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INTRODUCTION 

There are no recipes for designing efficient 
algorithms. This is somewhat unfortunate 
from the point of view of applications: Any 
time we have to design an algorithm, we 
may have to start (almost) from scratch. 
However, it is fortunate from the point of 
view of researchers: It is unlikely that we 
are going to run out of problems or chal- 
lenges. 

Given a problem, we want to find an 
algorithm that solves it efficiently. There 
are three stages in designing such algo- 
rithms: 

(a) Shmathematics. Initially, we use some 
simple mathematical arguments to charac- 
terize the solution. This leads to a simple 
algorithm that is usually not very efficient. 

(b) Algorithmic Took. Next, we try to 
apply a number of algorithmic tools to 
speed up the algorithm. Examples of such 

tools are “divide and conquer” and dynamic 
programming [Aho et al. 19741. Alterna- 
tively, we may try to find a way to reduce 
the number of steps in the original algo- 
rithm by finding a better way to organize 
the information. 

(c) Data Structures. Sometimes we can 
speed up an algorithm by using an efficient 
data structure that supports the primitive 
operations used by the algorithm. We may 
even resort to the introduction of monsters: 
very complicated data structures that bring 
about some asymptotic speedup that is 
usually meaningful only for very large prob- 
lem size. (For a real-life monster see Galil 
[1980].) 

In these three stages we sometimes use a 
known technique: a certain result in math- 
ematics, say, or a known algorithmic tool 
or data structure. In the more interesting 
problems we need to invent new techniques 
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or refine existing ones for our purposes. We 
may need to prove new shmathematics, find 
an appropriate way or invent new ones, or 
use algorithmic tools in a new way. 

A word of caution about shmathematics. 
In many cases it is not deep; however, that 
does not mean that its results are trivial. 
What counts in our case is not how deep or 
elegant a theorem is, but whether it is use- 
ful for improving our algorithm. 

Usually, we use all three stages of the 
design process in the order shown above, 
but this is not always the case. We do not 
always use all three. Once we have a quite 
efficient algorithm, we may reuse any of 
the three and not necessarily in this order. 
In particular, we may use shmathematics 
again and again: first to characterize the 
solution, and then to analyze the running 
time by justifying an algorithmic tool or by 
proving the properties of certain data struc- 
tures. 

In this paper we exemplify the design of 
efficient algorithms by surveying algo- 
rithms for the four closely related problems 
of finding a maximum cardinality or 
weighted matching in general or bipartite 
graphs. Mathematically, these are all spe- 
cial cases of the problem of weighted 
matching in general graphs. However, we 

consider them in increasing order of diffi- 
culty because the easier the problem, the 
faster or simpler its solution. 

1. THE FOUR PROBLEMS 

The input consists of an undirected graph 
G=(V,E)with]V]=nand]E]=m. 
The vertices represent persons, and each 
edge represents the possibility that its end- 
points marry. A matching M is a subset of 
the edges such that no two edges in M share 
a vertex; that is, we do not allow polygamy. 

Problem 1: Max Cardinality Matching in 
Bipartite Graphs. The vertices are parti- 
tioned into boys and girls, and an edge can 
only join a boy and a girl. We look for a 
matching with the maximum cardinality. 
We can make Problem 1 harder in two 
different ways, resulting in Problems 2 
and 3. 

Problem 2: Max Cardinality Matching in 
General Graphs. This is the asexual case, 
where an edge joins two persons. 

Problem 3: Max Weighted Matching in 
Bipartite Graphs. Here we still have ver- 
tices representing boys and girls, but each 
edge (i, j) has a weight wij associated with 
it. Our goal is to find a matching with the 
maximum total weight. This is the well- 
known assignment problem of assigning 
people to jobs (disallowing moonlighting) 
and maximizing the profit. 

Problem 4: Max Weighted Matching in 
General Graph-s. This problem is obtained 
from Problem 1 by making it harder in both 
ways. 

The four combinatorial problems are im- 
portant and interesting in themselves. 
Moreover, many combinatorial problems 
can be reduced to one of the above-de- 
scribed four or can be solved by using, in 
turn, the solutions to them as subroutines. 

It was not clear initially how to solve 
Problems 2-4 in polynomial time. The first 
polynomial-time algorithm for Problem 3 
is due to Kuhn [ 19551. The first polyno- 
mial-time algorithms for Problems 2 and 4 
are due to Edmonds. The later improved 
algorithms are based on Edmond’s monu- 
mental work (Edmonds 1965a, 1965b). 
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Figure 1. An edge (i, j) is considered and a blossom 
B is generated. Edge (e, h) has not been considered. 
Wiggly edges are matched. 

2. AN AUGMENTING PATH 

An important notion for all four problems 
is that of an augmenting path. We solve 
each one of them in stages, and in each 
stage we have a matching M. Initially, M’is 
empty. A vertex i is matched if there is an 
edge (i, j) in M and single otherwise. An 
edge is matched if it is in M and unmatched 
otherwise. An alternating path (with re- 
spect to M) is a simple path, such that 
every other edge on it is matched. An aug- 
menting path (with respect to M) is an 
alternating path between two single ver- 
tices. It must be of odd length, and in the 
bipartite case its two endpoints must be of 
different sex. 

Consider Figure 1. The wiggly edges are 
the matched edges. The path a, a, r, b, c, d, 
i, j, e, h is an augmenting path. Any contig- 
uous part of this path (e.g., b, c, d, i) is an 
alternating path. 

The following theorem is due to Berge 
[ 19571 and Norman and Rabin [ 19591. 

Theorem 1 

The matching M has maximum cardinality 
if and only if there is no augmenting path 
with respect to M. 

or Maximum Matching in Graphs l 25 

One part of the theorem is trivial. If there 
is an augmenting path, then by changing 
the status of the edges on the path 
(matched edges become unmatched, and 
vice versa) we increase the size of M by 1. 
We call this operation augmenting the 
matching M. The other part of the theorem 
is not trivial but is quite easy: We assume 
that M is not a maximum matching and 
show the existence of an augmenting path. 
Let M ’ be a matching of cardinality larger 
than M. Consider M @ M ‘, the set of edges 
in M or M’ but not in both. Hence M 03 
M ’ consists of alternating paths and cycles 
(with respect to both M and M’). At least 
one of them must be an augmenting path 
with respect to M. (In all other types of 
alternating paths or cycles the number of 
edges from M is at least as large as the 
number of edges from M ‘.) 

