
Efficient Algorithms for Finding Maximum Matching in Graphs

ZVI GALIL

Department of Computer Science, Columbia University, New York, N. Y., 10027 and Tel-Aviv University,

Tel-Aviv, Israel

This paper surveys the techniques used for designing the most efficient algorithms for
finding a maximum cardinality or weighted matching in (general or bipartite) graphs. It

also lists some open problems concerning possible improvements in existing algorithms

and the existence of fast parallel algorithms for these problems.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems-computation on discrete

structures; G.2.2 [Discrete Mathematics]: Graph Theory-graph algorithms

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Algorithmic tools, the asexual case, assignment

problem, augmenting path, blossoms, data structures, d-heap, duality, ET, generalized

priority queue, Main Theorem of Botany, matching, monsters, moonlighting, polygamy,

primal-dual method, shmathematics, shrink, warm-up

INTRODUCTION

There are no recipes for designing efficient
algorithms. This is somewhat unfortunate
from the point of view of applications: Any
time we have to design an algorithm, we
may have to start (almost) from scratch.
However, it is fortunate from the point of
view of researchers: It is unlikely that we
are going to run out of problems or chal-
lenges.

Given a problem, we want to find an
algorithm that solves it efficiently. There
are three stages in designing such algo-
rithms:

(a) Shmathematics. Initially, we use some
simple mathematical arguments to charac-
terize the solution. This leads to a simple
algorithm that is usually not very efficient.

(b) Algorithmic Took. Next, we try to
apply a number of algorithmic tools to
speed up the algorithm. Examples of such

tools are “divide and conquer” and dynamic
programming [Aho et al. 19741. Alterna-
tively, we may try to find a way to reduce
the number of steps in the original algo-
rithm by finding a better way to organize
the information.

(c) Data Structures. Sometimes we can
speed up an algorithm by using an efficient
data structure that supports the primitive
operations used by the algorithm. We may
even resort to the introduction of monsters:
very complicated data structures that bring
about some asymptotic speedup that is
usually meaningful only for very large prob-
lem size. (For a real-life monster see Galil
[1980].)

In these three stages we sometimes use a
known technique: a certain result in math-
ematics, say, or a known algorithmic tool
or data structure. In the more interesting
problems we need to invent new techniques

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1986 ACM 0360-0300/86/0300-0023 $00.75

Computing Surveys, Vol. 18, No. 1, March 1986

24 . Zvi Galil

CONTENTS

INTRODUCTION

1. THE FOUR PROBLEMS

2. AN AUGMENTING PATH

3. PROBLEM 1: MAX CARDINALITY

MATCHING IN BIPARTITE GRAPHS

4. PROBLEM 2: MAX CARDINALITY

MATCHING IN GENERAL GRAPHS

5. SOME OBSERVATIONS ON DATA

STRUCTURES

6. PROBLEM 3: MAX WEIGHTED MATCHING

IN BIPARTITE GRAPHS, OR A WARM-UP

FOR PROBLEM 4

7. PROBLEM 4: MAX WEIGHTED MATCHING

IN GENERAL GRAPHS

8. CONCLUSION

9. VERY RECENT PROGRESS

ACKNOWLEDGMENTS

REFERENCES

or refine existing ones for our purposes. We
may need to prove new shmathematics, find
an appropriate way or invent new ones, or
use algorithmic tools in a new way.

A word of caution about shmathematics.
In many cases it is not deep; however, that
does not mean that its results are trivial.
What counts in our case is not how deep or
elegant a theorem is, but whether it is use-
ful for improving our algorithm.

Usually, we use all three stages of the
design process in the order shown above,
but this is not always the case. We do not
always use all three. Once we have a quite
efficient algorithm, we may reuse any of
the three and not necessarily in this order.
In particular, we may use shmathematics
again and again: first to characterize the
solution, and then to analyze the running
time by justifying an algorithmic tool or by
proving the properties of certain data struc-
tures.

In this paper we exemplify the design of
efficient algorithms by surveying algo-
rithms for the four closely related problems
of finding a maximum cardinality or
weighted matching in general or bipartite
graphs. Mathematically, these are all spe-
cial cases of the problem of weighted
matching in general graphs. However, we

consider them in increasing order of diffi-
culty because the easier the problem, the
faster or simpler its solution.

1. THE FOUR PROBLEMS

The input consists of an undirected graph
G=(V,E)with]V]=nand]E]=m.
The vertices represent persons, and each
edge represents the possibility that its end-
points marry. A matching M is a subset of
the edges such that no two edges in M share
a vertex; that is, we do not allow polygamy.

Problem 1: Max Cardinality Matching in
Bipartite Graphs. The vertices are parti-
tioned into boys and girls, and an edge can
only join a boy and a girl. We look for a
matching with the maximum cardinality.
We can make Problem 1 harder in two
different ways, resulting in Problems 2
and 3.

Problem 2: Max Cardinality Matching in
General Graphs. This is the asexual case,
where an edge joins two persons.

Problem 3: Max Weighted Matching in
Bipartite Graphs. Here we still have ver-
tices representing boys and girls, but each
edge (i, j) has a weight wij associated with
it. Our goal is to find a matching with the
maximum total weight. This is the well-
known assignment problem of assigning
people to jobs (disallowing moonlighting)
and maximizing the profit.

Problem 4: Max Weighted Matching in
General Graph-s. This problem is obtained
from Problem 1 by making it harder in both
ways.

The four combinatorial problems are im-
portant and interesting in themselves.
Moreover, many combinatorial problems
can be reduced to one of the above-de-
scribed four or can be solved by using, in
turn, the solutions to them as subroutines.

It was not clear initially how to solve
Problems 2-4 in polynomial time. The first
polynomial-time algorithm for Problem 3
is due to Kuhn [19551. The first polyno-
mial-time algorithms for Problems 2 and 4
are due to Edmonds. The later improved
algorithms are based on Edmond’s monu-
mental work (Edmonds 1965a, 1965b).

Computing Surveys, Vol. 18, No. 1, March 1966

Efficient Algorithms f(

s s 0

Figure 1. An edge (i, j) is considered and a blossom
B is generated. Edge (e, h) has not been considered.
Wiggly edges are matched.

2. AN AUGMENTING PATH

An important notion for all four problems
is that of an augmenting path. We solve
each one of them in stages, and in each
stage we have a matching M. Initially, M’is
empty. A vertex i is matched if there is an
edge (i, j) in M and single otherwise. An
edge is matched if it is in M and unmatched
otherwise. An alternating path (with re-
spect to M) is a simple path, such that
every other edge on it is matched. An aug-
menting path (with respect to M) is an
alternating path between two single ver-
tices. It must be of odd length, and in the
bipartite case its two endpoints must be of
different sex.

Consider Figure 1. The wiggly edges are
the matched edges. The path a, a, r, b, c, d,
i, j, e, h is an augmenting path. Any contig-
uous part of this path (e.g., b, c, d, i) is an
alternating path.

The following theorem is due to Berge
[19571 and Norman and Rabin [19591.

Theorem 1

The matching M has maximum cardinality
if and only if there is no augmenting path
with respect to M.

or Maximum Matching in Graphs l 25

One part of the theorem is trivial. If there
is an augmenting path, then by changing
the status of the edges on the path
(matched edges become unmatched, and
vice versa) we increase the size of M by 1.
We call this operation augmenting the
matching M. The other part of the theorem
is not trivial but is quite easy: We assume
that M is not a maximum matching and
show the existence of an augmenting path.
Let M ’ be a matching of cardinality larger
than M. Consider M @ M ‘, the set of edges
in M or M’ but not in both. Hence M 03
M ’ consists of alternating paths and cycles
(with respect to both M and M’). At least
one of them must be an augmenting path
with respect to M. (In all other types of
alternating paths or cycles the number of
edges from M is at least as large as the
number of edges from M ‘.)

