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Abstract. Kernel functions as similarity measures for sequential data
have been extensively studied in previous research. This contribution
addresses the efficient computation of distance functions and similarity
coefficients for sequential data. Two proposed algorithms utilize different
data structures for efficient computation and yield a runtime linear in
the sequence length. Experiments on network data for intrusion detec-
tion suggest the importance of distances and even non-metric similarity
measures for sequential data.

1 Introduction

Sequences are a common non-vectorial data representation used in various ma-
chine learning and pattern recognition applications, e.g. textual documents in
information retrieval, DNA sequences in bioinformatics or packet payloads in in-
trusion detection. An essential procedure for analysis of such data is the efficient
computation of pairwise similarity between sequences.

Beside specialized string distances [e.g. 1, 2] a large class of similarity measures
for sequential data can be defined over contained subsequences by embedding
them in a high-dimensional feature space. Previous research focused on compu-
tation of kernel functions in such feature spaces. For example, the inner-product
over n-gram or word frequencies has been widely used for analysis of textual
documents [e.g. 3, 4, 5] or host-based intrusion detection [e.g. 6]. The challenge
of uncovering information in DNA has influenced further advancement of kernel
functions, e.g. by exploring different sets of subsequences [e.g. 7, 8, 9, 10] or
incorporating mismatches, gaps and wildcards [e.g. 11, 12, 13].

There exist, however, a large amount of learning algorithms which are not
directly suitable for kernel functions. In principle, any inner-product induces a
Euclidean distance in feature space [14], yet the richness of content in sequential
data and the variability of its characteristics in feature spaces motivate applica-
tion of other distance functions.

A general technique for computation of similarity measures suitable for ker-
nels, distances and similarity coefficients is proposed in this contribution. It is
based on incremental accumulation of matches and mismatches between subse-
quences comprising a feature space. Two algorithms are presented that utilize
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different data structures for efficient computation: hash tables and tries. Both
algorithms have linear runtime complexity in terms of sequence lengths.

The rest of the paper is organized as follows: Section 2 defines several sim-
ilarity measures for sequential data including kernels, distances and similarity
coefficients. Comparison algorithms and corresponding data structures are intro-
duced in Section 3. Finally, experiments in Section 4 compare the efficiency of
the introduced algorithms and illustrate their application in network intrusion
detection.

2 Similarity Measures for Sequential Data

Given an alphabet Σ of size N , a sequence x is defined as a concatenation of
symbols from Σ. The content of a sequence can be modeled as a set of possibly
overlapping subsequences w taken from a finite language L ⊂ Σ∗. We refer to
these extracted subsequences as words. The language L constitutes the basis for
calculating similarity of sequences and typically corresponds to a bag of char-
acters, words or n-grams. Given a sequence x and a language L, an embedding
into feature space is performed by calculating φw(x) for every w ∈ L appearing
in x. Usually the function φw(x) returns the frequency of w in x, however, other
definitions returning a count or a binary flag for w are possible. Furthermore we
define l to be the length of x.

We assume that the total length of words in every sequence x is proportional
to l. This assumption is valid, for example, for n-grams of fixed length n and
non-overlapping words, and ensures linear runtime of the proposed algorithms.
In context of kernels several approaches have been investigated that do not make
such an assumption [e.g. 9, 10, 11, 12, 13], however, some of them come at a cost
of super-linear complexity.

By utilizing the feature space induced through φ, one can adapt classical kernel
and distance functions to operate on sequences. Table 1 lists kernel functions and
Table 2 distance functions that are implemented using the algorithms presented
in Section 3.

Yet another way of measuring similarity are so called similarity coefficients
[e.g. 15, 16]. They are non-metric and have been primarily used on binary data.

Table 1. Kernel functions for sequential data

Kernel function k(x, y)

Linear

∑

w∈L

φw(x)φw(y)

Polynomial

(
∑

w∈L

φw(x)φw(y) + θ

)d

RBF exp

(−d(x, y)2

σ

)
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Table 2. Distance functions for sequential data

Distance function d(x, y)

Manhattan

∑

w∈L

|φw(x)− φw(y)|

Canberra
∑

w∈L

|φw(x)− φw(y)|
φw(x) + φw(y)

Minkowski k

√∑

w∈L

|φw(x)− φw(y)|k

Chebyshev max
w∈L
|φw(x)− φw(y)|

Table 3. Similarity coefficients for sequential objects

Similarity coefficients s(x, y)

Jaccard
a

a + b + c

Czekanowski
2a

2a + b + c

Sokal-Sneath
a

a + 2(b + c)

Kulszynski
1

2

(
a

a + b
+

a

a + c

)

Similarity coefficients are constructed using three summation variables a, b and
c. The variable a contains the number of positive matches (1-1), b the number
of left mismatches (0-1) and c the number of right mismatches (1-0). The most
common similarity coefficients are given in Table 3.