3. PROBLEM 1: MAX CARDINALITY 
MATCHING IN BIPARTITE GRAPHS 

Theorem 1 gives an immediate algorithm. 
It consists of O(n) (at most n/2) stages. In 
each stage a search for an augmenting path 
is conducted. If any augmenting paths ex- 
ist, the search finds one and the matching 
is augmented. Since the search takes O(m) 
time, the algorithm runs in O(mn) time. 

The search is conducted as follows. Ver- 
tices are labeled successively, boys with an 
S label and girls with a T label. A labeled 
boy (girl) is referred to as an S-boy (a 
T-girl). After all labels from previous stages 
are cleaned, all single boys are labeled with 
S. We then apply two labeling rules itera- 
tively: 

(Rl) If (i, j) is not matched and i is an 
S-boy and j a free (unlabeled) girl, 
then label j by T; and 

(R2) If (i, j) is matched and j is a T-girl 
and i a free boy, then label i by S. 

The label also contains the vertex from 
which the label has arrived. (In the case of 
an S label this information is redundant.) 
The search continues until the search 
either succeeds or fails. The search suc- 
ceeds if a single girl is labeled by T. The 
search fails if we cannot continue anymore. 
The following lemma can be proved by 
induction. 
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Lemma 1 

(a) If a boy i (a girl j) is labeled by S (T), 
then there is an even- (odd-) length 
alternating path from a single boy to i 

(A, and 
(6) if the search fails and there is an even- 

(odd-) length alternating path from a 
single boy to boy i (girl j), then i (j) is 
labeled by S (T). 

By Lemma 1, if the search fails, there is 
no augmenting path and the algorithm (not 
only the stage) terminates. If a single girl j 
is labeled by T, we have actually found an 
augmenting path to j. The path can be 
reconstructed by using the labels. The 
search can be easily implemented in time 
O(m) using any traversal of the graph that 
starts with the single boys. The labels S 
and T are also called even and odd or outer 
and inner in the literature. 

The best algorithm for Problem 1 is by 
Hopcroft and Karp [1973]. They discovered 
a way to find many augmenting paths in 
one traversal of the graph. Their algorithm 
is divided into phases. In each phase, a 
maximal set of vertex disjoint augmenting 
paths of shortest length is found and used 
to augment the matching. So, a phase may 
achieve the possible effect of many stages. 

We now describe one phase. We use rules 
Rl and R2 as before. Using breadth-first 
search, starting from t_he single boys, we 
identify the subgraph G of G consisting of 
all the vertices and edges that are on some 
shortest augmenting path. This subgraph 
is layered. In layer 2m (2m + 1) appear all 
boys i (girls j) such that the shortest alter- 
nating path from a single boy to i (j) is of 
length 2m (2m + 1). We finish the construc- 
tion of G in one of two ways. Either a single 
girl is reached and we complete the last 
layer and delete nonsingle girls from it, or 
we cannot continue. In the latter case the 
algorithm (not only the phase) terminates, 
whichis justified by Lemma 1. 

In G we find a maximal set of disjoint 
augmenting paths using depth-first search. 
Every time we reach a single girl, we find 
an augmenting path, erase its edges from 
G, and start from another single boy. Every 
time webacktrack along an edge, we delete 
it from G. It is quite easy to see that a phase 

takes O(m) time. The importance of the 
notion of a phase is explained by the follow- 
ing lemma [Hopcroft and Karp 19731. 

Lemma 2 

The number of phases is at most O(G). 

Consequently, Hopcroft and Karp’s al- 
gorithm runs in time O(m&). 

It is interesting to note that the algo- 
rithm (not the time analysis, i.e., not 
Lemma 2) was actually known before. 
Problem 1 is a special case of the max flow 
problem for special networks. (Add a source 
and a sink, connect the source to all the 
boys and the sink to all the girls, and take 
all capacities to be one.) Augmenting paths 
correspond to the flow augmenting paths 
in network flow, and the O(mn) algorithm 
is just the Ford and Fulkerson network flow 
algorithm [Ford and Fulkerson 19561 for 
these special networks. Similarly, Hopcroft 
and Karp’s algorithm is actually Dinic’s 
algorithm [Dinic 19701 applied to these spe- 
cial networks. This was first observed by 
Even and Tarjan [1975] (ET). 

4. PROBLEM 2: MAX CARDINALITY 
MATCHING IN GENERAL GRAPHS 

As for Problem 1, Theorem 1 suggests a 
possible algorithm of O(n) stages. In each 
stage we look for an augmenting path. This 
search is complicated by the existence of 
odd-length cycles, which cannot exist in 
bipartite graphs. We start by labeling all 
single persons S and apply rules Rl and R2 
with the following two changes. First, we 
replace “boys” or “girls” by “persons.” Sec- 
ond, any time Rl is used and j is labeled by 
T, R2 is immediately used to label the 
spouse of j with S. (Since j was not labeled 
before, it must be married and its spouse 
must be unlabeled.) We call this rule R12. 

The search is conducted by scanning the 
S-vertices in turn. Scanning a vertex means 
considering in turn all its edges except the 
matched edge. (There will be at most one.) 
If we scan the S-vertex i and consider the 
edge (i, j), there are two cases: 

(Cl) j is free; or 
(C2) j is an S-vertex. 
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C2 cannot occur in the bipartite case. The 
case in which j is a T-vertex is discarded. 

In case Cl we apply R12. In case C2 we 
do the following: Backtrack from i and j, 
using the labels, to the single persons si and 
aj from which i and j got their S labels. If ai 
# sj, we find an augmenting path from si to 
aj and augment the matching. The trouble 
begins (or life starts to be interesting) when 
Si = Sj. 

We next describe Edmonds’ remarkable 
work, in which the concept of blossoms is 
introduced. Blossoms play a crucial role in 
all algorithms for the nonbipartite case 
(Problems 2 and 4). 

If si = sj = s, let r be the first common 
vertex on the paths from i and j to s. It is 
easy to see that r is an S-vertex, that the 
part of the two paths from i and j to r are 
disjoint, and that the parts from r to s are 
identical. We have found an odd-length 
alternating path from r to itself through 
(i, j). We call this cycle B a blossom and r 
its base (see Figure 1). 

In this case the method of labeling intro- 
duced so far might overlook an augmenting 
path. For example, Figure 1 shows a possi- 
ble labeling. The augmenting path s, a, r, b, 
c, d, i, j, e, h, which ‘Lgoes around the 
blossom B,” will not be discovered. 

