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Efficient Algorithms for Integer Programs with
Two Variables per Constraint!

R. Bar-Yehudaand D. Rawit?

Abstract.  Given a bounded integer program witlvariables anan constraints, each with two variables, we
present ar® (mU) time andO (m) space feasibility algorithm, wheté is the maximal variable range size. We
show that with the same complexity we can find an optimal solution for the positively weighted minimization
problem formonotonesystems. Using the local-ratio technique we develo@ammU) time andO(m) space
2-approximation algorithm for the positively weighted minimization problem for the general case. We further
generalize all results to nonlinear constraints (cadbeid-convex constraintand to nonlinear (but monotone)
weight functions.

Our algorithms are not only better in complexity than other known algorithms, but also considerably simpler,
and they contribute to the understanding of these very fundamental problems.

KeyWords. Combinatorial optimization, Integer programming, Approximation algorithm, Local-ratio tech-
nique, 2SAT, Vertex cover.

1. Introduction. This paper is motivated by a paper by Hochbaum et al. [11] which
discusses integer programs with two variables per constraint. The problem is defined as
follows:
(2VIP) min}.", wiX
s.t. akXi, + biXj, > Ck, vk e {1,...,m},
b <X < U, Vie{l,...,n},
Xi € N, Viel{l,...,n}

where 1< iy, jk < n,wj > 0,a,b,c e Z™, and¢{,u € N".

Obviously, this problem is a generalization of the well-knaninimum weight vertex
cover problem(VC) and theminimum weight? satisfiability problem(2SAT). Both
problems are known to be NP-hard [7], and the best known approximation ratio for VC
[3], [10], [14] and 2SAT [9] is asymptotically 2. Both results are best viewed via the
local-ratio technique (see [2] and [4]).

A 2VIP system is callednonotondf each constraint is an inequality on two vari-
ables with coefficients of opposite signs. The problem of checking whether an integer
monotone system has a feasible solution was shown to be NP-complete by Lagarias [13].
Therefore, even for the 2VIP feasibility problem, it is natural to consider pseudopoly-
nomial algorithms, i.e., algorithms with a running time which is polynomial in the size
of the input and irJ, whereU = max {u; — ¢;}.

1 A preliminary version of this paper appeared in Breceedings of th@th Annual European Symposium on
Algorithms(1999).
2 Computer Science Department, Technion - IIT, Haifa 32000 Isfemiven,rawitz@cs.technion.ac.il.

Received June 21, 1996; revised December 5, 1997. Communicated by N. Megiddo.
Online publication December 15, 2000.



596 R. Bar-Yehuda and D. Rawitz

Hochbaum and Naor [12] were the first to consider efficient algorithms for integer
programs with two variables per inequality. They presente@émr? logm + nmU)
time feasibility algorithm for monotone 2VIP systems, and an optimization algorithm
for monotone systems with general (possibly negative) weights. This optimization al-
gorithm constructs a graph representing the monotone system in question and then
uses a maximum flow algorithm. Consequently, the time complexity of their algo-
rithm is relatively high, i.e., when using Goldberg and Tarjan’s maximum-flow algo-
rithm [8] it is O(nmU?log(n?U/m)). Using this optimization algorithm, Hochbaum
et al. [11] were able to construct @(nmuU? log(n?U/m)) time 2-approximation al-
gorithm for the 2VIP problem. Their algorithm also uses@mU) time and space
2VIP feasibility algorithm based on a transformation to 2SAT which they attribute to
Feder.

By using the local-ratio technique, we present@mmuU) time andO(m) space 2-
approximation algorithm. This algorithm is not only more efficient, but also more natural
and simpler. In order to develop an approximation algorithm, it seems natural to study
the feasibility problem first.Indeed, our 2-approximation algorithm is in fact a specific
implementation of a feasibility algorithm presented here.

The remainder of this paper is organized as follows: In Section 2 we pres@rihad)
time andO(m) space feasibility algorithm for 2VIP systems. The 2-approximation al-
gorithm for 2VIP systems is presented in Section 3. In Section 4 we show that the
feasibility algorithm and the approximation algorithm presented in this paper can be
generalized to some nonlinear systems with the same time and space complexity. We
define a generalization of linear inequalities, cakkeds-convexconstraints, and show
that the algorithms can be generalized to work with such constraints. We also generalize
the 2-approximation algorithm to objective functions of the foyil_; wi (x;), where
all thew;’s aremonotone weight function&n optimality algorithm formonotondinear
systems appears in Section 5. We show that this algorithm can work with some non-
linear constraints, and we generalize the algorithm to monotone weight functions as
well.

