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Efficient Algorithms for Integer Programs with
Two Variables per Constraint1

R. Bar-Yehuda2 and D. Rawitz2

Abstract. Given a bounded integer program withn variables andm constraints, each with two variables, we
present anO(mU) time andO(m) space feasibility algorithm, whereU is the maximal variable range size. We
show that with the same complexity we can find an optimal solution for the positively weighted minimization
problem formonotonesystems. Using the local-ratio technique we develop anO(nmU) time andO(m) space
2-approximation algorithm for the positively weighted minimization problem for the general case. We further
generalize all results to nonlinear constraints (calledaxis-convex constraints) and to nonlinear (but monotone)
weight functions.

Our algorithms are not only better in complexity than other known algorithms, but also considerably simpler,
and they contribute to the understanding of these very fundamental problems.

Key Words. Combinatorial optimization, Integer programming, Approximation algorithm, Local-ratio tech-
nique, 2SAT, Vertex cover.

1. Introduction. This paper is motivated by a paper by Hochbaum et al. [11] which
discusses integer programs with two variables per constraint. The problem is defined as
follows:

(2VIP) min
∑n

i=1wi xi

s.t. akxik + bkxjk ≥ ck, ∀k ∈ {1, . . . ,m},
`i ≤ xi ≤ ui , ∀i ∈ {1, . . . ,n},
xi ∈ N, ∀i ∈ {1, . . . ,n},

where 1≤ i k, jk ≤ n, wi ≥ 0, a,b, c ∈ Zm, and`,u ∈ Nn.
Obviously, this problem is a generalization of the well-knownminimum weight vertex

cover problem(VC) and theminimum weight2 satisfiability problem(2SAT). Both
problems are known to be NP-hard [7], and the best known approximation ratio for VC
[3], [10], [14] and 2SAT [9] is asymptotically 2. Both results are best viewed via the
local-ratio technique (see [2] and [4]).

A 2VIP system is calledmonotoneif each constraint is an inequality on two vari-
ables with coefficients of opposite signs. The problem of checking whether an integer
monotone system has a feasible solution was shown to be NP-complete by Lagarias [13].
Therefore, even for the 2VIP feasibility problem, it is natural to consider pseudopoly-
nomial algorithms, i.e., algorithms with a running time which is polynomial in the size
of the input and inU , whereU = maxi {ui − `i }.

1 A preliminary version of this paper appeared in theProceedings of the7th Annual European Symposium on
Algorithms(1999).
2 Computer Science Department, Technion - IIT, Haifa 32000 Israel.{reuven,rawitz}@cs.technion.ac.il.
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Hochbaum and Naor [12] were the first to consider efficient algorithms for integer
programs with two variables per inequality. They presented anO(mn2 logm+ nmU)
time feasibility algorithm for monotone 2VIP systems, and an optimization algorithm
for monotone systems with general (possibly negative) weights. This optimization al-
gorithm constructs a graph representing the monotone system in question and then
uses a maximum flow algorithm. Consequently, the time complexity of their algo-
rithm is relatively high, i.e., when using Goldberg and Tarjan’s maximum-flow algo-
rithm [8] it is O(nmU2 log(n2U/m)). Using this optimization algorithm, Hochbaum
et al. [11] were able to construct anO(nmU2 log(n2U/m)) time 2-approximation al-
gorithm for the 2VIP problem. Their algorithm also uses anO(mU) time and space
2VIP feasibility algorithm based on a transformation to 2SAT which they attribute to
Feder.

By using the local-ratio technique, we present anO(nmU) time andO(m) space 2-
approximation algorithm. This algorithm is not only more efficient, but also more natural
and simpler. In order to develop an approximation algorithm, it seems natural to study
the feasibility problem first.3 Indeed, our 2-approximation algorithm is in fact a specific
implementation of a feasibility algorithm presented here.

The remainder of this paper is organized as follows: In Section 2 we present anO(mU)
time andO(m) space feasibility algorithm for 2VIP systems. The 2-approximation al-
gorithm for 2VIP systems is presented in Section 3. In Section 4 we show that the
feasibility algorithm and the approximation algorithm presented in this paper can be
generalized to some nonlinear systems with the same time and space complexity. We
define a generalization of linear inequalities, calledaxis-convexconstraints, and show
that the algorithms can be generalized to work with such constraints. We also generalize
the 2-approximation algorithm to objective functions of the form

∑n
i=1wi (xi ), where

all thewi ’s aremonotone weight functions. An optimality algorithm formonotonelinear
systems appears in Section 5. We show that this algorithm can work with some non-
linear constraints, and we generalize the algorithm to monotone weight functions as
well.