Edmonds’ idea (Edmonds 1965a) was 
to shrink B: Replace it by a single super- 
vertex B and replace the set A of edges 
incident with vertices in B by the set A’ = 
((B, j) ] j 4 B, 3 (i, j) E A]. Note that at 
most one member of A’ (incident with r) iz 
matched; none are matched if r = s. If G 
is the graph obtained from G after such 
shrinking, then the shrinking is justified by 
the following theorem due to Edmonds 
(which may be called the Blossoms Theo- 
rem or the Main Theorem of Botany): 

Theorem 2 

There is an augmenting path in G if *and 
only if there is an augmenting path in G. 

We do not know of any easy proof for 
Theorem 2. We do not discuss the “only if” 
part here (see Lawler [1976] or the second 
edition of Tarjan [1983]). The “if part: is 
obvious. Given an augmenting path in G, it 
immediately yields an augmenting path in 

G. If the path goes through B, then we do 
the following: Replace the matched edge, 
say (B, It), with (r, 12); replace the un- 
matched edge, say (B, j), with the edge 
(i, j), from which (B, j) originated (recall 
the set A’ above), followed by the even 
alternating path in B from i to r. Such a 
path always exists. If i was an S-vertex 
when B was formed, we use the labels and 
backtrack from i to r. Otherwise, we use the 
labels in reverse order around the blossom. 
Storing B as a doubly linked list with a 
marked base makes this very easy. Note 
that, in Figure 1, as soon as the blossom B 
is shrunk, the augmenting path can be 
found. Note also that not every alternating 
path from a vertex to itself is a blossom, 
only those discovered by the algorithm (in 
case C2). 

The search for an augmenting path uses 
a queue Q, where new S-vertices are in- 
serted. During the search, vertices from Q 
are scanned and new blossoms are occa- 
sionally generated. A blossom is a recursive 
structure because it can be nested. It is 
convenient to refer to vertices that do not 
belong to any blossom as (degenerate) blos- 
soms of size 1. When a new blossom B is 
generated from blossoms B1, . . . , Bk, we 
call the latter the subblossoms of B. We do 
not refer to them as blossoms anymore. As 
a result, each vertex in the original graph G 
always belongs to one blossom in the cur- 
rent graph. The structure of each blossom 
B is described by a tree, called the structure 
tree of B. In this tree, the root is labeled 
with B, and the sons of a node labeled C 
are labeled with C1, . . . , Ck if at some time 
the blossom C (which is now part of B) was 
generated from subblossoms Ci, . . . , Ck. 
Thus, the leaves of the structure tree of B 
are the vertices that belong to B. The struc- 
ture tree is represented by the collection of 
the doubly linked lists of the various sub- 
blossoms of B. 

When a new blossom B is generated, it 
is labeled by S and inserted into Q. Its 
subblossoms that are still in Q are& deleted 
from Q. The search continues (in G). 

If the search succeeds (in C2), we find 
the augmenting path in the current graph. 
Then we use the easy part of Theorem 2 
and the structure trees to recursively un- 
wind the augmenting path in the original 
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graph. We next augment the matching, 
erase all labels and blossoms, and start a 
new stage. Constructing the augmenting 
path, augmenting the matching, and eras- 
ing the labels take O(n) time. If the search 
fails (Q becomes empty), a repeated appli- 
cation of Theorem 2 (each time a blossom 
is shrunk) and an application of a modified 
version of Lemma 1 (in which “boys” and 
“girls” are replaced by “persons”) imply 
that the current matching is maximum, and 
we are done. 

A naive implementation [Edmonds 
1965a] takes O(n4) (O(n3) per stage). A 
more careful implementation takes O(n3) 
[Gabow 1976a]: Since the blossoms are dis- 
joint, the total size of all structure trees at 
any moment is O(n). When we generate a 
new blossom, we do not rename the edges; 
edges retain their original names. In order 
to find out quickly to which blossom a given 
vertex belongs, we maintain a membership 
array. When B becomes a blossom, we put 
the T-vertices into the queue Q; so we later 
scan them instead of scanning the new 
vertex B. The other vertices of B (the 
S-vertices) have already been inserted into 
Q, and we do not delete them from Q. When 
we consider an edge in C2, we ignore it if 
both endpoints are in the same blossom. In 
this implementation a stage takes O(n2) 
time. 

A slightly better bound can be obtained 
as follows. If we find the base r of a new 
blossom B more carefully, by backtracking 
one vertex at a time, once from i and once 
from j, marking vertices on the way, we 
find the base and construct the blossom in 
time O(k), where iz is the number of sub- 
blossoms of B. Hence, the total time per 
stage devoted to finding bases and con- 
structing blossoms is O(n). (Each node in 
the structure tree is charged O(l).) Using 
the “set union” algorithm to maintain the 
sets of vertices in the blossoms for the 
membership tests takes O(m&n, n)) per 
stage for a total of O(mncu(n, n)), where cx 
is the inverse of Ackermann’s function 
[Tarjan 19751. 

The obvious question that comes to mind 
is whether the ideas of the phases can be 
realized in the nonbipartite case. Recall 
that in one phase we discovered a maximal 
set of vertex disjoint augmenting paths of 

shortest length. This is important because 
Lemma 2 holds for general (not necessarily 
bipartite) graphs. Executing a phase in gen- 
eral graphs is more complicated than in the 
bipartite case because of the existence of 
blossoms. 

Even and Kariv [1975] showed how to 
execute a phase in time min(n2, m log n . 
This resulted in an O(min(n2.5, $ m n 
log n)) algorithm. A more detailed version 
[Kariv 19761 is a strong contender for the 
ACM Longest Paper Award. (It will prob- 
ably lose only to Slisenko’s real-time pal- 
indrome recognizer [Slisenko 19731.) 

More recently, a simpler approach was 
found by Micali and Vazirani [1980]. In 
phase i, i = 0, 1, . . . of the algorithm, a 
maximal set of (shortest) augmenting paths 
of length L = 2i + 1 is sought as follows: 
An odd (even) level of a vertex v is defined 
as the length of the shortest odd- (even-) 
length alternating path from a single vertex 
to v. Both types of level numbers are com- 
puted in linear time. Let the sum of a free 
(matched) edge be the sum of the even 
(odd) levels of its endpoints plus one. A 
bridge is an edge of sum L that belongs to 
an augmenting path of length L. Every 
augmenting path of length L is shown to 
contain a bridge. Bridges are identified and 
new search techniques applied to find dis- 
joint augmenting paths of length L. We do 
not give the details here. 

