we will show, (k, Ψ)-cores are useful in locating the
CDS in both exact and approximation algorithms. We then estab-
lish upper and lower bounds on the clique-density of (k, Ψ)-cores
(Section 5.2), present efficient algorithms for decomposing (k, Ψ)-
cores (Section 5.3), and give some discussions (Section 5.4) .

5.1 k­core and (k, Ψ)­core
We first review the definition of k-core.

DEFINITION 5 (k-CORE [62, 7]). Given a graph G and an

integer k (k ≥ 0), the k-core, denoted by Hk, is the largest sub-

graph of G, such that ∀v ∈ Hk, degHk
(v) ≥ k.

We say that Hk has order k. The core number of a vertex v ∈
V is defined as the highest order of a k-core that contains v. In
other words, a k-core is the largest subgraph induced by vertices
whose core numbers are at least k. A k-core has some interesting
properties [7]: (1) k-cores are “nested”: given two nonnegative
integers i and j, if i < j, then Hj ⊆ Hi; (2) a k-core may not be
connected; and (3) computing core numbers of all the vertices in a
graph, known as k-core decomposition, can be done in linear time.
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Figure 3: k-core, and (k, Ψ)-core (Ψ is a triangle).

EXAMPLE 2. Figure 3(a) depicts a graph of 8 vertices and its k-
cores. The number k in each ellipse indicates the k-core contained
in that ellipse. For instance, the subgraph induced by {A,B,C,
D} is the 3-core, and the entire graph is both the 0-core and 1-core,
which consist of two connected components.

DEFINITION 6 ((k, Ψ)-CORE). Given a graph G, an integer

k (k≥0), and an h-clique Ψ, the (k, Ψ)-core, denoted by Rk, is the

largest subgraph of G such that ∀v ∈ Rk, degRk
(v,Ψ) ≥ k.
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Similar to k-cores, we say that Rk has order k. The clique-core

number of a vertex v ∈ V , coreG(v,Ψ), is then the highest order
of a (k, Ψ)-core containing v. We denote the maximum clique-core
number by kmax, where the underlying clique Ψ is understood from
the context. Given a clique Ψ, a (k, Ψ)-core also has the following
properties: (1) (k, Ψ)-cores are “nested”: given two nonnegative
integers i and j, if i < j, then Rj ⊆ Ri; (2) a (k, Ψ)-core may not
be connected; and (3) coreG(v,Ψ)≤degG(v,Ψ).

EXAMPLE 3. Let Ψ be the triangle. Figure 3(b) shows all (k,
Ψ)-cores of the graph. The number k in each circle indicates the
(k, Ψ)-core contained in that ellipse. For instance, the subgraph of
{A,B,C,D} is the (3, Ψ)-core as the 4-clique contains 4 triangle
instances, and each vertex participates in 3 of them. Observe that k-
cores and (k,Ψ)-cores are different between Figures 3(a) and 3(b),
for k=1, 2. Also, the entire graph is a (0,Ψ)-core.

5.2 Density Bounds of (k, Ψ)­core
The main result of this section is on the lower and upper bounds

on the density of a (k, Ψ)-core.

THEOREM 1. Given a graph G and an h-clique Ψ(VΨ, EΨ),
let Rk be a (k, Ψ)-core of G. Then, the h-clique-density of Rk

satisfies
k

|VΨ|
≤ ρ(Rk,Ψ) ≤ kmax. (2)

To prove this theorem, we develop the following lemmas.

LEMMA 3. Given a graph G and an h-clique Ψ, the connected

components of CDS D have the same clique-density.

PROOF SKETCH. The lemma can be proved by contradiction.

LEMMA 4. Given a graph G(V, E), an h-clique Ψ(VΨ, EΨ),
and the CDS D(VD, ED), for any subset U of VD , removing U
from D will result in the removal of at least ρopt × |U | clique in-

stances from D.

PROOF. We prove the lemma by contradiction. Assume that
D is the CDS and the removal of U results in removing less than
ρopt × |U | clique instances. Then, after removing U from VD , the
clique-density of the residual graph (denoted by D\U ) becomes:

ρ(D\U,Ψ) =
µ(D\U,Ψ)

|VD| − |U |
>
ρopt|VD| − ρopt|U |

|VD| − |U |
= ρopt. (3)

However, this contradicts the assumption that D is the CDS. Hence,
the lemma holds.

Based on the lemma above, we show an upper bound of ρopt.

LEMMA 5. Given a graph G, an h-clique Ψ(VΨ, EΨ), and its

maximum clique-core number kmax, we have:

ρopt ≤ kmax. (4)

PROOF. We prove the lemma by contradiction. Suppose that we
have ρopt>kmax. From Lemma 4, we know that removing any ver-
tex of D will result in the removal of at least ρopt clique instances,
or more than kmax clique instances from D. In other words, each
vertex of D participates in at least kmax+1 clique instances. This
contradicts the fact that kmax is the maximum clique-core number.
Hence, the value of ρopt is at most kmax.

Proof of THEOREM 1: The upper bound follows by Lemma 5. Let
us focus on the lower bound. Let rk be the number of vertices in
Rk. By Definition 6, since Rk is a (k, Ψ)-core, each vertex v of Rk

participates in at least k clique instances. Meanwhile, each clique

instance involves |VΨ| vertices. As a result, there are at least
k×rk
|VΨ|

clique instances in Rk. Thus, we have ρ(Rk,Ψ) ≥ k
|VΨ|

.

To further illustrate Theorem 1, we give Example 4.

(a) (b)

1 2 3 x

Figure 4: Illustrating the lower and upper bounds.

EXAMPLE 4. Let Ψ be an edge and consider the kmax-core
with kmax=2. By Theorem 1, the lower and upper bounds of the
density of kmax-core are 1 and 2 respectively. These bounds are
attained by graphs in Figures 4(a) and 4(b) respectively. In Figure
4(a), the density of the kmax-core is 4/4=1. In Figure 4(b), there is
a list of graphs with kmax=2, and the density values of kmax-cores
in the 1st, 2nd, · · · , x-th graphs are 1+4

2+2
, 1+8

2+4
, · · · , 1+4x

2+2x
, respec-

tively. Clearly, when x→∞, the density converges to 2.

5.3 (k, Ψ)­Core Decomposition
Inspired by the k-core decomposition algorithm [7], we develop

an efficient (k, Ψ)-core decomposition algorithm for computing the
clique-core number of each vertex. The algorithm exploits a key
observation that, if we recursively remove vertices whose clique-
degrees are less than a non-negative integer k, then the remaining
graph, if non-empty, must be the (k, Ψ)-core.

