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Abstract 
The paper presents eficient scalable algorithms 

for  performing Prefix (PC) and General Prefix 
(GPC) Computations on  a Distributed Shared Mem- 
ory ( D S M )  system with applications. 

1 Introduction 
Prefix (PC) and General Prefix (GPC) Computations 
are generic techniques that can be used to  design se- 
quential and parallel algorithms for a number of prob- 
lems from diverse areas [l, 5, 61. In [6 an O(1ogn) 
time, O(n) processor, CREW PRAM t shared mem- 
ory) parallel algorithm for the GPC is presented. This 
algorithm implies an O(n log n) time sequential algo- 
rithm. 

Based on memory organization, parallel computing 
systems fall into two categories: Shared Memory sys- 
tems and Distributed Memory systems. Shared Mem- 
ory systems are relatively easy to  program (due to a 
single address space) but less scalable than distributed 
memory systems. A software abstraction in which a 
distributed memory system can be viewed as a system 
with a single address space results in a system that 
is both scalable and easy to  program. Such systems 
are called Scalable Shared Memory Systems or Dis- 
tributed Shared Memory Systems. The B D M  model 
of computing, from a users perspective, offers the ad- 
vantage of ease of programming of shared memory sys- 
tems while from a systems perspective, provides the 
advantage of scalability akin to  message passing sys- 
tems. 

PC and GPC are generic techniques for algorithm 
design. Therefore, a solution for them implies a solu- 
tion for a variety of problems in diverse areas that in- 
clude Computational Geometry, Graph Theory, Sort- 
ing etc. Some of the routines are recursive and were 
successfully implemented on the SP2 which is a Dis- 
tributed Memory Machine. This gives some point- 
ers for automatically parallelizing recursive programs. 
The paper also discusses the suitability of the B D M  
model [3] for the IBM's SP2. This implies that the 
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Figure 1: Example for Prefix Maxima and General 
Prefix Maxima 

model can serve as a tool for the programmer to  de- 
sign and analyse the algorithm, by deriving analytical 
expressions for the time/space complexity before actu- 
ally implementing the same. In this regard, our paper 
can also serve as a case study for the users. We now 
formally define PC and GPC with an example shown 
in Figure 1. 

Definition 1 (Prefix Computation (PC) )  
Let ( f  (l), f (a), . . . , f ( n ) )  be a given sequence of ele- 
ments. The problem is to  compute the sequence of 
prefixes C, = f(1) * f (2)  * ... * f (m) ,  1 5 m 5 n, 
where, * is an arbitrary binary associative operator 
defined on  the f -elements. 

Definition 2 (GPC [6 ) Let (f(l), f(2), e , f(n)) 
and ( y ( l ) ,  y ( 2 ) ,  . . . , y n) be two given sequences of el- 
ements. Let Y = {y i 1  l), ..., y ( m ) } .  Let p be a binary 
relation such that for yi, yj E Y ,  i f j, either (yi p yj) 
or (yj  p yi). The problem is to compute the sequence of 
general prefixes Dm = f(j1) * f ( j 2 )  * - . * f ( j k ) ,  1 5 
m 5 n, where, * is an  arbitrary binary associative op- 
erator defined on the f -elements and j i  's are indices 
such that 

(a). ji < ji+l, 1 5 i < k; 
(b). ji < m, 1 5 i 5 k; and, 
( 4 .  Y ( j i>  P y(m),  1s i 5 lk. 

It is easy to  see that PC is a special instance of GPC. 
An efficient algorithm for PG is reported in [4]. 
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1.1 Prelimina 
The BDM model defined in terms of four pa- 

ors, maximum initial 
cessor to receive the 
her processor, time (T 

eive a word f rom the 
tive words sent dur- 

3. If T is any per on on p elements, then, a re- 
t for b words issued by every 
estined for processor PR,(;) 

remote access I ued by IC distinct pro- 
same processor will re- 
completed, and the re- 

B[j , i ]  = f(i  * (nlt)  + j ) ,  f o r  0 5 i < t - 1, 1 < 
j 5 n/t 
(B[l, i], B[2, i], ..., B[Y, i ] )  are stored in processor 
PRj; in this order, 0 < i < t - 1. 

Before presenting the algorithm we define some func- 
tions that are used by the algorithm. 