The immediate implementation of Micali 
and Vazirani’s algorithm takes 0( m&x( m, 
n)) time. The authors claimed that the par- 
ticular case of the disjoint set union used 
by their algorithm can be shown to require 
only linear time; as a result their algorithm 
runs in time O(m&). Quite recently, Ga- 
bow and Tarjan [ 19831 found a linear-time 
algorithm for some special cases of the dis- 
joint set union. One of these special cases 
is the one needed in Problem 2. (As a result, 
also the O(mna(m, n)) algorithm men- 
tioned above can be implemented in time 
Oh&) 

5. SOME OBSERVATIONS ON DATA 

STRUCTURES 

The most efficient algorithms for Problems 
3 and 4 use some observations on data 
structures that we now review. A priority 
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queue (p.q.) is an abstract data structure 
consisting of a collection of elements, each 
with an associated real-valued priority. 
Three operations are possible on a p.q.: 

1. insert an element i with priority pi; 
2. delete an element; 
3. find an element with the minimal priority. 

An implementation of a p.q. is said to be 
efficient if each operation takes O(log n) 
time, where n is the number of elements in 
the p.q. Many efficient implementations of 
p.q.s are known, for example, 2-3 trees 
[Aho et al. 1974; Knuth 19731. 

3’. 

4’. 

I 

it: 
7’. 

8’. 

find an actiue element with the minimal 
priority; 
decrease the priorities of all the active ele- 
ments by some real number 6; 
generate a new empty group (active or not); 
delete a group (active or not); 
change the status of a group from active to 
nonactive, or vice versa; 
split a group according to an element in it. 

In p.q.s elements have fixed priorities. 
What happens if we allow the priority 
of the elements to change? Obviously, an 
additional operation that changes the 
priority of one element can be easily imple- 
mented in time O(log n). On the other hand, 
it is not natural to allow arbitrary changes 
in an arbitrary subset of the elements in 
one operation simply because we have to 
specify all these changes. 

We consider two generalized types of 
p.q.s, which we denote by p.q., and p.q.,. 
The first simply allows a uniform change 
in the priorities of ah! the elements cur- 
rently in it. The second allows a uniform 
change in the priorities of an easily speci- 
fied subset of the elements. 

More precisely, p.q., enables the follow- 
ing additional operation: 

4. decrease the priorities of all the current ele- 
ments by some real number 6. 

A version of p.q., was used by Tarjan 
[1977]. 

To define p.q.2, we first need some as- 
sumptions. We assume that the elements 
belong to a totally ordered set and that they 
are partitioned into groups. Every group 
can be either active or nonactive. An ele- 
ment is active if its group is active. By 
splitting a group according to an element e, 
we mean creating two groups from all the 
elements in the group greater (not greater) 
than e. Note that, unlike the usual split 
operation, we split a group according to an 
element and not according to its priority. 

The operations possible for p.q., are 

1’. insert an element i with priority pi into one 
of the groups; 

2’. delete an element; 

It may seem at first that one may need 
up to n steps to update all the priorities 
as a result of one change. However, it is 
possible to implement p.q.l and p.q., effi- 
ciently. In particular, the change of priori- 
ties can be achieved implicitly in one step 
(see Galil et al. [1986]): 

Theorem 3 

p.q.l and p.q.2 can be implemented in time 
O(log n) per operation. 

The implementation of the generalized 
p.q.s uses regular p.q.s and a collection of 
offsets to handle the change in priorities. 

We also make use of Johnson’s d-heap 
[Johnson 19771, where d is the number of 
sons of internal nodes. (The usual heap is 
a 2-heap.) We partition the primitive op- 
erations into two types. Type 1 includes 
inserting an element and decreasing the 
priority of an element, and type 2 includes 
deleting an element. Type 1 involves “sift- 
ing up” the heap for a cost of O(log,n), 
whereas type 2 involves “sifting down” the 
heap for a cost of O(d logdn). Consequently, 
the following theorem holds. 

Theorem 4 

Let d = [m/n + 11. A d-heap supports m 
operations of type 1 and n operations of type 
2 in time O(m logdn). 

6. PROBLEM 3: MAX WEIGHTED MATCHING 

IN BIPARTITE GRAPHS, OR A WARM-UP 
FOR PROBLEM 4 

Introducing weights and maximizing the 
weight make the problem much harder. One 
can show that the following approach 
solves Problems 3 and 4. Start with the 
empty matching, and in each stage find an 
augmenting path with the maximal in- 
crease of the weight. One then can show 
that after k stages, we have a matching of 
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maximum weight among matchings of size 
k (e.g., see Tarjan [1983]). In the case of 
Problem 3, finding such an augmenting 
path is relatively simple, because it can be 
easily reduced to solving a single-source 
shortest path problem for graphs with non- 
negative edge lengths. But finding such an 
augmenting path for general graphs is 
much harder, so we choose a completely 
different approach. 

We use duality theory of linear progam- 
ming (specifically the primal-dual method) 
to derive the algorithm. We need linear 
programming for motivation only. Once we 
obtain the algorithm (for Problem 3 or 4), 
we prove its correctness by a one-line proof, 
Therefore, the description below is some- 
what sketchy. (See Lawler [1976] or Papa- 
dimitriou and Steiglitz [1982] for more 
details.) 

After defining the problem as a linear 
program, we consider the dual problem and 
then use complementary slackness to 
transform our optimization problem into a 
problem of solving a set of inequalities 
(constraints). A pair of feasible solutions 
for the primal and the dual problems are 
both optimal if, for every positive variable 
in the one, the corresponding inequality in 
the other is satisfied as equality. 

In the case of Problem 3, defining the 
problem as a linear program is immediate. 
We describe it as an integer program and 
replace the integrality constraints zij E 
(0, 1) by 0 I Xii. Since the matrix of con- 
straints is unimodular, we must have an 
optimal integral solution. 

We will have a primal solution, a match- 
ing M, and a dual solution, an assignment 
of dual variables ui, Uj (corresponding to 
boys i and girls j). For convenience we 
define slacks “ii for every edge (i, j): rij = 
Ui + Uj - wij. The inequalities “ii 2 0 are 
the constraints of the dual problem. 
(Whenever we mention rij below we always 
assume that (i, j) E E.) By duality, M has 
a maximal weight if 6.0-6.2 hold: 

6.0 For every i and j; Ui, uj, rij I 0. 
6.1 (i, j) is matched * rij = 0. 
6.2 BOY i (or girl j) is single =+ Ui = 0 (Uj = 

0). 