Specifically, we first compute the clique-degree of each vertex,
and sort vertices in increasing order of their clique-degrees. Then,
we iteratively remove the vertex v whose clique-degree is the s-
mallest in each iteration, until the graph is empty. In each iteration,
after removing v, we need to decrease the clique-degrees of ver-
tices, which share clique instances with v, and re-sort the vertices.
Notice that by using the bin-sort technique [7], sorting all the ver-
tices takes linear time and re-sorting can also be done efficiently.

Algorithm 3: (k,Ψ)-core decomposition.

Input: G(V,E), Ψ(VΨ, EΨ);
Output: The clique-core number of each vertex;

1 initialize core[ ]← an array with n entries;
2 for each vertex v ∈ V do compute its clique-degree degG(v,Ψ);
3 sort vertices of V in increasing order of their clique-degrees;
4 while V is not empty do
5 core[v]← degG(v,Ψ) where v has the minimum clique-degree;
6 for each clique instance ψ containing v do
7 for each vertex u in ψ do
8 if degG(u,Ψ)>degG(v,Ψ) then
9 decrease u’s clique-degree;

10 update G by removing v and its incident edges;
11 resort the vertices in V ;

12 return the array core[ ];

Algorithm 3 presents the core decomposition algorithm. First,
we initialize an array core[ ] and compute the clique-degree of each
vertex (lines 1-2). Then, we sort all the vertices in increasing order
(line 3). Next, we recursively remove the vertex v whose clique-
degree is the smallest (lines 4-11). In each iteration, we record v’s
clique-core number (line 5), decrease the clique-degrees of vertices
in v’s clique instances as removing v causes the deletion of some
clique instances (lines 6-9), update G, and resort vertices (lines 10-
11). Finally, we return core[ ] (line 12).

To compute the clique-degrees of all the vertices, we can first run
an h-clique enumeration algorithm, and then compute the clique-
degree of each vertex by listing all the h-cliques. During the core
decomposition process, after removing a vertex v, we can first lo-
cate the subgraph induced by v and its neighbors, then enumerate
all the h-cliques in this subgraph, and finally decrease the clique-
degrees of the vertices involved. In this paper, we use the state-of-
the-art h-clique enumeration algorithm [17].
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LEMMA 6. Given a graph G and an h-clique Ψ(VΨ, EΨ), the

core decomposition algorithm above completes in O
(

n ·
(

d−1
h−1

)

)

time and O (m) space.

PROOF. For each vertex v, we need to compute the number of
clique instances it involves, i.e., degG(v,Ψ). In the worst case, any
h–1 neighbors of v can form an h-clique with v, so degG(v,Ψ)

is up to
(

d−1
h−1

)

. By using the bin-sort technique in [7], we can
sort vertices of V in linear time cost, and resorting after removing
a vertex takes linear time cost to the clique-degree. In addition,
computing degG(v,Ψ) takes O(m) space as we can compute the
clique instances sequentially. Hence, Lemma 6 holds.

5.4 Extension and Discussion
The k-clique-core can be extended to k-pattern-core by incorpo-

rating a general pattern (e.g., star, loop, etc.). Let Ψ be a pattern.
Then, the (k, Ψ)-core is the largest subgraph of G, in which each
vertex participates in at least k instances of Ψ. The properties of
k-clique-cores also hold for k-pattern-core. Besides, for any two
patterns Ψ and Ψ′, if |VΨ|=|VΨ′ | and Ψ ⊆ Ψ′, i.e., Ψ is a subpat-
tern of Ψ′, then the (k, Ψ′)-core is a subgraph of the (k, Ψ)-core.
Algorithm 3 can also be extended for decomposing k-pattern-cores.
We skip the details due to the space limitation.

Recently, Sariyüce et al. studied the k-(r, s) nucleus [60, 58, 59],
which is the maximal connected subgraph of the r-cliques where
each r-clique is contained in at least k s-cliques (r<s). When Ψ
is an h-clique, our (k, Ψ)-core can be considered as a special case
of k-(r, s) nucleus, i.e., k-(1, h) nucleus, in terms of clique-degree
(or S-degree in [59]). However, when Ψ is a non-clique, (k, Ψ)-
core is different with the k-(r, s) nucleus, because in our (k, Ψ)-
core, Ψ can be an arbitrary pattern, such as clique, star, loop, etc.,
while k-(r, s) nucleus is defined purely based on cliques. In other
words, our (k, Ψ)-core can capture pattern-based dense subgraphs.
A second difference is that a k-(r, s) nucleus requires that any two
r-cliques R and R′ are S-connected: i.e., there exists a sequence
of r-cliques R=R1, R2, · · · , Rl=R

′, such that Ri, Ri+1 are both
contained by a specific s-clique (i ∈ [1, l − 1]). In addition, when
Ψ is an h-clique, the nucleus decomposition algorithm [59] can
be applied to decomposing (k, Ψ)-cores. We will experimentally
compare this method with ours in Section 8.1.

6. CORE­BASED APPROACHES
Based on (k, Ψ)-cores, we develop efficient exact and approxi-

mation DSD algorithms. While our exact algorithm, CoreExact,
is significantly faster than the state-of-the-art algorithm (Exact),
we can speed it up further by trading accuracy: we develop an ef-
ficient approximation algorithm, namely CoreApp, which has an
approximation ratio of 1

|VΨ|
.

6.1 The Core­Based Exact Method
As shown in Lemma 1, the major limitation of Algorithm Exact

is its high computational cost. To address this, in this section we ex-
ploit the k-clique-cores and propose the following three optimiza-
tion techniques for boosting the efficiency.
1 Tighter bounds on α. In Exact, the value of α is within the

range [0,max
v∈V

degG(v,Ψ)]. As discussed in Section 5.2, by using

the (k, Ψ)-cores, we can derive a tighter bound on α. Specifical-
ly, consider a (kmax, Ψ)-core Rkmax

. By Theorem 1, we can see
that ρ(Rkmax

,Ψ) ≥ kmax

|VΨ|
, which implies that ρopt ≥ kmax

|VΨ|
, so

the lower bound of α is kmax

|VΨ|
. On the other hand, by Lemma 5,

we have ρopt ≤ kmax and thus the upper bound of α is kmax.
In practice, since kmax

|VΨ|
is larger than 0 and kmax is smaller than

the maximum clique-degree, the number of binary searches can be
greatly reduced by using the tighter bounds.

2 Locating the CDS in a core. Recall that in each binary search of
the algorithm Exact, the flow network is reconstructed based on
the entire graph G. This, however, is unnecessary, since the CDS is
often in some (k, Ψ)-cores which could be much smaller than G.

LEMMA 7. Given a graph G and an h-clique Ψ, the CDS is

contained in the (k, Ψ)-core, where k = ⌈ρopt⌉.

PROOF. By Lemma 4, deleting any single vertex from CDS will
result in the removal of ⌈ρopt⌉ clique instances in CDS. In other
words, each vertex of the CDS has participated in ⌈ρopt⌉ clique
instances. By the definition of (k, Ψ)-core, we conclude that the
CDS is in the (k, Ψ)-core, where k=⌈ρopt⌉.

