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Abstract

Evolution can be mathematically modelled by a stochastic process that operates on the
DNA of species. Such models are based on the established theory that the DNA sequences, or
genomes, of all extant species have been derived from the genome of the common ancestor of
all species by a process of random mutation and natural selection.

A stochastic model of evolution can be used to construct phylogenies, or evolutionary trees,
for a set of species. Maximum Likelihood Estimations (MLE) methods seek the evolutionary
tree which is most likely to have produced the DNA under consideration. While these methods
are intellectually satisfying, they have not been widely accepted because of their computational
intractability.

In this paper, we address the intractability of MLE methods as follows. We introduce a
metric on stochastic process models of evolution. We show that this metric is meaningful by
proving that in order for any algorithm to distinguish between two stochatic models that are
close according to this metric, it needs to be given many observations. We complement this
result with a simple and efficient algorithm for inverting the stochastic process of evolution,
that is, for building a tree from observations on two-state characters. (We have used the same
techniques in a subsequent paper to solve the problem for multistate characters, and hence for
building a tree from DNA sequence data.) The tree we build is provably close, in our metric, to
the tree generating the data and gets closer as more observations become available.

Though there have been many heuristics suggested for the problem of finding good approx-
imations to the most likely tree, our algorithm is the first one with a guaranteed convergence
rate, and further, this rate is within a polynomial of the lower-bound rate we establish. Ours
is also the the first polynomial-time algorithm which is proven to converge at all to the correct
tree.
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1 Introduction

The evolutionary history of a set of species is modeled as a tree, called a phylogeny, whose leaves
are bijectively labeled by the species. Reconstructing the phylogeny for a set of species is one
of the fundamental problems of computational biology, for which a large set of methods exists
(see [8, 9, 16] for surveys). Since the early 80’s –with the advent of rapid sequencing technology–
the data for phylogeny construction methods has primarily been biomolecular sequences such as
DNA.

The first step in processing sequence data for a set of species is to identify positions in each of
the sequences that are believed to have a common origin. This is done by an algorithm for multiple
sequence alignment. After the alignment step the sequence data can be thought of as a matrix with
rows indexed by the species and columns indexed by aligned positions in the sequence.

The phylogeny construction problem can then be stated, somewhat imprecisely, as follows:

Input: Matrix M [i, j] where row i corresponds to the sequence of species i’s sequence on a gene.

Output: A phylogeny which best fits M .

The above problem can be viewed as the problem of inverting a time-dependent process of
evolution. Thus in order to precisely describe the degree of fit between a phylogeny and the given
data we need a model for the forward direction, i.e., for evolution.

In the next subsection we describe a statistical model for evolution. The goodness of fit of a
tree to the given data will be defined in terms of the model.

1.1 A Stochastic Model of Evolution

In this paper, we consider the most widely studied class of stochastic models for this problem. Each
model in this class can be represented by a weighted tree. We will call a tree representing a model
a Cavender-Farris Tree, named after the biologists who first proposed this class of models [3, 7].
We assume that we have two-state characters with states 0 and 1.

A Cavender-Farris tree (CFT) is a rooted tree where the root has a probability Pr ∈ [0, 1] and
each edge e has some probability Pe ∈ (0, 1/2). We interpret an n leaf CFT as a random source
of vectors from {0, 1}n (referred to in the literature as patterns) as follows. The root gets labeled
‘1’ with probability Pr. When a node gets labeled with a bit, it broadcasts that bit to all of its
children. If a bit b is being broadcast down edge e = (u, v), then v gets labeled b̄ with probability
Pe, and b with probability 1−Pe. Thus each edge has some probability of producing an observable
mutation. The vector of labels at the leaves is taken to be the output of a CFT.

Now, any {0, 1}n vector has some positive probability of being produced as the output of any
CFT. Let S be a CFT. Then we define the output distribution of S, denoted PS, as the probability
distribution on {0, 1}n such that for any ~x ∈ {0, 1}n, PS(~x) is the probability of seeing ~x as
the output of S. Consider Figure 1. Fixing Pu = 1, the probability of the vector 010 at the
leaves is the sum of two terms for the two choices for the state of v. This probability is equal to
(1 − p)(1− q)r(1− s) + pq(1− r)(1− s).