3. PROBLEM 1: MAX CARDINALITY
MATCHING IN BIPARTITE GRAPHS

Theorem 1 gives an immediate algorithm.
It consists of O(n) (at most n/2) stages. In
each stage a search for an augmenting path
is conducted. If any augmenting paths ex-
ist, the search finds one and the matching
is augmented. Since the search takes O(m)
time, the algorithm runs in O(mn) time.

The search is conducted as follows. Ver-
tices are labeled successively, boys with an
S label and girls with a T label. A labeled
boy (girl) is referred to as an S-boy (a
T-girl). After all labels from previous stages
are cleaned, all single boys are labeled with
S. We then apply two labeling rules itera-
tively:

(Rl) If (i, j) is not matched and i is an
S-boy and j a free (unlabeled) girl,
then label j by T; and

(R2) If (i, j) is matched and j is a T-girl
and i a free boy, then label i by S.

The label also contains the vertex from
which the label has arrived. (In the case of
an S label this information is redundant.)
The search continues until the search
either succeeds or fails. The search suc-
ceeds if a single girl is labeled by T. The
search fails if we cannot continue anymore.
The following lemma can be proved by
induction.

Computing Surveys, Vol. 18, No. 1, March 1986

26 l Zvi Galil

Lemma 1

(a) If a boy i (a girl j) is labeled by S (T),
then there is an even- (odd-) length
alternating path from a single boy to i

(A, and
(6) if the search fails and there is an even-

(odd-) length alternating path from a
single boy to boy i (girl j), then i (j) is
labeled by S (T).

By Lemma 1, if the search fails, there is
no augmenting path and the algorithm (not
only the stage) terminates. If a single girl j
is labeled by T, we have actually found an
augmenting path to j. The path can be
reconstructed by using the labels. The
search can be easily implemented in time
O(m) using any traversal of the graph that
starts with the single boys. The labels S
and T are also called even and odd or outer
and inner in the literature.

The best algorithm for Problem 1 is by
Hopcroft and Karp [1973]. They discovered
a way to find many augmenting paths in
one traversal of the graph. Their algorithm
is divided into phases. In each phase, a
maximal set of vertex disjoint augmenting
paths of shortest length is found and used
to augment the matching. So, a phase may
achieve the possible effect of many stages.

We now describe one phase. We use rules
Rl and R2 as before. Using breadth-first
search, starting from t_he single boys, we
identify the subgraph G of G consisting of
all the vertices and edges that are on some
shortest augmenting path. This subgraph
is layered. In layer 2m (2m + 1) appear all
boys i (girls j) such that the shortest alter-
nating path from a single boy to i (j) is of
length 2m (2m + 1). We finish the construc-
tion of G in one of two ways. Either a single
girl is reached and we complete the last
layer and delete nonsingle girls from it, or
we cannot continue. In the latter case the
algorithm (not only the phase) terminates,
whichis justified by Lemma 1.

In G we find a maximal set of disjoint
augmenting paths using depth-first search.
Every time we reach a single girl, we find
an augmenting path, erase its edges from
G, and start from another single boy. Every
time webacktrack along an edge, we delete
it from G. It is quite easy to see that a phase

takes O(m) time. The importance of the
notion of a phase is explained by the follow-
ing lemma [Hopcroft and Karp 19731.

Lemma 2

The number of phases is at most O(G).

Consequently, Hopcroft and Karp’s al-
gorithm runs in time O(m&).

It is interesting to note that the algo-
rithm (not the time analysis, i.e., not
Lemma 2) was actually known before.
Problem 1 is a special case of the max flow
problem for special networks. (Add a source
and a sink, connect the source to all the
boys and the sink to all the girls, and take
all capacities to be one.) Augmenting paths
correspond to the flow augmenting paths
in network flow, and the O(mn) algorithm
is just the Ford and Fulkerson network flow
algorithm [Ford and Fulkerson 19561 for
these special networks. Similarly, Hopcroft
and Karp’s algorithm is actually Dinic’s
algorithm [Dinic 19701 applied to these spe-
cial networks. This was first observed by
Even and Tarjan [1975] (ET).

4. PROBLEM 2: MAX CARDINALITY
MATCHING IN GENERAL GRAPHS

As for Problem 1, Theorem 1 suggests a
possible algorithm of O(n) stages. In each
stage we look for an augmenting path. This
search is complicated by the existence of
odd-length cycles, which cannot exist in
bipartite graphs. We start by labeling all
single persons S and apply rules Rl and R2
with the following two changes. First, we
replace “boys” or “girls” by “persons.” Sec-
ond, any time Rl is used and j is labeled by
T, R2 is immediately used to label the
spouse of j with S. (Since j was not labeled
before, it must be married and its spouse
must be unlabeled.) We call this rule R12.

The search is conducted by scanning the
S-vertices in turn. Scanning a vertex means
considering in turn all its edges except the
matched edge. (There will be at most one.)
If we scan the S-vertex i and consider the
edge (i, j), there are two cases:

(Cl) j is free; or
(C2) j is an S-vertex.

Computing Surveys, Vol. 18, No. 1, March 1986

Efficient Algorithms for Maximum Matching in Graphs l 27

C2 cannot occur in the bipartite case. The
case in which j is a T-vertex is discarded.

In case Cl we apply R12. In case C2 we
do the following: Backtrack from i and j,
using the labels, to the single persons si and
aj from which i and j got their S labels. If ai
sj, we find an augmenting path from si to
aj and augment the matching. The trouble
begins (or life starts to be interesting) when
Si = Sj.

We next describe Edmonds’ remarkable
work, in which the concept of blossoms is
introduced. Blossoms play a crucial role in
all algorithms for the nonbipartite case
(Problems 2 and 4).

If si = sj = s, let r be the first common
vertex on the paths from i and j to s. It is
easy to see that r is an S-vertex, that the
part of the two paths from i and j to r are
disjoint, and that the parts from r to s are
identical. We have found an odd-length
alternating path from r to itself through
(i, j). We call this cycle B a blossom and r
its base (see Figure 1).

In this case the method of labeling intro-
duced so far might overlook an augmenting
path. For example, Figure 1 shows a possi-
ble labeling. The augmenting path s, a, r, b,
c, d, i, j, e, h, which ‘Lgoes around the
blossom B,” will not be discovered.

Edmonds’ idea (Edmonds 1965a) was
to shrink B: Replace it by a single super-
vertex B and replace the set A of edges
incident with vertices in B by the set A’ =
((B, j)] j 4 B, 3 (i, j) E A]. Note that at
most one member of A’ (incident with r) iz
matched; none are matched if r = s. If G
is the graph obtained from G after such
shrinking, then the shrinking is justified by
the following theorem due to Edmonds
(which may be called the Blossoms Theo-
rem or the Main Theorem of Botany):

Theorem 2

There is an augmenting path in G if *and
only if there is an augmenting path in G.

We do not know of any easy proof for
Theorem 2. We do not discuss the “only if”
part here (see Lawler [1976] or the second
edition of Tarjan [1983]). The “if part: is
obvious. Given an augmenting path in G, it
immediately yields an augmenting path in

G. If the path goes through B, then we do
the following: Replace the matched edge,
say (B, It), with (r, 12); replace the un-
matched edge, say (B, j), with the edge
(i, j), from which (B, j) originated (recall
the set A’ above), followed by the even
alternating path in B from i to r. Such a
path always exists. If i was an S-vertex
when B was formed, we use the labels and
backtrack from i to r. Otherwise, we use the
labels in reverse order around the blossom.
Storing B as a doubly linked list with a
marked base makes this very easy. Note
that, in Figure 1, as soon as the blossom B
is shrunk, the augmenting path can be
found. Note also that not every alternating
path from a vertex to itself is a blossom,
only those discovered by the algorithm (in
case C2).