The sufficiency of 6.0-6.2 for optimality 
can be proved directly as follows: Assume 
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that M, Ui, uj, “ii satisfy 6.0-6.2 and let 
N be any matching. Then Cci,j)EN wij 5 
&ij)EN (Ui + Uj - Tij) 5 xi Ui + Cj Uj (by 
6.0 and the fact that N is a matching), while 
CWEM wij = zi ui + & uj (by 6.1 and 
6.2 and the fact that M is a matching). 
Consequently, M is a maximum weight 
matching. 

So, we only have to find a matching M 
and an assignment of the dual variables 
that satisfy 6.0-6.2. We use the primal- 
dual method. This method starts with a 
simple solution, which violates some of the 
constraints. The solution is then modified 
in a way that guarantees that the number 
of violations is reduced. In our case we start 
with M = 0, Ui = maxk,l wk.1 for boys and Uj 

= 0 for girls. The initial solution satisfies 
6.0 and 6.1, and violates only 6.2. The al- 
gorithm makes changes that preserve 6.0 
and 6.2 and reduce the number of violations 
of 6.2. 

The algorithm consists of O(n) stages. In 
each stage we look for an augmenting path, 
as in the simple algorithm for Problem 1, 
except that we use only edges with zero 
slack (aij = 0). If the search is successful, 
we augment the matching (i.e., change 
the primal solution) and start a new stage. 
This is progress because one single boy gets 
married. 

If the search fails, we change the dual 
variables as follows. Let 6 = min(&, &), 
61 = mini:S-boy Ui, 62 = minis-boy,j:freegid rij. 
For an S-boy i we set Ui t ui - 6, and for a 
T-girl j we set Uj t Uj + 6. It is easy to see 

that 6 > 0 and the change preserves 6.0 and 
6.1. Also a1 = ui,, for any single boy i. (Q’S 
of all boys had the same initial value, and 
in each change of the dual variables, all 
single boys had S label and their dual vari- 
ables were decreased by the same 6). If 6 = 
&, then after the change 6.2 holds, and we 
are done. Otherwise, for each edge (i, j), i 
an S-boy and j a free girl, with rij = a2 
(there exists at least one), rij becomes zero, 
and we can continue the search. Since at 
least one girl gets a T label as a result, 
6 = a2 at most O(n) times per stage. 

The naive implementation of the algo- 
rithm above takes O(mn2) time. The most 
costly part is maintaining a2. For every 
free girl j, let Xj = mini+.& Xii and let 
ej = (i, j) be an edge with i an S-vertex and 
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“ii = rj. Then & = minj:freegirl rj.. Note that 
when we make a change of 6 m the dual 
variables, 9 is reduced by 6 and ej does not 
change. Also, if 6 = 62 = rjO, then the slack 
of ejO becomes 0 and it can be used for 
continuing the search. By maintaining X, 
and ej for all free girls i, an O(n3) imple- 
mentation of the algorithm follows. 

In a different implementation, we main- 
tain the collection C = {(i, j) 1 rj > 0, i an 
S-boy, j a free girl) as p.q.,, since all these 
rij’s are reduced by 6 in a change in the 
dual variables. Whenever we scan an 
S-vertex i, we consider all edges (i,j), where 
j is a free vertex. Those edges with xii > 0 
are inserted into the p.q.,. Consequently, 
this implementation takes O(mn log n) 
time. 

A small improvement is achieved if we 
maintain rj and ej (as above) for free girls j 
in a p.q.,. Then & is the minimum of this 
p.q. One can see that the p.q. used here 
satisfies the conditions of Theorem 4, and, 
consequently, we get an O(mn log~m,n+nn) 
time bound, which dominates the two 
bounds of O(n3) and O(mn log n). 

A closer look at a stage reveals that an 
augmenting path is found using Dijkstra’s 
algorithm for all shortest paths from a sin- 
gle source [Dijkstra 19591. The source is a 
new vertex, which is connected to all single 
boys with new edges of length zero. The 
lengths of other edges are the rij’s at the 
beginning of the stage. The reduction of a 
stage to a shortest-path problem is well 
known [Gabow 19741. In fact, each stage 
discovers the augmenting path that causes 
the largest increase in the weight of the 
matching. The various implementations 
of Dijkstra’s algorithm are (1) the naive 
implementation: O(n’), (2) an imple- 
mentation using p.q.s: O(m log n), and 
(3) an implementation using Theorem 4: 
O(m log~,,n+lln). Hence, the corresponding 
time bounds for n stages follow immedi- 
ately. 

The main purpose of this section is to 
serve as a warm-up for the next section. 

7. PROBLEM 4: MAX WEIGHTED MATCHING 
IN GENERAL GRAPHS 

If we try to solve Problem 4 exactly as we 
solved Problem 3, we immediately run into 

problems. The linear program obtained by 
dropping the integrality constraints from 
the integer program for Problem 3 may 
have no integer optimal solution. Edmonds 
[1965b] found an ingenious way to remove 
this difficulty, which led to a polynomial- 
time algorithm for Problem 4. He added an 
exponential number of constraints of the 
following form. For every odd subset of 
vertices B, 

These new constraints must be satisfied by 
any matching, and, surprisingly, their ad- 
dition guarantees an integer optimal solu- 
tion. This fact follows from the correctness 
of the algorithm, which can be proved di- 
rectly. 

We now proceed as before. We have a 
primal solution, a matching M, and a dual 
solution, an assignment of dual variables ui 
for every vertex i and & for every odd subset 
of vertices Bk. We now define slacks xii 
slightly differently: “ii = ui + uj - Wij + 
&,jEB, k z . (Again “ii 2 0 are the constraints 
of the dual problem.) By duality, M has 
maximal weight if 7.0-7.3 hold: 

7.0 For every i, j, and k, Ui, Tij, zk 2 0. 
7.1 (i, i) is matched + rij = 0. 
7.2 i is single * Ui = 0. 
7.3 zk > 0 =S. & iS full (rk = 11 & 1/2J = 

I((i,j)EMIi,jEBk)l). 

