
Efficient Algorithms for Prefix and General Prefix Computations
on Distributed Shared Memory Systems with Applications *

m

V. Kamakoti N. Balakrishnan

1 2 3 4 5 6

Supercomputer Education and Research Centre
Indian Institute of Science, Bangalore - 560 012, India

{ kama,balki}@serc.iisc.ernet .in

C,
Y
D ,

Abstract
The paper presents eficient scalable algorithms

for performing Prefix (PC) and General Prefix
(GPC) Computations on a Distributed Shared Mem-
ory (D S M) system with applications.

1 Introduction
Prefix (PC) and General Prefix (GPC) Computations
are generic techniques that can be used to design se-
quential and parallel algorithms for a number of prob-
lems from diverse areas [l, 5, 61. In [6 an O(1ogn)
time, O(n) processor, CREW PRAM t shared mem-
ory) parallel algorithm for the GPC is presented. This
algorithm implies an O(n log n) time sequential algo-
rithm.

Based on memory organization, parallel computing
systems fall into two categories: Shared Memory sys-
tems and Distributed Memory systems. Shared Mem-
ory systems are relatively easy to program (due to a
single address space) but less scalable than distributed
memory systems. A software abstraction in which a
distributed memory system can be viewed as a system
with a single address space results in a system that
is both scalable and easy to program. Such systems
are called Scalable Shared Memory Systems or Dis-
tributed Shared Memory Systems. The B D M model
of computing, from a users perspective, offers the ad-
vantage of ease of programming of shared memory sys-
tems while from a systems perspective, provides the
advantage of scalability akin to message passing sys-
tems.

PC and GPC are generic techniques for algorithm
design. Therefore, a solution for them implies a solu-
tion for a variety of problems in diverse areas that in-
clude Computational Geometry, Graph Theory, Sort-
ing etc. Some of the routines are recursive and were
successfully implemented on the SP2 which is a Dis-
tributed Memory Machine. This gives some point-
ers for automatically parallelizing recursive programs.
The paper also discusses the suitability of the B D M
model [3] for the IBM's SP2. This implies that the

'This work was supported in part by the IISC-TISLIIBM
joint project (No. TISL/SERC/NB/02) on High Performance
Computing Using Distributed Shored Memory under the Shared
University Research Program

1.2 1.6 1.6 1.6 1.7 1.7
1 4 2 3 4.5 3.5
q5 1.2 1.2 1.3 1.6 1.3

0-8186-8227-2197 $10.00 0 1997 IEEE

n = 6, * = max, p = <, q5 = not defined.

Figure 1: Example for Prefix Maxima and General
Prefix Maxima

model can serve as a tool for the programmer to de-
sign and analyse the algorithm, by deriving analytical
expressions for the time/space complexity before actu-
ally implementing the same. In this regard, our paper
can also serve as a case study for the users. We now
formally define PC and GPC with an example shown
in Figure 1.

Definition 1 (Prefix Computation (PC))
Let (f (l), f (a), . . . , f (n)) be a given sequence of ele-
ments. The problem is to compute the sequence of
prefixes C, = f(1) * f (2) * ... * f (m) , 1 5 m 5 n,
where, * is an arbitrary binary associative operator
defined on the f -elements.

Definition 2 (GPC [6) Let (f(l), f(2), e , f(n))
and (y (l) , y (2) , . . . , y n) be two given sequences of el-
ements. Let Y = {y i 1 l), ..., y (m) } . Let p be a binary
relation such that for yi, yj E Y , i f j, either (yi p yj)
or (yj p yi). The problem is to compute the sequence of
general prefixes Dm = f(j1) * f (j 2) * - . * f (j k) , 1 5
m 5 n, where, * is an arbitrary binary associative op-
erator defined on the f -elements and j i 's are indices
such that

(a). ji < ji+l, 1 5 i < k;
(b). ji < m, 1 5 i 5 k; and,
(4 . Y (j i> P y(m), 1s i 5 lk.

It is easy to see that PC is a special instance of GPC.
An efficient algorithm for PG is reported in [4].