As the value of ρopt may not be known in advance, we can only
locate it in the cores using the lower bounds of ρopt, by exploit-
ing the nested property of cores. For example, by Theorem 1, we
have ρopt ≥ kmax

|VΨ|
, which implies that the CDS must be in the (k,

Ψ)-core, where k=
⌈

kmax

|VΨ|

⌉

. Recall that in the core decomposition

process, we delete vertices iteratively and obtain a residual sub-
graph after removing a vertex. In order to get a tighter lower bound
on ρopt, we can compute the densities of these residual subgraphs.
• Pruning1: The CDS is in the (k′, Ψ)-core, where k′=⌈ρ′⌉ and

ρ′ is the highest h-clique-density of all residual graphs. The cor-
rectness directly follows Lemma 7, since ρ′ ≤ ρopt.

Since the (k′, Ψ)-core may be disconnected and some connected
components may be denser than others, we can further locate the
CDS in a core with a larger core number, using Pruning2.

• Pruning2: For each connected component of the (k′, Ψ)-core,
we compute its h-clique-density. Let ρ′′ be the maximum h-clique-
density of these connected components. If ⌈ρ′′⌉>k′, we increase
k′ to k′′=⌈ρ′′⌉ and the CDS is in the (k′′, Ψ)-core. The correctness
holds by Lemma 7, since ρ′ ≤ ρ′′ ≤ ρopt.

• Pruning3: After locating the CDS in a connected component
C(VC , EC), we can change the stopping criterion of binary search
to “u− l< 1

|VC |(|VC |−1)
”. Since C(VC , EC) contains the CDS and

the flow network is built using C(VC , EC), the pruning is correct
by following Algorithm 1.
3 The flow network gradually becomes smaller. During the bi-
nary search, since the lower bound l of α is gradually enlarged,
we can locate the CDS in cores with larger clique-core numbers.
As clique-core numbers increase, the sizes of cores become small-
er, so the flow networks constructed become smaller gradually, and
the cost of computing the minimum st-cut is greatly reduced.

Combining the three optimization techniques above, we develop
an advanced exact algorithm, called CoreExact, as presented in
Algorithm 4. We first perform core decomposition and locate the
CDS in the (k′′, Ψ)-core (lines 1-2). Then, we initialize some vari-
ables including the lower and upper bounds of α and put the con-
nected components of (k′′, Ψ)-core into a set C (lines 3-4). Next, in
the loop (lines 5-20), we consider the connected components one
by one. Note that the lower bound l is never decreased during the
iterations. If the current lower bound l>k′′, we replace C by the
core which has higher clique-core number and is contained by C
(line 6). Intuitively, if l is too large, then C may not contain a sub-
graph with density l and thus we skip it. Consequently, we build a
flow network (line 7), and check whether l is a feasible lower bound
(line 8), i.e., whether there exists a subgraph with density at least l.

If C cannot be skipped, we use binary search to find the CDS
(lines 10-19). Each time we set a guess value of ρopt, namely α,
and check whether there is a subgraph with density of α or more.
Once we get a larger lower bound (line 16), we locate the CDS
in the core with a larger clique-core number, so the network based
on C is even smaller. In other words, during the binary search, as
the value of α approaches the true value of ρopt, the flow networks
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Algorithm 4: The algorithm: CoreExact.

Input: G(V,E), Ψ(VΨ, EΨ);
Output: The CDS D(VD, ED);

1 perform core decomposition using Algorithm 3;

2 locate the (k′′, Ψ)-core using pruning criteria;

3 initialize C ← ∅, D ← ∅, U ← ∅, l← ρ′′, u← kmax;

4 put all the connected components of (k′′, Ψ)-core into C;
5 for each connected component C(VC , EC) ∈ C do
6 if l>k′′ then C(VC , EC)← C ∩ (⌈l⌉, Ψ)-core;
7 build a flow network F (VF , EF ) by lines 5-15 of Algorithm 1;
8 find minimum st-cut (S, T ) from F (VF , EF );
9 if S=∅ then continue;

10 while u− l ≥ 1
|VC |(|VC |−1)

do

11 α← l+u
2

;

12 build F (VF , EF ) by lines 5-15 of Algorithm 1;
13 find minimum st-cut (S, T ) from F (VF , EF );
14 if S={s} then
15 u← α;
16 else
17 if α> ⌈l⌉ then remove some vertices from C;
18 l← α;
19 U ← S\{s};

20 if ρ(G[U ],Ψ) > ρ(D,Ψ) then D ← G[U ];

21 return D;

constructed become smaller. Finally, we get the CDS (line 21). We
illustrate CoreExact by Example 5.
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Figure 5: Illustrating the core-based algorithms.

EXAMPLE 5. Let Ψ be a single edge and consider the graph
in Figure 5, where kmax=4. During core decomposition, we track
densities of residual graphs and obtain ρ′=25/12≈2.08 (i.e., density
of subgraph S3). Thus, we get ⌈ρ′⌉=3 and locate the EDS in the
3-core (i.e., subgraph S3). The EDS (i.e., subgraph S1 with density
15/7≈2.14) can be computed by conducting binary search using
the flow networks built on the two connected components S1 and
S2 of S3, rather than the entire graph, respectively.

6.2 The Core­Based Approximation Methods
Recall that Theorem 1 gives the lower and upper bounds of den-

sity of a (k, Ψ)-core. Moreover, for a specific clique Ψ, the larger
the value of k, the higher the lower bound on the density of the
corresponding (k, Ψ)-core. Using Theorem 1, we can show:

LEMMA 8. Given a graph G and an h-clique Ψ(VΨ, EΨ), the

(kmax, Ψ)-core is a 1
|VΨ|

-approximation solution to CDS problem.

PROOF. By Theorem 1, we have kmax

|VΨ|
≤ ρ(Rkmax

,Ψ) ≤ kmax.

Using the fact that ρopt ≤ kmax, we have

ρ(Rkmax
,Ψ)

ρopt
≥
kmax/ |VΨ|

kmax
=

1

|VΨ|
. (5)

The lemma follows.

To compute the (kmax, Ψ)-core, we can use the core decomposi-
tion method discussed in Section 5.3, which computes all the cores
in an incremental manner. We denote this approximation algorith-
m by IncApp (see Algorithm 5). Clearly, it has the same time
complexity as the core decomposition algorithm.

Algorithm 5: The algorithm: IncApp.

Input: G(V,E), Ψ(VΨ, EΨ);
Output: The (kmax, Ψ)-core;

1 run (k, Ψ)-core decomposition algorithm (Section 5.3);
2 return the (kmax, Ψ)-core;

A subtle point is that although the (kmax, Ψ)-core is dense and
provides an approximation solution, the CDS may not be in the
(kmax, Ψ)-core or even share some vertices with it. For example,
in Figure 5, let Ψ be a single edge. Then, the subgraph S2 is the
kmax-core (kmax=4), but the EDS is the subgraph S1.