In fact, as in Problem 3, we only need 
duality theory for motivation. The suffi- 
ciency of 7.O-7,3 for optimality can be 
proved directly: Assume that M, Uiy *ij, zk 

satisfy 7.0-7.3, and let N be any matching. 
Then Cci,j)EN wij 5 &i,j)EN (ui + uj - rij + 
x(i,j)ak zk) I Ci Ui + & rkzk (by 7.0 and the 
fact that N is a matching), while Cci,j)EM Wij 
= xi Ui + & rkzk (by 7.1-7.3 and the fact 
that M is a matching). 

We can use 7.0-7.3 to derive a polynomial 
algorithm because we will have zk > 0 only 
for blossoms or subblossoms, and their total 
number at any moment is O(n). We main- 
tain only zk’s that correspond to blossoms. 
Since we consider only rij for i, j not in the 
same blossom, rij = ui + uj - wij, as in 
Problem 3. 
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We again use the primal-dual method. 
We start with M = 0, Ui = (maxkl z4/2 
and no zk’s (no blossoms). The initial so- 
lution violates only 7.2. The algorithm 
makes changes that preserve 7.0, 7.1, 7.3 
and reduce the number of violations of 7.2. 

As in Problem 3, the algorithm consists 
of O(n) stages. In each stage we look for an 
augmenting path using the labeling R12 
and the two cases Cl, C2 as in the simple 
algorithm for Problem 2, except that we 
only use edges with “ii = 0. If the search is 
successful, we augment the matching. 

To preserve 7.3 we keep blossoms with 
zk > 0 shrunk at the end of the stage. As a 
result, we have two new kinds of blossoms 
in addition to the S-blossoms we had in 
Problem 2. (Recall that a newly generated 
blossom is labeled by S.) Since the labels 
are erased at the end of a stage, we may 
have free blossoms at the beginning of a 
stage. During the search a free blossom can 
become a T-blossom. (Recall that a blos- 
som is just a vertex in the current graph.) 
We call the vertices of an S-blossom 
(a T-blossom or a free blossom) S-vertices 
(T-vertices or free vertices). When, during 
the search, a new S-blossom Z3k is formed, 
the vertices in its T-blossoms (which now 
become subblossoms) become S-vertices 
and are inserted in the queue Q (of 
S-vertices). We also initialize a new zk to 
zero. 

If the search is not successful, we make 
the following changes in the dual variables. 
We choose 6 = min(b,, &, &, a,), where 

61 = min Ui, 
i:S-vertex 

a2 = min 
iSvertex “‘j’ 

j:free vertex 

63 = min 
0 

5 

ij:S-vertices 2 ’ 
notin thesameblossom 

84 = min zk. 
B,: T-blossom 

We then set 

(a) Ui + Ui - 6 for every S-vertex i; 
(b) ui + ui + 6 for every T-vertex i; 
(c) zk c zk + 26 for every S-blossom Bk; 
(d) zk + zk - 26 for every T-blossom &. 

Such a choice of 6 preserves 7.0, 7.1, and 
7.3 

If 6 = &, we expand all T-blossoms Bk on 
which the minimum was attained. (Each 
corresponding zk becomes 0.) The expan- 
sion of blossom B is shown in Figure 2. B 
stops being a blossom and its subblossoms 
become blossoms. All vertices of the new 
S-blossoms are inserted into Q. 

If 6 = b2 (6 = &), we consider all edges 
(i, j) with i an S-vertex and j a free vertex 
(an S-vertex not in the same blossom) on 
which the minimum was attained. For each 
such edge rij becomes 0 and we can use it 
for continuing the search. At the end of 
each stage we also expand all S-blossoms 
& with zk = 0. 

Let us call each change in the dual vari- 
ables a substage. Each S-blossom corre- 
sponds to a unique node in one of the 
structure trees at the end of the stage. Each 
T-blossom corresponds to a unique node in 
one of the structure trees at the beginning 
of the stage. Consequently, for i = 2, 3, 4, 
6 = 6i at most O(n) times per stage: when 
6 = &, a blossom becomes a T-blossom; 
when 6 = &,, either the stage ends or a new 
S-blossom is generated, and when 6 = &, a 
T-blossom is expanded. Finally, 6 = & at 
most once. Consequently, there are O(n) 
substages per stage. 

The most costly part of a substage is 
computing 6. The obvious way to compute 
it takes O(m) steps and yields an O(mn2) 
algorithm. Edmonds’ time bound was 
O(n*). 

The only parts that require more than 
O(n3) are maintaining & and 83. & is han- 
dled as in the O(n3) algorithm for Problem 
3. To take care of 63, we define for every 
pair of S-blossoms Bk, Bl: 

pk,l = mm 
* 0 

‘ii 

iEB,,jEB, 2 * 

We record the edge ek,l on which the mini- 
mum is attained and maintain (Pk = 
minl’Pk,l. We do not maintain (Pk,l, but any 
time we need it we compute it by using ek,J. 
Obviously a3 = mink’Pk. A change in the 
dual variables and computing & costs O(n3) 
as for &. We have to update ((Pk] and ek,l 
any time an S-blossom Bk is constructed 
from Bi,, . . . . B,. Recall that (r + 1)/2 
of the subblossoms are S-blossoms and 
(r - 1)/2 of them are T-blossoms. We 
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(4 (b) 

Figure 2. Expansion of a T-blossom (a) before and (b) after expansion. 

first “make” each T-blossom BP into an 
S-blossom by considering all its edges and 
computing for it {PP,l) and {e,,/). Then we 
use the (Pp,l(s of Bi,, . . . , B, to compute Vh 
and {ek,l) for the new blossom Bk and to 
update {‘pi) for j # k. The total cost (per 
stage) to make T-blossoms into S-blossoms 
is O(m). We now compute the rest of the 
cost T(N), where N is the number of S- 
blossoms plus the number of non-S-vertices 
in the graph. T(N) I crN + T(N - r + 1) 
because rN is a bound on the number of 
(Pk,l)s considered after making the T-blos- 
soms into S-blossoms. T(N) = O(N2) (by 
induction on N), and the total cost of com- 
puting 63 is O(n3). The discussion above 
results in an O(n3) algorithm [Gabow 1974; 
Lawler 19761. 

The most costly part of the algorithm is 
the frequent updates of the dual variables, 
which cause changes in (*ii). Note that all 
the elements that determine each 6i are 
decreased by 6 each change in the dual 
variables. We maintain &, h3, & by a p.q.l. 
We use a p.q.l to maintain Ui for T-vertices, 
and another p.q., for zk’s of S-blossoms Bk. 