44

1.1 Prelimina
The BDM model defined in terms of four pa-

ors, maximum initial
cessor to receive the
her processor, time (T

eive a word f rom the
tive words sent dur-

3. If T is any per on on p elements, then, a re-
t for b words issued by every
estined for processor PR,(;)

remote access I ued by IC distinct pro-
same processor will re-
completed, and the re-

B[j , i] = f(i * (nlt) + j) , f o r 0 5 i < t - 1, 1 <
j 5 n/t
(B[l, i], B[2, i], ..., B[Y, i]) are stored in processor
PRj; in this order, 0 < i < t - 1.

Before presenting the algorithm we define some func-
tions that are used by the algorithm.

1. RANDOMROUTE: A randomized function
which routes the data stored in each of the pro-
cessors to their respective destinations. The input
to this function is a x p array A of n elements
initially stored one column per processor in a p
processor BDM machine. Each element of A con-
sists of a pair (data, i) , where i is the index of the
processor to which the data has to be relocated.
For details refer Theorem A.1 in Appendix A. 1

2. BDPRECOMP: Performs prefix computation
on a sequence I E D stored on a pprocessor B D M
machine. For details refer Theorem A.2 in Ap-
pendix A.

2 Merging Sorted Lists on a BDM ma-
chine

We will first present an overview of the function which
merges two given sorted lists on a BDM machine and
then, present its implementation. The function is a
modification of Batcher's odd-even merge [2]. With-
out loss of generality we assume p = ", for some in-
teger b > 0. The two given sorted lists L1 and L2
of elements each are such that L1 is I E D stored
in order in the processors (PRO, PR1, ..., PR5-1)
and L2 is I E D stored in order in the processors
(PRg, PRg+1, ..., PRp-l), elements per proces-
sor. We call the data stored within a single processor
as a block. As in odd-even merge we do the following
steps 1 and 2 in parallel:

1. Recursively merge the blocks stored in processors
occupying even numbered positions/subscripts.
In other words, the sorted sublist of L1 stored
in (PRO, PR2, ..., P R s - ~) and the sorted sub-
list of LZ stored in (PRg , PRg+2, ..., PRp-2)
are merged and the merged list is stored in
(PRO,PR2, ..., PR~-2,PRg7PR5+2 ,... ,PRp-2).

2. Recursively merge the blocks stored in processors
occupying odd numbered positions/subscripts. In
other words, the sorted sublist of L1 stored
in (PR1, PR3, ..., PR$-,) and the sorted sub-
list of L2 stored in (PR:+], PR%+3, ..., PRp--l)
are merged and the merged list is stored in
(PRl,PR3, ..., PRg-1,PRg+llPRg+3, ..., PRp-1).

3. For all k , 0 5 k 5 p - 1, do in parallel
if IC is odd and IC # p - 1, then, merge the block
stored in PRk with the block stored in P&+].

45

4. The final sorted list is stored in order in
(PRO, P R I , ..., PRP-i).

The procedure is similar to the odd-even merge [2]
except that we treat every element of the latter as
a block of sorted elements. The following function
BlockMerge gives the recursive DSM implementa-
tion of the above method.

Function BlockMerge(BL1, BL2,i, t , a) : (BL)
Input: Two sorted lists L1 and L2 each of length
t (n / p) elements such that L1 is IED stored on an ar-
ray BL1 in the processors PRi, PRi+a, ..., PRi+(t-lla
and L2 is IED stored on an array BL2 in the proces-

Output: The sorted list L = Merge(Ll ,Lz) , of
length 2 t (n / p) IED stored on an array BL in the
processors PRi, PRi+,, ..., PRi+(2t-1)a

sors PRi+ta, PRi+(t+l)a, ‘ “ 7 PRi+(zt-l)a.

Begin /* W.1.g we assume that t is a power of two */
1. If (t = 1) t h e n /* only two blocks to be merged * /

PRi and PRi+, hold the sorted lists BL1 and BL2
of
BL2 stored in PRi+, and sequentially merges it with
BLI and stores one half of the merged list in itself,
in the array BL(j , i) , 1 5 j 5 n / p and the other half
in PRi+, in the array BL(j , i + a) , 1 5 j 5 n / p .
return(BL); exit

Do Steps 2 and 3 in Parallel /* t > 1 */
2. BL = BlockMerge(BL1, BL2, i, 2,2a)
/* In step 2 the part of the lists BL1 and BL2 stored in

processors, PR;+ka, for even k 2 0 in the sequence
(PRi, PRi+,, . . . , PRi+(zt-l)a) are merged */

elements each respectively. PR, reads the list

3. B L = BlockMerge(BL1, BL2, i + a , f , 2a)
/* In step 3 the part of the lists BL1 and BL2 stored in

processors, P&+ka, for odd k 2 1 in the sequence
(PR;, PRi+,, . ’ . , PRi+(2t-l)a) are merged */