Table 1 summarizes the results for 2VIP systems.

Table 1. Summary of results.

Problem Previous results (time, space) Our results (time, space)
2SAT feasibility O(m), O(m) [6]
2VIP feasibility O(mU), O(mU) O(mU), O(m)
by using reduction to 2SAT [11]

2SAT 2-approximation o(nm), O(n? + m) [9] O(nm), O(m)
2VIP 2-approximation  O(nmUZlog(n2U/m)), O(mU) [11] O(nmU), O(m)
Monotone 2VIP O(mu), O(mU) O(mU), O(m)

optimization by using reduction to 2SAT

3 This was done by Hochbaum and Naor [12] for the monotone 2VIP problem, by Hochbaum et al. [11] for
the 2VIP problem, and by Gusfield and Pitt [9] for the 2SAT problem.



Efficient Algorithms for Integer Programs with Two Variables per Constraint 597

2. Feasibility Algorithm. Given a 2VIP system, we are interested in developing an
algorithm which finds a feasible solution, if such a solution exists. Since the special
case wher¢ = 0" andu = 1" is the known 2SAT feasibility problem, it is natural to
try to extend the well knowr©(m) time and space algorithm of Even et al. [6]. It is
possible to transform the given 2VIP system into an equivalent 2SAT instancaith
variables andm + n)U constraints (this transformation due to Feder appears in [11]).
By combining this transformation with the linear time and space algorithm of Even et
al. we get artOD(mU) time and space feasibility algorithm. In this section we present an
O(mU) time andO(m) space feasibility algorithm which generalizes the algorithm by
Even et al.

The main idea of the algorithm from [6] is as follows: choose a variab|dirst
discover the forced values of other variables by assigxing 0, and then do the same for
the assignmeng = 1. If one of these assignments does not lead to a contradiction, assign
this value tox; and make the corresponding forced assignments. The correctness of the
approach of Even et al. is shown by proving that a noncontradictory assignment preserves
the feasibility property. The efficiency of their algorithm is achieved by discovering the
forced assignments of = 0 and those ok; = 1 in parallel.

Our 2VIP feasibility algorithm works with bounds, as opposed to assignments. We
choose a variablg, and an integes < [¢, u;] and discover the forced bounds of other
variables by considering in turn the bouxqd< « and the bound; > «. For this purpose
we use constraint propagatiéuch like Even et al. [6], we prove that a noncontradic-
tory bound preserves the feasibility property, and use this to show the correctness of our
algorithm. Also, the efficiency of our algorithm is achieved by discovering the forced
bounds by both new bounds xfin parallel.

The purpose of this section is not only to show the fa&@u ) improvement in space
complexity, but also to lay the foundations for the 2-approximation algorithm presented
in the next section.

DerINITION 1. For a given 2VIP instance,
sal¢, u) = {x: £ < x < u andx satisfies all 2VIP constraints

DEFINITION 2. For thekth constraint (on the variableg, x; ) of a given 2VIP instance,
constraintk) = {(«, B): X, = «a, X;, = p satisfy constraink}.

DEFINITION 3. Givenea, 8 € Z we define§, 8] ={z€ Z: « <z < B}.

A linear constraint is convex, thus the following hold for tki constraint on the
variablesx; andx;:

OBSERVATION 1. If (¢, B), («, y) € constraintk), then(«, §) € constraingk) for all

4 Constraint propagation was previously used for the LP version of the problem (e.g., see [1] and [15]), and in
[12] for integer feasibility over monotone inequalities.
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Routine OneOnOnelmpact({,u,t,7,k)

Let constraint & be ax; + bx; > c.
If 5 > 0 then
If @ > 0 then Z; o [

Blse ¢} — [=ph]
{; — max {Q,[;}
Else
If @ > 0 then v} — {%J
Flse u? — [%J

Y H ap e l
w; — min u],uj}

Fig. 1. RoutineOneOnOnelmpact

OBSERVATION 2. If (a1, @2), (B1, B2), (v1, ¥2) € constraintk), then all points inside
the triangle induced byua, a2), (81, B2), and (y1, y2) satisfy constraint k

We present a routine in Figure 1 which will be repeatedly used for constraint propaga-
tion. It receives as input two arragsndu of sizen (passed by reference), two variables
indicesi, j, and a constraint indekon these two variables. The objective of this routine
is to find the impact of constraiktand the boundg;, u; on the bounds;, u;.