Table 1 summarizes the results for 2VIP systems.

Table 1.Summary of results.

Problem Previous results (time, space) Our results (time, space)

2SAT feasibility O(m),O(m) [6]

2VIP feasibility O(mU),O(mU) O(mU),O(m)
by using reduction to 2SAT [11]

2SAT 2-approximation O(nm),O(n2 +m) [9] O(nm),O(m)

2VIP 2-approximation O(nmU2 log(n2U/m)),O(mU) [11] O(nmU),O(m)

Monotone 2VIP O(mU),O(mU) O(mU),O(m)
optimization by using reduction to 2SAT

3 This was done by Hochbaum and Naor [12] for the monotone 2VIP problem, by Hochbaum et al. [11] for
the 2VIP problem, and by Gusfield and Pitt [9] for the 2SAT problem.
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2. Feasibility Algorithm. Given a 2VIP system, we are interested in developing an
algorithm which finds a feasible solution, if such a solution exists. Since the special
case wherè = 0n andu = 1n is the known 2SAT feasibility problem, it is natural to
try to extend the well knownO(m) time and space algorithm of Even et al. [6]. It is
possible to transform the given 2VIP system into an equivalent 2SAT instance withnU
variables and(m+ n)U constraints (this transformation due to Feder appears in [11]).
By combining this transformation with the linear time and space algorithm of Even et
al. we get anO(mU) time and space feasibility algorithm. In this section we present an
O(mU) time andO(m) space feasibility algorithm which generalizes the algorithm by
Even et al.

The main idea of the algorithm from [6] is as follows: choose a variablext , first
discover the forced values of other variables by assigningxt = 0, and then do the same for
the assignmentxt = 1. If one of these assignments does not lead to a contradiction, assign
this value toxt and make the corresponding forced assignments. The correctness of the
approach of Even et al. is shown by proving that a noncontradictory assignment preserves
the feasibility property. The efficiency of their algorithm is achieved by discovering the
forced assignments ofxt = 0 and those ofxt = 1 in parallel.

Our 2VIP feasibility algorithm works with bounds, as opposed to assignments. We
choose a variablext and an integerα ∈ [`t ,ut ] and discover the forced bounds of other
variables by considering in turn the boundxt ≤ α and the boundxt > α. For this purpose
we use constraint propagation.4 Much like Even et al. [6], we prove that a noncontradic-
tory bound preserves the feasibility property, and use this to show the correctness of our
algorithm. Also, the efficiency of our algorithm is achieved by discovering the forced
bounds by both new bounds ofxt in parallel.

The purpose of this section is not only to show the factorÄ(U ) improvement in space
complexity, but also to lay the foundations for the 2-approximation algorithm presented
in the next section.

DEFINITION 1. For a given 2VIP instance,

sat(`,u) = {x: ` ≤ x ≤ u andx satisfies all 2VIP constraints}.

DEFINITION 2. For thekth constraint (on the variablesxik , xjk ) of a given 2VIP instance,

constraint(k) = {(α, β): xik = α, xjk = β satisfy constraintk}.

DEFINITION 3. Givenα, β ∈ Z we define [α, β] = {z ∈ Z: α ≤ z≤ β}.

A linear constraint is convex, thus the following hold for thekth constraint on the
variablesxi andxj :

OBSERVATION 1. If (α, β), (α, γ ) ∈ constraint(k), then(α, δ) ∈ constraint(k) for all
δ ∈ [β, γ ].

4 Constraint propagation was previously used for the LP version of the problem (e.g., see [1] and [15]), and in
[12] for integer feasibility over monotone inequalities.
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Fig. 1.RoutineOneOnOneImpact.

OBSERVATION 2. If (α1, α2), (β1, β2), (γ1, γ2) ∈ constraint(k), then all points inside
the triangle induced by(α1, α2), (β1, β2), and(γ1, γ2) satisfy constraint k.