1. RANDOMROUTE: A randomized function 
which routes the data stored in each of the pro- 
cessors to their respective destinations. The input 
to this function is a x p array A of n elements 
initially stored one column per processor in a p 
processor BDM machine. Each element of A con- 
sists of a pair (data, i ) ,  where i is the index of the 
processor to which the data has to be relocated. 
For details refer Theorem A.1 in Appendix A. 1 

2. BDPRECOMP: Performs prefix computation 
on a sequence I E D  stored on a pprocessor B D M  
machine. For details refer Theorem A.2 in Ap- 
pendix A.  

2 Merging Sorted Lists on a BDM ma- 
chine 

We will first present an overview of the function which 
merges two given sorted lists on a BDM machine and 
then, present its implementation. The function is a 
modification of Batcher's odd-even merge [2]. With- 
out loss of generality we assume p = ", for some in- 
teger b > 0. The two given sorted lists L1 and L2 
of elements each are such that L1 is I E D  stored 
in order in the processors (PRO, PR1, ..., PR5-1) 
and L2 is I E D  stored in order in the processors 
(PRg, PRg+1, ..., PRp-l), elements per proces- 
sor. We call the data stored within a single processor 
as a block. As in odd-even merge we do the following 
steps 1 and 2 in parallel: 

1. Recursively merge the blocks stored in processors 
occupying even numbered positions/subscripts. 
In other words, the sorted sublist of L1 stored 
in (PRO, PR2, ..., P R s - ~ )  and the sorted sub- 
list of LZ stored in (PRg , PRg+2, ..., PRp-2) 
are merged and the merged list is stored in 
(PRO,PR2, ..., PR~-2,PRg7PR5+2 ,... ,PRp-2). 

2. Recursively merge the blocks stored in processors 
occupying odd numbered positions/subscripts. In 
other words, the sorted sublist of L1 stored 
in (PR1, PR3, ..., PR$-,) and the sorted sub- 
list of L2 stored in (PR:+], PR%+3, ..., PRp--l) 
are merged and the merged list is stored in 
(PRl,PR3, ..., PRg-1,PRg+llPRg+3, ..., PRp-1). 

3. For all k ,  0 5 k 5 p - 1, do in parallel 
if IC is odd and IC # p - 1, then, merge the block 
stored in PRk with the block stored in P&+]. 

45 



4. The final sorted list is stored in order in 
(PRO, P R I ,  ..., PRP-i). 

The procedure is similar to the odd-even merge [2] 
except that we treat every element of the latter as 
a block of sorted elements. The following function 
BlockMerge  gives the recursive DSM implementa- 
tion of the above method. 

Function BlockMerge(BL1, BL2,i, t ,  a )  : (BL)  
Input: Two sorted lists L1 and L2 each of length 
t ( n / p )  elements such that L1 is IED stored on an ar- 
ray BL1 in the processors PRi, PRi+a, ..., PRi+(t-lla 
and L2 is IED stored on an array BL2 in the proces- 

Output: The sorted list L = Merge(Ll ,Lz) ,  of 
length 2 t ( n / p )  IED stored on an array BL in the 
processors PRi, PRi+,, ..., PRi+(2t-1)a 

sors PRi+ta, PRi+(t+l)a, ‘ “ 7  PRi+(zt-l)a. 

Begin /* W.1.g we assume that t is a power of two */ 
1. If ( t  = 1) t h e n  /* only two blocks to be merged * /  

PRi and PRi+, hold the sorted lists BL1 and BL2 
of 
BL2 stored in PRi+, and sequentially merges it with 
BLI and stores one half of the merged list in itself, 
in the array BL(j ,  i ) ,  1 5 j 5 n / p  and the other half 
in PRi+, in the array BL(j ,  i + a ) ,  1 5 j 5 n / p .  
return(BL); exit 

Do Steps 2 and 3 in Parallel /* t > 1 */ 
2. BL = BlockMerge(BL1, BL2, i, 2,2a) 
/* In step 2 the part of the lists BL1 and BL2 stored in 

processors, PR;+ka, for even k 2 0 in the sequence 
(PRi,  PRi+,, . . . , PRi+(zt-l)a) are merged */ 

elements each respectively. PR, reads the list 

3. B L  = BlockMerge(BL1, BL2, i + a ,  f ,  2a) 
/* In step 3 the part of the lists BL1 and BL2 stored in 

processors, P&+ka, for odd k 2 1 in the sequence 
(PR;,  PRi+,, . ’ .  , PRi+(2t-l)a) are merged */ 