4. For all Processors PR,+k,, such that 1 5 k 5 t - 3
and k is an odd number do in parallel

P&+ka reads the sorted list BL(j , i + (k + l)a),
1 5 j 5 n / p from PRi+(k+l), and merges sequentially
the same with the list BL(j , i + ku) , 1 5 j 5 n / p
stored in it. Then, it stores one half of the merged list
in itself, in the array BL(j , i + ku) , 1 5 j 5 n / p and
the other half in PR;+(k+l), in the array
BL(j , i + (k + l)a), 1 5 j I n l p .

/* In step 4 all the processors, PRi+ka, for odd k 2 1, in
the sequence (PRi, Pa+, , . . . , PR,+p-l),) except
the last processor P&+(2t-lfa, merges the BL array
stored in it with the B L array of the immediately
succeeding processor PR;+(k+l),. */

5. return(BL)
End.

From the assumptions of the BDM model we see that
step 4 of the above function takes r+am[+l commu-
nication time. Step 4 takes O(f) computation time.
Hence for the whole procedure,

z o m m (t) = zonm(;) + T + amr$i,

L w L p (t) = ~ c o m , ($) + o(r;l),
Tcomm(l) = T + am[$] (from Step 1).

Tcomp(l) = O(r$]) (from Step 1).

Theorem 1 Function BlockMerge(BL1, BL2, i, t , a)
takes O(n’0g2) computation time and
O((T + am[$]) log, t) communication time.

Corollary 1 Two lists each of size n can be
merged using p processors on a distributed mem-
ory system in O(”‘”,pp) computation time and
O((T + amr”1) 10g2p) communication time.

3 The Ranking Problem
We will now define a subroutine RANKP to solve
the ranking problem. RANKP will be used by
the main algorithm. First we define the fol-
lowing notations. Let L = (11, Ea, ..., l t (n / p))

be two sequences IED stored on the arrays
BL and BLD respectively in the processors
PR,, PRc+l, ..., PRc+(t-l), ((n / p) elements per pro-
cessor). Similarly, let R = (~1,r2, ..., rt(n,p))

be two sequences IED stored on the arrays
B R and BRD respectively in the processors
PRc+t, PRc+t+l, ..., PRc+(2t-l). From Definition 3
we see that, BLD[j,il = (Yi*(n/p)+j,di*(n/p)+j), 1 I
j 5 n/p, 0 5 i 5 t - 1, and is stored in the pro-
cessor PR,+i. Let di,(n/p)+j = (j, c + i, dut), where
dat denotes some data of constant size. Similarly

0 5 i 5 t - 1, and is stored in the processor
PRc+t+i. Let d:*(n/p)+j = (j , ~ + t + i , d u t) , where
dat denotes some data of constant size. Let SL be
the sorted sequence of LD, sorted on the y values.
S L is IED stored on the arrays BSL in the pro-
cessors PR,,PR,+l ,..., PRc+(t-l). Let S R be the
sorted sequence of RD, sorted on the y‘ values. S R
is IED stored on the arrays BSR in the processors
PRc+t, PRc+t+l, ‘ “ 3 P%+(2t-1) +

Definition 4 (Ranking Problem) The problem is
to merge the two sorted lists SL and S R (on the y
and y’ values) into a single sorted list PL and do the
following:

I . for every element PL(j) , 1 5 j 5 2 t (n / p) , if
PL(j)(= (yi,di)) E LD, then find the two con-
secutive elements (y i , d[i) and (y i , d;) in S R such
that y i lies inbetween yg and y i . Let f i = (d i , d ;) ;
and,

2. for every element PL(j) , 1 5 j 5 2 t (n / p) , if
PL(j)(= (yi, d:)) E RD, then find the two con-
secutive elements (yj, d j) and (Yk, d k) in SL such
that yi lies inbetween y j and yk. Let fi = (d j , d k) .