The search for an augmenting path uses
a queue Q, where new S-vertices are in-
serted. During the search, vertices from Q
are scanned and new blossoms are occa-
sionally generated. A blossom is a recursive
structure because it can be nested. It is
convenient to refer to vertices that do not
belong to any blossom as (degenerate) blos-
soms of size 1. When a new blossom B is
generated from blossoms B1, . . . , Bk, we
call the latter the subblossoms of B. We do
not refer to them as blossoms anymore. As
a result, each vertex in the original graph G
always belongs to one blossom in the cur-
rent graph. The structure of each blossom
B is described by a tree, called the structure
tree of B. In this tree, the root is labeled
with B, and the sons of a node labeled C
are labeled with C1, . . . , Ck if at some time
the blossom C (which is now part of B) was
generated from subblossoms Ci, . . . , Ck.
Thus, the leaves of the structure tree of B
are the vertices that belong to B. The struc-
ture tree is represented by the collection of
the doubly linked lists of the various sub-
blossoms of B.

When a new blossom B is generated, it
is labeled by S and inserted into Q. Its
subblossoms that are still in Q are& deleted
from Q. The search continues (in G).

If the search succeeds (in C2), we find
the augmenting path in the current graph.
Then we use the easy part of Theorem 2
and the structure trees to recursively un-
wind the augmenting path in the original

Computing Surveys, Vol. 18, No. 1, March 1986

28 l Zvi Galil

graph. We next augment the matching,
erase all labels and blossoms, and start a
new stage. Constructing the augmenting
path, augmenting the matching, and eras-
ing the labels take O(n) time. If the search
fails (Q becomes empty), a repeated appli-
cation of Theorem 2 (each time a blossom
is shrunk) and an application of a modified
version of Lemma 1 (in which “boys” and
“girls” are replaced by “persons”) imply
that the current matching is maximum, and
we are done.

A naive implementation [Edmonds
1965a] takes O(n4) (O(n3) per stage). A
more careful implementation takes O(n3)
[Gabow 1976a]: Since the blossoms are dis-
joint, the total size of all structure trees at
any moment is O(n). When we generate a
new blossom, we do not rename the edges;
edges retain their original names. In order
to find out quickly to which blossom a given
vertex belongs, we maintain a membership
array. When B becomes a blossom, we put
the T-vertices into the queue Q; so we later
scan them instead of scanning the new
vertex B. The other vertices of B (the
S-vertices) have already been inserted into
Q, and we do not delete them from Q. When
we consider an edge in C2, we ignore it if
both endpoints are in the same blossom. In
this implementation a stage takes O(n2)
time.

A slightly better bound can be obtained
as follows. If we find the base r of a new
blossom B more carefully, by backtracking
one vertex at a time, once from i and once
from j, marking vertices on the way, we
find the base and construct the blossom in
time O(k), where iz is the number of sub-
blossoms of B. Hence, the total time per
stage devoted to finding bases and con-
structing blossoms is O(n). (Each node in
the structure tree is charged O(l).) Using
the “set union” algorithm to maintain the
sets of vertices in the blossoms for the
membership tests takes O(m&n, n)) per
stage for a total of O(mncu(n, n)), where cx
is the inverse of Ackermann’s function
[Tarjan 19751.

The obvious question that comes to mind
is whether the ideas of the phases can be
realized in the nonbipartite case. Recall
that in one phase we discovered a maximal
set of vertex disjoint augmenting paths of

shortest length. This is important because
Lemma 2 holds for general (not necessarily
bipartite) graphs. Executing a phase in gen-
eral graphs is more complicated than in the
bipartite case because of the existence of
blossoms.

Even and Kariv [1975] showed how to
execute a phase in time min(n2, m log n .
This resulted in an O(min(n2.5, $ m n
log n)) algorithm. A more detailed version
[Kariv 19761 is a strong contender for the
ACM Longest Paper Award. (It will prob-
ably lose only to Slisenko’s real-time pal-
indrome recognizer [Slisenko 19731.)

More recently, a simpler approach was
found by Micali and Vazirani [1980]. In
phase i, i = 0, 1, . . . of the algorithm, a
maximal set of (shortest) augmenting paths
of length L = 2i + 1 is sought as follows:
An odd (even) level of a vertex v is defined
as the length of the shortest odd- (even-)
length alternating path from a single vertex
to v. Both types of level numbers are com-
puted in linear time. Let the sum of a free
(matched) edge be the sum of the even
(odd) levels of its endpoints plus one. A
bridge is an edge of sum L that belongs to
an augmenting path of length L. Every
augmenting path of length L is shown to
contain a bridge. Bridges are identified and
new search techniques applied to find dis-
joint augmenting paths of length L. We do
not give the details here.

The immediate implementation of Micali
and Vazirani’s algorithm takes 0(m&x(m,
n)) time. The authors claimed that the par-
ticular case of the disjoint set union used
by their algorithm can be shown to require
only linear time; as a result their algorithm
runs in time O(m&). Quite recently, Ga-
bow and Tarjan [19831 found a linear-time
algorithm for some special cases of the dis-
joint set union. One of these special cases
is the one needed in Problem 2. (As a result,
also the O(mna(m, n)) algorithm men-
tioned above can be implemented in time
Oh&)

5. SOME OBSERVATIONS ON DATA

STRUCTURES

The most efficient algorithms for Problems
3 and 4 use some observations on data
structures that we now review. A priority

Computing Surveys, Vol. 18, No. 1, March 1986

Efficient Algorithms for Maximum Matching in Graphs l 29

queue (p.q.) is an abstract data structure
consisting of a collection of elements, each
with an associated real-valued priority.
Three operations are possible on a p.q.:

1. insert an element i with priority pi;
2. delete an element;
3. find an element with the minimal priority.

An implementation of a p.q. is said to be
efficient if each operation takes O(log n)
time, where n is the number of elements in
the p.q. Many efficient implementations of
p.q.s are known, for example, 2-3 trees
[Aho et al. 1974; Knuth 19731.

3’.

4’.

I

it:
7’.

8’.

find an actiue element with the minimal
priority;
decrease the priorities of all the active ele-
ments by some real number 6;
generate a new empty group (active or not);
delete a group (active or not);
change the status of a group from active to
nonactive, or vice versa;
split a group according to an element in it.

In p.q.s elements have fixed priorities.
What happens if we allow the priority
of the elements to change? Obviously, an
additional operation that changes the
priority of one element can be easily imple-
mented in time O(log n). On the other hand,
it is not natural to allow arbitrary changes
in an arbitrary subset of the elements in
one operation simply because we have to
specify all these changes.

We consider two generalized types of
p.q.s, which we denote by p.q., and p.q.,.
The first simply allows a uniform change
in the priorities of ah! the elements cur-
rently in it. The second allows a uniform
change in the priorities of an easily speci-
fied subset of the elements.

More precisely, p.q., enables the follow-
ing additional operation:

4. decrease the priorities of all the current ele-
ments by some real number 6.

A version of p.q., was used by Tarjan
[1977].

To define p.q.2, we first need some as-
sumptions. We assume that the elements
belong to a totally ordered set and that they
are partitioned into groups. Every group
can be either active or nonactive. An ele-
ment is active if its group is active. By
splitting a group according to an element e,
we mean creating two groups from all the
elements in the group greater (not greater)
than e. Note that, unlike the usual split
operation, we split a group according to an
element and not according to its priority.