To further improve efficiency, we propose another method, called
CoreApp. Unlike IncApp which computes all the cores, it fo-
cuses on computing the (kmax, Ψ)-core directly. It relies on a key
observation that the (kmax, Ψ)-core often tends to be a subgraph of
vertices with higher clique-degrees. We thus propose to discover
the CDS from a sequence of subgraphs induced by vertices, whose
clique-degrees are the largest. Moreover, once we find a core with
higher clique-core number, we can prune some subgraphs, whose
vertices’ clique-degrees are too small. Thus, the CDS can be dis-
covered efficiently. We remark that for h-cliques where h≥3, com-
puting the clique-degree degG(v,Ψ) may be costly. Instead, we re-
place it by an upper bound γ(v,Ψ), which can be computed more
efficiently. Specifically, we run the k-core decomposition algorith-
m [7], and for each vertex v in an x-core, we set γ(v,Ψ)=

(

x

h−1

)

.

Algorithm 6: The algorithm: CoreApp.

Input: G(V,E), Ψ(VΨ, EΨ);
Output: The (kmax, Ψ)-core;

1 for ∀v ∈ V do compute γ(v,Ψ) of degG(v,Ψ);
2 sort vertices of V in decreasing order of their γ(v,Ψ) values;
3 initialize W , kmax ←0, S∗ ← ∅;
4 while max

v∈V \W
γ(v,Ψ) ≥ kmax do

5 for ∀v ∈W do compute degG[W ](v,Ψ);

6 kl ← min
v∈W

degG[W ](v,Ψ), ku ← max
v∈W

degG[W ](v,Ψ);

7 k ← max{kl, kmax + 1};
8 while k ≤ ku and |W |>0 do
9 while (∃v ∈W , degG[W ]<k) do

10 delete v from W and decrease clique-degrees;

11 if |W |>0 then
12 if k>kmax then
13 kmax ← k, S∗ ← G[W ];

14 k ← k+1;

15 W ← top-(2×|W |) vertices in V ;

16 return S∗;

Algorithm 6 presents CoreApp. First, we compute γ(v) for
each vertex, and sort vertices based on their γ(v) values (lines 1-
2). Then, we initialize three variables W , kmax, and S∗, where
W keeps a set of vertices whose clique-degrees are the largest, and
S∗ is used to track the (kmax, Ψ)-core (line 3), which is computed
from the vertex-induced subgraph G[W ]. Next, we compute the
(kmax, Ψ)-core in G, by using a while loop (lines 4-15). Specif-
ically, we first compute the exact clique-degree for each vertex
in G[W ], and record the minimum and maximum clique-degrees
(lines 6-7). Then, we perform core decomposition for G[W ] with
clique-core numbers in [kl, ku] (lines 8-15), during which the max-
imum clique-core number kmax and (kmax, Ψ)-core are kept (lines
13-14). After that, we double the size of W for the next iteration
(line 15). The loop can be stopped safely by using the stopping
criterion (line 4). Finally, we get (kmax, Ψ)-core (line 16). Note
that kmax tracks the maximum clique-core number during the it-
erations, and for each subgraph G[W ], we focus on finding cores
with core numbers larger than the previous kmax (line 7).

1725



Correctness. Essentially, CoreApp finds the (kmax, Ψ)-core from
a sequence of subgraphs induced by vertices in W which have the
largest clique-degrees. For each small subgraph G[W ], it computes
the core with the highest core number by running core decomposi-
tion steps (lines 7-14). The stopping criterion (line 4) ensures that
the (kmax, Ψ)-core is correctly computed, i.e., since the maximum
clique-degree of all the remaining vertices (in the set V \W ) is less
than kmax, their clique-core numbers must be less than kmax.

LEMMA 9. The time and space complexities of CoreApp are

O
(

n ·
(

d−1
h−1

)

)

and O (m) respectively.

PROOF. Let the number of iterations be t. Since we adopt the
exponential growth strategy, the numbers of vertices involved in

these iterations are at most
(

1
2

)t−1
· n,

(

1
2

)t−2
· n, · · · , n respec-

tively, which form a geometric sequence. In the i-th iteration i ∈[1,

t], it takes O
(

(

1
2

)t−i
· n ·

(

d−1
h−1

)

)

time and O(m) space, as it per-

forms core decomposition. By summarizing the time cost of all it-

erations, we obtain O
(

2 · n ·
(

d−1
h−1

)

)

= O
(

n ·
(

d−1
h−1

)

)

. The space

cost is O(m), since the iterations are sequentially executed.

Although, CoreApp has almost the same worst-case cost as
PeelApp and IncApp, it performs much faster in practice, be-
cause the CDS is often much smaller than G and thus only a few
subgraphs are examined in the iterations. As shown by our experi-
ments next, CoreApp is up to two orders of magnitude faster than
PeelApp and IncApp. Moreover, the approximation algorithms
generate high-quality solutions – their actual approximation ratios
are often much higher than their theoretical approximation ratios.
Remark. In [13], Cheng et al. present an external-memory core
decomposition algorithm, called EMcore, which also works in a
top-down manner. However, there are four differences between
CoreApp and EMcore: (1) CoreApp can handle any h-clique-
and pattern-cores, while EMcore is developed for processing the
classical (edge-based) k-cores. (2) CoreApp focuses on comput-
ing the (kmax, Ψ)-core while EMcore decomposes all k-cores. (3)
The methods of estimating upper bounds of core numbers are dif-
ferent. (4) In the worst case, for classical k-cores, CoreApp takes
O(n + m) time while EMcore takes O(kmax(n + m)) time, s-
ince both of them conduct core decomposition for a sequence of
subgraphs, but the strategies of considering subgraphs are differen-
t. Our later experiments show that for computing the kmax-core,
CoreApp is faster than EMcore.

6.3 Discussions
Below, we discuss the parallelizability of our algorithms and

show that our algorithms can solve a variant of the CDS problem.
Parallelizability. The existing parallel k-core decomposition al-
gorithms [50, 48, 59] can be easily extended for decomposing (k,
Ψ)-cores, so our approximation solutions, which rely on the (kmax,
Ψ)-core, can be computed in parallel. Moreover, for the exact solu-
tion CoreExact, the main overhead comes from the step of com-
puting the minimum st-cut. The parallel algorithms of computing
the minimum st-cut have been studied extensively [42, 52], so our
exact algorithm can also be easily parallelized.
A variant of CDS problem. In [65], Tsourakakis et al. studied a
variant of the densest k subgraph problem [8, 3], which aims to find
a subgraph that contains a given set Q of k query vertices (|Q|=k)
with the highest density, and its exact solution follows the frame-
work of the exact solution of CDS problem by solving a maximum
flow problem. To solve this problem with edge-density, we can first
decompose k-cores and get the minimum core number x of these k
vertices. Then, then lower bound of the edge-density of x-core is
x
2

by Theorem 1. Since x-core contains Q, we get a lower bound

of ρopt which is x
2

. As a result, we can locate the densest subgraph
in x

2
-core, so we can build a flow network on x

2
-core, rather than

the entire graph, resulting in higher efficiency.