We denote by2" andu?™'the values of the boundsandu after callingOneOnOne-
Impact?, u, i, j, k).

OBSERVATION 3. sateafter yaften — saq¢, u).

OBSERVATION4. If B € [, u?™T there existax € [¢2", ua™] such that(a, B) €
constraingk).

The routine in Figure 2, which is calle@neOnAlllmpact receives as input two
arrayst¢ andu of sizen (passed by reference) and a variable indexnd changeé and
u according to the impact @ andu; on all the intervals.

We now prove that we do not lose feasible solutions after activa@meOnAlllmpact

Routine OneOnAlllmpact({, u,t)

Stack — {t}
While Stack # 0§ do
i « POP(Stack)
For each constraint & involving z; and another variable z;
OneOnOnelmpact({,u,1,7,k)
If u; < {; then return “fail”
If ¢; or u; changed then PUSH j into Stack

Fig. 2. RoutineOneOnAllimpact



Efficient Algorithms for Integer Programs with Two Variables per Constraint 599

LEMMA 1. If ¢3%" and 2" are the values of and u after calling OneOnAllimpagct
thensat¢after, yatten) = saye, u).

ProOOF All changes to¢ andu are made by routin®neOnOnelmpacit is easy to
prove the lemma by induction using Observation 3. O

LEMMA 2. If OneOnAlllmpactt, u, t) terminates without failure with the bounérste’
and #"®andsat (¢y, ..., €_1, —00, €i41, - - ., €n), (U1, ..., Ut_1, 00, Utg1, - .., Un)) #
@, thensat ¢after yaftery £ ¢,

PrROOF Let y € sa((fq,..., i1, —00, KH_]_, ..., €n), (Ug, ..., U_q, 00, Ut41, ...,
Un)). We define a vectoy’ as

after | aftel
yt& Wt € [ﬁtﬁ , ugtter,
/ after after
Yi=14 Yo <677
utafter7 Vi > utafter_

Consider constrairk onx; andx;. We need to show thaf, y/ € constraintk).
Casel:y; e [¢2" ut™] and y e [¢2", u2™. (y/,y)) = (¥, ¥;) € constraingk).

Case2: y; < (2" and y e [¢2", u2"]. yis a feasible solution, thusy;, y;) €
constraingk). When we changed the lower boundxpto e?“e'we calledOneOnOnelm-
pactfor all constraints involving; including constraink. By Observation 4 there exists
a € [Eia“e', uia“e'] for which (a, y;) € constraingk). Thus, by Observation 1 we get that
(3" yi) e constraingk).

Case3:y, < £&"andy < E}"‘ﬂe'. y is afeasible solution, thug;, y;) € constraingk).
When we changed the lower boundgto Z;”‘“e’we calledOneOnOnelmpador all con-
straintinvolvingx; including constraink. By Observation 4 there existse [¢3", uafte']

for which (a, £2%" e constraintk). From the same arguments we get that there exists
B e [Zfﬁer, u;-"‘“e'] for which (¢2"" g) e constraintk) as well. Thus, by Observation 2
we get tha¢2"", ") e constraintk).

Other cases are similar to Cases 2 and 3. O

After proving thatOneOnAllimpacpreserves the feasibility property it is possible to
use this routine as part of the feasibility algorithm from Figure 3.

THEOREM1. AlgorithmFeasibilityreturns a feasible solution if such a solution exists

PROOF Each recursive call reduces at least one of the range¢'{thethus the exe-
cution of the algorithm must terminate. By Lemma 1 if(8at) = ¢ the algorithm will
return “fail”. On the other hand, for the case@at) # ¢ we can prove by induction on
>, (Ui — &) that the algorithm finds a feasible solution.