We present a routine in Figure 1 which will be repeatedly used for constraint propaga-
tion. It receives as input two arrays` andu of sizen (passed by reference), two variables
indicesi, j , and a constraint indexk on these two variables. The objective of this routine
is to find the impact of constraintk and the bounds̀i ,ui on the bounds̀ j ,uj .

We denote bỳafteranduafter the values of the bounds̀andu after callingOneOnOne-
Impact(`,u, i, j, k).

OBSERVATION 3. sat(`after,uafter) = sat(`,u).

OBSERVATION 4. If β ∈ [`after
j ,uafter

j ] there existsα ∈ [`after
i ,uafter

i ] such that(α, β) ∈
constraint(k).

The routine in Figure 2, which is calledOneOnAllImpact, receives as input two
arrays̀ andu of sizen (passed by reference) and a variable indext , and changes̀ and
u according to the impact of̀t andut on all the intervals.

We now prove that we do not lose feasible solutions after activatingOneOnAllImpact.

Fig. 2.RoutineOneOnAllImpact.
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LEMMA 1. If `after and uafter are the values of̀ and u after calling OneOnAllImpact,
thensat(`after,uafter) = sat(`,u).

PROOF. All changes tò andu are made by routineOneOnOneImpact. It is easy to
prove the lemma by induction using Observation 3.

LEMMA 2. If OneOnAllImpact(`,u, t) terminates without failure with the bounds`after

and uafterandsat((`1, . . . , `t−1,−∞, `t+1, . . . , `n), (u1, . . . ,ut−1,∞,ut+1, . . . ,un)) 6=
∅, thensat(`after,uafter) 6= ∅.

PROOF. Let y ∈ sat((`1, . . . , `t−1,−∞, `t+1, . . . , `n), (u1, . . . ,ut−1,∞,ut+1, . . . ,

un)). We define a vectory′ as

y′t =
yt , yt ∈ [`after

t ,uafter
t ],

`after
t , yt < `after

t ,

uafter
t , yt > uafter

t .

Consider constraintk on xi andxj . We need to show thaty′i , y′j ∈ constraint(k).

Case1: yi ∈ [`after
i ,uafter

i ] and yj ∈ [`after
j ,uafter

j ]. (y′i , y′j ) = (yi , yj ) ∈ constraint(k).

Case2: yi < `after
i and yj ∈ [`after

j ,uafter
j ]. y is a feasible solution, thus(yi , yj ) ∈

constraint(k). When we changed the lower bound ofxi to `after
i we calledOneOnOneIm-

pactfor all constraints involvingxi including constraintk. By Observation 4 there exists
α ∈ [`after

i ,uafter
i ] for which (α, yj ) ∈ constraint(k). Thus, by Observation 1 we get that

(`after
i , yj ) ∈ constraint(k).

Case3: yi < `after
i and yj < `after

j . y is a feasible solution, thus(yi , yj ) ∈ constraint(k).
When we changed the lower bound ofxi to`after

i we calledOneOnOneImpactfor all con-
straint involvingxi including constraintk. By Observation 4 there existsα ∈ [`after

i ,uafter
i ]

for which (α, `after
j ) ∈ constraint(k). From the same arguments we get that there exists

β ∈ [`after
j ,uafter

j ] for which (`after
i , β) ∈ constraint(k) as well. Thus, by Observation 2

we get that(`after
i , `after

j ) ∈ constraint(k).

Other cases are similar to Cases 2 and 3.

After proving thatOneOnAllImpactpreserves the feasibility property it is possible to
use this routine as part of the feasibility algorithm from Figure 3.

THEOREM1. AlgorithmFeasibilityreturns a feasible solution if such a solution exists.

PROOF. Each recursive call reduces at least one of the ranges (thet ’th), thus the exe-
cution of the algorithm must terminate. By Lemma 1 if sat(`,u) = ∅ the algorithm will
return “fail”. On the other hand, for the case sat(`,u) 6= ∅ we can prove by induction on∑n

i=1(ui − `i ) that the algorithm finds a feasible solution.

Base.
∑n

i=1(ui − `i ) = 0 implies` = u, thusx = ` is a feasible solution.
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Fig. 3.Feasibility algorithm.