7. THE PDS PROBLEM AND SOLUTIONS
A pattern (a.k.a. motif or higher-order structure) is a small graph

containing a few vertices (e.g., a diamond in Figure 1(b)). These
patterns can be considered as building blocks of knowledge graph-
s or biological databases [70, 34, 21]. Compared to graph edges,
they can better capture the intricate relationship among vertices, as
well as the underlying rich semantics. For example, in a protein in-
teraction network, proteins are often organized in cohesive patterns
of interactions, each of which represents some particular function-
s [70]. We now study the discovery of pattern-aware densest sub-

graphs, i.e., subgraphs that are “dense” in terms of the number of
patterns. We term this pattern densest subgraph (PDS) problem and
show how our previous CDS solutions can be adapted.

7.1 The PDS problem
We generalize the h-clique to a general pattern, which is a con-

nected simple graph Ψ(VΨ, EΨ). We formally introduce defini-
tions of pattern instance and pattern-density below.

DEFINITION 7 (SUBGRAPH ISOMORPHISM). A graph G(V ,

E) is subgraph isomorphic to a pattern Ψ(VΨ, EΨ) if there exists

an injection φ:VΨ → V , such that for all v, v′ ∈ VΨ, if (v, v′) ∈
EΨ, then (φ(v), φ(v′)) ∈ E.

DEFINITION 8 (PATTERN INSTANCE). Given a graph G(V ,

E) and a pattern Ψ(VΨ, EΨ), a subgraph S(VS , ES) ⊆ G is a

pattern instance of Ψ, if S is isomorphic to Ψ.

DEFINITION 9 (PATTERN-DEGREE). Given a graph G(V,E)
and a pattern Ψ, the pattern-degree of a vertex v, or degG(v,Ψ),
is the number of pattern instances of Ψ containing v.

Clearly, G is subgraph isomorphic to Ψ iff it has a subgraph
S(VS , ES) that is isomorphic to Ψ. Note that S may not be a
vertex-induced subgraph, although we note that our algorithms can
be easily adapted for the vertex-induced case. Due to symmetry,
for a single subgraph S of G, there may be multiple mappings wit-
nessing that Ψ is isomorphic to S, which are automorphisms, but
in this case we do not distinguish between different automorphisms
of S and instead count instances based on the edge set.

DEFINITION 10 (PATTERN-DENSITY). Given a graph G(V,
E) and a pattern Ψ(VΨ, EΨ), the pattern-density of G w.r.t. Ψ

is ρ(G,Ψ) = µ(G,Ψ)
|V |

, where µ(G,Ψ) is the number of pattern

instances of Ψ in G.

PROBLEM 2 (PDS PROBLEM). Given a graph G(V,E) and

a pattern Ψ(VΨ, EΨ), return the subgraph D of G(V,E), whose

pattern-density ρ(D,Ψ) is the highest.

For example, consider the graph in Figure 6(a) and let Ψ be the
diamond pattern (Figure 1(b)). Then, the subgraph of {A,D,E, F}
is the densest subgraph, which contains three pattern instances (Fig-
ure 6(c)) and has the highest pattern-density.

7.2 Algorithms for PDS Problem
Approximation algorithms. To compute the approximate PDS’s,
we can directly adapt algorithm PeelApp by replacing the steps
of computing clique instances (clique-degrees) by pattern instances
(pattern-degrees). The correctness is guaranteed by Lemma 10.
Similarly, IncApp and CoreApp can be adapted.
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LEMMA 10. Given a graph G and a pattern Ψ(VΨ, EΨ), the

subgraph S∗ returned by PeelApp is a 1
|VΨ|

-approximation solu-

tion to the PDS problem w.r.t. pattern-density for pattern Ψ.

PROOF SKETCH. We can prove the lemma by generalizing Lem-
ma 8 and Theorem 1 for supporting an arbitrary pattern.

Exact algorithms. The algorithm Exact in Section 4.1 cannot be
trivially extended for computing the exact PDS’s since it relies on
(h–1)-cliques. Nevertheless, we can adapt the exact CDS algorith-
m in [65], which follows the framework of Exact but introduces
a different flow network construction method, for computing the
exact PDS’s by replacing the steps of computing clique instances
(clique-degrees) by pattern instances (pattern-degrees). We denote
this algorithm by PExact, and its pseudocodes are presented in
the technical report [27]. Theorem 2 shows its correctness.

THEOREM 2. Given a graph G and a pattern Ψ(VΨ, EΨ), the

algorithm PExact correctly finds the PDS of G w.r.t. pattern-

density of Ψ.

PROOF. Please refer to the technical report [27].

Our core-based techniques can be used for improving PExact.
Specifically, we adopt the k-pattern-core in Section 5.4 and use
the three optimization techniques in Section 6.1. In addition, we
propose a new optimization strategy, which relies on the following
key observation: for a general pattern Ψ, different pattern instances
may share the same set of vertices, but PExact creates a node for
each of them when building the flow network. For example, con-
sider the graph in Figure 6(a). If the pattern is a diamond, then the
three pattern instances in Figure 6(c) share the same set of vertices.

Algorithm 7: construct+(G, Ψ, α).

Input: G(V,E), Ψ(VΨ, EΨ), α;
Output: The flow network F(VF , EF );

1 Λ← all the pattern instances of Ψ in G;

2 Λ′={g1, g2, · · · , g|Λ′|}← group the pattern instances in Λ;

3 VF ← {s} ∪ V ∪ Λ′ ∪ {t};
4 ∀v ∈ V , add an edge s→v with capacity degG(v,Ψ);
5 ∀v ∈ V , add an edge v→t with capacity α|VΨ|;
6 ∀v ∈ V , if it appears in a group g ∈ Λ′, add an edge v→g with

capacity |g|;
7 ∀g ∈ Λ′, if it contains a vertex v, add an edge g→v with capacity
|g|(|VΨ| − 1);

8 return F(VF , EF );

Based on the observation above, we propose a new flow net-
work construction method construct+, by grouping nodes of
pattern instances having same set of vertices. Algorithm 7 shows
construct+. First, a set Λ′={g1, g2, · · · , g|Λ′|} is collected,
where each gi denotes a group of pattern instances sharing the same
set of vertices. Second, for each vertex v ∈ V , we set the capacities
of edges (s, v) and (v, t) similarly with that in PExact. Third, for
each vertex v ∈ V , if it appears in a group g ∈ Λ′, the capacity of
edge (v, g) is set to |g|; for each group g ∈ Λ′, the capacity of edge
(g, v) is set to |g|(|VΨ|−1). Here, we define the capacties based on
the intuition that the densest subgraph D is obtained by computing
the minimum st-cut (S, T ), and vertices of D must be in one par-
tition S. This implies that nodes of all the pattern instances in D
should be in S, and thus we can accumulate their capacities by us-
ing the term |g| when computing the maximum flow from S to T .
Note that if Ψ is a clique, then |g|=1. The correctness is stated by
Lemma 11. We illustrate construct+ by Example 6. We denote
the above core-based exact PDS algorithm by CorePExact.