4. For all Processors PR,+k,, such that 1 5 k 5 t - 3 
and k is an odd number do in parallel 

P&+ka reads the sorted list BL(j ,  i + ( k  + l)a), 
1 5 j 5 n / p  from PRi+(k+l), and merges sequentially 
the same with the list BL(j ,  i + ku) ,  1 5 j 5 n / p  
stored in it. Then, it stores one half of the merged list 
in itself, in the array BL(j ,  i + ku) ,  1 5 j 5 n / p  and 
the other half in PR;+(k+l), in the array 
BL( j ,  i + ( k  + l)a), 1 5 j I n l p .  

/* In step 4 all the processors, PRi+ka, for odd k 2 1, in 
the sequence (PRi,  Pa+, , . . .  , PR,+p-l),) except 
the last processor P&+(2t-lfa, merges the BL array 
stored in it with the B L  array of the immediately 
succeeding processor PR;+(k+l),. */ 

5. return(BL) 
End. 

From the assumptions of the BDM model we see that 
step 4 of the above function takes r+am[+l commu- 
nication time. Step 4 takes O( f )  computation time. 
Hence for the whole procedure, 

z o m m ( t )  = zonm(;) + T + amr$i, 

L w L p ( t )  = ~ c o m , ( $ )  + o(r;l), 
Tcomm(l) = T + am[$] (from Step 1). 

Tcomp(l)  = O(r$]) (from Step 1). 

Theorem 1 Function BlockMerge(BL1, BL2, i, t ,  a )  
takes O( n’0g2 ) computation time and 
O((T  + am[$])  log, t )  communication time. 

Corollary 1 Two lists each of size n can be 
merged using p processors on a distributed mem-  
ory system in O(”‘”,pp) computation time and 
O((T + amr”1) 10g2p) communication time. 

3 The Ranking Problem 
We will now define a subroutine RANKP to  solve 
the ranking problem. RANKP will be used by 
the main algorithm. First we define the fol- 
lowing notations. Let L = (11, Ea, ..., l t ( n / p ) )  

be two sequences IED stored on the arrays 
BL and BLD respectively in the processors 
PR,, PRc+l, ..., PRc+(t-l), ( ( n / p )  elements per pro- 
cessor). Similarly, let R = (~1,r2,  ..., rt(n,p)) 

be two sequences IED stored on the arrays 
B R  and BRD respectively in the processors 
PRc+t, PRc+t+l, ..., PRc+(2t-l). From Definition 3 
we see that, BLD[j,il = (Yi*(n/p)+j,di*(n/p)+j), 1 I 
j 5 n/p,  0 5 i 5 t - 1, and is stored in the pro- 
cessor PR,+i. Let di,(n/p)+j = (j, c + i, dut), where 
dat denotes some data of constant size. Similarly 

0 5 i 5 t - 1, and is stored in the processor 
PRc+t+i. Let d:*(n/p)+j = ( j , ~  + t + i , d u t ) ,  where 
dat denotes some data of constant size. Let SL be 
the sorted sequence of LD, sorted on the y values. 
S L  is IED stored on the arrays BSL in the pro- 
cessors PR,,PR,+l ,..., PRc+(t-l). Let S R  be the 
sorted sequence of RD, sorted on the y‘ values. S R  
is IED stored on the arrays BSR in the processors 
PRc+t, PRc+t+l, ‘ “ 3  P%+(2t-1) + 

Definition 4 (Ranking Problem) The problem is 
to  merge the two sorted lists SL and S R  (on the y 
and y’ values) into a single sorted list PL and do the 
following: 

I .  for every element PL( j ) ,  1 5 j 5 2 t ( n / p ) ,  if 
PL(j)(= (yi,di)) E LD, then find the two con- 
secutive elements ( y i ,  d[i) and ( y i ,  d;) in S R  such 
that y i  lies inbetween yg and y i .  Let f i  = ( d i ,  d ; ) ;  
and, 

2. for every element PL( j ) ,  1 5 j 5 2 t ( n / p ) ,  if 
PL(j)(= (yi, d:)) E RD, then find the two con- 
secutive elements (yj, d j )  and (Yk, d k )  in SL such 
that yi lies inbetween y j  and yk. Let fi = ( d j , d k ) .  