The operations possible for p.q., are

1’. insert an element i with priority pi into one
of the groups;

2’. delete an element;

It may seem at first that one may need
up to n steps to update all the priorities
as a result of one change. However, it is
possible to implement p.q.l and p.q., effi-
ciently. In particular, the change of priori-
ties can be achieved implicitly in one step
(see Galil et al. [1986]):

Theorem 3

p.q.l and p.q.2 can be implemented in time
O(log n) per operation.

The implementation of the generalized
p.q.s uses regular p.q.s and a collection of
offsets to handle the change in priorities.

We also make use of Johnson’s d-heap
[Johnson 19771, where d is the number of
sons of internal nodes. (The usual heap is
a 2-heap.) We partition the primitive op-
erations into two types. Type 1 includes
inserting an element and decreasing the
priority of an element, and type 2 includes
deleting an element. Type 1 involves “sift-
ing up” the heap for a cost of O(log,n),
whereas type 2 involves “sifting down” the
heap for a cost of O(d logdn). Consequently,
the following theorem holds.

Theorem 4

Let d = [m/n + 11. A d-heap supports m
operations of type 1 and n operations of type
2 in time O(m logdn).

6. PROBLEM 3: MAX WEIGHTED MATCHING

IN BIPARTITE GRAPHS, OR A WARM-UP
FOR PROBLEM 4

Introducing weights and maximizing the
weight make the problem much harder. One
can show that the following approach
solves Problems 3 and 4. Start with the
empty matching, and in each stage find an
augmenting path with the maximal in-
crease of the weight. One then can show
that after k stages, we have a matching of

Computing Surveys, Vol. 18, No. 1, March 1986

30 l Zvi Galil

maximum weight among matchings of size
k (e.g., see Tarjan [1983]). In the case of
Problem 3, finding such an augmenting
path is relatively simple, because it can be
easily reduced to solving a single-source
shortest path problem for graphs with non-
negative edge lengths. But finding such an
augmenting path for general graphs is
much harder, so we choose a completely
different approach.

We use duality theory of linear progam-
ming (specifically the primal-dual method)
to derive the algorithm. We need linear
programming for motivation only. Once we
obtain the algorithm (for Problem 3 or 4),
we prove its correctness by a one-line proof,
Therefore, the description below is some-
what sketchy. (See Lawler [1976] or Papa-
dimitriou and Steiglitz [1982] for more
details.)

After defining the problem as a linear
program, we consider the dual problem and
then use complementary slackness to
transform our optimization problem into a
problem of solving a set of inequalities
(constraints). A pair of feasible solutions
for the primal and the dual problems are
both optimal if, for every positive variable
in the one, the corresponding inequality in
the other is satisfied as equality.

In the case of Problem 3, defining the
problem as a linear program is immediate.
We describe it as an integer program and
replace the integrality constraints zij E
(0, 1) by 0 I Xii. Since the matrix of con-
straints is unimodular, we must have an
optimal integral solution.

We will have a primal solution, a match-
ing M, and a dual solution, an assignment
of dual variables ui, Uj (corresponding to
boys i and girls j). For convenience we
define slacks “ii for every edge (i, j): rij =
Ui + Uj - wij. The inequalities “ii 2 0 are
the constraints of the dual problem.
(Whenever we mention rij below we always
assume that (i, j) E E.) By duality, M has
a maximal weight if 6.0-6.2 hold:

6.0 For every i and j; Ui, uj, rij I 0.
6.1 (i, j) is matched * rij = 0.
6.2 BOY i (or girl j) is single =+ Ui = 0 (Uj =

0).

The sufficiency of 6.0-6.2 for optimality
can be proved directly as follows: Assume

Computing Surveys, Vol. 18, No. 1, March 1986

that M, Ui, uj, “ii satisfy 6.0-6.2 and let
N be any matching. Then Cci,j)EN wij 5
&ij)EN (Ui + Uj - Tij) 5 xi Ui + Cj Uj (by
6.0 and the fact that N is a matching), while
CWEM wij = zi ui + & uj (by 6.1 and
6.2 and the fact that M is a matching).
Consequently, M is a maximum weight
matching.

So, we only have to find a matching M
and an assignment of the dual variables
that satisfy 6.0-6.2. We use the primal-
dual method. This method starts with a
simple solution, which violates some of the
constraints. The solution is then modified
in a way that guarantees that the number
of violations is reduced. In our case we start
with M = 0, Ui = maxk,l wk.1 for boys and Uj

= 0 for girls. The initial solution satisfies
6.0 and 6.1, and violates only 6.2. The al-
gorithm makes changes that preserve 6.0
and 6.2 and reduce the number of violations
of 6.2.

The algorithm consists of O(n) stages. In
each stage we look for an augmenting path,
as in the simple algorithm for Problem 1,
except that we use only edges with zero
slack (aij = 0). If the search is successful,
we augment the matching (i.e., change
the primal solution) and start a new stage.
This is progress because one single boy gets
married.

If the search fails, we change the dual
variables as follows. Let 6 = min(&, &),
61 = mini:S-boy Ui, 62 = minis-boy,j:freegid rij.
For an S-boy i we set Ui t ui - 6, and for a
T-girl j we set Uj t Uj + 6. It is easy to see

that 6 > 0 and the change preserves 6.0 and
6.1. Also a1 = ui,, for any single boy i. (Q’S
of all boys had the same initial value, and
in each change of the dual variables, all
single boys had S label and their dual vari-
ables were decreased by the same 6). If 6 =
&, then after the change 6.2 holds, and we
are done. Otherwise, for each edge (i, j), i
an S-boy and j a free girl, with rij = a2
(there exists at least one), rij becomes zero,
and we can continue the search. Since at
least one girl gets a T label as a result,
6 = a2 at most O(n) times per stage.

The naive implementation of the algo-
rithm above takes O(mn2) time. The most
costly part is maintaining a2. For every
free girl j, let Xj = mini+.& Xii and let
ej = (i, j) be an edge with i an S-vertex and

Efficient Algorithms for Maximum Matching in Graphs l 31

“ii = rj. Then & = minj:freegirl rj.. Note that
when we make a change of 6 m the dual
variables, 9 is reduced by 6 and ej does not
change. Also, if 6 = 62 = rjO, then the slack
of ejO becomes 0 and it can be used for
continuing the search. By maintaining X,
and ej for all free girls i, an O(n3) imple-
mentation of the algorithm follows.

In a different implementation, we main-
tain the collection C = {(i, j) 1 rj > 0, i an
S-boy, j a free girl) as p.q.,, since all these
rij’s are reduced by 6 in a change in the
dual variables. Whenever we scan an
S-vertex i, we consider all edges (i,j), where
j is a free vertex. Those edges with xii > 0
are inserted into the p.q.,. Consequently,
this implementation takes O(mn log n)
time.

A small improvement is achieved if we
maintain rj and ej (as above) for free girls j
in a p.q.,. Then & is the minimum of this
p.q. One can see that the p.q. used here
satisfies the conditions of Theorem 4, and,
consequently, we get an O(mn log~m,n+nn)
time bound, which dominates the two
bounds of O(n3) and O(mn log n).

A closer look at a stage reveals that an
augmenting path is found using Dijkstra’s
algorithm for all shortest paths from a sin-
gle source [Dijkstra 19591. The source is a
new vertex, which is connected to all single
boys with new edges of length zero. The
lengths of other edges are the rij’s at the
beginning of the stage. The reduction of a
stage to a shortest-path problem is well
known [Gabow 19741. In fact, each stage
discovers the augmenting path that causes
the largest increase in the weight of the
matching. The various implementations
of Dijkstra’s algorithm are (1) the naive
implementation: O(n’), (2) an imple-
mentation using p.q.s: O(m log n), and
(3) an implementation using Theorem 4:
O(m log~,,n+lln). Hence, the corresponding
time bounds for n stages follow immedi-
ately.