Step. By Lemma 1 at least one of the calls toOneOnAllImpactterminates without
failure. If call left was chosen, then by Lemma 2 we know that sat(`left,uleft) 6= ∅.
Therefore, by the induction hypothesis we can find a feasible solution for`left,uleft.
Obviously, a feasible solutionx ∈ sat(`left,uleft) satisfiesx ∈ sat(`,u). The same applies
for call right.

This concludes the proof.

THEOREM2. Algorithm Feasibility can be implemented in time O(mU) and space
O(m).

PROOF. To achieve a time complexity ofO(mU), we run both calls toOneOnAllImpact
in parallel (this approach was used for 2SAT by Even et al. [6]), and prefer the faster
option of the two, if such a choice exists. After every change in the range of a variable
xi , we need to check themi constraints involving this variable, in order to discover
the impact of the change. To perform this task efficiently we can store the input in an
incidence list, where every variable has its constraints list. As`i and ui can change
up to (ui − `i ) times, we conclude that the total time complexity of the changes is
O(
∑n

i=1 mi (ui − `i )) = O(mU) (the time wasted on uncompleted trials is bounded by
the time complexity of the chosen trials). The algorithm usesO(m) space for the input
and a constant number of arrays of sizen, thus uses linear space.

3. From Feasibility to Approximation. Before presenting our approximation algo-
rithm, we first discuss the special case where|U | = 2, which is the minimum 2SAT
problem, and its special case, the vertex cover problem.

The main idea of Bar-Yehuda and Even’s 2-approximation algorithm for the vertex
cover problem [2]–[4] is as follows: choose an edgee = (u, v) and subtractε =
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min{w(u), w(v)} from bothw(u) andw(v). Every vertex coverC ⊆ V must covere,
therefore the subtraction ofε fromw(u), w(v), which may cost up to 2· ε, reduces the
optimum by at leastε. After repeating this process until such subtractions are no longer
possible, the resulting cover isC = {v: w(v) = 0}.

When considering a 2CNF formula,5 with respect to the minimum 2SAT problem,
monotone clauses (e.g.,xi ∨ xj ) can be treated as in the vertex cover case. However,
what about clauses with negative literals (of the formxi ∨ xj or xi ∨ xj )? Also, even if
we knew how to make weight subtractions, how would we choose a truth assignment?
Thus, the above algorithm should be modified in order to be employed for the minimum
2SAT problem. The idea is that for a given 2CNF formula, ifx1 → · · · → x2 and
x1→ · · · → x3 we can subtractε = min{w2, w3} fromw2 andw3. This leaves us with
the task of choosing a feasible truth assignment: when it is possible, assign a zero cost
partial assignment, while relying upon the consistency property (Lemma 2).

This approach was used by Gusfield and Pitt [9] for approximating the minimum
2SAT problem. The 2CNF formula can be presented as a digraph where each vertex
represents a boolean variable or its negation, and an edge represents aOneOnOneImpact
propagation (logical “→”). A propagation of an assignment can be viewed as a traversal
(e.g., BFS, DFS) of the digraph. In order to be able to propagate forced assignments,
Gusfield and Pitt’s algorithm starts with a preprocess phase of constructing a transitive
closure. This phase usesÄ(n2)extra memory, which is expensive. It is much more critical
when trying to approximate 2VIP by using the transformation to 2SAT from [11], and
then Gusfield and Pitt’s [9] algorithm. In this case the preprocess usesÄ(n2U2) extra
memory.6

It seems only natural to try to extend the previous ideas when approximating the 2VIP
problem. In the previous section we have seen that it is possible to generalize the 2CNF
assignment propagation to a 2VIP bound propagation, but how should we implement
weight subtractions? We can view a boolean assignment as a bound change, thus the
cost of the assignmentxi = 1 is actually the cost of raising the lower bound ofxi from
0 to 1. For a 2VIP instance, every unit increase of the variablexi would costwi , or in
other words, an increase of the lower bound`i to `′i costswi (`

′
i − `i ). Bearing that in

mind, we define an array called̀̂, which holds the values (of the variables), for which
we have already “paid.” This means that instead of “reducing” a weight due to a rise of
`i we increasề i . Note that, unlikè , ˆ̀ can hold nonintegral values. This allows us to
avoid using direct weight reductions and the consequent reduction to 2SAT.