P 

p m  

and LD = ( ( Y l , 4 ) ,  ( Y 2 , d 2 ) , - ,  ( Y t ( n / p ) r d t ( n / p ) ) )  

and RD = ( ( Y i ,  41, ( Y ; ,  db), ” ‘ 7  ( Y ; ( n / p ) ,  d ; (n /p) )> 

BRDlj,iI = (Y~*(n/p)+j,d~*(n,p)+~), 1 5 j I nip, 
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Let F = ( f l ,  

on the arrays TE 

Function RANKP(BsL, 
Begin 

PRc, PRc+1, 

1. RPL = 
the y and y’ 

2. For each processor 
parallel 
For 1 5 j 5 n/l; 

f2r . . . rEfZt (n ,p) )  and P L  be I E D  stored 
and RPL in the processors 

PR,:+(2t-1). 

B S R ,  c, t )  : (RPL,  T F )  

BZockMerge(BSL, BLR, c,  t ,  1) (merging on 

PR,+;, 0 5 i 5 2t - 1 do in 

values). 

0 Let RPLb,i] 
find out 
or BSR. 

0 If the element 
B S L  then, 
else TEM,?[j, 

3. Do a prefix 
function 
pendix A).  Let 

4. For each processor 
parallel 
For 1 5 j 5 n/p 

Hence we can c 

End. 
Note that steps 2 
time. Theorems 1 
orem. 

= (u,w). From entry w we can 
wiether the element belongs to B S L  

RPL[j,i](= ( Y k , d k ) )  belongs to 
set TEMPL,  i] = (i * ( n / p )  + j ,  d k ) ,  

i] = (0,O) 

maxima on the T E M P  array using the 
BDPRECOMP (refer Theorem A.2 of Ap- 

the routine return the array TEMPr.  
PR,+;, 0 5 i 5 2t - 1 do in 

)mpute the T F  array.*/ 

0 Let RPL[j,i] 
find out 
BSR. If 
longs to 
It is easy 
tuple f;. 

/* In a similar 
entry of the tuple 
also calculate fcr 
BSL,  the 

and 4 take O ( n / p )  computation 
and A.2 imply the following the- 

= (u,w). From entry w we can 
whether the element belongs to B S L  or 

the element RPLlj,i](= ( y 6 , d ; ) )  be- 
6 S R  then, let TEMP’[j,i] = (u ’ ,~ ’ ) .  

LO see that w’ is the first entry of the 

fashion we can calculate the second 
fi for the elements in BSR. We can 
all elements RPLL, i] belonging to 

correqponding f-tuple in a similar fashion. 

Theorem 2 takes 
) computation time and P 

model 

4.1 Sequential Algorithm for the GPC 

In this section we will briefly describe the algorithm 
for the GPG, presented in [6]. It is a Divide and Con- 
quer recursive algorithm. It takes as an input two 
sequences SF = (sf(l), s f ( 2 ) ,  ..., s f ( k ) )  and SY = 
( sy( l ) ,  sy(2), ..., sy(lc)) and returns as an output, four 
sequences OSY, SDI SP, SE.  Note that, S F  corre- 
sponds to  the f sequence and SY corresponds to  the 
y sequence of Definition 2. Before defining these ar- 
rays we introduce the following notion. 

Definition 5 Given the input sequences S F  and S Y ,  
two indices i and j ,  i is to the left of j if and only if 
i < j .  i is below j if and only i f s y ( i )  p s y ( j ) .  