CFTs have the following straightforward rëınterpretation as Poisson processes. Imagine a Pois-
son process with rate λ where the events are the changes of state of a character. This process
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Figure 1: Tree describing a stochastic process. Labels on the edges represent probabilities of change
between the endpoints.

proceeds along each edge e for time w(e). The probability of observing a change of state between
the end-points of e is Pe and is equal to the probability that an odd number of events occur in time
w(e). Normalizing by choosing λ = 1/2, we find that Pe = (1−e−w(e))/2 and w(e) = − ln(1−2Pe).

Note that we are not claiming that evolution proceeds by a Poisson process with a fixed rate
constant. We are merely stating that CFTs can be so interpreted. Evolution may proceed at
different actual rates in different parts of the CFT but we simply think of the times on each edge as
being scaled to make the rates uniform throughout the tree. However, since our input and output
trees are in the probability domain, the scaling is purely conceptual and internal to our algorithm.
We do assume that evolution proceeds at the same “rate” for each position of the DNA, that is,
each character column is produced by the same CFT. The mapping between the time domain w(e)
above and observable changes in the DNA will be crucial to our algorithm. This mapping is the
only place in the algorithm which needs modification to deal with four state data.

The output of a CFT is a vector in {0, 1}n which can be viewed as a character assigning a 0
or 1 state to each of the leaves. We assume that we observe k such vectors (which we also call
characters or samples or observations) from k independent runs of the same CFT.

The model we have described is substantially similar to the model discussed by Felsenstein [8]
and by Steel, Hendy, and Penny [14], and is the basis for most MLE methods for tree construction.
The assumption in this model that the characters are generated by i.i.d. processes is questionable
from the biological point of view, but is a simplifying assumption that is made in much of the
literature on maximum likelihood methods. See [13, Ch 3 and 5] for discussions of biological con-
ditions under which these assumptions might be appropriate. Given this model the computational
problem can be described as below.

Problem: MLE construction of evolutionary trees

Input: Sample n-vectors (referred to as points) M = 〈~c1, . . . , ~ck〉 generated from some unknown
n-leaf CFT S. This M is the same as the M in the phylogeny construction problem described
in the introduction with n being the number of species and k being the number of (binary)
characters.

Output: The CFT Ŝ which is most likely to have generated the k sample points.
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A comment is in order about the desired output in the problem above. Although the desired
maximization criterion is Pr[Ŝ|M ] we make the assumption of a uniform distribution on the prior
probabilities for the models and seek instead to maximize probability Pr[M |Ŝ]. This is common
in many maximum likelihood estimation problems and, in particular, is standard in phylogeny
construction.

The state of knowledge with respect to computing the most likely tree is extremely primitive.
Kashyap and Subas [10] describe a method for finding the parameters of the most likely tree on
3 species and then describe a heuristic for extending this to more than 3 species. Felsenstein [8]
describes methods for finding parameters for a fixed topology as well as a computationally expensive
heuristic for finding the most likely tree. Steel, Hendy, and Penny [14] view the problem as an
inverse problem and show that an exponential-sized Hadamard matrix can be used to find the
least-squares-best-fit tree.

It is unreasonable to expect that any algorithm for maximum likelihood estimation can recon-
struct the original CFT S exactly from a finite amount of data. Thus we would like algorithms
that “converge” to S as more and more samples are observed. To make the notion of convergence
precise we need a metric on CFTs, which we introduce later in this paper.