Base Zi“:l(ui — ¢;) = 0implies¢ = u, thusx = ¢ is a feasible solution.
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Algorithm Feasibility({,uw € Z™)

If £ = u then
If z = £ is a feasible solution
Then return {
Else return “fail”
Choose a variable z;, for which ¢; < u;
o= |36+ ut)J /* An arbitrary value a € [£;,u; — 1] suffices as well */
(eleft ulefty — (4, (uy, .. iy, ety )
(eright o Tighty (43, 6y, 0+ 1,840 00) 1)
Call OneOnAll]mpact(ﬁleﬂ, uleﬂ,t) and OneOnAlllmpact(44""2'57]”7 u”ght,t)
If both calls fail then return “fail”
Choose a successful run of OneOnAlllmpact
If call left was chosen

Then return Feasibility(¢'€/t uléfl)
(right urz’ght)

Else return Feasibility(

Fig. 3. Feasibility algorithm.

Step By Lemma 1 at least one of the calls @neOnAlllmpacterminates without
failure. If call left was chosen, then by Lemma 2 we know that &%t u'®t)y = ¢.
Therefore, by the induction hypothesis we can find a feasible solutiod'®fgn'e™,
Obviously, a feasible solution e sa¢'s", u's") satisfiesx € sat¢, u). The same applies
for call right.

This concludes the proof. O

THEOREM2. Algorithm Feasibility can be implemented in time (®@U) and space
o(m).

PrROOF To achieve a time complexity @ (mU), we run both calls t®&neOnAllimpact

in parallel (this approach was used for 2SAT by Even et al. [6]), and prefer the faster
option of the two, if such a choice exists. After every change in the range of a variable
Xi, we need to check the; constraints involving this variable, in order to discover
the impact of the change. To perform this task efficiently we can store the input in an
incidence list, where every variable has its constraints listZ;/Aand u; can change

up to (u; — ¢;) times, we conclude that the total time complexity of the changes is
O(Zi”:1 mi (Ui — ¢;)) = O(mU) (the time wasted on uncompleted trials is bounded by
the time complexity of the chosen trials). The algorithm uSém) space for the input

and a constant number of arrays of sigehus uses linear space. O

3. From Feasibility to Approximation. Before presenting our approximation algo-
rithm, we first discuss the special case whigg¢ = 2, which is the minimum 2SAT
problem, and its special case, the vertex cover problem.

The main idea of Bar-Yehuda and Even’s 2-approximation algorithm for the vertex
cover problem [2]-[4] is as follows: choose an edge= (u, v) and subtractk =
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min{w(u), w(v)} from bothw(u) andw(v). Every vertex cove€ C V must covere,
therefore the subtraction effrom w(u), w(v), which may cost up to 2¢, reduces the
optimum by at least. After repeating this process until such subtractions are no longer
possible, the resulting cover@ = {v: w(v) = 0}.

When considering a 2CNF formutawith respect to the minimum 2SAT problem,
monotone clauses (e.g Vv X;) can be treated as in the vertex cover case. However,
what about clauses with negative literals (of the fognv Xj or Xi v Xj)? Also, even if
we knew how to make weight subtractions, how would we choose a truth assignment?
Thus, the above algorithm should be modified in order to be employed for the minimum
2SAT problem. The idea is that for a given 2CNF formulaxif — --- — x» and
X1 — --- — Xz we can subtract = min{w,, w3} from w, andws. This leaves us with
the task of choosing a feasible truth assignment: when it is possible, assign a zero cost
partial assignment, while relying upon the consistency property (Lemma 2).

This approach was used by Gusfield and Pitt [9] for approximating the minimum
2SAT problem. The 2CNF formula can be presented as a digraph where each vertex
represents a boolean variable or its negation, and an edge repreSaet®aOnelmpact
propagation (logical="). A propagation of an assignment can be viewed as a traversal
(e.g., BFS, DFS) of the digraph. In order to be able to propagate forced assignments,
Gusfield and Pitt's algorithm starts with a preprocess phase of constructing a transitive
closure. This phase us@$n?) extra memory, which is expensive. Itis much more critical
when trying to approximate 2VIP by using the transformation to 2SAT from [11], and
then Gusfield and Pitt’s [9] algorithm. In this case the preprocessged)?) extra
memory?