In this section * and p have the same meanings as 
in Definition 2. OSY is the sorted list of the elements 
in S Y .  S D ( i )  is the general prefix product of all the 
elements in SF,  whose indices are to  the left of i and 
below i, 1 5 i 5 k. In other words, SD(i)  = s f ( j 1 )  * 
s f ( j 2 )  *.- .sf( j t ) ,  15  i 5 k where, { j l , j 2 , - . . , j t }  is 
the set of all indices j such that j < i and sy(j) p sy(i) 
and j ,  < 1 5 T < t .  Similarly, SP( i )  = s f (jl) * 
s f ( j 2 ) * - . . s f ( j t ) ,  15  i 5 k where, { j 1 , j 2 , * . . , j , }  is 
the set of all indices j such that s y ( j )  p sy( i )  (indices 
below i) and SE(i)  = s f ( j 1  * s f ( j2)  * - - . s f ( j t ) ,  1 5 
i 5 k where, { j 1 7 j 2 , .  . . , j ,  I is the set of all indices 
j such that ( s y ( j )  p sy(i)) or ( sy( j )  = sy(i)  and 
j ,  < j,+l , 1 5 T < t (indices below or equal to  i 1 . We 
define the following function: 
Function SEQGPC(SF, SY, k) : (OSY, SP, SDI S E )  
The function takes as input two arrays SF and SY of 
length k and outputs four arrays, OSY, SP, SD and 
SE,  each of length k .  

At every stage of the recursion, each of the input se- 
quences (refer to  Definition 2) S F  = (s f (l), s f (2), ..., 

s f ( k ) )  and SY = ( s y ( l ) ,  sy(2), ..., sy(k)) are divided 
into two halves. Let LSF = (sf(l) ,  sf(2), ..., sf($)) 
and RSF = (sf($ + l), . . . ,sf(k)). Similarly, let 
LSY = ( s y ( l ) ,  sy(2), ..., sy($)) and RSY = (sy($ + 
l), ..., sy(k)). The two subproblems, namely, the left 
subproblem with input sequences LSF and L S Y ,  and 
the right subproblem with input sequences RSF and 
RSY are solved recursively using function SEQGPC. 
The solution for the left subproblem are four arrays 
each of length $, denoted by LOSY, LSD, LSP, LSE 
in order. Similarly, the solution for the right sub- 
problem are four arrays each of length $, denoted by 
ROSY, RSD, RSP, RSE in order. 

The next step is to merge these two solutions to 
form the four arrays OSY, S D ,  SP, SE  for the prob- 
lem with input sequences S F  and S Y .  Clearly OSY 
can be obtained by merging the two sorted lists LOSY 
and ROSY. For every element sy(i)  in LSY,  i.e., 
1 5 i 5 $, we find the indices LPOS(i) and RPOS(i) 
of those two elements in RSY, such that s y ( i )  is in 
between sy(LPOS( i ) )  and sy (RPOS( i ) )  in OSY and 
no other element of RSY is in between sy(LPOS(i))  
and sy(RPOS(i))  in OSY. Similarly, for every ele- 
ment sy( i )  in R S Y ,  i.e., $ + 1 5 i 5 k ,  we find the 

problem 
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indices LPOS(i) and RPOS(i) of those two elements 
in LSY,  such that sy(i) is in between sy(LPOS(i))  
and sy(RPOS(i)) in OSY and no other element of 
LSY is in between sy(LPOS(i)) and sy(RPOS(i) in 
OSY. It is straightforward to  see that, LPOS(i I = 
rank of sy(i) in OSY - rank of sy(i)  in LOSY, for 
sy(i)  E LSY,  i.e., 1 5 i 5 4. Similarly, L P O S ( ~ )  
= rank of sy(i) in OSY - rank of sy(i)  in ROSY, 
for s y ( i )  E RSY,  i.e., $ + 1 5 i 5 k .  RPOS(i) = 
LPOS(i) + 1, 1 5 i 5 k. Now we present the follow- 
ing lemma. 

Lemma 1 (Merge Lemma [SI) 
1. If 1 _< i 5 5, then, 
a. SD(i) = LSD(i) 
b. SP(0  = LSP(i)  * RSP(LPOS(i)) ,  

c. SP(i)  = LSP(i)  * RSE(LPOS(Z)), 

d. SE(i)  = LSE(()  * RSE(LPOS(i)) ,  

e. SE(i)  = LSE(I) * RSP(RPOS(i)) ,  

f. SE(i)  = LSE(()  * RSE(RPOS(i)) ,  

2. If $ + 1 5 i 5 k ,  then, 
a. SD(i) = LSP(LPOS(i)) * RSD(i),  

b. SD(i )  = LSE(LPOS(i))  * RSD(i),  

c. SP(i) = LSP(LPOS(i)) * RSP(i),  

d. SP( i )  = LSE(LPOS(i)) * RSP(i) ,  

e. SE(i)  = LSE(LPOS(i)) * RSE(i) ,  

f. SE(i)  = LSP(RPOS(i))  * RSE(i),  

g. SE(i)  = LSE(RPOS(i))  * RSE(i) ,  

if sy(LPOS(i)) = sy(i) 