The main purpose of this section is to
serve as a warm-up for the next section.

7. PROBLEM 4: MAX WEIGHTED MATCHING
IN GENERAL GRAPHS

If we try to solve Problem 4 exactly as we
solved Problem 3, we immediately run into

problems. The linear program obtained by
dropping the integrality constraints from
the integer program for Problem 3 may
have no integer optimal solution. Edmonds
[1965b] found an ingenious way to remove
this difficulty, which led to a polynomial-
time algorithm for Problem 4. He added an
exponential number of constraints of the
following form. For every odd subset of
vertices B,

These new constraints must be satisfied by
any matching, and, surprisingly, their ad-
dition guarantees an integer optimal solu-
tion. This fact follows from the correctness
of the algorithm, which can be proved di-
rectly.

We now proceed as before. We have a
primal solution, a matching M, and a dual
solution, an assignment of dual variables ui
for every vertex i and & for every odd subset
of vertices Bk. We now define slacks xii
slightly differently: “ii = ui + uj - Wij +
&,jEB, k z . (Again “ii 2 0 are the constraints
of the dual problem.) By duality, M has
maximal weight if 7.0-7.3 hold:

7.0 For every i, j, and k, Ui, Tij, zk 2 0.
7.1 (i, i) is matched + rij = 0.
7.2 i is single * Ui = 0.
7.3 zk > 0 =S. & iS full (rk = 11 & 1/2J =

I((i,j)EMIi,jEBk)l).

In fact, as in Problem 3, we only need
duality theory for motivation. The suffi-
ciency of 7.O-7,3 for optimality can be
proved directly: Assume that M, Uiy *ij, zk

satisfy 7.0-7.3, and let N be any matching.
Then Cci,j)EN wij 5 &i,j)EN (ui + uj - rij +
x(i,j)ak zk) I Ci Ui + & rkzk (by 7.0 and the
fact that N is a matching), while Cci,j)EM Wij
= xi Ui + & rkzk (by 7.1-7.3 and the fact
that M is a matching).

We can use 7.0-7.3 to derive a polynomial
algorithm because we will have zk > 0 only
for blossoms or subblossoms, and their total
number at any moment is O(n). We main-
tain only zk’s that correspond to blossoms.
Since we consider only rij for i, j not in the
same blossom, rij = ui + uj - wij, as in
Problem 3.

Computing Surveys, Vol. 18, No. 1, March 1986

32 . Zvi Galil

We again use the primal-dual method.
We start with M = 0, Ui = (maxkl z4/2
and no zk’s (no blossoms). The initial so-
lution violates only 7.2. The algorithm
makes changes that preserve 7.0, 7.1, 7.3
and reduce the number of violations of 7.2.

As in Problem 3, the algorithm consists
of O(n) stages. In each stage we look for an
augmenting path using the labeling R12
and the two cases Cl, C2 as in the simple
algorithm for Problem 2, except that we
only use edges with “ii = 0. If the search is
successful, we augment the matching.

To preserve 7.3 we keep blossoms with
zk > 0 shrunk at the end of the stage. As a
result, we have two new kinds of blossoms
in addition to the S-blossoms we had in
Problem 2. (Recall that a newly generated
blossom is labeled by S.) Since the labels
are erased at the end of a stage, we may
have free blossoms at the beginning of a
stage. During the search a free blossom can
become a T-blossom. (Recall that a blos-
som is just a vertex in the current graph.)
We call the vertices of an S-blossom
(a T-blossom or a free blossom) S-vertices
(T-vertices or free vertices). When, during
the search, a new S-blossom Z3k is formed,
the vertices in its T-blossoms (which now
become subblossoms) become S-vertices
and are inserted in the queue Q (of
S-vertices). We also initialize a new zk to
zero.

If the search is not successful, we make
the following changes in the dual variables.
We choose 6 = min(b,, &, &, a,), where

61 = min Ui,
i:S-vertex

a2 = min
iSvertex “‘j’

j:free vertex

63 = min
0

5

ij:S-vertices 2 ’
notin thesameblossom

84 = min zk.
B,: T-blossom

We then set

(a) Ui + Ui - 6 for every S-vertex i;
(b) ui + ui + 6 for every T-vertex i;
(c) zk c zk + 26 for every S-blossom Bk;
(d) zk + zk - 26 for every T-blossom &.

Such a choice of 6 preserves 7.0, 7.1, and
7.3

If 6 = &, we expand all T-blossoms Bk on
which the minimum was attained. (Each
corresponding zk becomes 0.) The expan-
sion of blossom B is shown in Figure 2. B
stops being a blossom and its subblossoms
become blossoms. All vertices of the new
S-blossoms are inserted into Q.

If 6 = b2 (6 = &), we consider all edges
(i, j) with i an S-vertex and j a free vertex
(an S-vertex not in the same blossom) on
which the minimum was attained. For each
such edge rij becomes 0 and we can use it
for continuing the search. At the end of
each stage we also expand all S-blossoms
& with zk = 0.

Let us call each change in the dual vari-
ables a substage. Each S-blossom corre-
sponds to a unique node in one of the
structure trees at the end of the stage. Each
T-blossom corresponds to a unique node in
one of the structure trees at the beginning
of the stage. Consequently, for i = 2, 3, 4,
6 = 6i at most O(n) times per stage: when
6 = &, a blossom becomes a T-blossom;
when 6 = &,, either the stage ends or a new
S-blossom is generated, and when 6 = &, a
T-blossom is expanded. Finally, 6 = & at
most once. Consequently, there are O(n)
substages per stage.

The most costly part of a substage is
computing 6. The obvious way to compute
it takes O(m) steps and yields an O(mn2)
algorithm. Edmonds’ time bound was
O(n*).

The only parts that require more than
O(n3) are maintaining & and 83. & is han-
dled as in the O(n3) algorithm for Problem
3. To take care of 63, we define for every
pair of S-blossoms Bk, Bl:

pk,l = mm
* 0

‘ii

iEB,,jEB, 2 *

We record the edge ek,l on which the mini-
mum is attained and maintain (Pk =
minl’Pk,l. We do not maintain (Pk,l, but any
time we need it we compute it by using ek,J.
Obviously a3 = mink’Pk. A change in the
dual variables and computing & costs O(n3)
as for &. We have to update ((Pk] and ek,l
any time an S-blossom Bk is constructed
from Bi,, B,. Recall that (r + 1)/2
of the subblossoms are S-blossoms and
(r - 1)/2 of them are T-blossoms. We

Computing Surveys, Vol. 18, No. 1, March 1986

Efficient Algorithms for Maximum Matching in Graphs l 33

(4 (b)

Figure 2. Expansion of a T-blossom (a) before and (b) after expansion.

first “make” each T-blossom BP into an
S-blossom by considering all its edges and
computing for it {PP,l) and {e,,/). Then we
use the (Pp,l(s of Bi,, . . . , B, to compute Vh
and {ek,l) for the new blossom Bk and to
update {‘pi) for j # k. The total cost (per
stage) to make T-blossoms into S-blossoms
is O(m). We now compute the rest of the
cost T(N), where N is the number of S-
blossoms plus the number of non-S-vertices
in the graph. T(N) I crN + T(N - r + 1)
because rN is a bound on the number of
(Pk,l)s considered after making the T-blos-
soms into S-blossoms. T(N) = O(N2) (by
induction on N), and the total cost of com-
puting 63 is O(n3). The discussion above
results in an O(n3) algorithm [Gabow 1974;
Lawler 19761.