There has been significant effort expended by computational biologist in coming up with heuris-
tics for this problem. In this paper, we present the first known polynomial time algorithm that
converges to the true tree at a rate that is at most a polynomial factor slower than the best possible
rate that we establish. Since the results in this paper first appeared [6], there has been progress in
showing that other methods converge. We discuss these recent results in Section 4

One further point about our algorithm is the following: We assume that the data we are given
is produced by a CFT that we call the true tree. We will actually prove that the tree produced
by our algorithm converges to the true tree as more and more observations are available. It has
been shown that maximum likelihood methods are consistent and therefore the most likely tree
also converges to the true tree1. Thus the output of our algorithm also converges to the most likely
tree, but the main point is that it converges to the true tree.

Our result can be viewed in the setting of PAC-learning of distributions introduced by [11].
Viewing S as the target concept, we can show that polynomially many samples are sufficient to
produce a hypothesis Ŝ from the class of CFTs that is “close” to S with high probability.

The rest of this paper is organized as follows. In Section 2 we set up the metric on CFTs
and show a bound on the maximum possible convergence rate for any algorithm, regardless of
its computational complexity. In Section 3 we present the algorithm for maximum likelihood
estimation and its analysis. Finally, in Section 4 we discuss implications of this work, recent results
and directions for future work.

2 A metric on Cavender-Farris Trees

We are interested in converging on the CFT S via some algorithm on k sample points ~c1, . . . , ~ck

drawn from the distribution PS. This suggests that we should measure the distance between two
CFTs by the difference in their output distributions. While this makes common sense, it is a radical
departure within the area of phylogeny construction, where the topology is the sine qua non for

1However, as stated in the abstract no previous algorithm has been analyzed to converge to the most likely tree.

3



biologists. Biologists ultimately want to know the actual relationships amongst the input species.
Nonetheless, we will justify this approach by showing a lower bound on the learnability of CFTs in
terms of their distance under the following function.

Definition: Let S0 and S1 be two CFTs on the same n leaves. Then we define the var-distance,
V (S0, S1), as the variational distance V ar(PS0

,PS1
) =

∑

~x∈{0,1}n |PS0
(~x)− PS1

(~x)|.

As noted above, we must justify the use of this measure of distance between trees. Further,
we must show that this function is well behaved. For example, while V is symmetric and satisfies
triangle inequality, it is not obvious that it is a metric, since there may be S1 6= S2 such that
V (S1, S2) = 0. In particular, if we allowed edge probabilities to range in (0, 1/2] instead of (0, 1/2),
the variational distance of CFTs would not be a metric. Note that an edge probability of 1/2 on
an edge (u, v) corresponds to a situation where the states of v are completely uncorrelated with
the states of u, a biologically unrealistic situation.

In the next two subsections we prove the following.

1. That there is a lower bound on the learnability of CFTs in terms of their V distance.

2. That V is a metric on CFTs.

2.1 An Information-Theoretic Lower Bound

In this section we will show that CFTs that are close in var-distance cannot be distinguished based
on a small number of observations by any method, no matter how computationally expensive.

Suppose S0 and S1 are two CFTs such that V (S0, S1) ≤ ε. Let A be any decision procedure
that is given k samples from one of these two CFTs and decides whether the samples were drawn
from S0 or S1. Without loss of generality, suppose that A outputs 0 if it decides that the samples
were drawn from S0 and 1 if it guesses that the samples were drawn from S1.

There are two kinds of errors that are made by A. Let e0(A) be the probability that A outputs
1 when the samples are drawn from S0 and e1(A) be the probability that A outputs 0 when the
samples are drawn from S1. Let e(A) = max(e0(A), e1(A)).

Lemma 1 For S0, S1 and A as above, e(A) ≥ 1−kε
2 .

Proof: We first prove a general statement. Let D0 and D1 be any two distributions such that
V ar(D0, D1) ≤ δ. Suppose a decision procedure A is given one sample from either D0 or D1 and
is asked to decide on which distribution the sample came from. Let e0(A), e1(A), e(A) be defined
as above.

We claim that e(A) ≥ (1− δ)/2. To see this, suppose P is the set of points on which A outputs
1. Then e0(A) + e1(A) = Pr[P |D0] + 1 − Pr[P |D1] ≥ 1 − δ. Since e(A) ≥ (e0(A) + e1(A))/2 the
claim follows.