if sy(LPOS(i)) p sy(i) 

if sy(LPOS(i)) = sy(i) 

if (sy(LPOS(i)) p sy(i)) A (sy(i) p sy(RPOS(i))) 

if (sy(LPOS(i)) p sy(i)) A ( s y ( i )  = sy(RPOS(i))) 

if sy(LPOS(i)) = sy(i) 

if sy(LPOS(i)) p sy(i) 

if sy(LPOS(i)) = sy(i) 

if sy(LPOS(i)) p sy(i) 

if sy(LPOS(i)) = sy(i) 

if (sy(LPOs(i))  p sy(i)) A ( s y ( i )  p sy(RPOS(i))) 

if (sy(LPOS(i)) p sy(i)) A (sy(i) = sy(RPOS(i))) 

Proof: We will prove Case 2a. For a given index i 
suchthat :+1 l i l k , l e t  {jl,jz,...,jt}isthesetof 
all indices j such that 1 I j 5 !j and sy(j) p sy(i) and 
jr < &-+I., 1 5 T < t. If sy(LPOS(i)) = sy( i ) ,  then, 
it IS straightforward to see that LSP(LPOS(i)) = 
f ( j l )  * f ( j 2 )  * ... * f ( j t ) .  This and definition of 
RSD(i)  imply SD(i)  = LSP(LPOS(i))  * RSD(i),  if 
sy(LPOS(i)) = sy(i). The proof for the other cases 
is similar. 0 
From the above discussion and Lemma 1 we see that 
the merge step can be implemented in O ( k )  time. 
Hence the whole algorithm takes O(k log k) time. 

4.2 The Main Algorithm 
Let us assume the two input sequences F = (f(1 , 

be IED stored on the arrays SF and SY respec- 
tively in the processors PRi, PRi+l, ..., PRi+t-l. We 
also assume that the sequences O S Y ,  SP,  SD,  SE ,  
LPOS, RPOS (as defined earlier are IED stored 
on the arrays SOSY,  SSP,  SSD $SE, SLPOS, 
SRPOS respectively. The following recursive function 
solves the GPC problem for above input sequences S F  
and SY .  
Function BZockGPC(SF, SY, i, t )  : (DATA) 
Input: Two input sequences F = (sf(l), ..., sf(trf1) 
and Y = ( sy( l ) ,  ..., sy(t[:I), each I E D  stored on the 
arrays SF and SY respectively (i.e., stored in the pro- 
cessors PRi, PRi+l, ..., PRi+(t-l)). 
Output: SOSY is the sorted list of the elements in 
SY.  Suppose SOSYb,  k] = SY[Z, q ] ,  then, DATAL, IC]  
stores the ordered list < SY[Z, q] ,  DAT[Z, q] >, where 
DAT[l, ql =< q, 2 ,  SSF[l, 41, SSD[l, ~ 1 ,  SSP[Z, 41, S S V ,  q1 >. 
DATA is I E D  stored in the processors 

f(2L **., f(t(n/p))) and y = (Y( l ) ,  Y(2>, " ' i  y(t(n I P ) ) ) )  

PR,, PR,+l, " ' 7  PRi+(t-1). 
Begin /* W.1.g we assume t is a power of two */ 
1. If ( t  = 1) then /* There is only one block */ 

Processor PRi will do /* Solved sequentially */ 
(SOSY, SSP, SSD,  SSE)  = SEQGPC(SF, SY, Maxi ) .  
For j = 1 to Maxi do 

If SOSY[j ,  i] = SY[k ,  i] then 
DATA[j,i] =< SY[k, i] ,  < i,lC,SSF[lc,i],SSD[k,i], 

SSP[k, i], SSE[k,  i] >> 
ret urn( DATA) ; exit. 

2. Do Steps 2.1 and 2.2 in parallel /* t > 1 */ 
/* recursively solving left and right halves */ 
2.1 (LDATA) = BlockGPC(SF, SY, i! 