The most costly part of the algorithm is
the frequent updates of the dual variables,
which cause changes in (*ii). Note that all
the elements that determine each 6i are
decreased by 6 each change in the dual
variables. We maintain &, h3, & by a p.q.l.
We use a p.q.l to maintain Ui for T-vertices,
and another p.q., for zk’s of S-blossoms Bk.

If we try to maintain d2 by a p.q.,, we
have problems. Consider Figure 3. Initially
there may be a large free blossom B1. At
that time all edges in Figure 3 should be
considered for finding the value of a2. Later
B1 may become a T-blossom. Then these
edges should not be considered for finding
the value of 62. Later still, B1 may be ex-
panded and one of its subblossoms, B2, may
become free. The latter may subsequently
become a T-blossom, and so on. A simple

implementation requires the consideration
of each such edge a large number of times
(up to k in Figure 3).

To maintain d2, we have a p.q., . For every
free blossom (T-blossom) Bk we have an
active (a nonactive) group of all the edges
from S-vertices to vertices in Bk. Note that
if (i, j) is in a nonactive group (i is an
S-vertex and j is a T-vertex), then “ii does
not change as a result of a change in the
dual variables. It is now easy to verify that
the eight operations of p.q., suffice for our
purposes.

Consider a group g, which corresponds to
a blossom B. The elements of the group are
the edges ((i, j) 1 i an S-vertex, j E BJ. The
order on the elements is derived from the
order on the vertices of B. The latter is
taken to be the left-to-right order of the
leaves of the structure tree. The order be-
tween two edges (il, j) and (i2, j) is arbi-
trary. The order enables us to split the
group g into the groups corresponding to
BI, B, when we expand B to its sub-
blossoms.

To maintain the generalized priority
queues, we make a change in the scanning
of a new S-vertex i. We also take into
account edges (i, j) with “ii > 0 and have
three more cases in addition to Cl and C2
for edges (i, j) with sij = 0. Assume that j
is in a blossom B with rij > 0.

(C3) B is a free blossom.
(C4) B is a T-blossom.

We insert (i, j) with priority “ii into the

Computing Surveys, Vol. 18, No. 1, March 1986

34 . Zvi Galil

Figure3. Edges from a single vertex to the innermost blossom that we may
have to scan again and again if the blossoms B,, . . , Bb are eventually expanded.

active (nonactive) group corresponding
to B.

(C5) B is an S-blossom and i 4 B.

We insert (i, j) with priority *ij/2 to the
p.q., that computes 63.

Remark 1

Since A1 = ui, for any single vertex io, we do
not need a generalized p.q. to compute 61.
Nevertheless, we have a p.q., for the ui’s of
the S-vertices and also a p.q., for the ui’s
of the T-vertices for computing rij when
the edge (i, j) is considered.

Remark 2

We have a p.q., for the zk’s for S-blossoms,
because at the end of a stage they all be-
come free, and in the next stage they may
become T-blossoms.

Remark 3

The p.q., for computing 63 contains also
edges (i, j) with i and j in the same blossom.
We do not have time to locate and delete

Computing Surveys, Vol. 18, No. 1, March 1986

such edges each time a new blossom is
constructed. Consequently, if 6 = 63 and
& = rij, we first check whether i and j are
in the same blossom. If they are, we delete
the edge and possibly compute a new
(larger) 6.

Remark 4

All edges (i, j) in the generalized p.q.‘s that
compute & or 63 have rij > 0, since an
element is deleted as soon as its priority
becomes 0. Similarly, all zk’s in the p.q.1
that computes dq are positive. Conse-
quently, 6 > 0.

To derive an O(mn log n) time bound, we
need to implement two parts of an algo-
rithm carefully:

1. We maintain the sets of vertices in
each blossom (for finding the blossom that
contains a given vertex) by concatenable
queues [Aho et al. 19741. Note that the
number of finds, concatenates and splits is
O(m) per stage, and each takes O(log n)
time.

Efficient Algorithms for Maximum Matching in Graphs l 35

2. In C2 we use the careful backtracking
described for Problem 2.

The O(mn log n) time bound is easily
derived as follows. There are at most n
augmentations (stages). Between two aug-
mentations we consider each edge at most
twice and have O(m) operations on (gen-
eralized) p.q.s. (This includes 1 and 2
above.)

8. CONCLUSION

We have considered four versions of the
maximum matching problem and discussed
the development of the most efficient al-
gorithms for solving them. By “most effi-
cient algorithms” we mean those that have
the smallest asymptotic running times. We
now mention briefly a number of closely
related additional topics and give some ref-
erences. These are intended to serve as
examples and certainly do not form an ex-
haustive list.

(a) Applications of Matching. We do not
list here the many applications of solutions
to Problems l-4. For some applications see
Lawler [19761.

(b) Generalization of Matching. Prob-
lems l-4 can be generalized in a number of
ways. For example, Gabow [1983a] has re-
cently considered similar problems where
some kinds of polygamy are allowed. He
found efficient reductions to the corre-
sponding matching problem. Stockmeyer
and Vazirani [1982] showed that several
natural generalizations of matching are
NP-complete.

(c) Special Cases of Matching. Many ap-
plications solve one of the Problems l-4,
but only for special graphs. For example,
Problem 1 is used to find routing in super-
concentrators [Gabber and Galil19811. The
graphs that arise in this application have
vertices with bounded degree, and hence
the solution given here takes time O(n’.5).
Perhaps this can be improved. For better
algorithms for some special cases of Prob-
lem 1, see Cole and Hopcroft [1982] and
Gabow [1976b].

(d) Randomizing Algorithms. Several
algorithms that work very well for random
graphs or for most graphs have been devel-
oped. They are usually faster and simpler

than the algorithms discussed here [An-
gluin and Valiant 1979; Karp 19801. An
interesting problem is to find improved
randomizing algorithms that use random
choices (rather than random inputs).

(e) Approximation Algorithms. As for
all optimization problems, we may settle
for approximate solutions. For cardinality
matching, the solution that uses phases
yields a good approximation by executing
only a constant number of phases. For sim-
ple, fast, and good approximation algo-
rithms for special graphs see Iri et al.
[1981], Karp and Sipser [1981], and
Plaisted [19841.

(f) Improvements. We next discuss
possible improvements of the algorithms
considered in this paper. All the time
bounds discussed in this paper can be
shown to be tight. One can construct fam-
ilies of inputs for which the algorithms
require the number of steps that is specified
by the stated upper bounds. There are no
known lower bounds for any of the four
problems. Improving the O(m&) bound
for cardinality matching must involve the
discovery of a new approach that does not
use phases. Similarly, except for a logarith-
mic factor, improving the bound for
weighted matching requires the use of an
approach that does not make 8(n) augmen-
tations. Perhaps the introduction of phases
may lead to improved algorithms for Prob-
lems 3 and 4. Note that the solution to
Problem 3 is slightly better than the solu-
tion to Problem 4, due to the use of
d-heaps. It may still be possible to find a
similar improved solution for Problem 4.

There are several theoretical questions
concerning Problems l-4. Their solution
may lead to simpler or faster algorithms:

l Can we find efficient solutions to any of
the problems without augmenting paths?

l Are blossoms necessary?
l Can we solve Problem 4 without duality?

Assume that we have solved an instance
of a weighted matching problem and then
make a small change such as adding or
deleting some edges or changing the weight
of a few edges. It is not clear how to make
use of the solution to the original problem.

Computing Surveys, Vol. 18, No. 1, March 1986

36 . Zvi Galil

It seems that, using the algorithms de-
scribed here, we may have to spend O(mn
log n) time to find the new solution. For
some partial solution to these types of ques-
tions, see Derigs [1981, 19821 and Weber
[1981].