P

p m

and LD = ((Y l , 4) , (Y 2 , d 2) , - , (Y t (n / p) r d t (n / p)))

and RD = ((Y i , 41, (Y ; , db), ” ‘ 7 (Y ; (n / p) , d ; (n /p))>

BRDlj,iI = (Y~*(n/p)+j,d~*(n,p)+~), 1 5 j I nip,

46

Let F = (f l ,

on the arrays TE

Function RANKP(BsL,
Begin

PRc, PRc+1,

1. RPL =
the y and y’

2. For each processor
parallel
For 1 5 j 5 n/l;

f2r . . . rEfZt (n ,p)) and P L be I E D stored
and RPL in the processors

PR,:+(2t-1).

B S R , c, t) : (RPL, T F)

BZockMerge(BSL, BLR, c, t , 1) (merging on

PR,+;, 0 5 i 5 2t - 1 do in

values).

0 Let RPLb,i]
find out
or BSR.

0 If the element
B S L then,
else TEM,?[j,

3. Do a prefix
function
pendix A). Let

4. For each processor
parallel
For 1 5 j 5 n/p

Hence we can c

End.
Note that steps 2
time. Theorems 1
orem.

= (u,w). From entry w we can
wiether the element belongs to B S L

RPL[j,i](= (Y k , d k)) belongs to
set TEMPL, i] = (i * (n / p) + j , d k) ,

i] = (0,O)

maxima on the T E M P array using the
BDPRECOMP (refer Theorem A.2 of Ap-

the routine return the array TEMPr.
PR,+;, 0 5 i 5 2t - 1 do in

)mpute the T F array.*/

0 Let RPL[j,i]
find out
BSR. If
longs to
It is easy
tuple f;.

/* In a similar
entry of the tuple
also calculate fcr
BSL, the

and 4 take O (n / p) computation
and A.2 imply the following the-

= (u,w). From entry w we can
whether the element belongs to B S L or

the element RPLlj,i](= (y 6 , d ;)) be-
6 S R then, let TEMP’[j,i] = (u ’ ,~ ’) .

LO see that w’ is the first entry of the

fashion we can calculate the second
fi for the elements in BSR. We can
all elements RPLL, i] belonging to

correqponding f-tuple in a similar fashion.

Theorem 2 takes
) computation time and P

model

4.1 Sequential Algorithm for the GPC

In this section we will briefly describe the algorithm
for the GPG, presented in [6]. It is a Divide and Con-
quer recursive algorithm. It takes as an input two
sequences SF = (sf(l), s f (2) , ..., s f (k)) and SY =
(sy(l) , sy(2), ..., sy(lc)) and returns as an output, four
sequences OSY, SDI SP, SE. Note that, S F corre-
sponds to the f sequence and SY corresponds to the
y sequence of Definition 2. Before defining these ar-
rays we introduce the following notion.

Definition 5 Given the input sequences S F and S Y ,
two indices i and j , i is to the left of j if and only if
i < j . i is below j if and only i f s y (i) p s y (j) .

In this section * and p have the same meanings as
in Definition 2. OSY is the sorted list of the elements
in S Y . S D (i) is the general prefix product of all the
elements in SF, whose indices are to the left of i and
below i, 1 5 i 5 k. In other words, SD(i) = s f (j 1) *
s f (j 2) *.- .sf(j t) , 15 i 5 k where, { j l , j 2 , - . . , j t } is
the set of all indices j such that j < i and sy(j) p sy(i)
and j , < 1 5 T < t . Similarly, SP(i) = s f (jl) *
s f (j 2) * - . . s f (j t) , 15 i 5 k where, { j 1 , j 2 , * . . , j , } is
the set of all indices j such that s y (j) p sy(i) (indices
below i) and SE(i) = s f (j 1 * s f (j2) * - - . s f (j t) , 1 5
i 5 k where, { j 1 7 j 2 , . . . , j , I is the set of all indices
j such that (s y (j) p sy(i)) or (sy(j) = sy(i) and
j , < j,+l , 1 5 T < t (indices below or equal to i 1 . We
define the following function:
Function SEQGPC(SF, SY, k) : (OSY, SP, SDI S E)
The function takes as input two arrays SF and SY of
length k and outputs four arrays, OSY, SP, SD and
SE, each of length k .