3. (BPL,  T F )  = RANKP(LDATA, RDATA, i, t )  
/* From the definition of function RANKP we see that 
BPLL, i] is a two tuple and the sequence consisting of 
the first entries of all the tuples is the sorted list SOSY.  */ 
4. If SOSYL, IC] = SY[Z, q] ,  then BPLL, IC] =< SY[Z, q] ,  dat > 

From the function RANKP and definitions of LDATA 
and RDATA we see that T F L ,  k] contains the necessary 
data as suggested in Lemma 1 for calculating SSF[Z, 4.1, 
SSD[1, q] ,  SSP[l, q] ,  SSE[Z, q] .  Hence we compute 

2.2 (RDATA) = BZockGPC(SF, SY,Z + 5,s)  

DATA[.& kl =< SYP, 41, < q, 1, SSF[I, 41, S S W ,  41, 
S W E ,  41, SSE[1, 41 >. 

5. return(DATA) 
End. 

Let Tcomp(t) be the computation time taken by 
BlockGPC(SF, SY, i, t ) .  From Theorem 3 Tcomp(l) = 
O(Elog(:)) (Step 1 of the function). Step 4 takes 
O(:) computation time. From Theorem 2 we see that, 
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Figure 2: Mapping of Dominance and Searching Prob- 
lems onto GPC. 

5.2 Computational Geometry 
Given a set S = { p l , p z ,  . . . ,p , }  of n points in D- 
dimensional space. A point pi D-dominates a point 
pj if and only if p i [ k ]  > p j [ k ] ,  for all 1 5 k 5 D, 
where p [ k ]  denotes the kth coordinate of a point p. 
The 2-dimensional ECDF searching problem con- 
sists of computing for each p in a 2-dimensional point 
set S, the number of points of S 2-dominated by p. 
The D-dimensional maximal elements problem is 
to  determine the points in a given D-dimensional point 
set S ,  which are D-dominated by no other point. For 
each of the problems we sort the points in S by first co- 
ordinate and denote the lists sorted in ascending and 
descending order by a l ,  a2, ..., a, and bl, bz ,  ..., b, re- 
spectively. Figure 2 shows the transformation for the 
above mentioned problems [6 . 

problem in two dimensions is the problem of counting 
for each point p from B the number of points from 
A that p 2-dominates. Let I A I =  n and I B /= m'. 
Let a1,a2, ..., a,!+, be the list of the m' + n points 
belonging to the set A U B, sorted in ascending order 
of their first coordinate. If ai E A,  then, f(i) = 1 else 
f(i) = 0. y(i)  = ai[2],  p = < and * = +. The result 
is Di, i.e., point ai E B 2-dominates Di number of 
points in A [GI. Hence the following theorem. 

Theorem 6 Sorting problem, ECDF Searching prob- 
lem, 2 0  and 30 maximal elements problem and 2- 
set Dominance Counting problem can be solved in 
O(a(log(a) + log'p)) expected computation time and 
O((T + o m r S 1 )  log2 p) expected communication time 
on up-processor D S M  system using the BDM model. 

5.3 Graph Theory 
Permutation Graphs: Given a permutation T of the 
integer set V = { 1,2,3, ..., n},  T defines a graph G, = 
(V,E),where(i,j) EEifandonly i f  (i-j)*(~-'(i)- 
~ - ' ( j ) )  < 0, where ~ - ' ( k )  denotes the position of k 
in T. A graph G is a permutation graph if and only 
if it is isomorphic to some G, . We assume that the 
permutation T is IED stored in the array P and the 
inverse permutation T - ~  is IED stored in the array 
PI. Given P it is straightforward to compute PI on a 
DSM system using the function RandomRoute. The 
arrays LSV, MSV, C N U M ,  W and V defined in [l] 
can be computed using the function BDPRECOMP.  
This, Theorem A.2 and the algorithms CONCOMP, 
Cutvertices, Bridges presented in [l] imply a part of 
Theorem 7. 
Binary  Tree Reconstruction: We assume that the 
preorder traversal pre and inorder traversal in are 

Given two point sets A an d B,  the 2-set dominance 



I E D  stored in the array PRE and I N  respectively. 
It is strai htforward to implement the algorithm pre- 
sented in 751 using the functions B D P R E C O M P  and 
RandomRoute  to  reconstruct the binary tree repre- 
sented by these traversals. Hence the following Theo- 
rem. 