Finally, we briefly consider parallel al-
gorithms:

l Can we solve any one of the four prob-
lems in time O(log’h) with a polynomial
number of processors?

l Is Problem 4 log-space complete for P
(the class of problems solvable in poly-
nomial time)?

A positive answer to the latter implies that
a positive answer to the former (regarding
Problem 4) is unlikely. Recently, the prob-
lem of network flow has been shown to be
log-space complete for P by Goldschlager
et al. [19821. As was observed by Borodin
et al. [1982], there is a nonuniform algo-
rithm that computes the size of the maxi-
mum matching in time O(log2n) with a
polynomial number of processors. It is not
clear how to use it in order to find a similar
algorithm that finds a maximum matching.

9. VERY RECENT PROGRESS

Since this paper was first written, there
have been a number of results related to
the topics raised in the last section.

Ball and Derigs [19831 consider an alter-
native approach to Problem 4, which also
uses duality. It was implemented in time
O(n3) and O(mn log n) using the ideas of
Galil et al. [19861. Stages are interpreted as
searches for shortest paths. In one of the
variants we successively add a new vertex
with its edges in each stage.

The solutions for Problems 3 and 4 were
slightly improved. A new data structure,
called Fibonacci heap (or F-heap), was in-
troduced by Fredman and Tarjan [19841. It
supports most operations including insert-
ing, merging, and decreasing the key of an
element in O(1) amortized time. (Opera-
tions are associated with amortized time so
that the total time is bounded above by the
total amortized time.) Deletion is the only
expensive operation, costing O(log n) am-
ortized time, where n is the total number
of elements. Using F-heaps immediately

improves Dijkstra’s algorithm, as well as
one stage of Problem 3, to O(m + n log n).
Consequently, the best time bound for
Problem 3 is currently O(n(m + n log n)).
For a different algorithm that uses F-heaps
and yields the same time bound, and for
references to other algorithms for Problem
3, see Goldfarb [19851.

Even with F-heaps, it was not clear how
to improve the best algorithms for Problem
4. There were two difficulties. There was a
problem with splits, since F-heaps do not
support splits. There was also a problem
with the edges (i, j), where i, j are S-vertices
in the same blossom, because such edges
have to be deleted and deletion is relatively
expensive. New developments in data
structures were used to overcome these dif-
ficulties [Gabow et al. 19841. Consequently,
the current best algorithm for Problem 4
takes time

O(n(m log log logr,/,+~ln + n log 4).

This bound is better than

O(mn logr,,,+nn),

but worse than the best bound currently
known for Problem 3. The algorithm still
uses the observations of Section 6.

The question of the possibility of using
phases for Problems 3 and 4 was partially
answered by Gabow [1983b, 19851. He con-
sidered the case in which weights are inte-
gers bounded above by N. By using scaling
techniques, he was able to use algorithms
for Problems 1 and 2 for solving Prob-
lems 3 and 4. As a result, he obtained an
O(n3j4m log N) algorithm for Problem 3
and a similar time bound for Problem 4.

A new simple algorithm has recently
been designed for Problem 2 [Rabin and
Vazirani 19841. This algorithm is related to
three questions raised in Section 9. It is a
randomizing algorithm that uses neither
blossoms nor augmenting paths. The algo-
rithm consists of up to n stages in which
an n X n matrix is inverted. Using the
asymptotically best algorithm for inverting
matrices of Coppersmith and Winograd
[1982], an O(n3.5) expected time bound fol-
lows. (A more realistic bound is O(n4).) It
is still a challenge to find simple algorithms
that may use randomization but will also
improve the time bound for Problem 2.

Computing Surveys, Vol. 18, No. 1, March 1986

Efficient Algorithms for Maximum Matching in Graphs l 37

Note that no simple approach is yet known
for Problem 4.

As for parallel algorithms, a new random-
izing algorithm solves Problem 2 (and
Problem 1) in expected time O(log3n) with
O(n7.5) processors [Karp et al. 19851. So it
is now possible to efficiently find a maxi-
mum matching, rather than just its size.
More recently, this algorithm was improved
[Galil and Pan 19851. The new algorithm
has the same time complexity, but requires
only O(n”.“) processors. Even more re-
cently, a simple randomized algorithm for
Problem 2 was discovered, which improved
the expected running time to O(log2n) and
requires O(mn3.5) processors [Mulmuley et
al. 19851. All the parallel algorithms use the
algebraic approach of Rabin and Vazirani
[1984], which uses no augmenting paths.
The remaining challenges are to improve
the time and processor bounds (or to
achieve the best time and processor bounds
simultaneously), and to find a deterministic
algorithm with similar time and processor
complexities. The new parallel algorithms
also yield good solutions for the special
cases of Problems 3 and 4, in which the
weights are given in unary. However, the
status of (the general versions of) Problems
3 and 4 is still open.

ACKNOWLEDGMENTS

This work was supported in part by National Science

Foundation Grants MCS-830-3139 and DCR-85-
11713.

I would like to thank Dannie Durand, Hal Gahow,

and Stuart Haber for their helpful comments, Kerny
McLaughlin for her help with the figures, and Bella
Galil for preparing Figure 3.

REFERENCES

AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D.
1974. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass.

ANGLUIN, D., AND VALIANT, L. G. 1979. Fast prob-
abilistic algorithms for Hamiltonian paths and
matchings. J. Comput. Syst. Sci. 18, 144-193.

BALL, M. O., AND DERIGS, U. 1983. An analysis of
alternative strategies for implementing matching
algorithms. Network 13, 517-549.

BERGE, C. 1957. Two theorems in graph theory.
Proc. Nat. Acad. Sci. 43,842-844.

BORODIN, A., VON ZUR GATHEN, J., AND HOPCROFT,
J. E. 1982. Fast parallel and gcd computations.
In Proceedings of &e 23rd Ann&l IEEE Sympo-
sium on Foundations of Computer Science. IEEE.
New York, pp. 64-71. . .

COLE, R., AND HOPCROFT, J. E. 1982. On edge color-
ing bipartite graphs. SIAM J. Comput. 21,
540-546.

COPPERSMITH, D., AND WINOGRAD, S. 1982. On the
asymptotic complexity of matrix multiplication.
SIAM J. Comput. II, 472-492.

DERIGS, U. 1981. A shortest augmenting path
method for solving minimal perfect matching
problems. Networks 11, 379-390.

DERIGS, U. 1982. Shortest augmenting paths and
sensitivity analysis for optimal matchings. Rep.
82222-OR, Institut fur Okonometrie und Opera-
tions Research, Univ. Bonn, West Germany,
April.

DIJKSTRA, E. W. 1959. A note on two problems
in connexion with graphs. Numer. Math. 1,
263-271.

DINIC, E. A. 1970. Algorithm for solution of a prob-
lem of maximal flow in a network with power
estimation. Son Math. Dokl. 11, 1277-1280.

EDMONDS, J. 1965a. Path, trees and flowers. Can. J.
Math. 17, 449-467.

EDMONDS, J. 196513. Matching and a polyhedron
with 0,l vertices. J. Res. N. B. S. B, 69 (April-
June), 125-130.

EVEN, S., AND KARIV, 0. 1975. An O(n2.5) algorithm
for maximum matching in graphs. In Proceedings
of the 16th Annual IEEE Symposium on Foun-
dations of Computer Science. IEEE, New York,
pp. 100-112.

EVEN, S., AND TARTAN, R. E. 1975. Network flow

and testing graph connectivity. SIAM J. Comput
4,507-518.

FORD, L. R., AND FULKERSON, D. R. 1956. Maximal
flow through a network. Can. J. Math 8,399-404.