If we try to maintain d2 by a p.q.,, we 
have problems. Consider Figure 3. Initially 
there may be a large free blossom B1. At 
that time all edges in Figure 3 should be 
considered for finding the value of a2. Later 
B1 may become a T-blossom. Then these 
edges should not be considered for finding 
the value of 62. Later still, B1 may be ex- 
panded and one of its subblossoms, B2, may 
become free. The latter may subsequently 
become a T-blossom, and so on. A simple 

implementation requires the consideration 
of each such edge a large number of times 
(up to k in Figure 3). 

To maintain d2, we have a p.q., . For every 
free blossom (T-blossom) Bk we have an 
active (a nonactive) group of all the edges 
from S-vertices to vertices in Bk. Note that 
if (i, j) is in a nonactive group (i is an 
S-vertex and j is a T-vertex), then “ii does 
not change as a result of a change in the 
dual variables. It is now easy to verify that 
the eight operations of p.q., suffice for our 
purposes. 

Consider a group g, which corresponds to 
a blossom B. The elements of the group are 
the edges ((i, j) 1 i an S-vertex, j E BJ. The 
order on the elements is derived from the 
order on the vertices of B. The latter is 
taken to be the left-to-right order of the 
leaves of the structure tree. The order be- 
tween two edges (il, j) and (i2, j) is arbi- 
trary. The order enables us to split the 
group g into the groups corresponding to 
BI, . . . . B, when we expand B to its sub- 
blossoms. 

To maintain the generalized priority 
queues, we make a change in the scanning 
of a new S-vertex i. We also take into 
account edges (i, j) with “ii > 0 and have 
three more cases in addition to Cl and C2 
for edges (i, j) with sij = 0. Assume that j 
is in a blossom B with rij > 0. 

(C3) B is a free blossom. 
(C4) B is a T-blossom. 

We insert (i, j) with priority “ii into the 
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Figure3. Edges from a single vertex to the innermost blossom that we may 
have to scan again and again if the blossoms B,, . . , Bb are eventually expanded. 

active (nonactive) group corresponding 
to B. 

(C5) B is an S-blossom and i 4 B. 

We insert (i, j) with priority *ij/2 to the 
p.q., that computes 63. 

Remark 1 

Since A1 = ui, for any single vertex io, we do 
not need a generalized p.q. to compute 61. 
Nevertheless, we have a p.q., for the ui’s of 
the S-vertices and also a p.q., for the ui’s 
of the T-vertices for computing rij when 
the edge (i, j) is considered. 

Remark 2 

We have a p.q., for the zk’s for S-blossoms, 
because at the end of a stage they all be- 
come free, and in the next stage they may 
become T-blossoms. 

Remark 3 

The p.q., for computing 63 contains also 
edges (i, j) with i and j in the same blossom. 
We do not have time to locate and delete 

Computing Surveys, Vol. 18, No. 1, March 1986 

such edges each time a new blossom is 
constructed. Consequently, if 6 = 63 and 
& = rij, we first check whether i and j are 
in the same blossom. If they are, we delete 
the edge and possibly compute a new 
(larger) 6. 

Remark 4 

All edges (i, j) in the generalized p.q.‘s that 
compute & or 63 have rij > 0, since an 
element is deleted as soon as its priority 
becomes 0. Similarly, all zk’s in the p.q.1 
that computes dq are positive. Conse- 
quently, 6 > 0. 

To derive an O(mn log n) time bound, we 
need to implement two parts of an algo- 
rithm carefully: 

1. We maintain the sets of vertices in 
each blossom (for finding the blossom that 
contains a given vertex) by concatenable 
queues [Aho et al. 19741. Note that the 
number of finds, concatenates and splits is 
O(m) per stage, and each takes O(log n) 
time. 
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2. In C2 we use the careful backtracking 
described for Problem 2. 

The O(mn log n) time bound is easily 
derived as follows. There are at most n 
augmentations (stages). Between two aug- 
mentations we consider each edge at most 
twice and have O(m) operations on (gen- 
eralized) p.q.s. (This includes 1 and 2 
above.) 

8. CONCLUSION 

We have considered four versions of the 
maximum matching problem and discussed 
the development of the most efficient al- 
gorithms for solving them. By “most effi- 
cient algorithms” we mean those that have 
the smallest asymptotic running times. We 
now mention briefly a number of closely 
related additional topics and give some ref- 
erences. These are intended to serve as 
examples and certainly do not form an ex- 
haustive list. 

(a) Applications of Matching. We do not 
list here the many applications of solutions 
to Problems l-4. For some applications see 
Lawler [ 19761. 

(b) Generalization of Matching. Prob- 
lems l-4 can be generalized in a number of 
ways. For example, Gabow [1983a] has re- 
cently considered similar problems where 
some kinds of polygamy are allowed. He 
found efficient reductions to the corre- 
sponding matching problem. Stockmeyer 
and Vazirani [1982] showed that several 
natural generalizations of matching are 
NP-complete. 

(c) Special Cases of Matching. Many ap- 
plications solve one of the Problems l-4, 
but only for special graphs. For example, 
Problem 1 is used to find routing in super- 
concentrators [Gabber and Galil19811. The 
graphs that arise in this application have 
vertices with bounded degree, and hence 
the solution given here takes time O(n’.5). 
Perhaps this can be improved. For better 
algorithms for some special cases of Prob- 
lem 1, see Cole and Hopcroft [1982] and 
Gabow [ 1976b]. 

(d) Randomizing Algorithms. Several 
algorithms that work very well for random 
graphs or for most graphs have been devel- 
oped. They are usually faster and simpler 

than the algorithms discussed here [An- 
gluin and Valiant 1979; Karp 19801. An 
interesting problem is to find improved 
randomizing algorithms that use random 
choices (rather than random inputs). 

(e) Approximation Algorithms. As for 
all optimization problems, we may settle 
for approximate solutions. For cardinality 
matching, the solution that uses phases 
yields a good approximation by executing 
only a constant number of phases. For sim- 
ple, fast, and good approximation algo- 
rithms for special graphs see Iri et al. 
[1981], Karp and Sipser [1981], and 
Plaisted [ 19841. 