LEMMA 11. Given a graph G, a pattern Ψ(VΨ, EΨ), the flow

networks built by PExact (lines 5-12) and construct+ have

the same capacity for their minimum st-cut.
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Figure 6: Illustrating the flow network in CorePExact.

PROOF. Please refer to the technical report [27].

EXAMPLE 6. Let Ψ be the diamond pattern. The graph in Fig-
ure 6(a) has 4 pattern instances, which are grouped into 2 groups
as shown in Figures 6(b) and 6(c). Clearly, we can locate the PDS
in (1, Ψ)-core, in which the vertex set is {A,B, · · · , F} and Λ′ =
{g1, g2}. To build F(VF , EF ), we first collect the set VF , then
create 10 nodes, and finally add edges. For example, for group g2,
we link it to all its vertices with capacities |g2|(|VΨ|–1)=9 and their
reversed edges are with capacities 3. Figure 6(d) shows F .

Remark. CorePExact relies on the core decomposition. For
some special patterns such as stars and loops, the core decompo-
sition algorithm in Algorithm 3 can be performed faster by opti-
mizing the steps of computing pattern-degrees and decreasing the
vertices’ pattern-degrees. For details, please refer to the technical
report [27]. For general patterns, we use the state-of-the-art pattern
enumeration algorithm [53] for computing the pattern-degrees.

8. EXPERIMENTS
We have performed experiments on ten real graphs 2 (see Ta-

ble 2). These graphs cover various domains, such as biological net-
works (e.g., Yeast), collaboration networks (e.g., Ca-HepTh), au-
tonomous system graphs (e.g., As-Caida), bibliographical graphs
(e.g., DBLP), web graphs (e.g., UK-2002), citation networks (e.g.,
Cit-Patents), social networks (e.g., Friendster), etc.

Table 2: Datasets used in our experiments.
Graph Name Vertices Edges

Real small graphs

(all algo.)

Yeast 1,116 2,148

Netscience 1,589 2,742

As-733 1,486 3,172

Ca-HepTh 9,877 25,998

As-Caida 26,475 106,762

Real large graphs

(approx. algo.)

DBLP 425,957 1,049,866

Cit-Patents 3,774,768 16,518,948

Friendster 20,145,325 106,570,765

Enwiki-2017 5,409,498 122,008,994

UK-2002 18,520,486 298,113,762

Synthetic

random graphs

SSCA 100,000 3,405,676

ER 100,000 4,837,534

R-MAT 100,000 2,571,986

Besides, as shown in Table 2, we have used three synthetic ran-
dom graphs (SSCA, ER, and R-MAT) generated by GTgraph 3.
These three graphs follow three representative distributions: SSCA

2The datasets are: Yeast (https://dip.doe-mbi.
ucla.edu/dip/Stat.cgi); Netscience (http:
//www-personal.umich.edu/˜mejn/netdata/);
DBLP (http://dblp.uni-trier.de/xml/); and Enwiki-
2017 and UK-2002 (http://law.di.unimi.it/). Others
are found at https://snap.stanford.edu/data/.
3GTgraph random graph generator: http://www.cse.psu.
edu/˜kxm85/software/GTgraph/
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is made by random-sized cliques, ER follows the random distribu-
tion, and R-MAT follows the power-law distribution. Note that for
SSCA and R-MAT, we set default parameters of their generators;
for ER, we set the probability of an edge between any pair of ver-
tices to 0.0005, which is also the chance that an edge exists in the
real graph Cap-HepTh. A more detailed analysis of the characteris-
tics of these datasets is in the technical report [27], which we omit
here due to lack of space.

We considered two groups of patterns: (1) h-cliques (with h ∈
[2, 6]); and (2) seven other patterns (Figure 7) studied in [70, 46,
45], each of which is associated with an ID (e.g., 4 = diamond).

2-star (*)

triangle (3-clique)

c3-star diamond (*)

edge (2-clique) 4-clique

2-triangle3-star (*)

1 2 3 4 5 6
5-clique

7

basket

6-clique

3-triangle

Cliques

Other 
patterns

2-star (*)

triangle (3-clique)

c3-star diamond (*)

edge (2-clique) 4-clique

2-triangle3-star (*)

1 2 3 4 5 6
5-clique

7

basket

6-clique

3-triangle

Cliques

Other 
patterns

2-star (*) c3-star diamond (*) 2-triangle3-star (*)

1 2 3 4 5 6 7

basket3-triangle

Figure 7: Patterns used in evaluation of PDS.

For CDS problem, we tested 2 exact algorithms (Exact and
CoreExact) and 5 approximation algorithms (Nucleus [59],
EMcore [13], PeelApp, IncApp, and CoreApp). Nucleus

is applied for decomposing the (k, Ψ)-core where Ψ is an h-clique.
For fair comparison, we implement the the faster nucleus decom-
position algorithm AND [59] on a single core. We also adap-
t EMcore such that it works in main memory and stops when the
kmax-core is computed. For PDS problem, we tested both exact al-
gorithms (PExact, CorePExact) and approximation algorithms
(PeelApp, IncApp, CoreApp). For special patterns marked ∗
in Figure 7, we have implemented optimizations discussed in the
technical report [27], for all algorithms. Note that CoreExact,
IncApp, CoreApp, and CorePExact are our core-based ap-
proaches. All these solutions are implemented in Java, and execut-
ed on a machine having an Intel(R) Xeon(R) 3.40GHz processor,
16 cores, and 125GB of memory, with Ubuntu installed.

8.1 DSD for Edge­ and h­Clique­Densities
1 Exact algorithms. Figures 8(a)-(e) show the performance of ex-
act algorithms on five small datasets. (As these solutions cannot
finish in a reasonable time on larger datasets, we do not report their
results here.) We see that the time costs of all the algorithms in-
crease with the h-clique size. Moreover, CoreExact is at least
4.5× and up to four orders of magnitude faster than the existing
algorithm Exact 4. This is because CoreExact employs the k-
clique-cores, or (k, Ψ)-cores, which not only effectively locate the
CDS in some smaller subgraphs, but also significantly reduce the
flow network sizes in the binary search process. In contrast, the
flow network of Exact is built on the entire graph in each itera-
tion, and the sizes of the flow networks remain unchanged in all the
iterations. Hence, CoreExact is faster than Exact.