By our assumptions V ar(PS0
,PS1

) ≤ ε. We observe k samples from one of S0 or S1. We will view
these k samples as one sample from an appropriate Cartesian product of distributions. To this end,
let D⊗k denote the k-fold cross-product of the distribution D. Thus D⊗k( ~x1, . . . , ~xk) =

∏k
i=1 D(~xi).
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We can show that if V ar(PS0
,PS1

) ≤ ε, then V ar(P⊗k
S0

,P⊗k
S1

) ≤ kε, as follows

V ar(P⊗k
S0

,P⊗k
S1

) =
∑

~x1,..., ~xk∈({0,1}n)k

|
k

∏

i=1

PS0
(~xi) −−

k
∏

i=1

PS1
(~xi)|

≤
∑

~x1∈{0,1}n

|PS0
( ~x1) −PS1

( ~x1)|(
∑

~x2,..., ~xk

∏

PS0
(xi)) (1)

+
∑

~x2,..., ~xk∈({0,1}n)k−1

|
k

∏

i=2

PS0
(~xi) −

k
∏

i=2

PS1
(~xi)|(

∑

~x1∈{0,1}n

PS1
( ~x1))

=
∑

~x1∈{0,1}n

|PS0
( ~x1) −PS1

( ~x1)|+
∑

~x2,..., ~xk∈({0,1}n)k−1

|
k

∏

i=2

PS0
(~xi) −

k
∏

i=2

PS1
(~xi)|(2)

= V ar(PS0
,PS1

) + V ar(P⊗k−1
S0

,P⊗k−1
S1

) (3)

By induction the last expression in Eq. 3 can be seen to be no greater than kε. The lemma follows
from this fact and the claim proved above.

2.2 Proof of Metricity

We prove that V is well behaved by showing that PS determines S, as follows.

Lemma 2 If S1 and S2 are distinct CFTs, then PS1
6= PS2

. Furthermore, we can reconstruct S1

from PS1
.

Proof: We define DS to be the difference metric of S, that is, we take DS(i, j) to be the probability
that leaves i and j have different bits. Given PS, we can compute DS as

DS(i, j) =
∑

~x∈{0,1}n,~xi 6=~xj

PS(~x).

Now, we define TS, the time metric of S, as

TS(i, j) = − ln(1− 2DS(i, j)).

Claim 2.1 TS is an additive metric, that is, it is a path metric on a tree.

Proof: Let W be the weighted tree isomorphic to S such that if an edge e has change probability
Pe in S, then its image has weight we = − ln(1 − 2Pe) in W . Then consider any two leaves
i and j which are connected by a two-edge path, and let v be the node between them. Now
DS(i, j) = P(i,v) + P(v,j) − 2P(i,v)P(v,j) and so TS(i, j) = − ln(1 − 2(P(i,v) + P(v,j) − 2P(i,v)P(v,j))) =
− ln(1 − 2P(i,v)) − ln(1− 2P(v,j)) = w(i,v) + w(v,j). By induction, for any pair of leaves i, j, TS(i, j)
is the sum of the weights of the edges on the path between them in W , thus proving the claim.

We can conclude from the claim that W is unique and efficiently constructible from TS. Fur-
thermore, we can reconstruct S from W by noting that Pe = (1 − e−we)/2. This establishes the
lemma.

A similar lemma is proved in [14].
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3 A Simple Distance-Based Method and Its Analysis

Lemma 2 suggests the following algorithm. Let H(~x1, ~x2) be the Hamming distance between vectors
~x1 and ~x2.
Algorithm Outline:

1. Input M =







~s1
...
~sn






= (~c1, . . . , ~ck).

2. For all i, j, set D∗(i, j) = H(si, sj)/k, that is, D∗ is our estimate of DS. In the analysis below,
we will estimate E(i, j) which represents the tolerance in the value D∗(i, j). In other words,
DS(i, j) will be in D∗(i, j)± E(i, j) with high probability.