Similarity coefficients can be extended to non-binary data by modification of
the summation variables. The degree of match for a word w ∈ L can be defined
as min(φw(x), φw(y)) and the respective mismatches are defined as deviations
thereof:

a =
∑

w∈L

min(φw(x), φw(y))

b =
∑

w∈L

[φw(x) − min(φw(x), φw(y))]

c =
∑

w∈L

[φw(y) − min(φw(x), φw(y))]

3 Algorithms and Data Structures

In order to calculate the presented kernels, distances and similarity coefficients,
one needs to establish a general model of similarity measures for sequential data.
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Table 4. Generalized formulations of distances

Distance ⊕ m+(p, q) m−
x (p) m−

y (q)

Manhattan + |p− q| p q

Canberra + |p− q|/(p + q) 1 1

Minkowskik + |p− q|k pk qk

Chebyshev max |p− q| p q

Table 5. Generalized formulations of summation variables

Variable ⊕ m+(p, q) m−
x (p) m−

y (q)

a + min(p, q) 0 0

b + p−min(p, q) p 0

c + q −min(p, q) 0 q

A key instrument for computation of kernel functions is finding words w ∈ L
present in two sequences x and y – we refer to these words as matches. For dis-
tances and similarity coefficients, we also need to consider words w ∈ L present
in x but not in y (and vice versa) – we refer to these words as mismatches1.

Furthermore we introduce an outer function ⊕ which corresponds to the global
aggregation performed in many similarity measures, e.g. the summation in var-
ious kernel and distance functions. Given these definitions, we can express a
generic similarity measure s as

s(x, y) =
⊕

w∈L

m(x, y, w) (1)

m(x, y, w) =

⎧
⎪⎨

⎪⎩

m+(φw(x), φw(y)) if w is a match
m−

x (φw(x)) if w is a mismatch in x

m−
y (φw(y)) if w is a mismatch in y

(2)

We can now reformulate the set of distances given in Table 2 using the func-
tions ⊕, m+, m−

x and m−
y . The generalized formulations of some distances are

presented in Table 4.
Adapting similarity coefficients to such a generic representation is even sim-

pler, since only the three summation variables a, b and c need to be reformulated,
as shown in Table 5.

3.1 Hash-Based Sequence Comparison

The classical scheme for computation of similarity measures over sequences uti-
lizes indexed tables, or in the more general case hash tables [e.g. 4]. The words
extracted from a sequence and corresponding frequencies or counts are stored in
1 The term “mismatch” herein corresponds to two sequences being unequal and not,

as often used in bioinformatics, to inexact matching of sequences.
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the bins of a hash table. Figure 1(a) shows two hash tables carrying the words
{“bar”, “barn”, “card”} and {“car”, “bank”, “band”, “card”} with correspond-
ing counts.

bar 5

band 3

car 4 bank 2

X Y

card

barn 4

3 card 2

(a) Hash tables

band 3

(x) (y)m−m−

B Ybar 5bar 5 car 4car 4 bank 2

x y

BX

X Y

card 3 card 2

(b) Comparison of hash tables

Fig. 1. Hash table data structures (a) and their comparison (Case 2) (b)

Algorithm 1 defines the comparison of two hash tables X and Y with fixed size
M . The algorithm proceeds by looping over all M bins, checking for matching
(cf. Algorithm 1: Case 1) and mismatching words (cf. Algorithm 1: Case 2 & 3).
Figure 1(b) illustrates this process at the mismatches “bar” and “bank” which
are stored in corresponding bins.

Algorithm 1. Hash-based Sequence Comparison
1: function Compare(X,Y )
2: s← 0
3: for i← 1, M do
4: BX ← bins[X, i]
5: BY ← bins[Y, i]
6: if BX �= nil and BY �= nil then
7: for all x ∈ BX and y ∈ BY do
8: if x = y then
9: s← s⊕m+(x, y) � Case 1

10: else
11: s← s⊕m−(x)⊕m−(y) � Case 2

12: else if BX �= nil then
13: for all x ∈ BX do
14: s← s⊕m−(x) � Case 3

15: else if BY �= nil then
16: for all y ∈ BY do
17: s← s⊕m−(y) � Case 3

18: return s
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Since the size of the hash tables is fixed at M , the average runtime for a
comparison is Θ(M). To avoid possible hash collisions, a high value of M � l
must be chosen in advance, otherwise the chaining of bins (Case 2) results in
O(l2) worst-case runtime for O(l) extracted words per sequence.

3.2 Trie-based Sequence Comparison

A trie is an N -ary tree, whose nodes are N -place vectors with components cor-
responding to the elements of Σ [17]. Figure 2(a) shows two tries X and Y con-
taining the same words as the hash tables in Figure 1(a). The nodes of the tries
are augmented to carry a variable reflecting the count of the passing sequence.
The end of each extracted word is indicated by a marked circle. Application of
tries to computation of kernel functions has been considered by [18].