We present anO(nmU) time andO(m) space 2-approximation algorithm. This ap-
proximation algorithm is a specific implementation of our feasibility algorithm (namely,
the algorithm chooses variables and bounds in a specific order to get a 2-approximation).
Not only does this algorithm seem natural, but also its complexity,O(nm) time andO(m)
space, in the case of 2SAT is lower than that of Gusfield and Pitt’s 2SAT algorithm
(O(nm) andO(n2+m) correspondingly).

In order to use the local-ratio technique [2] we extend the 2VIP definition.

5 Conjunctive Normal Form, see, e.g., [5].
6 This is in addition to theÄ(mU2) extra memory needed for the transformation. As far as we know, every
algorithm which relies upon direct 2SAT transformation suffers from this drawback.
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DEFINITION 4. Givena,b ∈ Rn, we writea ≤ b if ∀i ai ≤ bi . Also, we define

max{a,b} = (max{a1,b1}, . . . ,max{an,bn}),
min{a,b} = (min{a1,b1}, . . . ,min{an,bn}).

Given`,u ∈ Nn and ˆ̀, û ∈ Rn for which ` ≤ ˆ̀ ≤ û ≤ u, we define the following
Extended 2VIP problem:

(E2VIP) min
∑n

i=11(xi , ˆ̀i , ûi )wi

s.t. akxik + bkxjk ≥ ck, ∀k ∈ {1, . . . ,m},
xi ∈ [`i ,ui ], ∀i ∈ {1, . . . ,n},

where

1(x, ˆ̀i , ûi ) =


0, xi < ˆ̀i ,
(xi − ˆ̀i ), xi ∈ [ ˆ̀i , ûi ],
(ûi − ˆ̀i ), xi > ûi ,

and 1≤ i k, jk ≤ n, wi ≥ 0, a,b, c ∈ Zm, and`,u ∈ Nn.
We defineW(x, ˆ̀, û) = ∑n

i=11(xi , ˆ̀i , ûi )wi . A feasible solutionx∗ is called an
optimal solutionif, for every feasible solutionx, W(x∗, ˆ̀, û) ≤ W(x, ˆ̀, û). We de-
note W∗( ˆ̀, û) = W(x∗, ˆ̀, û). A feasible solutionx is called anr -approximationif
W(x, ˆ̀, û) ≤ r ·W∗( ˆ̀, û).

OBSERVATION 5. Given ˆ̀, û, m̂ ∈ Rn for which ˆ̀ ≤ m̂≤ û, we get

W(x, ˆ̀, û) = W(x, ˆ̀, m̂)+W(x, m̂, û).

Similarly to the Decomposition Observation from [2] we have:

OBSERVATION 6 (Decomposition Observation).Given ˆ̀, û, m̂ ∈ Rn such that ˆ̀ ≤
m̂≤ û,

W∗( ˆ̀, m̂)+W∗(m̂, û) ≤ W∗( ˆ̀, û).

PROOF. Let x∗, y∗, andz∗ be optimal solutions for the system with respect toˆ̀, m̂;
m̂, û; and ˆ̀, û correspondingly.

W∗( ˆ̀, m̂)+W∗(m̂, û) = W(x∗, ˆ̀, m̂)+W(y∗, m̂, û) (by definition)
≤ W(z∗, ˆ̀, m̂)+W(z∗, m̂, û) (optimality of x∗, y∗)
≤ W(z∗, ˆ̀, û) (observation 5)
= W∗( ˆ̀, û) (by definition).

The following is this paper’s Local-Ratio Theorem (see [2] and [4]):

THEOREM3. If x is an r-approximation with respect tò̂, m̂ and with respect tôm, û,
then x is an r-approximation with respect toˆ̀, û.
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Fig. 4.2-Approximation algorithm.

PROOF.

W(x, ˆ̀, û) = W(x, ˆ̀, m̂)+W(x, m̂, û) (Observation 5)
≤ r ·W∗( ˆ̀, m̂)+ r ·W∗( ˆ̀, û) (given)
≤ r ·W∗( ˆ̀, û) (Decomposition Observation).

We are ready to present the 2-approximation algorithm—see Figure 4.