Theorem 7 The problems of finding Connected 
Components, Cut Vertices and Bridges of a given 
Permutation graph of n vertices and the prob- 
lem of reconstructing a binary tree from its In- 
order pnd Preorder traversals can be solved in 

cation t ime and O ( 2  + g m , ~ ~ ~ ~ ~ + l ) )  expected com- 
putation tame on a p-processor D S M  system using the 
B D M  model. 

og P +1) 1 +T + am + O( 3) expected communi- 
4.r [log,( & 

6 Conclusion 
In this paper we have presented an efficient algorithm 
for GPC on D S M  systems using the B D M  model 
with applications. Since sorting is transformed into 
an instance of GPC, GPC has a lower bound of 
R ( n l o g n )  at least for some specific choice of opera- 
tors *. As seen before, if n > p l o g p ,  our algorithm for 
GPC takes O ( F )  computation time. Hence, we 
have achieved optimal speed up in computation for 
the sorting problem for such realistically larger val- 
ues of n. Further, our method is conceptually sim- 
pler than the algorithms presented in [3] for sorting. 
From the analytical expressions for the time taken by 
B D P R E C O M P  and BlockMerge,  we see that the 
time taken will increase with the number of proces- 
sors ( p )  for smaller size of the inputs. From Corollary 
1 we see that the computation time of BlockMerge  is 
O ( n  log, p / p )  and hence we cannot expect any scala- 
bility from p = 2 to p = 4. It is interesting to  note 
that the timing measurements agree with the theoret- 
ical predictions and the graphical plots illustrates the 
scalability (refer Figure 3). It is worth noting that 
the merge function is recursive and it executes on a 
DMS which might serve as a pointer for incorporating 
parallel recursion in automatic parallelising compilers. 

Appendix A 

Function RANDOMROUTE(A) : (A’, c )  
Input: A[l : [ $ I ,  0 : p - 13 is the input array I E D  
stored on ap-processor B D M  machine, such that each 
element of A consists of a packet ( a ,  datai) of constant 
size, where i is the index of the processor to  which 
datai has to  be routed. cy is a constant such that no 
processor is the destination of more than cy[F1 ele- 
ments on the whole. 
Output: A’[1 : c[;],O : p - I] is the output ar- 
ray holding the routed data, I E D  stored on a p 
processor B D M  machine, such that all the data with 
the processor PRi, 0 5 i 5 p - 1, as the destina- 
tion will be available in one of the locations A’[j,i], 
1 5 j 5 c[pl in the processor PRi, where c is larger 

than max{l+‘,a+$}. d- The function stores a copy Jz 
of c in every processor PRi, 0 5 i 5 p - 1. 

The function is implemented using the Random- 
izedltouting algorithm suggested in [3] .  

Theorem A. l  Function RANDOMROUTE(A) 
completes within 2(r + crF1) communication time and 
O(c[:l) computation time with high probability, where 
c is larger than ma${ 1 + 5, a + 9 }, p2 < & 0 

Function BDPRECOMP(A, T ,  0) : (A’). 
Input: Given a sequence of ordered pairs < a l ,  
datal >, < a2,dataz >,”’,< at(n/p) ,datat(n/p)  >, 
I E D  stored on the array A,  on t processors of a B D M  
machine, datai is the data (if any) associated with ai ,  
1 5 i 5 t ( n / p ) .  v is a binary associative operator E 
{ + , M i n , M a x ,  ...}. 
Output: A sequence of ordered pairs < a i ,  data: >, < 
a i ,  data; >, . . . , < ai(n,p), data:(,,p) >, I E D  stored 
on the array A’, on a pprocessor B D M  machine, 
where, a: = v i = l a k  and data: is the data associated 
with a!, (if any). 
From Theorem 9 of [4] we infer the following theorem. 

Theorem A.2 ([4]) Given a sequence ( a l ,  a2, ..., 
a t (n /p ) )  of numbers I E D  stored on t processors of a 
B D M  machine, we can compute the prefix sums psi = 
~ j = ~ a j ,  1 5 i 5 r ,  in 4i-r-jl  am 
communication time and O ( 2  + am,og,(~+l))  com- 
putation time. This complexity holds for  prefix max- 
ima, prefix minima and similar associative operators. 

Tlog t 
b m  
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