At every stage of the recursion, each of the input se-
quences (refer to Definition 2) S F = (s f (l), s f (2), ...,

s f (k)) and SY = (s y (l) , sy(2), ..., sy(k)) are divided
into two halves. Let LSF = (sf(l) , sf(2), ..., sf($))
and RSF = (sf($ + l), . . . ,sf(k)). Similarly, let
LSY = (s y (l) , sy(2), ..., sy($)) and RSY = (sy($ +
l), ..., sy(k)). The two subproblems, namely, the left
subproblem with input sequences LSF and L S Y , and
the right subproblem with input sequences RSF and
RSY are solved recursively using function SEQGPC.
The solution for the left subproblem are four arrays
each of length $, denoted by LOSY, LSD, LSP, LSE
in order. Similarly, the solution for the right sub-
problem are four arrays each of length $, denoted by
ROSY, RSD, RSP, RSE in order.

The next step is to merge these two solutions to
form the four arrays OSY, S D , SP, SE for the prob-
lem with input sequences S F and S Y . Clearly OSY
can be obtained by merging the two sorted lists LOSY
and ROSY. For every element sy(i) in LSY, i.e.,
1 5 i 5 $, we find the indices LPOS(i) and RPOS(i)
of those two elements in RSY, such that s y (i) is in
between sy(LPOS(i)) and sy (RPOS(i)) in OSY and
no other element of RSY is in between sy(LPOS(i))
and sy(RPOS(i)) in OSY. Similarly, for every ele-
ment sy(i) in R S Y , i.e., $ + 1 5 i 5 k , we find the

problem

47

indices LPOS(i) and RPOS(i) of those two elements
in LSY, such that sy(i) is in between sy(LPOS(i))
and sy(RPOS(i)) in OSY and no other element of
LSY is in between sy(LPOS(i)) and sy(RPOS(i) in
OSY. It is straightforward to see that, LPOS(i I =
rank of sy(i) in OSY - rank of sy(i) in LOSY, for
sy(i) E LSY, i.e., 1 5 i 5 4. Similarly, L P O S (~)
= rank of sy(i) in OSY - rank of sy(i) in ROSY,
for s y (i) E RSY, i.e., $ + 1 5 i 5 k . RPOS(i) =
LPOS(i) + 1, 1 5 i 5 k. Now we present the follow-
ing lemma.

Lemma 1 (Merge Lemma [SI)
1. If 1 _< i 5 5, then,
a. SD(i) = LSD(i)
b. SP(0 = LSP(i) * RSP(LPOS(i)) ,

c. SP(i) = LSP(i) * RSE(LPOS(Z)),

d. SE(i) = LSE(() * RSE(LPOS(i)) ,

e. SE(i) = LSE(I) * RSP(RPOS(i)) ,

f. SE(i) = LSE(() * RSE(RPOS(i)) ,

2. If $ + 1 5 i 5 k , then,
a. SD(i) = LSP(LPOS(i)) * RSD(i),

b. SD(i) = LSE(LPOS(i)) * RSD(i),

c. SP(i) = LSP(LPOS(i)) * RSP(i),

d. SP(i) = LSE(LPOS(i)) * RSP(i) ,

e. SE(i) = LSE(LPOS(i)) * RSE(i) ,

f. SE(i) = LSP(RPOS(i)) * RSE(i),

g. SE(i) = LSE(RPOS(i)) * RSE(i) ,

if sy(LPOS(i)) = sy(i)

if sy(LPOS(i)) p sy(i)

if sy(LPOS(i)) = sy(i)

if (sy(LPOS(i)) p sy(i)) A (sy(i) p sy(RPOS(i)))

if (sy(LPOS(i)) p sy(i)) A (s y (i) = sy(RPOS(i)))

if sy(LPOS(i)) = sy(i)

if sy(LPOS(i)) p sy(i)

if sy(LPOS(i)) = sy(i)

if sy(LPOS(i)) p sy(i)

if sy(LPOS(i)) = sy(i)

if (sy(LPOs(i)) p sy(i)) A (s y (i) p sy(RPOS(i)))

if (sy(LPOS(i)) p sy(i)) A (sy(i) = sy(RPOS(i)))

Proof: We will prove Case 2a. For a given index i
suchthat :+1 l i l k , l e t {jl,jz,...,jt}isthesetof
all indices j such that 1 I j 5 !j and sy(j) p sy(i) and
jr < &-+I., 1 5 T < t. If sy(LPOS(i)) = sy(i) , then,
it IS straightforward to see that LSP(LPOS(i)) =
f (j l) * f (j 2) * ... * f (j t) . This and definition of
RSD(i) imply SD(i) = LSP(LPOS(i)) * RSD(i), if
sy(LPOS(i)) = sy(i). The proof for the other cases
is similar. 0
From the above discussion and Lemma 1 we see that
the merge step can be implemented in O (k) time.
Hence the whole algorithm takes O(k log k) time.