It seems only natural to try to extend the previous ideas when approximating the 2VIP
problem. In the previous section we have seen that it is possible to generalize the 2CNF
assignment propagation to a 2VIP bound propagation, but how should we implement
weight subtractions? We can view a boolean assignment as a bound change, thus the
cost of the assignment = 1 is actually the cost of raising the lower boundxpfrom
0 to 1. For a 2VIP instance, every unit increase of the varigblgould costw;, or in
other words, an increase of the lower bouido ¢; costsw; (¢; — ¢;). Bearing that in
mind, we define an array calléd which holds the values (of the variables), for which
we have already “paid.” This means that instead of “reducing” a weight due to a rise of
¢ we increasé;. Note that, unlike/, ¢ can hold nonintegral values. This allows us to
avoid using direct weight reductions and the consequent reduction to 2SAT.

We present ai©® (nmU) time andO(m) space 2-approximation algorithm. This ap-
proximation algorithm is a specific implementation of our feasibility algorithm (namely,
the algorithm chooses variables and bounds in a specific order to get a 2-approximation).
Not only does this algorithm seem natural, but also its compleRiggm) time andO (m)
space, in the case of 2SAT is lower than that of Gusfield and Pitt's 2SAT algorithm
(O(nm) andO(n? + m) correspondingly).

In order to use the local-ratio technique [2] we extend the 2VIP definition.

5 Conjunctive Normal Form, see, e.g., [5].
6 This is in addition to the&2(mU?) extra memory needed for the transformation. As far as we know, every
algorithm which relies upon direct 2SAT transformation suffers from this drawback.
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DEFINITION 4. Givena, b € R", we writea < bif V; g < b;. Also, we define

maxa, b} = (maxXas, b1}, ..., maxa,, bn}),
min{a, b} = (min{ay, bi}, ..., min{a,, by}).

Givent,u € N" andé, (0 € R" for which¢ < ¢ < 0 < u, we define the following
Extended 2VIP problem:

(E2VIP) minzi”:l A(X, éi , O wj
s.t. akXi, + biXj, > Ck, vk e{l,...,m},

X € [, ui], Vie{l,...,n},
where
0, Xi <éi,
A, 4, 0) = { (% — &), Xi € [, Gi],
G — &), X > O,

and 1< iy, jk <n,wj >0,a,b,ce Z™ and{,u € N".

We defineW(x, 2,0) = Zi“:l A(Xi, 0, Gi)w;. A feasible solutionx* is called an
optimal solutionif, for every feasible solutiorx, W(x*, £, 0) < W(x, £, 0). We de-
note W*(¢,0) = W(x*, £, (). A feasible solutiorx is called anr-approximationif
W(x, €,0) <r - W*(, Q).

OBSERVATION5.  Givend, 0, f € R" for which? < rh < 0, we get
W(X, €, 0) = W(x, £, M) + W(x, i, 0).
Similarly to the Decomposition Observation from [2] we have:

OBSERVATION 6 (Decomposition Observation).Given £, 0, h € R" such that! <
m=<4q,
W (€, ) + W*(rh, 0) < W*(, 0).

PROOF Let x*, y*, andz* be optimal solutions for the system with respect toh;
M, (; andZ, G correspondingly.

W (£, i) + W*(rh, () = W(x*, €, h) + W(y*, m,0)  (by definition)

< W(z*, ¢, M) + W(z*, , 0) (optimality of x*, y*)
< W(z, ¢, 0) (observation 5)
= W*(, 0) (by definition) O

The following is this paper’s Local-Ratio Theorem (see [2] and [4]):

THEOREM3. If x is an r-approximation with respect 1 rh and with respect tah, G,
then x is an r-approximation with respect#od.