3. For all i, j, set T ∗(i, j) = − ln(1 − 2D∗(i, j)). Then T ∗ is our estimate of TS. We will make
E(i, j) small enough that with high probability TS(i, j) lies in T ∗(i, j)± δ for all i, j, for some
constant δ > 0.

4. While we know that T ∗ is close to being additive – we will show that as k increases T ∗

approaches TS – it need not be exactly additive. Use an additive fitting algorithm [1] which
produces a tree close to T ∗. Call this tree T̂ . Invert the edge weights back into probabilities
to produce Ŝ. Output Ŝ.

3.1 Goodness of Estimates

In the following we will assume that DS(i, j) is bounded away from 1/2 for all pairs of species
i, j. This is because as DS(i, j) approaches 1/2, TS(i, j) approaches ∞ and small tolerances in the
probability estimates blow-up into large tolerances in the distance estimates. For most biological
data sets this is a very reasonable assumption. The situation where DS(i, j) ≥ 1/2 corresponds
to a situation where there is no correlation or even negative correlation between species i and j
which is a biological absurdity. Formally, we assume that there is a constant α > 0 such that
DS(i, j) ≤ 1/2− α for all i, j.

We would like to estimate DS(i, j) well enough to ensure that when these estimates are trans-
lated into the time domain we can assert that T ∗(i, j) is at most δ away from TS(i, j) for all i, j with
high probability. Given the nature of the function that is used to map from the probability domain
to the time domain, the tightest constraints on probability estimation arise for D∗(i, j) = 1/2− α.

Let p = 1/2 − α and let t = t(α, δ) be the allowable tolerance in the value of p. We can solve
for t from the equation

δ = − ln(1− 2(p + t)) + ln(1− 2p)

Thus t is a constant that is dependent only on α and δ. (The exact choice for the value of t is
made later in the proof of Theorem 1.) If we ensure that E(i, j) ≤ t ∀i, j then we get the required
uniform tolerances of δ around each time estimate.

A simple appeal to the Chernoff bound tells us the number of samples required to make E(i, j)
small enough.
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Lemma 3 If k = 6 lnn/t2 samples are observed then for any given i, j, Pr[E(i, j) > t] ≤ n−4.

Proof: The proof follows from a direct application of the Chernoff bound inequalities [12]. As a
corollary the probability that there exist i and j such that E(i, j) > t, is no more than n−2.

Because there is a deterministic function mapping probabilities to times the following lemma is
immediate.

Lemma 4 With probability at least 1− n−2, |TS(i, j)− T ∗(i, j)| ≤ δ for all i, j.

The next stage involves application of an additive-fitting method taken from [1]. We now
describe the problem considered by [1] and the result they obtain.

Problem: L∞-best-fit additive tree.

Input: An n × n matrix T ∗ representing pairwise distance estimates among n points.

Output: An edge-weighted tree T such that maxi,j |T [i, j]− T ∗[i, j]| is minimized, where T [i, j]
represents the distance in the tree between leaves representing species i and j.

Let ε = minT maxi,j |T [i, j] − T ∗[i, j]|. In [1] it is shown that finding a tree T whose L∞

distance from the given matrix is ε is NP-hard. Fortunately, it is also shown that there is an
efficient algorithm that finds a tree T ′ such that maxi,j |T ′[i, j]− T ∗[i, j]| ≤ 3ε.

In our case, we know that with probability greater than 1− n−2 there is a tree within δ of T ∗.
Thus the algorithm of [1] will find a tree within 3δ of the given estimates. We apply the algorithm
to compute the tree T̂ . Finally we convert T̂ into Ŝ.

3.2 Analysis of Algorithm

Our goal is to show that the variational distance between Ŝ and S is small. (We will sometimes prove
statements about the equivalent time domain trees – T̂ and TS – but these statements translate
directly into the probability domain.) We need some terminology. For any edge e in a rooted tree
the set of leaves in the subtree that lies below e will be denoted B(e).