OBSERVATION 7. Algorithm Approximateis a specific implementation of Algorithm
Feasibility.

THEOREM4. Algorithm Approximate is a 2-approximation algorithm for E2VIP
systems.

PROOF. By Observation 7 AlgorithmApproximatereturns a feasible solution. We prove
by induction on the depth of the recursion that the algorithm finds a 2-approximation.
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Base. u = ` impliesW(`, ˆ̀, û) = 0.

Step. There are several cases:

Case1: ˆ̀ 6≥ `. A 2-approximation with respect to max{ ˆ̀, `} is obviously a 2-
approximation solution with respect tò̂.

Case2: û 6≤ u. Trivial.

Case3: Call right failed. By Lemma 1 there is no feasible solution which satisfies
xt ≥ α + 1, therefore we do not change the problem by adding the constraintxy ≤ α.
By Lemma 1 callingOneOnAllImpact(`left,uleft, t) does not change the problem either.

Case4: Call left failed. Similar to Case 3.

Case5: Both calls succeeded and W(`left, ˆ̀, û) ≤ W(`right, ˆ̀, û). We first show
that every feasible solution is a 2-approximation with respect toˆ̀ andm̂. We examine
an optimal solutionx∗ with respect toˆ̀ andm̂. By the construction of̂m we know that
m̂≥ `left. Thus, if`left ≤ x∗ ≤ uleft, then the monotonicity ofW(·, ˆ̀, m̂) implies

W(x∗, ˆ̀, m̂) ≥ W(`left, ˆ̀, m̂).
If `right ≤ x∗ ≤ uright, then

W(x∗, ˆ̀, m̂) ≥ W(`right, ˆ̀, m̂) (x∗ ≥ `right)

≥ W(`left, ˆ̀, û) (by the construction of̂m)
= W(`left, ˆ̀, m̂) (`left ≤ m̂).

On the other hand, by the construction ofm̂:

W(m̂, ˆ̀, m̂) ≤ W(`left, ˆ̀, m̂)+W(`right, ˆ̀, m̂) ≤ 2 ·W(`left, ˆ̀, m̂).
Thus, for every feasible solutionx:

W(x, ˆ̀, m̂) ≤ 2 ·W(`left, ˆ̀, m̂).
Therefore, by Theorem 3 a 2-approximation with respect tômandû is a 2-approximation
with respect tồ andû.

We need to show that there exists an optimal solutionx∗ with respect tom̂ andû for
which x∗i ≤ α. For every feasible solutiony such thatyi ≥ α + 1 we definey′ as

y′i =


yi , yi ∈ [`left

i ,uleft
i ],

`
left
i , yi < `

left
i ,

uleft
i , yi > uleft

i .

By Lemma 2y′ is a feasible solution.̀ left ≤ m̂ implies W(y′, m̂, û) ≤ W(y, m̂, û),
thus there is an optimal solution with respect tom̂ and û within the bounds̀ left,uleft.
Therefore, a 2-approximation within the bounds`left,uleft is a 2-approximation with
respect tom̂ andû.

Case6:Both calls succeeded and W(`left, ˆ̀, û) > W(`right, ˆ̀, û). Similar to Case 5.

This concludes the proof.
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COROLLARY 5. Algorithm Approximate is a 2-approximation algorithm for2VIP
systems.

THEOREM6. AlgorithmApproximatecan be implemented in time O(nmU) and space
O(m).

PROOF. In order to get the required time complexity, we must choose thext ’s carefully.
One possibility is to choose the variables in an increasing order, i.e.,x1, x2, . . . , xn,
and to restart from the beginning after reachingxn. We call suchn iterations on alln
variables apass. As stated before, changing the range ofxi might cause changes in
the ranges of other variables. The existence of a constraint onxi and another variable
xj makesxj a candidate for a range update. This means that we have to check themi

constraints involvingxi in order to discover the consequences of changing its range each
time this range changes.`i andui can change up to(ui − `i ) times, therefore we get
that the time complexity of a single iteration isO(mU + n) = O(mU). One pass may
involve all n variables, so the time complexity of one pass isO(nmU). By choosing
α = ⌊

1
2(`t + ut )

⌋
, we reduce the possible range forxt at least by half. Therefore, in

a single pass we reduce the possible ranges for all variables at least by half. Thus, we
get that the total time complexity is

∑logU
k=1 O(mn(U/2k)) = O(mnU). As before, the

algorithm uses an incidence list data structure and a constant number of arrays of sizen,
thus uses linear space.