We now investigate how the flow network size (number of nodes)
changes in the first six iterations of CoreExact, on Ca-HepTh
and As-Caida (Figure 9). In the x-axis, “–1” denotes that the flow
network is constructed for the entire graph G, instead of a subgraph
located by the (k, Ψ)-cores (Section 4.1); “0” means that the flow
network is built on the subgraph located by the clique-cores. The
(k, Ψ)-cores are indeed effective for locating the CDS, as it greatly
prunes vertices and clique instances. The flow networks shrink, as
the number of iterations increases. After an iteration of the bina-
ry search is completed, a tighter lower bound of ρopt is obtained,
which can then be used to locate the CDS in a smaller subgraph
with a larger core number, resulting in a smaller flow network. For
example, for the triangle on the Ca-HepTh dataset, over 95% of the
nodes in the flow network is pruned after six iterations. As the flow
network is smaller, the minimum st-cut can be computed faster,

4For exact algorithms, bars touching the upper boundaries mean
that the corresponding algorithms cannot finish within 5 days.
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(a) Ca-HepTh (b) As-Caida

Figure 9: Flow network sizes in CoreExact.

thus yielding a better performance. As the clique size (i.e., h) in-
creases, the proportion of cliques instances in the densest subgraph
becomes larger, so the degree of pruning gets smaller.

(a) As-733 (b) Ca-HepTh

Figure 10: The effect of pruning criteria in CoreExact.

Next, we evaluate the individual effect of the three pruning cri-
teria in CoreExact. We create three variants of CoreExact,
namely P1, P2, and P3, which only include Pruning1, Pruning2,
and Pruning3 respectively, while other steps are the same as those
of CoreExact. Our experimental results (Figure 10) confirm that
each of the pruning strategies makes a contribution to the efficiency
of CoreApp. Most of the savings come from Pruning1; however,
while the contribution of other pruning strategies is small on the
As-733 and Ca-HepTh, Pruning2 and Pruning3 still make a non-
trivial contribution on Ca-HepTh.

Finally, we examine the percentage of time cost of core decom-
position in CoreExact. As shown in Table 3, the percentage
is small and decreases with the h-clique size. Besides, cores are
effective for locating the CDS in some small subgraphs. Thus,
CoreExact achieves high efficiency, while incurring negligible
overhead from core decomposition.

Table 3: % of time cost of core decomposition.
Dataset edge triangle 4-clique 5-clique 6-clique

As-733 57.14% 8.28% 0.31% 0.09% 0.04%

Ca-HepTh 69.74% 6.01% 2.32% 0.87% 0.65%

2 Approximation algorithms. We next report the efficiency results
of approximation solutions on the five largest datasets. From Fig-
ures 8(f)-(j), we observe that core-based approximation algorithms
(IncApp and CoreApp) are consistently faster than Nucleus

and PeelApp 5. This implies that for decomposing cores, our
algorithm (Algorithm 3) which is almost the same as IncApp is
faster than the nucleus decomposition algorithm. The average run-
ning time of IncApp is only 90% of that of PeelApp. Both
algorithms iteratively remove vertices from the graph G. Partic-
ularly, PeelApp computes the density after removing each vertex,
and only stops after G has no more vertices. However, IncApp
does not compute the density, and stops after the (kmax, Ψ)-core
is discovered. CoreApp performs the best, as it finds the (kmax,
Ψ)-core in a top-down manner, and skips the computation of cores
with smaller clique-core numbers. In our experiments, CoreApp
is up to three and two orders of magnitude faster than Nucleus

and PeelApp respectively.

5For approximation algorithms, bars touching the upper boundaries
mean that the corresponding algorithms cannot finish within 2 days.
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(a) Yeast (exact) (b) Netscience (exact) (c) As-733 (exact) (d) Ca-HepTh (exact) (e) As-Caida (exact)

(f) DBLP (app.) (g) Cit-Patents (app.) (h) Friendster (app.) (i) Enwiki-2017 (app.) (j) UK-2002 (app.)

Figure 8: Efficiency of exact and approximation CDS algorithms.

(a) Netscience (b) As-Caida

Figure 11: Approximation ratio.

As the clique size (h) increases, the speedup of CoreApp over
PeelApp decreases, because the proportion of clique instances in
the densest subgraph becomes larger, increasing the time cost of
computing (kmax, Ψ)-core. Meanwhile, the running time generally
grows as the clique size (h) increases, except for the Cit-Patents
dataset. This is because on Cit-Patents, the numbers of 5-cliques
and 6-cliques are less than the number of 4-cliques. In addition,
we compare CoreApp with EMcore for computing approximate
EDS’s on five largest datasets. As reported in Table 4, EMcore is
slower than CoreApp, because it differs with CoreApp on four
aspects as discussed in Section 6.2.

Table 4: Efficiency of EMcore and CoreApp (seconds).
Algo. DBLP CitPatents FriendSter Enwiki-2017 UK-2002

EMcore 0.091 1.132 3.143 8.543 7.543

CoreApp 0.077 1.021 2.986 8.139 5.825

We next report the theoretical ratio T (i.e., 1
|VΨ|

) and actual ap-

proximation ratios R of approximation methods. Since Nucleus,
IncApp and CoreApp return the same (kmax, Ψ)-core, their R
values are the same, so we only show results for CoreApp. As
shown in Figure 11, R is often larger than T . Although CoreApp
is slightly worse than PeelApp on 6/10 instances (the average ra-
tio of CoreApp is 0.956 times that of PeelApp), they have the
same theoretical guarantee and their actual ratios are close to 1.0 in
most cases, so CoreApp produces high-quality results in practice.