Definition: Given two rooted (edge-weighted) trees T1 and T2, the homeomorphic collapse, hc(T1 <
T2) is obtained from T1 by collapsing every edge e ∈ T1 such that B(e) 6= B(e′) for any edge e′ in
T2.

Note that hc(T1 < T2) and hc(T2 < T1) are isomorphic in their topologies but may differ in
edge weights. We first make the following simple observation.

Observation 1 :

V (T1, T2) ≤ V (T1, hc(T1 < T2)) + V (hc(T1 < T2), hc(T2 < T1)) + V (hc(T2 < T1), T2).

The observation follows simply from the fact that the variational distance defines a metric.
However, it serves an important purpose. We can view hc(T1 < T2) and hc(T2 < T1) as being
simultaneously isomorphic in topology to both T1 and T2. Thus all variational distances on the
right hand side of the above inequality can be thought of as being computed between isomorphic
trees. This fact will be used in the argument that follows.
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3.3 L∞ Closeness Implies V Closeness

Suppose that S and S ′ are CFTs such that L∞(DS,DS′) is “small.” In this section, we will prove
that V (S, S ′) is correspondingly small. We do so in three steps. In the first two lemmas, we prove
the bound for the case when S and S ′ have isomorphic topologies. Finally, we show how to apply
these lemmas to the non-isomorphic case by showing that S and S ′ are almost isomorphic, in some
appropriate sense.

Lemma 5 Suppose S and S ′ are two isomorphic CFTs on the leaf set [1, . . . , n]. Suppose that

every pair of corresponding edges e ∈ S and e′ ∈ S ′ is such that |Pe−Pe′ | ≤ ε for some ε > 0. Then

V (S, S ′) ≤ 2nε.

Proof: The proof is recursive and is based on a “coupling” argument where the process represented
by S and by S ′ are coupled as much as their parameters allow. Coupling is a technique where two
stochastic processes are made to be highly correlated while still preserving the property that each
process satisfies the parameters of its own definition.

We first introduce some notation. Assume that S and S ′ are binary trees. (The proof can easily
be extended to the non-binary case.) Renumber the leaves of S and S ′ so that the left-to-right
ordering of the leaves is the same as the increasing order of numbers. Let r be the root of S and
x and y be its children. Let r′, x′, and y′ represent the corresponding nodes in S ′. For any node
v let Sv represent the subtree rooted at v. Let the number of leaves in Sx (which is equal to the
number of leaves in Sx′) be k. Let u be a string in {0, 1}k and v be a string in {0, 1}n−k.

The use of coupling here is as follows. Let e and e′ be corresponding edges in S and S ′ with
Pe′ ≥ Pe without loss of generality. Setting 0 ≤ ρ := Pe′ − Pe ≤ ε, we roll a 3-sided die with
probabilities Pe, ρ, and 1−Pe − ρ for the 3 sides. If the first side shows up, then changes are made
on both e and e′; if the second side shows up then a change is made only along e′ and if the third
side shows up no change is made along either edge.

By the notation Pr[uv|ri] we will mean the probability that the tree S (the tree is identified by
the node r) generates the string uv at its leaves given that r is in state i.

Assume that p is the probability that the state at r (and at r′) is 1. By considering the coupled
processes we assume that both root states are always identical. The variational distance between
two trees is unaffected if both root states are fixed at 0 or if both root states are fixed at 1. Thus
V (S, S ′) ≤ ∑

uv∈{0,1}n |Pr[uv|r0]−Pr[uv|r′0]|. By using the independence of the CFT process along
two branches once the root value has been fixed, we derive the sequence of relations as follows

V (S, S ′) ≤
∑

uv∈{0,1}n

|Pr[uv|r0]− Pr[uv|r′0]|

=
∑

uv

|(Pr[u|x0] Pr[x0|r0] + Pr[u|x1] Pr[x1|r0])(Pr[v|y0] Pr[y0|r0] + Pr[v|y1] Pr[y1|r0])

