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Abstract—Social networks, though started as a software tool 

enabling people to connect with each other, have emerged in recent 

times as platforms for businesses, individuals and government 

agencies to conduct a number of activities ranging from marketing 

to emergency situation management. As a result, a large number 

of social network analytics tools have been developed for a variety 

of applications. A snapshot of social networks at any particular 

time, called a social graph, represents the connectivity of nodes and 

potentially the flow of information amongst the nodes (or vertices) 

in the graph. Understanding the flow of information in a social 

graph plays an important role in social network applications. Two 

specific problems related to information flow have implications in 

many social network applications: (a) finding a minimum set of 

nodes one has to know to recover the whole graph (also known as 

the vertex cover problem) and (b) determining the minimum set of 

nodes one required to reach all nodes in the graph within a specific 

number of hops (we refer this as the vertex reach problem). 

Finding an optimal solution to these problems is NP-Hard. In this 

paper, we propose approximation based approaches and show that 

our approaches outperform existing approaches using both a 

theoretical analysis and experimental results.     

Keywords— Approximation Algorithm; Complexity; Network 

Coverage; Network Reach; Social Networks. 

I. INTRODUCTION 

Big data is an emerging multi-disciplinary research area   
with the aim of analysing vast amount of data to extract 
actionable information.  The more precise meaning of big data 
is given in [24] as: “Big Data is a term applied to data sets 

whose size is beyond the ability of commonly used software tools 

to capture, manage, and process the data within a tolerable 

elapsed time. Big data size are constantly moving target 

currently ranging from a few dozen terabytes to many petabytes 

of data in a single data set”. An IDC report [28] predicts that, 
from 2005 to 2020, the global data volume will grow by a factor 
of 300, from 130 exabytes to 40,000 exabytes, representing a 
double growth in every two years. It is clear that we are entering 
in a data explosive era, evidenced by the volume of data from 
various sources and its growing generation rate. Social networks 
are amongst the major sources of big data. For example, 

Facebook stored, accessed, and analysed more than 30 petabytes 
of user-generated data. Over 32 billion searches were performed 
per month on Twitter [27]. It is thus important to find efficient 
and effective ways of analysing social network data.  

A number of social network analytics tools have been 
developed and used in different applications [25] [26]. A 
snapshot of social networks at any particular time is called a 
social graph. Social graphs derived from social network data 
traces can be classified into two categories: articulated and 
behavioural [25]. Articulated graphs are those that result from 
people specifying their contacts through referencing [30]. There 
are three common reasons for which people articulate their 
connections: to have a list of contacts for personal use; to 
publicly display their connections to others; and to filter content 
on social media. The motivation for people to add someone to 
their explicit connections varies widely, but the result is that 
connections can include friends, colleagues, acquaintances, 
celebrities, friends-of-friends, public figures, and interesting 
strangers. In contrast, behavioural graphs are derived from 
communication patterns, cell coordinates, and social media 
interactions [31]. These might include people who send text 
messages to each other; those who are tagged in photos together 
on Facebook; people who email each other; and people who are 
physically in the same space, at least according to their cell 
phone. The approach proposed in this paper is agnostics with 
respect to how the graphs were obtained.  

One of the benefits of online social networks is their ability 
to provide fast and extensive information dissemination. For 
example, the news of Michael Jackson’s death spread faster in 
social networks than it did in traditional mass media [22]. Social 
networks thus provide fast access to large scale news data. 
Social networks are in fact a major source of news for many 
people today [30][32]. While the ease with which information 
flows in social networks can be very beneficial, it can also have 
disruptive effects, in particular with respect to misinformation – 
see, for example, the spread misinformation on swine flu on 
Twitter [23]. The questions of how to spread information widely 



and how to limit the flow of misinformation in social networks 
thus arise. Budak et al. (2011) have shown that this eventual 