In addition, we compare the efficiency of core-based exact and
approximation approaches on two datasets. As shown in Figure 12,
CoreApp is much faster than CoreExact. The reason is that
CoreExact relies on not only core decomposition, but also com-
puting the minimum st-cut from flow networks using binary search,
whereas CoreApp just computes the (kmax, Ψ)-core directly.
Remark. For small-to-moderate-sized graphs (e.g., Ca-HepTh),
CoreExact is the best choice, as it computes an exact result in a
reasonable time. For larger graphs (e.g., UK-2002), CoreApp is a
much better option since it achieves high accuracy and efficiency.
3 Random graphs. As depicted in Figures 13 and 14, for SSCA
and R-MAT, the performance of our proposed solution is general-
ly satisfactory. For example, the running time of CoreApp is 20
(resp., 201) times faster than PeelApp in SSCA (resp., R-MAT)

(a) Ca-HepTh (b) As-Caida

Figure 12: CoreExact and CoreApp.

when Ψ is the triangle. For ER, the degree values of vertices are
almost the same, and the kmax-core contains 96.8% of the vertices
in the graph. This affects the pruning effectiveness of CoreApp,
rendering a lower performance gain. All in all, our core-based al-
gorithms favor real-world graphs.
4 Densities of CDS’s. We next show the clique-densities of CD-
S’s for different h-cliques (h ≥ 3). Specifically, for each dataset,
we first use CoreExact to compute its exact CDS’s for different
cliques, then compute the h-clique-densities of its EDS, and final-
ly report the h-clique-densities of its EDS and CDS’s in Table 5.
Due to the space limitation, we only show the results on four s-
mall datasets (where S-DBLP is a sub-graph of the DBLP dataset
used in Section 8.2). We remark that for Yeast dataset, the EDS
does not contain any 4, 5, 6-clique, so its h-clique-density is 0.0
(h≥4). As we can see, for S-DBLP and Netscience, their CDS’s
are exactly the same as EDS. In fact, they are the maximal clique in
the graph, which confirms the conclusion that CDS’s can be used
for identifying large near-cliques [65]. For Yeast and As-733, the
clique-density values of CDS’s are higher than those on the EDS.

8.2 DSD for Pattern­Densities
Next, we present the results for general patterns in Figure 7. For

lack of space, we only report results on a subset of datasets. In
addition, we perform case studies on real datasets for these patterns.
1 Exact algorithms. In Figure 15, we present the efficiency re-
sults of exact algorithms on two small datasets As-733 and Ca-
HepTh. The bars touching the top of the figures mean that the cor-
responding algorithms cannot find densest subgraphs within 3 days,
at which point we time them out. We can see that CorePExact is
up to four orders of magnitude faster than PExact. For different
patterns, their running times vary, because the number of pattern
instances in the underlying graph for each pattern can be very d-
ifferent. For any two patterns Ψ1 and Ψ2 which are not “special
patterns” (e.g., star and loop), we observe that if |VΨ1

|=|VΨ2
| and

Ψ1 ⊆ Ψ2, then it takes longer to find the densest subgraph w.r.t.
Ψ1 than w.r.t. Ψ2. This is because the number of pattern instances
of Ψ1 is more than that of Ψ2. For example, c3-star is a subgraph
of 2-triangle (with 4 vertices) and it takes more time to find the
densest subgraph w.r.t. c3-star than 2-triangle.
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(a) SSCA (b) ER (c) R-MAT

Figure 13: Efficiency of exact CDS algorithms on random graphs.

(a) SSCA (b) ER (c) R-MAT

Figure 14: Efficiency of approximation CDS algorithms on random graphs.

(a) As-733 (b) Ca-HepTh

Figure 15: Efficiency of exact PDS algorithms.

(a) DBLP (b) Cit-Patents

Figure 16: Efficiency of approx. PDS algorithms.

Table 5: The edge-densities and clique-densities (pattern-densities) of CDS’s (PDS’s).

Dataset
edge triangle 4-clique 5-clique 6-clique 2-star diamond

ρopt ρopt ρ(EDS,Ψ) ρopt ρ(EDS,Ψ) ρopt ρ(EDS,Ψ) ρopt ρ(EDS,Ψ) ρopt ρ(EDS,Ψ) ρopt ρ(EDS,Ψ)

S-DBLP 6 22 22 55 55 99 99 132 132 73.5 66 165 165

Yeast 3.13 2.11 0.467 0.67 0.0 0.0 0.0 0.0 0.0 111.3 18.13 20 19.2

Netscience 9.50 57.25 57.25 242.3 242.3 775.2 775.2 1938 1938 171 171 726.8 726.8

As-733 8.19 31.43 31.35 68.67 67.94 92.78 90.23 79.37 75.13 826.3 153.8 3376 437.7
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Figure 17: The densest subgraphs found in DBLP network,

based on triangle and 2-star patterns.

2 Approximation algorithms. As shown in Figure 16, the running
time of an approximation algorithm increases with the graph size
in general. This is because computing the cores is more expensive
for a larger graph. Again, CoreApp performs the fastest, and it is
up to two orders of magnitude faster than PeelApp. For special
patterns (star and diamond), we use optimized algorithms (details
are in [27]) for core decomposition. Hence, they need less time cost
than other more complicated patterns (e.g., 2-triangle).
3 Case studies. We use two real graphs, namely S-DBLP and Yeast.
S-DBLP (|V |=478, |E|=1,086) is a sub-graph of the DBLP dataset.
It is the co-authorship network of authors who published at least
two DB/DM papers between 2013 and 2015. We consider two 3-
vertex patterns, i.e., triangle and 2-star (Figure 7). We use the
exact algorithm to compute their PDS’s, as depicted in Figure 17.
In a triangle pattern, every pair of vertices is connected, so the PDS
tends to be a near-clique [65]. The researchers involved in this PDS
possess a close collaboration relationship: any two researchers have
published papers together. The PDS for 2-star is quite different
from that of triangle. Particularly, researchers in the “central” part
of the PDS formed by 2-star tend to be group directors or senior
researchers (e.g., Profs. Jiawei Han and Chengxiang Zhai), who
are linked to their former students or postdocs. For this PDS, over
half of the researchers worked in Prof. Han’s lab before. Similarly,
for Yeast, different PDS’s can capture different semantics [27].
4 Densities of PDS’s. In this experiment, we analyze the pattern-
densities of PDS’s for different patterns. Again, for each dataset,

we first compute its exact EDS and PDS’s for all patterns, and then
report the pattern-densities of its EDS and PDS’s in Table 5. Due to
the space limitation, we only show results of 2-star and diamond.
As we can observe, for most of the datasets, the pattern-density
values of PDS’s are higher than those on the EDS.

9. CONCLUSIONS
The densest subgraph discovery (DSD) problem is fundamen-

tal to many graph applications. In this paper, we develop new al-
gorithms to discover edge- and h-clique-based densest subgraphs,
which are well studied in the literature. Our main observation is
that densest subgraphs can be derived efficiently from k-cores. We
extend k-core to (k, Ψ)-core by incorporating an h-clique Ψ. Based
on (k, Ψ)-cores, we develop core-based exact and approximation
solutions to the DSD problem. Moreover, we generalize the edge-
and h-clique-density to pattern-density and show that our solutions
can be easily adapted for finding pattern-density-based densest sub-
graphs. Extensive experiments show that our exact (resp., approx-
imation) “core-based solutions” outperform existing algorithms by
up to four orders (resp., two orders) of magnitude.

In the future, we will attempt to derive even tighter bounds for
densities of (k, Ψ)-cores. We will also extend our core-based algo-
rithms for finding densest subgraphs with size constraints. Anoth-
er interesting research direction is to exploit our core-based tech-
niques to speed up the randomized approximation algorithm in [49].
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