Depending on the applied similarity measure the trie nodes can be extended
to store other aggregated values which speed up calculations involving subtrees,
e.g. for the Minkowski distance

∑
w φw(x)k for all lower words w,

Comparison of two tries can be carried out as in Algorithm 2: Starting at the
root nodes, one traverses both tries in parallel, processing matching and mis-
matching nodes. If the traversal passes two equal and marked nodes, a matching
word is discovered (Case 1), if only one node is marked a mismatch occurred
(Case 2). The recursive traversal is stopped if two nodes do not match, and thus
two sets of underlying mismatching words are discovered (Case 3). Figure 2(b)
shows a snapshot of such a traversal. The nodes x and y are not equal, and the
words {“bar”, “barn”} and {“band”, “bank”} constitute mismatches.
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Fig. 2. Trie data structures (a) and their comparison (Case 3) (b)

As an invariant, the nodes under consideration in both tries remain at the
same depth and thus the worst-case runtime is O(l). An advantage of the trie
data structure comes into play especially if the provided alphabet is large and a
lot of mismatches occur. The traversal discovers mismatching words after passing
the first few symbols and omits further unnecessary comparisons.
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Algorithm 2. Trie-based Sequence Comparison
1: function Compare(X,Y )
2: s← 0
3: for i← 1, N do
4: x← child[X, i]
5: y ← child[Y, i]
6: if x �= nil and y �= nil then
7: if end[x] and end[y] then
8: s← s⊕m+(x, y) � Case 1
9: else if end[x] then

10: s← s⊕m−(x) � Case 2
11: else if end[y] then
12: s← s⊕m−(y) � Case 2

13: s← s⊕Compare(x, y)
14: else
15: if x �= nil then
16: s← s⊕m−(x) � Case 3

17: if y �= nil then
18: s← s⊕m−(y) � Case 3

19: return s

4 Experimental Results

4.1 Efficiency of Data Structures

Efficiency of the two proposed algorithms has been evaluated on four benchmark
data sets for sequential data: DNA sequences of the human genome [19], system
call traces and connection payloads from the DARPA 1999 data set [20] and
news articles from the Reuters-21578 data set [21]. Table 6 gives an overview of
the data sets and their specific properties.

For each data set 100 sequences were randomly drawn and n-grams of lengths
3, 5 and 7 extracted. The n-grams of each sequence were stored in tries and hash
tables with varying size from 102 to 105. Subsequently the Canberra distance was
calculated pairwise over the tries and hash tables using the proposed algorithms,
resulting in 5000 comparison operations per setup. The procedure was repeated
10 times and the runtime was averaged over all runs. The experimental results
are given in Table 7.

Table 6. Datasets of sequential objects

Name Type Alphabet Min. length Max. length

DNA Human genome sequences 4 2400 2400
HIDS BSM system call traces 88 5 129340
NIDS TCP connection payloads 108 53 132753
TEXT Reuters Newswire articles 93 43 10002
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Table 7. Runtime experiments for Canberra distance

Dataset n Average runtime for 5000 comparisons (s)
Trie Hash (102) Hash (103) Hash (104) Hash (105)

DNA 3 0.19 0.22 0.28 0.66 6.04
5 2.21 4.46 2.94 3.56 9.57
7 10.72 37.63 13.02 5.67 9.43

HIDS 3 0.06 0.10 0.13 0.62 3.05
5 0.15 0.15 0.16 0.66 5.23
7 0.25 0.19 0.22 0.70 4.15

NIDS 3 0.48 1.70 1.07 1.43 5.12
5 0.86 3.70 1.72 1.81 5.90
7 1.20 4.83 2.10 2.42 6.08

TEXT 3 1.12 1.75 1.22 1.63 7.03
5 1.65 3.85 1.64 1.89 7.58
7 2.13 5.92 2.19 2.24 7.74
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Fig. 3. Detection performance for network intrusion detection

The average runtime of the hash-based algorithm strongly depends on the size
of the hash table. The optimal value varies for different data sets and values of
n. However, in 10 of 12 cases the trie-based algorithm performs equally well or
better than the best hash table setup, being independent of a parameter.

4.2 Application: Network Intrusion Detection

To demonstrate the proposed algorithms on realistic data, we conducted an ex-
periment for unsupervised learning in network intrusion detection. The underly-
ing network data was generated by the members of our laboratory using virtual
network servers. Recent network attacks were injected by a penetration-testing
expert.

A distance-based anomaly detection method [22] was applied on 5-grams ex-
tracted from byte sequences of TCP connections using different similarity mea-
sures: a linear kernel (Euclidean distance), the Manhattan distance and the



382 K. Rieck, P. Laskov, K.-R. Müller

Kulczynski coefficient. Results for the common network protocols HTTP, FTP
and SMTP are given in Figure 3.

Application of the Kulczynski coefficient yields the highest detection accuracy.
Over 78% of attacks for each protocol are identified with no false-positives. In
comparison the Euclidean distances fails to uncover good geometric properties
for discrimination of attacks in this particular setup.

5 Conclusions

We have shown that, similarly to kernels, a large number of distances and sim-
ilarity coefficients can be efficiently computed for sequential data. The use of
such similarity measures allows one to investigate unusual metrics for applica-
tion of machine learning in specialized problem domains. As an example, the
best results in our experiments on unsupervised learning for network intrusion
detection have been obtained with the Kulczynski coefficient over n-grams of
connection payloads. Thus direct application of distances over sequential data
may be favorable over implicit use of the Euclidean distance induced by ker-
nels. Especially promising are further applications of the proposed algorithms in
computer security and bioinformatics.
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