−−(Pr[u|x′
0] Pr[x′

0|r′0] + Pr[u|x′
1] Pr[x′

1|r′0])(Pr[v|y′0] Pr[y′0|r′0] + Pr[v|y′1] Pr[y′1|r′0])|
≤ 4ε +

∑

uv

|(Pr[u|x0] Pr[v|y0]) − (Pr[u|x′
0] Pr[v|y′0])|

This last inequality is obtained by observing that there is a probability of at most 2ε that either x
and x′ or y and y′ have different states in the coupled processes in the two trees. Even when there
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is such a difference of state the conditional variational distance can be less than the maximum value
of 2, but we conservatively assume that it is in fact 2. In the case where the coupled processes
produce the same states at x and x′ and at y and y′, we can assume without loss of generality that
this state is 0 for the same reasons that we were able to assume that the roots had state 0.

Continuing the above derivation we have

V (S, S ′) ≤ 4ε +
∑

uv

|Pr[u|x0] Pr[v|y0]− Pr[u|x′
0] Pr[v|y′0]|

= 4ε +
∑

uv

|Pr[u|x0] Pr[v|y0]− Pr[u|x′
0] Pr[v|y0] + Pr[u|x′

0] Pr[v|y0] − Pr[u|x′
0] Pr[v|y′0]|

≤ 4ε +
∑

uv

Pr[u|x0](|Pr[v|y0]− Pr[v|y′0]|) +
∑

uv

Pr[v|y′0](|Pr[u|x0] − Pr[u|x′
0])

≤ 4ε +
∑

v

|Pr[v|y0]− Pr[v|y′0]|+
∑

u

|Pr[u|x0]− Pr[u|x′
0]|

≤ 4ε + V (Sx, Sx′) + V (Sy, Sy′)

and, by using inductive assumptions about the subtrees rooted at the children of the roots, we get
the required result.

The next two lemmas are proved in the time domain but apply by the standard transformation
(pij = (1− e−tij )/2) in the probability domain.

Lemma 6 If T1 and T2 are isomorphic in topology, each internal node in each tree has degree at

least 3, and they have the same leaf set and if for all pairs of leaves x, y, |T1[x, y]− T2[x, y]| < ε,
then if e1 and e2 are corresponding edges in T1 and T2, |w(e1) − w(e2)| ≤ 2ε.

Proof: Suppose for contradiction that e1 ∈ T1 and e2 ∈ T2 are corresponding edges and w(e2) −
w(e1) > 2ε. There are two cases.

Case 1: e2 = (u, v) is an internal edge with at least two species on each side. Let e1 = (u′, v′). If
there is a leaf x on the u side of e2 and a leaf y on the v side of e2 such that the T2[x, u]−T1[x, u′] ≥
−ε/2 and T2[y, v]− T1[y, v′] ≥ −ε/2, then T2[x, y]− T1[x, y] > ε contradicting the assumption.

Hence, on either the u side or the v side (say u), for each leaf x, T2[x, u] < T1[x, u′]− ε/2. Now
for any two such leaves x and y, T2[x, y] < T1[x, y]− ε again contradicting our assumption.

Case 2: e2 = (u, v) is an external edge with u a leaf. Let e1 = (u′, v′) be the corresponding
edge with u′ being a leaf in T1. For any other species x, T2(x, v) < T1(x, v) − ε. Take two such
species x and y such that the paths in T2 between x and v and between y and v are disjoint.
T2[x, y] < T1[x, y]− 2ε and we again have a contradiction.

Lemma 7 Let T1 and T2 be edge-weighted rooted trees on the same leaf set which are not necessarily

isomorphic even in topology. Suppose for every pair of leaves x, y |T1[x, y]−T2[x, y]| ≤ ε. Then for

every pair of corresponding edges e and e′ in T1 and hc(T1 < T2) respectively, w(e)− w(e′) ≤ 2ε.