Efficient Algorithms for Integer Programs with Two Variables per Constraint 603

Algorithm Approzimate(f,u € IN*; ¢, 4 € IR")

If{ 7 € then return Approzimate({, u, max {ﬁ, ﬁ} , @)
If & & u then return Approzimate({,u, ¢, min {@,u})
If £ = u then
If 2 = { is a feasible solution
Then return ¢
Elsc return “fail”
Choose a variable z;, for which £; < u,
o — L%(ft + ut)J
([left7 uleﬂ) (U, e U], O Uy e ey U )
(eright o righty (01, by a1, 0,0 8), w)
Call OneOnAllImpact(ﬁleﬂ,uleﬁ,t) and OneOnAllImpact(f"ight,u”ght,t)
If both calls failed then return “fail”
If call right failed then return Appm;cimate(ﬁleﬂ, uleﬂ, Z, @)
If call left failed then return Approximatc(ﬂ”ght, zzright,é, i)
It Weleft i a) < weright § q)
Then
Find 7 € IR™ such that:
¢ < % < max {[;m'ghtj} and W'(fright,ﬁ, m) = I/V(ﬂleft7 0, 4)
M — max {7?17 @leﬂ}
Return Approzimate(ﬁleft, uleﬁ7 m, &)
Else
Find 7 € IR™ such that:
{ <t < max fleﬂ,i} and I/V(ﬂleﬁ, /) = VV(ﬂriyht, (,4)
M — max {7?1,7[7’2'9]”

Return Approrimate(f”ght, uTight, ™M, i)

Fig. 4.2-Approximation algorithm.

PrROOF
W(x, £, 0) = W(x, £, M) + W(x, i, 0) (Observation 5)
<r-WH{, M) +r-W*@,0)  (given
<r-W*(, Q) (Decomposition Observation O

We are ready to present the 2-approximation algorithm—see Figure 4.

OBSERVATION 7. Algorithm Approximateis a specific implementation of Algorithm
Feasibility.

THEOREM4. Algorithm Approximate is a 2-approximation algorithm for BVIP
systems

PrROOF By Observation 7 AlgorithrApproximateeturns a feasible solution. We prove
by induction on the depth of the recursion that the algorithm finds a 2-approximation.
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Base u = ¢impliesW(¢,¢,0) =0.
Step There are several cases:

Casel: { # L. A 2-appr0ximati9n with respect to mel ¢} is obviously a 2-
approximation solution with respect o

Case2:0 £ u. Trivial.

Case3: Call right failed. By Lemma 1 there is no feasible solution which satisfies
X > a + 1, therefore we do not change the problem by adding the conskaifito.
By Lemma 1 callingOneOnAllimpaat'®®, u'®", t) does not change the problem either.

Case4: Call left failed  Similar to Case 3.

Case5: Both calls succeeded and (™, ¢, () < W ¢ (). We first show
that every feasible solution is a 2-approximation with respeétaadr. We examine
an optimal solutionc* with respect t@ andri. By the construction of we know that
mh > €' Thus, if¢®" < x* < u'®", then the monotonicity oiV(-, £, i) implies

W(x*, £, i) > WLt 2, ).

If eright < X* < uright, then

A

W(ﬁright, E, r’h) (X* > Zright)
Wt ¢, ) (by the construction afh)
WLt ¢ i) 't < ).

W(x*, ¢, i)

v v

On the other hand, by the constructionuf
W(rh, £, i) < W' 2, i) + W 2, iy < 2. Wt ¢, ).
Thus, for every feasible solution
WX, £, M) < 2. W't ¢ ).

Therefore, by Theora 3 a 2-approximation with respectrfoandd is a 2-approximation
with respect td andq.

We need to show that there exists an optimal solutibwith respect tah andd for
which x* < «. For every feasible solutioyp such thaty; > « + 1 we definey’ as

left | left
yiv yi E[Eie ’uie ]1
yl/ g:eft’ Vi g:ef‘t’
u:eft’ Vi > u:eft

By Lemma 2y’ is a feasible solution¢®™ < i impliesW(y’, th, 0) < W(y, i, 0),
thus there is an optimal solution with respectftcand G within the bounds's", u'eft,
Therefore, a 2-approximation within the bound¥!, u'*" is a 2-approximation with
respect tah andd.

Caseb: Both calls succeeded and(@e", ¢, 0) > W9 ¢, 3). Similarto Case5.

This concludes the proof. O
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COROLLARY 5. Algorithm Approximateis a 2-approximation algorithm for2VIP
systems

THEOREMG6. AlgorithmApproximatecan be implemented in time(@mU) and space
O(m).

PrROOE In order to get the required time complexity, we must choose&thearefully.