FREDMAN, M. L., AND TARJAN, R. E. 1984. Fibo-
nacci heaps and their uses (in improved network
optimization algorithms). In Praceedings of the
25th Annual IEEE Svmposium on Foundations of
Computer Science. IEEE, New York, pp. 338-346.

GABBER, O., AND GALIL, Z. 1981. Explicit construc-
tion of linear-sized superconcentrators. J. Com-
put. Syst. Sci. 22, 407-420.

GABOW, H. N. 1974. Implementation of algorithms
for maximum matching on nonbipartite graphs.
Ph.D. dissertation, Dept. of Computer Science,
Stanford Univ., Stanford, Calif.

GABOW, H. N. 1976a. An efficient implementation
of Edmonds’ algorithm for maximum matching
on graphs. J. ACM 23, 2 (Apr.), 221-234.

GABOW, H. N. 1976b. Using Euler partitions to edge
color bipartite multigraphs. Int. J. Comput. Inf.
Sci. 5, 344-355.

GABOW, H. N. 1983a. An efficient reduction tech-
nique for degree-constrained subgraphs and bi-
directed network flow problems. In Proceedings
of the 15th Annual ACM Symposium on Theory
of Computing (Boston, Apr. 25-27). ACM, New
York, pp. 448-456.

GABOW, H. N. 1983b. Scaling algorithms for network
problems. In Proceedings of the 24th Annual
IEEE Symposium on Foundations of Computer
Science. IEEE, New York, pp. 248-257.

Computing Surveys, Vol. 18, No. 1, March 1986

38 l Zvi Galil

GABOW, H. N. 1985. A scaling algorithm for
weighted matching on general graphs. In Proceed-
ings of the 26th Annual IEEE Symposium on
Foundations of Computer Science. IEEE, New
York, pp. 90-100.

GABOW, H. N., AND TARJAN. R. E. 1983. A linear
time algorithm for a special case of disjoint set
union. In Proceedines of the 15th Annual ACM
Symposium on The&y’ of Computing (Boston,
Apr. 25-27). ACM, New York, pp. 246-251.

GABOW, H. N., GALIL, Z., AND SPENCER, T. H.
1984. Efficient implementation of graph algo-
rithms using contraction. In Proceedings of the
25th Annual IEEE Symposium on Foundations of
Computer Science. IEEE, New York, pp. 347-357’.

GALIL, Z. 1980. An O(E2/3V5’3) algorithm for the
maximal flow problem. Acta Znf. 14,221-242.

GALIL, Z., AND PAN, V. 1985. Improved processor
bounds for algebraic and combinatorial problems
in RNC. In Proceedings of the 26th Annual IEEE
Symposium on Foundations of Computer Science.
IEEE, New York, pp. 490-495.

GALIL, Z., MICALI, S., AND GABOW, H. N. 1986. An
O(EV log V) algorithm for finding a maximal
weighted matching in general graphs. SIAM J.
comput. 15,120-130. - - -

GOLDFARB, D. 1985. Efficient dual simplex algo-
rithms for the assignment problem. Math. Pro-
gram. 33, 187-203.

GOLDSCHLAGER, L., SHAW, R., AND STAPLES, J.
1982. The maximum flow problem is log space
complete for P. Theor. Comput. Sci. 22, 105-111.

HOPCROFT, J. E., AND KARP, R. M. 1973. N5/’ al-
gorithm for maximum matchings in bipartite
graphs. SIAM J. Comput. 2, 225-231.

IRI, M., MUROTA, K., AND MATSUI, S. 1981. Linear
time approximation algorithms for finding the
minimum weight perfect matching on a plan. Znf.
Process. Z&t. 12, 206-209.

JOHNSON, D. 1977. Efficient algorithms for shortest
paths in sparse networks. J. ACM 24, 1 (Jan.),
1-13.

KARIV, 0. 1976. An O(n2.5) algorithm for maximal
matching in general graphs. Ph.D. dissertation,
Dept. of Applied Mathematics, The Weizmann
Institute, Rehovot, Israel.

KARP, R. M. 1980. An algorithm to solve the assign-
ment problem in expected time O(mn log n).
Network 10, 143-152.

KARP, R. M., AND SIPSER, M. 1981. Maximal match-
ings in sparse graphs. In Proceedings of the 22nd
IEEE Symposium on Foundations of Computer
Science. IEEE, New York, pp. 364-375.

KARP, R. M., UPFAL, E., AND WIGDERSON, A.
1985. Constructing a perfect matching is in ran-
dom NC. In Proceedings of the 17th Annual ACM
Symposium on Theory of Computing (Providence,
RI., May 6-8). ACM, New York, pp. 22-32.

KNUTH, D. E. 1973. The Art of Computer Program-
ming. Vol. 3, Sorting and Searching. Addison-
Wesley, Reading, Mass.

KUHN, H. W. 1955. The Hungarian method for the
assignment problem. Naval Res. Logist. Quart 2,
253-258.

LAWLER, E. L. 1976. Combinatorial Optimization:
Networks and Matroids. Holt. Rinehart and
Winston, New York.

MICALI, S. AND VAZIRANI, V. V. 1980. An
O(fi I E I) algorithm for finding maximal
matching in general graphs. In Proceedings of the
21st Annual IEEE Symposium on Foundations of
Computer Science. IEEE, New York, pp. 17-27.

MULMULEY, K., VAZIRANI, U. V., AND VAZIRANI, V.
V. 1985. Matching is as easy as matrix inver-
sion. Manuscript, MSRI Berkeley, Berkeley,
Calif.

NORMAN, R. Z., AND RABIN, M. 0. 1959. An algo-
rithm for a minimum cover of a graph. Proc. Am.
Math. SOC. 10, 315-319.

PAPADIMITRIOU, C. H., AND STEIGLITZ, K. 1982.
Combinatorial Optimization, Algorithms and
Complexity. Prentice-Hall, Englewood Cliffs, N.J.

PLAISTED, D. A. 1984. Heuristic matching for graphs
satisfying the triangle inequality. J. Algorithms 5,
163-179.

RABIN, M. O., AND VAZIRANI, V. V. 1984. Maximum
matchings in general graphs through randomiza-
tion. Rep. TR-15-84, Center for Research in Com-
puting Technology, Harvard Univ., Cambridge,
Mass., Oct.

SLISENKO, A. 0. 1973. Recognition of palindromes
by multihead Turing machines. In Problems in
the Constructive Trend in Mathematics. VI. In
Proceedings of the Steklov Institute of Mathemat-
its , vol. 129, V. P. Orevkov and N. A: Sanin, Eds.
Academv of Sciences of the U.S.S.R.. DD. 30-202:
R. H. Silverman, Trans. Am. Math.‘Soc. (1976);
25-208.

STOCKMEYER, L. J., AND VAZIRANI, V. V. 1982. NP-
completeness of some generalizations of the max-
imum matching problem. Inf. Process. L&t. 15,
11-19.

TARJAN, R. E. 1975. Efficiency of a good but not
linear set union algorithm. J. ACM 22, 2 (Apr.),
215-225.

TARJAN, R. E. 1977. Finding optimum branchings.
Network 7,25-35.

TARJAN, R. E. 1983. Data structures and network
algorithms. SIAM, publications.

WEBER, G. 1981. Sensitivity analysis of optimal
matchings. Networks 1 I, 41-56.

BIBLIOGRAPHY

KAMEDA, T., AND MUNRO, I. 1974. Of I V 1 . I E 1)
algorithm for maximum matching of graphs.
Computing 12,91-98.

Received October 1983; final revision accepted May 1986

Computing Survevs, Vol. 18, No. 1, March 1986