4.2 The Main Algorithm
Let us assume the two input sequences F = (f(1 ,

be IED stored on the arrays SF and SY respec-
tively in the processors PRi, PRi+l, ..., PRi+t-l. We
also assume that the sequences O S Y , SP, SD, SE ,
LPOS, RPOS (as defined earlier are IED stored
on the arrays SOSY, SSP, SSD $SE, SLPOS,
SRPOS respectively. The following recursive function
solves the GPC problem for above input sequences S F
and SY .
Function BZockGPC(SF, SY, i, t) : (DATA)
Input: Two input sequences F = (sf(l), ..., sf(trf1)
and Y = (sy(l) , ..., sy(t[:I), each I E D stored on the
arrays SF and SY respectively (i.e., stored in the pro-
cessors PRi, PRi+l, ..., PRi+(t-l)).
Output: SOSY is the sorted list of the elements in
SY. Suppose SOSYb, k] = SY[Z, q] , then, DATAL, IC]
stores the ordered list < SY[Z, q] , DAT[Z, q] >, where
DAT[l, ql =< q, 2 , SSF[l, 41, SSD[l, ~ 1 , SSP[Z, 41, S S V , q1 >.
DATA is I E D stored in the processors

f(2L **., f(t(n/p))) and y = (Y(l) , Y(2>, " ' i y(t(n I P))))

PR,, PR,+l, " ' 7 PRi+(t-1).
Begin /* W.1.g we assume t is a power of two */
1. If (t = 1) then /* There is only one block */

Processor PRi will do /* Solved sequentially */
(SOSY, SSP, SSD, SSE) = SEQGPC(SF, SY, Maxi) .
For j = 1 to Maxi do

If SOSY[j , i] = SY[k , i] then
DATA[j,i] =< SY[k, i] , < i,lC,SSF[lc,i],SSD[k,i],

SSP[k, i], SSE[k, i] >>
ret urn(DATA) ; exit.

2. Do Steps 2.1 and 2.2 in parallel /* t > 1 */
/* recursively solving left and right halves */
2.1 (LDATA) = BlockGPC(SF, SY, i!

3. (BPL, T F) = RANKP(LDATA, RDATA, i, t)
/* From the definition of function RANKP we see that
BPLL, i] is a two tuple and the sequence consisting of
the first entries of all the tuples is the sorted list SOSY. */
4. If SOSYL, IC] = SY[Z, q] , then BPLL, IC] =< SY[Z, q] , dat >

From the function RANKP and definitions of LDATA
and RDATA we see that T F L , k] contains the necessary
data as suggested in Lemma 1 for calculating SSF[Z, 4.1,
SSD[1, q] , SSP[l, q] , SSE[Z, q] . Hence we compute

2.2 (RDATA) = BZockGPC(SF, SY,Z + 5,s)

DATA[.& kl =< SYP, 41, < q, 1, SSF[I, 41, S S W , 41,
S W E , 41, SSE[1, 41 >.

5. return(DATA)
End.

Let Tcomp(t) be the computation time taken by
BlockGPC(SF, SY, i, t) . From Theorem 3 Tcomp(l) =
O(Elog(:)) (Step 1 of the function). Step 4 takes
O(:) computation time. From Theorem 2 we see that,

48

munication time taken by
, t) . Tcomm(l) = 0. We

= T o m m (i) + O((T + can easily see th

Theorem 4 Fu

Function BDSh

Y = (Y O) , ...,y(n), f
Input: Two input

For 1 5 j 5 cMaz

Theorem 5 Funct

communication ti

Di, 1 5 i 5 n. Clea
of elements j such 1
set y(i) = x(n - i
(summation) and v
D:, 1 5 i 5 n. (

efix Di gives the number
5 x(i) and j < i. Again

l , p = < a n d * = +
the G P C to compute

NOW Di + I3k-i +
sorted list. We now
route the xi's such

49

Figure 2: Mapping of Dominance and Searching Prob-
lems onto GPC.