influence limitation problem is NP-hard for an exact solution in 
large scale social networks [29]. There are two specific 
problems related to information flow that have implications in 
many social network applications: (a) finding a minimum set of 
nodes, or vertices, (with their accompanying/incident edges) 
one has to know to recover the whole social graph, a problem 
also known as the vertex cover problem,  and (b) determining a 
minimum set of nodes required to reach all nodes in the social 
graph within a specific number of hops, a problem also known 
as reachability (we refer it as the vertex reach problem). While 
finding an optimal solution to these problems is NP-Hard, 
Budak et al. (2011) have shown that algorithms based on 
heuristics (including even a simple heuristic based on the degree 
of centrality) work better than the traditional greedy algorithm 
[29]. Motivated by this heuristic based approach and traditional 
approximations based graph processing methods, this paper 
aims to address these two problems by proposing the 
approximation based algorithms.   

In order for social networks to serve as reliable platforms for 
disseminating critical information (and preventing 
misinformation), it is necessary to be able to identify the 
minimum number of (information) transmissions required to 
reach each individual node in the network. In some applications, 
it is important that all nodes and paths in the graph are 
considered, and an appropriate forwarding path is selected based 
the properties of the nodes, links, and paths correlation [33]. 
However, as data sets grow and applications require real time 
processing, it becomes difficult to cover the entire graph or 
reach each individual node in a social graph.  One potential way 
to solve this problem is to provide data to selected nodes, and 
let the data flow to other nodes through the natural 
communication behaviour. Towards this goal, this paper 
proposes a near optimal way of finding nodes that can play a 
role in social network applications to provide an efficient way 
of disseminating information. In particular, we propose 
approximation based approaches and compare their 
performance with standard approximation algorithms. The basic 
idea behind our approach is to introduce weights in the nodes of 
a social graph based on their connectivity, to process the nodes 
in the order of the weights and update these weights based again 
on connectivity. The results of our experiments show that our 
algorithms perform better than standard approximation 
algorithms.  

The rest of this paper is organised as follows. Section II 
provides related work, on the vertex cover and vertex reach 
problem in particular, as it is a well-known and well-studied 
problem in computer science. Section III describes our proposed 
approaches with their algorithms and corresponding theoretical 
analysis. Section IV evaluates the performance and efficiency 
of our approaches through experimental results. Section V 
describes the potential applications of the proposed approaches. 
The final section concludes our work and points to future work.  

II. RELATED WORK 

In this paper, we focus on two different problems: graph 
coverage (aka vertex cover) and graph reach (aka reachability; 
we refer as vertex reach). We use the terms vertex and node 
interchangeably throughout the paper. The vertex cover problem 
is to identify the set of vertices from which the whole graph can 
be regenerated by knowing the edges (in and out) of those 
vertices. The vertex reach problem is to identify the set of 
vertices from which all other vertices of the graph can be reached 
within a specified number of hops. Both these problems are NP-
Hard problem [1]. To address them, researchers have used 
approximation algorithms that give a near optimal solution in 
polynomial time complexity.  

To explain the problem further, let’s consider the connected 
undirected graph shown in Figure 1. In order to cover (or 
regenerate) this graph, the set of vertices required is given by the 
set {B, D, E}. Vertex B covers vertices B, A, C and edges BC 
and BA; vertex D covers vertices D, C, E, F, G and edges DC, 
DE, DF and DG; Finally,  vertex E covers vertices C, D, E, F, 
and more importantly, it covered edge EF (missing thus far), as 
well as edges EC and ED. In the vertex cover problem, it is 
important to note that all vertices and edges need to be covered. 
In a similar way, the set of vertices required to have a solution 
for the vertex reach problem is given by a set of vertices {A, D} 
for a single hop. With a single hop, we can reach B through A, 
and we can reach C, E, F, G through D. Note that this solution is 
not unique. Another solution would be the set {B, D}. We now 
describe existing approaches proposed in the literature to address 
the vertex cover and reach problem.  

 
 

Figure 1: A simple undirected graph used to illustrate the vertex cover and reach 
problems. 