(f) Improvements. We next discuss 
possible improvements of the algorithms 
considered in this paper. All the time 
bounds discussed in this paper can be 
shown to be tight. One can construct fam- 
ilies of inputs for which the algorithms 
require the number of steps that is specified 
by the stated upper bounds. There are no 
known lower bounds for any of the four 
problems. Improving the O(m&) bound 
for cardinality matching must involve the 
discovery of a new approach that does not 
use phases. Similarly, except for a logarith- 
mic factor, improving the bound for 
weighted matching requires the use of an 
approach that does not make 8(n) augmen- 
tations. Perhaps the introduction of phases 
may lead to improved algorithms for Prob- 
lems 3 and 4. Note that the solution to 
Problem 3 is slightly better than the solu- 
tion to Problem 4, due to the use of 
d-heaps. It may still be possible to find a 
similar improved solution for Problem 4. 

There are several theoretical questions 
concerning Problems l-4. Their solution 
may lead to simpler or faster algorithms: 

l Can we find efficient solutions to any of 
the problems without augmenting paths? 

l Are blossoms necessary? 
l Can we solve Problem 4 without duality? 

Assume that we have solved an instance 
of a weighted matching problem and then 
make a small change such as adding or 
deleting some edges or changing the weight 
of a few edges. It is not clear how to make 
use of the solution to the original problem. 
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It seems that, using the algorithms de- 
scribed here, we may have to spend O(mn 
log n) time to find the new solution. For 
some partial solution to these types of ques- 
tions, see Derigs [1981, 19821 and Weber 
[1981]. 

Finally, we briefly consider parallel al- 
gorithms: 

l Can we solve any one of the four prob- 
lems in time O(log’h) with a polynomial 
number of processors? 

l Is Problem 4 log-space complete for P 
(the class of problems solvable in poly- 
nomial time)? 

A positive answer to the latter implies that 
a positive answer to the former (regarding 
Problem 4) is unlikely. Recently, the prob- 
lem of network flow has been shown to be 
log-space complete for P by Goldschlager 
et al. [ 19821. As was observed by Borodin 
et al. [1982], there is a nonuniform algo- 
rithm that computes the size of the maxi- 
mum matching in time O(log2n) with a 
polynomial number of processors. It is not 
clear how to use it in order to find a similar 
algorithm that finds a maximum matching. 

9. VERY RECENT PROGRESS 

Since this paper was first written, there 
have been a number of results related to 
the topics raised in the last section. 

Ball and Derigs [ 19831 consider an alter- 
native approach to Problem 4, which also 
uses duality. It was implemented in time 
O(n3) and O(mn log n) using the ideas of 
Galil et al. [ 19861. Stages are interpreted as 
searches for shortest paths. In one of the 
variants we successively add a new vertex 
with its edges in each stage. 

The solutions for Problems 3 and 4 were 
slightly improved. A new data structure, 
called Fibonacci heap (or F-heap), was in- 
troduced by Fredman and Tarjan [ 19841. It 
supports most operations including insert- 
ing, merging, and decreasing the key of an 
element in O(1) amortized time. (Opera- 
tions are associated with amortized time so 
that the total time is bounded above by the 
total amortized time.) Deletion is the only 
expensive operation, costing O(log n) am- 
ortized time, where n is the total number 
of elements. Using F-heaps immediately 

improves Dijkstra’s algorithm, as well as 
one stage of Problem 3, to O(m + n log n). 
Consequently, the best time bound for 
Problem 3 is currently O(n(m + n log n)). 
For a different algorithm that uses F-heaps 
and yields the same time bound, and for 
references to other algorithms for Problem 
3, see Goldfarb [ 19851. 

Even with F-heaps, it was not clear how 
to improve the best algorithms for Problem 
4. There were two difficulties. There was a 
problem with splits, since F-heaps do not 
support splits. There was also a problem 
with the edges (i, j), where i, j are S-vertices 
in the same blossom, because such edges 
have to be deleted and deletion is relatively 
expensive. New developments in data 
structures were used to overcome these dif- 
ficulties [ Gabow et al. 19841. Consequently, 
the current best algorithm for Problem 4 
takes time 

O(n(m log log logr,/,+~ln + n log 4). 

This bound is better than 

O(mn logr,,,+nn), 

but worse than the best bound currently 
known for Problem 3. The algorithm still 
uses the observations of Section 6. 

The question of the possibility of using 
phases for Problems 3 and 4 was partially 
answered by Gabow [ 1983b, 19851. He con- 
sidered the case in which weights are inte- 
gers bounded above by N. By using scaling 
techniques, he was able to use algorithms 
for Problems 1 and 2 for solving Prob- 
lems 3 and 4. As a result, he obtained an 
O(n3j4m log N) algorithm for Problem 3 
and a similar time bound for Problem 4. 

A new simple algorithm has recently 
been designed for Problem 2 [Rabin and 
Vazirani 19841. This algorithm is related to 
three questions raised in Section 9. It is a 
randomizing algorithm that uses neither 
blossoms nor augmenting paths. The algo- 
rithm consists of up to n stages in which 
an n X n matrix is inverted. Using the 
asymptotically best algorithm for inverting 
matrices of Coppersmith and Winograd 
[1982], an O(n3.5) expected time bound fol- 
lows. (A more realistic bound is O(n4).) It 
is still a challenge to find simple algorithms 
that may use randomization but will also 
improve the time bound for Problem 2. 
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Note that no simple approach is yet known 
for Problem 4. 

As for parallel algorithms, a new random- 
izing algorithm solves Problem 2 (and 
Problem 1) in expected time O(log3n) with 
O(n7.5) processors [Karp et al. 19851. So it 
is now possible to efficiently find a maxi- 
mum matching, rather than just its size. 
More recently, this algorithm was improved 
[Galil and Pan 19851. The new algorithm 
has the same time complexity, but requires 
only O(n”.“) processors. Even more re- 
cently, a simple randomized algorithm for 
Problem 2 was discovered, which improved 
the expected running time to O(log2n) and 
requires O(mn3.5) processors [Mulmuley et 
al. 19851. All the parallel algorithms use the 
algebraic approach of Rabin and Vazirani 
[1984], which uses no augmenting paths. 
The remaining challenges are to improve 
the time and processor bounds (or to 
achieve the best time and processor bounds 
simultaneously), and to find a deterministic 
algorithm with similar time and processor 
complexities. The new parallel algorithms 
also yield good solutions for the special 
cases of Problems 3 and 4, in which the 
weights are given in unary. However, the 
status of (the general versions of) Problems 
3 and 4 is still open. 
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