5.2 Computational Geometry
Given a set S = { p l , p z , . . . ,p , } of n points in D-
dimensional space. A point pi D-dominates a point
pj if and only if p i [k] > p j [k] , for all 1 5 k 5 D,
where p [k] denotes the kth coordinate of a point p.
The 2-dimensional ECDF searching problem con-
sists of computing for each p in a 2-dimensional point
set S, the number of points of S 2-dominated by p.
The D-dimensional maximal elements problem is
to determine the points in a given D-dimensional point
set S , which are D-dominated by no other point. For
each of the problems we sort the points in S by first co-
ordinate and denote the lists sorted in ascending and
descending order by a l , a2, ..., a, and bl, bz , ..., b, re-
spectively. Figure 2 shows the transformation for the
above mentioned problems [6 .

problem in two dimensions is the problem of counting
for each point p from B the number of points from
A that p 2-dominates. Let I A I = n and I B /= m'.
Let a1,a2, ..., a,!+, be the list of the m' + n points
belonging to the set A U B, sorted in ascending order
of their first coordinate. If ai E A, then, f(i) = 1 else
f(i) = 0. y(i) = ai[2], p = < and * = +. The result
is Di, i.e., point ai E B 2-dominates Di number of
points in A [GI. Hence the following theorem.

Theorem 6 Sorting problem, ECDF Searching prob-
lem, 2 0 and 30 maximal elements problem and 2-
set Dominance Counting problem can be solved in
O(a(log(a) + log'p)) expected computation time and
O((T + o m r S 1) log2 p) expected communication time
on up-processor D S M system using the BDM model.

5.3 Graph Theory
Permutation Graphs: Given a permutation T of the
integer set V = { 1,2,3, ..., n}, T defines a graph G, =
(V,E),where(i,j) EEifandonly i f (i-j)*(~-'(i)-
~ - ' (j)) < 0, where ~ - ' (k) denotes the position of k
in T. A graph G is a permutation graph if and only
if it is isomorphic to some G, . We assume that the
permutation T is IED stored in the array P and the
inverse permutation T - ~ is IED stored in the array
PI. Given P it is straightforward to compute PI on a
DSM system using the function RandomRoute. The
arrays LSV, MSV, C N U M , W and V defined in [l]
can be computed using the function BDPRECOMP.
This, Theorem A.2 and the algorithms CONCOMP,
Cutvertices, Bridges presented in [l] imply a part of
Theorem 7.
Binary Tree Reconstruction: We assume that the
preorder traversal pre and inorder traversal in are

Given two point sets A an d B, the 2-set dominance

I E D stored in the array PRE and I N respectively.
It is strai htforward to implement the algorithm pre-
sented in 751 using the functions B D P R E C O M P and
RandomRoute to reconstruct the binary tree repre-
sented by these traversals. Hence the following Theo-
rem.

Theorem 7 The problems of finding Connected
Components, Cut Vertices and Bridges of a given
Permutation graph of n vertices and the prob-
lem of reconstructing a binary tree from its In-
order pnd Preorder traversals can be solved in

cation t ime and O (2 + g m , ~ ~ ~ ~ ~ + l)) expected com-
putation tame on a p-processor D S M system using the
B D M model.

og P +1) 1 +T + am + O(3) expected communi-
4.r [log,(&

6 Conclusion
In this paper we have presented an efficient algorithm
for GPC on D S M systems using the B D M model
with applications. Since sorting is transformed into
an instance of GPC, GPC has a lower bound of
R (n l o g n) at least for some specific choice of opera-
tors *. As seen before, if n > p l o g p , our algorithm for
GPC takes O (F) computation time. Hence, we
have achieved optimal speed up in computation for
the sorting problem for such realistically larger val-
ues of n. Further, our method is conceptually sim-
pler than the algorithms presented in [3] for sorting.
From the analytical expressions for the time taken by
B D P R E C O M P and BlockMerge, we see that the
time taken will increase with the number of proces-
sors (p) for smaller size of the inputs. From Corollary
1 we see that the computation time of BlockMerge is
O (n log, p / p) and hence we cannot expect any scala-
bility from p = 2 to p = 4. It is interesting to note
that the timing measurements agree with the theoret-
ical predictions and the graphical plots illustrates the
scalability (refer Figure 3). It is worth noting that
the merge function is recursive and it executes on a
DMS which might serve as a pointer for incorporating
parallel recursion in automatic parallelising compilers.