Several approximation approaches have been proposed to 
solve the vertex cover problem. Bar-Yehuda et al. [10] in 1985 
proposed an algorithm based on associating weights to the 
vertices, that is scores based on the number of edges that are 
incident to the vertex. Their approach works by reducing the 
weights of vertices in certain subgraph(s). This has the effect of 
local approximations. Monien et al. (1985) [11] ran a vertex 
cover algorithm for computing an independent set of vertices and 
showed that its time complexity was bounded to 𝑂(|𝑉| × |𝐸|). 
The vertex approximation factor of the vertex cover problem for 

both Bar-Yehuda and Monien approaches is: 2 − Θ (log log 𝑛log 𝑛 ). 
Arora et al. proposed an algorithm in [12], which gave an 𝑂(√log 𝑛) -approximation algorithm for the Sparsest Cut, Edge 
Expansion, Balanced Separator, and Graph Conductance 
problems. Karakostas [8] in 2005 reduced the approximation 

factor of vertex cover problem to 2 − Θ( 1√log𝑛).  Further details 



of Karakostas’ work is published in 2009 [9] with the same 
complexity, as an improvement of the work done described in 
[12], which depends on the approximation factor of the sparsest 
cut and balanced cut problems and uses the existence of two large 
and well-separated sets of nodes. In 2008, Khot et al. [13] 
showed that the vertex cover is hard to approximate within any 
constant factor better than 2, i.e., 2− ε. Kuhn and Mastrolilli [15] 
in 2013 investigated the vertex cover problem for weighted 
graphs when a locally bounded coloring is given. Finally, in 
2015, Shah et al. [14] proposed an approximation algorithm to 
solve the vertex cover problem by using Depth First Search 
(DFS) algorithm. It takes O (2 (V + E)) time complexity, where 
O (V + E) for DFS and O (V + E) for finding vertex cover. 

The vertex reach problem has been studied under the 
“reachability” problem, where the focus is to find an optimal path 
to reach from one vertex to another vertex within a graph. He et 
al. proposed an innovative approach, HLSS(Hierarchical 
Labeling of SubStructures), for reachability. Their approach 
identifies different types of substructures within a graph and 
encodes them [34]. It works in two phases. The first phase 
identifies and encodes strongly connected components, and the 
second phase encodes the remaining reachability relationships. 
Hwang et al. [35] computed a finite vertex graph for discrete 
event system specification (DEVS) network. They use a subclass 
of DEVS, called finite and deterministic DEVS (FD-DEVS) to 
obtain the finite vertex reachability graph of a DEVS network. 
Jin et al. [36] introduced a novel tree based index framework 
which utilizes the directed maximal weighted spanning tree 
algorithm and sampling techniques to maximally compress the 
generalized transitive closure for the labeled graphs. They 
demonstrated their approach by finding edges for several graph 
data such as social networks, biological networks, and the 
semantic web.  It is important to note the difference between 
reachability and vertex reach problem. The reachability problem 
is to find out whether it is possible to reach from one vertex 
within a graph to another, given a pair of vertex. The vertex reach 
problem is to identify the set of vertices in the graph to reach all 
vertices in the graph within a given number of hops. Our focus 
in this paper is on the vertex reach problem.  

III. PROPOSED APPROACH 

A snapshot of nodes and relationships in social networks is 
represented as a social graph (referred to as a graph or a social 
network hereafter depending on the context). We represent the 
graph as G = (V, E), where V is the number of vertices in the 
graph and E the number of edges. Vertices and edges represent 
the graph nodes and links between them. These sets of vertices 
and edges can be implemented as an adjacency list or as an 
adjacency matrix for both directed and undirected graphs. In this 
paper, we consider two types of graphs:  (a) sparse graphs, i.e., 
those for which |E| is much less than |V|2, i.e,. (E << V2), and (b) 
dense graphs, that is those graphs for which |E| is close to |V|2 , 
i.e., (E ≃ V2). 

We next define the vertex cover and vertex reach formally. 