One possibility is to choose the variables in an increasing orderxi.ex, . .., Xn,

and to restart from the beginning after reachiag We call suchn iterations on alin
variables apass As stated before, changing the rangexpfmight cause changes in
the ranges of other variables. The existence of a constrairt and another variable

X; makesx; a candidate for a range update. This means that we have to chegk the
constraints involving in order to discover the consequences of changing its range each
time this range changeé. andu; can change up tau; — ¢;) times, therefore we get
that the time complexity of a single iteration@(mU + n) = O(mU). One pass may
involve all n variables, so the time complexity of one pasOicxmU). By choosing

o = |_%(Et + ut)J, we reduce the possible range fqrat least by half. Therefore, in

a single pass we reduce the possible ranges for all variables at least by half. Thus, we
get that the total time complexity E'kc’:gf o(mn(U/2%) = O(mnU). As before, the
algorithm uses an incidence list data structure and a constant number of arraysof size
thus uses linear space. O

4. Generalizations. What if the constraints are not linear? Also, what if the weight
functions of the variables are not linear? Can we avoid the expensive transformation to
the 2SAT problem? In this section we try to extend our approach to a wider family of
problems. In order to do so, we had to identify the properties of linear constraints and
linear weight functions which are sufficient for the correctness of our claims.

4.1. Generalized Constraints In this subsection we are interested in problems of the
form:

(G2VIP) minY ", wiX;
s.t. (X, Xj) € constraingk), vk e {1,..., m},
Xi €[4, u], Vi e{l,...,n},

where 1< ix, jk < n, wjy > 0, and¢,u € N". Also each constraitk) satisfies the
following: if (a1, ), (B1, B2) € constraingk), then there exists a shortest pathiNf
(lattice) connectinda, ) and(B1, B2) such that all its points satisfy constralat

A constraint which satisfies this property is called afis-convexconstraint. We
assume that for an axis-convex constraint we hav@@n time oracleOneOnOnelmpact
which returns a tight range o when given a range fox.

The following is implied by the definition of an axis-convex constraint:

OBSERVATION 8. Given an axis-convex constraiif if (a1, «2), (81, B2) € C, then for
all B € [B1, B2] there exists € [a1, 2] such that(a, 8) € C.
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Observations 1 and 4 hold for axis-convex constraints. A weaker version of Observa-
tion 2 also holds for axis-convex constraints. The proof uses Observation 8.

OBSERVATION 9. Given an axis-convex constraiitand (a1, «2), (81, B2), (Y1, ¥2) €
C,if (a1, B2) isinside the triangle induced Iy, , o), (81, B2),and(y1, y2),then(a, B2)
eC.

Itis easy to see that Lemmas 1 and 2 remain valid with axis-convex constraints. Thus,
Algorithm Feasibilityand AlgorithmApproximatecan be applied to G2VIP systems.

COROLLARY 7. A feasible solutionif such a solution existcan be found for GVIP
systems in time @nU) and space @m).

COROLLARY 8. AZ2-approximationif a feasible solution existsan be found for GQVIP
systems in time mU) and space @m).

4.2. Generalized Weight Functions In the original definition of a 2VIP system we used
linear weight functionsuy); x; for every variables;). The following definition generalizes
the weight function of a variablg :

DEFINITION 5. A nonnegative weight functiaa is called anonotone weight function
with respect to an interval b («) < w(ax + 1) for all ¢ € Z in the interval.

We assume, without loss of generality, that a monotone weight function is monotone
over the real numbers and is invertible. If itis not we can always defit® = w (| z]) +
(0([Z]) — w(12])) - (z— [Z]).

For alinear weight functiow; we gettha¥,-o wi (¢ +1) —w; («) = w;. Forageneral
monotone weight function this is not necessarily the case. Therefore, in order to make
Algorithm Approximateapplicable to such weight functions we replatex;, G, 0w
in the definition of E2VIP systems by

A wi(xi)_a)i(lzi)a x € [6, Gi].
A (X, €, 0) = {wi () — o (6), Xi >9i,
0, X < ¥j.

Now Algorithm Approximates applicable as is.

COROLLARY 9. AZ2-approximationif afeasible solution existsan be found for systems
with monotone weight functions in time(@nU) and space @m).