Appendix A

Function RANDOMROUTE(A) : (A’, c)
Input: A[l : [$ I , 0 : p - 13 is the input array I E D
stored on ap-processor B D M machine, such that each
element of A consists of a packet (a , datai) of constant
size, where i is the index of the processor to which
datai has to be routed. cy is a constant such that no
processor is the destination of more than cy[F1 ele-
ments on the whole.
Output: A’[1 : c[;],O : p - I] is the output ar-
ray holding the routed data, I E D stored on a p
processor B D M machine, such that all the data with
the processor PRi, 0 5 i 5 p - 1, as the destina-
tion will be available in one of the locations A’[j,i],
1 5 j 5 c[pl in the processor PRi, where c is larger

than max{l+‘,a+$}. d- The function stores a copy Jz
of c in every processor PRi, 0 5 i 5 p - 1.

The function is implemented using the Random-
izedltouting algorithm suggested in [3] .

Theorem A. l Function RANDOMROUTE(A)
completes within 2(r + crF1) communication time and
O(c[:l) computation time with high probability, where
c is larger than ma${ 1 + 5, a + 9 }, p2 < & 0

Function BDPRECOMP(A, T , 0) : (A’).
Input: Given a sequence of ordered pairs < a l ,
datal >, < a2,dataz >,”’,< at(n/p) ,datat(n/p) >,
I E D stored on the array A, on t processors of a B D M
machine, datai is the data (if any) associated with ai ,
1 5 i 5 t (n / p) . v is a binary associative operator E
{ + , M i n , M a x , ...}.
Output: A sequence of ordered pairs < a i , data: >, <
a i , data; >, . . . , < ai(n,p), data:(,,p) >, I E D stored
on the array A’, on a pprocessor B D M machine,
where, a: = v i = l a k and data: is the data associated
with a!, (if any).
From Theorem 9 of [4] we infer the following theorem.

Theorem A.2 ([4]) Given a sequence (a l , a2, ...,
a t (n /p)) of numbers I E D stored on t processors of a
B D M machine, we can compute the prefix sums psi =
~ j = ~ a j , 1 5 i 5 r , in 4i-r-jl am
communication time and O (2 + am,og,(~+l)) com-
putation time. This complexity holds for prefix max-
ima, prefix minima and similar associative operators.

Tlog t
b m

References
[I] K. Arvind, V. Kamakoti, and C. Pandurangan. Ef-

ficient parallel algorithms for permutation graphs.
Journal of Parallel and Distributed Computing,

[2] K. E. Batcher. Sorting networks and their appli-
cations. In Proceedings AFIPS 32nd Spring Joint
Computer Conference, pages 307-314, 1968.

[3] F. J. Jaja and K. W. Ryu. The block distributed
memory model. IEEE Transactions on Parallel
and Distributed Systems, 7(8):830-840, 1996.

[4] V. Kamakoti and N. Balakrishnan. Efficient ran-
domized algorithm for the closest pair problem
on distributed shared memory systems. Report,
SERC, IISc, Bangalore - 560 012, India, 1996.

[5] V. Kamakoti and C. Pandurangan. An optimal
algorithm for reconstructing a binary tree. Infor-
mation Processing Letters, 42(2):113-115, 1992.

[6] F. Springsteel and I. Stojmenovic. Parallel gen-
eral prefix computations with geometric, algebraic
and other applications. Report, University of Ot-
tawa, Computer Science, Ottawa, Ontario K1N
9B4, Canada.

26:116-124, 1995.

50

0 5 10 15 20
No 01 Pmessors

$15

OO 5 10 15 20
Noof Prrxessors

51 0.121

5 10 15
No 01 Pmessors

t k262144
+ k524288 ii& 0 k1048576 ~

E

2 4 6 8 10 12 14 16

p 0.

No 01 Prmssors

X kM97152
t k41943!M

E l !! 2 4 6 8 10 12 14 16

Nod Processors

8-

3 -

6 8 10 12 14 16
No01 Pmcessnrs

(a). Prefix Sum on IBM SP2

0 5 10 15
No Dl Pmcessors

0-
0 5 10 15 20

No of Pmcesas

“0 5 10 15 20
NO 01 Pmceson

10

5 10 15 20
No 01 Plmn

Figure 3: (b). Block Merging on IBM SP2

51