4. Generalizations. What if the constraints are not linear? Also, what if the weight
functions of the variables are not linear? Can we avoid the expensive transformation to
the 2SAT problem? In this section we try to extend our approach to a wider family of
problems. In order to do so, we had to identify the properties of linear constraints and
linear weight functions which are sufficient for the correctness of our claims.

4.1. Generalized Constraints. In this subsection we are interested in problems of the
form:

(G2VIP) min
∑n

i=1wi xi

s.t. (xik , xjk) ∈ constraint(k), ∀k ∈ {1, . . . ,m},
xi ∈ [`i ,ui ], ∀i ∈ {1, . . . ,n},

where 1≤ i k, jk ≤ n, wi ≥ 0, and`,u ∈ Nn. Also each constraint(k) satisfies the
following: if (α1, α2), (β1, β2) ∈ constraint(k), then there exists a shortest path inN2

(lattice) connecting(α1, α2) and(β1, β2) such that all its points satisfy constraintk.
A constraint which satisfies this property is called anaxis-convexconstraint. We

assume that for an axis-convex constraint we have anO(1) time oracleOneOnOneImpact
which returns a tight range onxj when given a range forxi .

The following is implied by the definition of an axis-convex constraint:

OBSERVATION 8. Given an axis-convex constraintC, if (α1, α2), (β1, β2) ∈ C, then for
all β ∈ [β1, β2] there existsα ∈ [α1, α2] such that(α, β) ∈ C.
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Observations 1 and 4 hold for axis-convex constraints. A weaker version of Observa-
tion 2 also holds for axis-convex constraints. The proof uses Observation 8.

OBSERVATION 9. Given an axis-convex constraintC and (α1, α2), (β1, β2), (γ1, γ2) ∈
C, if (α1, β2) is inside the triangle induced by(α1, α2), (β1, β2),and(γ1, γ2), then(α1, β2)

∈ C.

It is easy to see that Lemmas 1 and 2 remain valid with axis-convex constraints. Thus,
Algorithm Feasibilityand AlgorithmApproximatecan be applied to G2VIP systems.

COROLLARY 7. A feasible solution, if such a solution exists, can be found for G2VIP
systems in time O(mU) and space O(m).

COROLLARY 8. A2-approximation, if a feasible solution exists, can be found for G2VIP
systems in time O(nmU) and space O(m).

4.2. Generalized Weight Functions. In the original definition of a 2VIP system we used
linear weight functions (wi xi for every variablexi ). The following definition generalizes
the weight function of a variablexi :

DEFINITION 5. A nonnegative weight functionω is called amonotone weight function
with respect to an interval ifω(α) ≤ ω(α + 1) for all α ∈ Z in the interval.

We assume, without loss of generality, that a monotone weight function is monotone
over the real numbers and is invertible. If it is not we can always defineω′(z) = ω(bzc)+
(ω(dze)− ω(bzc)) · (z− bzc).

For a linear weight functionωi we get that∀α≥0ωi (α+1)−ωi (α) = wi . For a general
monotone weight function this is not necessarily the case. Therefore, in order to make
Algorithm Approximateapplicable to such weight functions we replace1(xi , ˆ̀i , ûi )wi

in the definition of E2VIP systems by

1′(xi , ˆ̀i , ûi ) =

ωi (xi )− ωi ( ˆ̀i ), xi ∈ [ ˆ̀i , ûi ].
ωi (ûi )− ωi ( ˆ̀i ), xi > ûi ,

0, xi < ˆ̀i .

Now AlgorithmApproximateis applicable as is.

COROLLARY 9. A2-approximation, if a feasible solution exists,can be found for systems
with monotone weight functions in time O(nmU) and space O(m).