Proof: Suppose e = (u, v) is an edge in T1 such that its corresponding edge e′ in hc(T1 < T2) has
zero weight. Then there exist 4 species x, y, p, q in T1 such that x, y ∈ B(e) and p, q 6∈ B(e), the
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least common ancestor (lca) of x and y is v and if T1 were rooted at v then the lca of p and q would
be at u. Furthermore T2 does not contain any edge e′ such that x, y ∈ B(e′) and p, q 6∈ B(e′).

From T1 we have T1(x, y) + T1(p, q) + 2w(e) = T1(p, x) + T1(q, y). From T2 we have T2(x, y) +
T2(p, q) ≥ T2(p, x)+T2(q, y). By using the relationship between interleaf distances in T1 and T2 we
have T1(x, y) + T1(p, q) + 4ε ≥ T1(p, x) + T1(q, y). Thus w(e) ≤ 2ε and the result follows.

The proof that the tree produced by our algorithm is close to the true tree with high probability
takes the following form.

With probability at least 1− n−2 our estimate T ∗ is within δ of the true tree TS. Since we find
a tree T̂ which is within 3δ of T ∗ in this case, the L∞ distance between T̂ and TS is bounded by
4δ. By the previous two lemmas in each pair of isomorphic trees we consider, the corresponding
edges differ in weight by at most 8δ.

When each such pair of isomorphic trees is considered in the probability domain the worst
discrepancies on the probabilities arise when the two corresponding edges e and e′ have weights
0 and 8δ respectively in the time domain. In this case the corresponding probabilities are 0 and
(1−e−8δ)/2. Using the inequality that 1−e−x ≤ x for x ≥ 0, we get that the latter probability is no
more than 4δ. Thus using Lemma 5 we find that each pair of corresponding trees have variational
distance bounded by 4nδ. Putting all this together we get the following theorem.

Theorem 1 With high probability, the variational distance between Ŝ and S is upper bounded by

12nδ. Taking k � lnn, we get that V (S, Ŝ) ≤ (12n
√

6 lnn)/(α
√

k).

Proof: The first statement follows from the above discussion. So we must show that 12nδ =
(12n

√
6 lnn)/(α

√
k). But δ = − ln(1 − 2(p + t)) + ln(1 − 2p) and t =

√

6 lnn/k. The assumption
that k � lnn gives that t ≤ ln(1 + t), and a bit of algebra gives the rest of the theorem.

Remark. The assumption that k � lnn is valid on biological data sets where typically k � n.

4 Conclusion

We have shown that in O(n2k) time we can construct a CFT Ŝ that is within O(n
√

ln n/α
√

k) from
S, and that no algorithm can give a CFT that is o(1/k) from S, with high probability. There are
three factors which give a gap. First, can we remove the dependence on α without increasing the
dependence on n or k? We expect that this may be possible if the tree fitting algorithm of [1] can be
generalized to deal with varying tolerance, i.e, we want a tree-fitting algorithm that takes as input a
distance matrix D and a tolerance matrix E and finds a tree, T such that |D[i, j]−T [i, j]| ≤ εE [i, j]
and ε is as small as possible. Clearly finding the best ε is again NP-complete, but we would like an
approximation algorithm along the lines of [1] for this more general question. In [4], an algorithm
was shown that has a convergence rate which does not depend on α, and is polynomial in n and k.
However this convergence rate is not given exactly.

Second, can the bounds be tightened in terms of n and k? In [2], a much stronger lower bound
was shown, in particular Ω(

√

n/k). This lower bound was nearly matched for some classes of trees.
We refer the reader to that paper for the details.
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Another unresolved issue is that of 0/1 data versus four (or more) state data. This issue was
also resolved in [2], where it was shown that if a k state markov process is invertable, that the same
bounds hold for learning them. See Steel, Hendy and Penny [14] for an anaylsis of which types of
processes are invertible.

Finally, there is the related but somewhat independent problem of determining the number of
samples needed to reconstruct the toplogy of the CFT. This problem was first considered in [15].
It turns out that an algorithm can be good in terms of metric convergence rate but not topological
convergence rate, or vice versa. The current best algorithm for the topology reconstruction problem
together with its analysis is given in [5].
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