REMARK 1. If X € {S.1....,S.n }, Wwe can define a new variabt¢ € {0, ..., n; — 1}
and a new monotone weight functior (o) = wj (S «+1). Thus, we get that the same
results hold for; = 0 andu; = n; — 1.
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5. Optimization Algorithm for Monotone Systems. In this section we show how
to improve the complexity of Hochbaum and Naor’s [12] optimization algorithm for a
specific case of 2VIP systems called monotone systems:

DEFINITION 6.  Amonotone inequalitig an inequality on two variables with coefficients
of opposite signs. A system with two variables per inequality is calledotonef all
the constraints in the system are monotone.

We formulate the following monotone system:

(M2VIP) min} ", wix;
s.t. akXi, — bkXj, > c, vke{l,...,m},
X e[ﬁi,ui], Vi e{l,...,n},

where 1< iy, jx <n,w; > 0,a,be N",ce Z", and¢,u € N.

Lagarias [13] proved that deciding whether a monotone integer program has a feasible
solution is NP-complete. Hochbaum and Naor [12] showed that the set of all feasible
solutions of a monotone system forrdiatribution lattice(this has been observed before
by Veinott [16]). Using this property they presented @imr?logm + nmU) time
feasibility algorithm for monotone systems, which finds the top (or bottom) of this
lattice. They also presented @nmU? log(n?U/m)) time optimization algorithm for
such systems with general (possibly negative) weights.

By limiting the discussion to nonnegative weights, one can construotarlJ) time
optimization algorithm: use the transformation to a 2SAT instance [11], then assign O to
all boolean variables which did not get an assignment by the transformation. As before,
this transformation use®(muU) space.

In Figure 5 we present a®(mU) time andO(m) space optimality algorithm for
monotone systems with nonnegative weights. This algorithm is actually a feasibility
algorithm which finds the bottom of the feasible solutions latfiDeie to the nonnegative
weights, the bottom of the lattice is also an optimal solution.

THEOREM10. An optimal solution can be found for nonnegative monotone systems in
time O(mU) and space @m).

Algorithm Monotone({,u € Z")

Fort=1tondo

Call OneOnAllImpact({,u,t)

If OneOnAlllmpact fails then return “fail”
z*—{
Return z*

Fig. 5. Optimization algorithm for monotone systems.

7 Note that when giver as the initial value, the feasibility algorithm from [12] can be implemented in time
O(mU) and spacé&®(m).
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PrROOE We prove that AlgorithnMonotonefinds an optimal solution for M2VIP sys-
tems with nonnegative weights in tin@(mU) and spacé(m).

It is easy to prove by induction using Lemma 1 that(&&¢", ua®® = sate, u),
where¢2te" andu?e’ are the values of andu after the loop. Thus, if one of the calls to
OneOnAlllmpacfails, then no feasible solution exists. The lemma also implies that if
the instance of M2VIP is satisfiable, then the above algorithm terminates without failure.

We now prove thak* = ¢ is a feasible solution by showing that every constr&int
akXi, — bxj, > ¢ is satisfied byx* = £. We examine the value of the lower bound of
x;, after the last call oDneOnOnelmpact, u, ji, ik, k) during the algorithm (the call
is made at least once). After this call we ggt> [(ck + bl ji) /ac]. £;, will not change
from this point until the algorithm terminates (as a changé,ofmplies another call),
and other lower bounds only increase during the execution algorithm{ithds must
satisfy constraink.

Due to Lemma 1, we get that = ¢ is an optimal solution (and it is the only optimal
solution ifV; w; > 0).

Based on the same arguments as in Theorem 6 we get that the time complexity of
finding an optimal solution for a monotone :systenti)'(szi“:1 m; (Ui — ¢;)) = O(mU).

The algorithm uses an incidence list data structure and therefore uses linear space.

As in the previous section we try to extend our approach to some nonlinear systems.
We use an important property of monotone constraints:

DEFINITION 7. Let constraink be an axis-convex constraint grandx; . Constraink is
called amonotone axis-conveonstraint if for every(ay, az), (81, B2) € constraingk)
also (min{aq, B1}, min{az, B2}) € constraintk). A system of monotone axis-convex
constraints is called generalized monotone system

By using similar arguments to those used in the previous section we get:

COROLLARY 11. An optimal solution can be found for generalized monotone systems
with monotone weight functions in time(@U) and space @m).
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