REMARK 1. If xi ∈
{
si,1, . . . , si,ni

}
, we can define a new variablex′i ∈ {0, . . . ,ni − 1}

and a new monotone weight functionw′i (α) = wi (si,α+1). Thus, we get that the same
results hold for̀ i = 0 andui = ni − 1.
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5. Optimization Algorithm for Monotone Systems. In this section we show how
to improve the complexity of Hochbaum and Naor’s [12] optimization algorithm for a
specific case of 2VIP systems called monotone systems:

DEFINITION 6. Amonotone inequalityis an inequality on two variables with coefficients
of opposite signs. A system with two variables per inequality is calledmonotoneif all
the constraints in the system are monotone.

We formulate the following monotone system:

(M2VIP) min
∑n

i=1wi xi

s.t. akxik − bkxjk ≥ ck, ∀k ∈ {1, . . . ,m},
xi ∈ [`i ,ui ], ∀i ∈ {1, . . . ,n},

where 1≤ i k, jk ≤ n, wi ≥ 0, a,b ∈ Nn, c ∈ Zn, and`,u ∈ N.
Lagarias [13] proved that deciding whether a monotone integer program has a feasible

solution is NP-complete. Hochbaum and Naor [12] showed that the set of all feasible
solutions of a monotone system form adistribution lattice(this has been observed before
by Veinott [16]). Using this property they presented anO(mn2 logm + nmU) time
feasibility algorithm for monotone systems, which finds the top (or bottom) of this
lattice. They also presented anO(nmU2 log(n2U/m)) time optimization algorithm for
such systems with general (possibly negative) weights.

By limiting the discussion to nonnegative weights, one can construct anO(mU) time
optimization algorithm: use the transformation to a 2SAT instance [11], then assign 0 to
all boolean variables which did not get an assignment by the transformation. As before,
this transformation usesO(mU) space.

In Figure 5 we present anO(mU) time andO(m) space optimality algorithm for
monotone systems with nonnegative weights. This algorithm is actually a feasibility
algorithm which finds the bottom of the feasible solutions lattice.7 Due to the nonnegative
weights, the bottom of the lattice is also an optimal solution.

THEOREM10. An optimal solution can be found for nonnegative monotone systems in
time O(mU) and space O(m).

Fig. 5.Optimization algorithm for monotone systems.

7 Note that when giveǹ as the initial value, the feasibility algorithm from [12] can be implemented in time
O(mU) and spaceO(m).
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PROOF. We prove that AlgorithmMonotonefinds an optimal solution for M2VIP sys-
tems with nonnegative weights in timeO(mU) and spaceO(m).

It is easy to prove by induction using Lemma 1 that sat(`after,uafter) = sat(`,u),
where`after anduafter are the values of̀ andu after the loop. Thus, if one of the calls to
OneOnAllImpactfails, then no feasible solution exists. The lemma also implies that if
the instance of M2VIP is satisfiable, then the above algorithm terminates without failure.

We now prove thatx∗ = ` is a feasible solution by showing that every constraintk:
akxik − bkxjk ≥ ck is satisfied byx∗ = `. We examine the value of the lower bound of
xik after the last call ofOneOnOneImpact(`,u, jk, i k, k) during the algorithm (the call
is made at least once). After this call we get`i k ≥ d(ck + bk` jk)/ake. `jk will not change
from this point until the algorithm terminates (as a change of`jk implies another call),
and other lower bounds only increase during the execution algorithm, thus`i k , `jk must
satisfy constraintk.

Due to Lemma 1, we get thatx∗ = ` is an optimal solution (and it is the only optimal
solution if∀i wi > 0).

Based on the same arguments as in Theorem 6 we get that the time complexity of
finding an optimal solution for a monotone system isO(

∑n
i=1 mi (ui − `i )) = O(mU).

The algorithm uses an incidence list data structure and therefore uses linear space.

As in the previous section we try to extend our approach to some nonlinear systems.
We use an important property of monotone constraints:

DEFINITION 7. Let constraintk be an axis-convex constraint onxi andxj . Constraintk is
called amonotone axis-convexconstraint if for every(α1, α2), (β1, β2) ∈ constraint(k)
also (min{α1, β1},min{α2, β2}) ∈ constraint(k). A system of monotone axis-convex
constraints is called ageneralized monotone system.

By using similar arguments to those used in the previous section we get:

COROLLARY 11. An optimal solution can be found for generalized monotone systems
with monotone weight functions in time O(mU) and space O(m).

Acknowledgments. We thank Ari Freund, Niv Gilboa, Avigail Orni, and especially
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