Definition of vertex cover: A vertex cover of a graph G = 
(V, E) is a subset of vertices V` of V such that if edge (u, v) is 
an edge of the graph G, then either u is in V or v is in V`. In a 
more generic way, the vertex cover of a graph is a set of vertices 

such that each edge in the graph is incident to at least one vertex 
of the set.  

Definition of vertex reach: A vertex reach of a graph G = 
(V, E) is a subset of V such that if edge (u, v) is an edge of G 
then one of the vertices (u or v) is in V.  More generically, the 
vertex reach of a graph is a set of vertices such that all vertices 
in the graph are connected to at least one vertex of the set.  

Finding the minimum set of nodes to cover or reach a 
complete social graph (i.e., to cover all the nodes and edges or 
reach all the nodes in the graph) is a NP-Hard problem, as 
already mentioned. However, it is possible to find a near optimal 
solution with reasonable time complexity, namely polynomial 
time complexity. Our aim in this paper is to propose a method 
that gives very near optimal solution for both the vertex cover 
and the vertex reach problems.   

There are two major factors to compute the efficiency of an 
algorithm, i.e., its time complexity and its space complexity. 
There are three different ways of representing complexity: worst 
case, best case and average case, where the worst case is always 
needed to evaluate the effectiveness of an algorithm. In what 
follows, after we present our algorithms for both the vertex 
cover and reach problems, we compute their complexity and 
show that our approach outperforms the traditional vertex cover 
algorithm, covering the entire network in less than double of 
time for an optimal solution [1].  

In the descriptions and evaluation described here, we have 
considered simple undirected graphs [2]. We use an adjacency 
list to represent the graph G, in order to reduce the space 
complexity. We introduce a new field weight in the list which is 
initialised at the beginning to store the degree of each individual 
vertex, i.e., our representation is the list: {vertex; weight; 
*next; *ref}. The connected nodes are represented as 
linked-list.  

A. An algorithm for the Approximate Vertex Cover Problem 

Our proposed approximation vertex cover algorithm and its 
workings are described in Algorithm I, and Figures 2 and 3, 
respectively. The algorithm takes a graph G as input and returns 
a set of vertices to cover the complete graph. The algorithm 
works as follows: 

As mentioned above, we represent the graph as a list instead 
of a matrix to reduce the space complexity. We introduce one 
more field weight for every node. In Algorithm I, we initialise 
the weight as L[w], which is calculated using the number of 
reference nodes from each individual nodes in the list and kept 
as an array. We update the weight by decreasing the value as 
shown in step 9 of Algorithm I. Let C+ be the vertex cover set, 
which is empty at the beginning. The algorithm selects the 
vertex with the highest weight, adds it C+ and updates the 
weights of the remaining vertices as follows: the weight of the 
selected vertex is set to 0, and the weights of all its one hop 
neighbours are decreased by 1. The selection and weight update 
steps are repeated until all nodes have a weight equal to 0. The 
final set C+ gives a solution for the vertex cover problem.  



Algorithm I: Approximate Vertex Cover Algorithm for 
Social Network Coverage 

 

Required: In the List we introduce another field weight 
The weight is number of nodes in reference of the node (ref) 
1: C+ ← ϕ 
2: L=List 
3: L[w]= weight 
4: (h, v) = highest weight of the list and respective vertex 
5: if h ≠ 0 then 
6:    C+ ← C+ ∪ v 
7:    v[w] ← 0 
8:    for all vertices of List L[ref] ∈ {v} do 
9:       L[w] ← L[w]-1 
10:    end for 

11:    go to 4  
12: else 
13:    return C+ 
14: end if 

 
Figure 2: Illustration of the steps of the approximate vertex cover algorithm, as 
performed on a sample graph. (a) The input graph G containing 7 vertices and 
8 edges. (b) D is the first vertex (highest weight) chosen by algorithm. It is added 
to C+ (shown in grey), and its weight is now set to zero. The weights of its one 
hop neighbours are decreased by 1. (c) There are three vertices with the now 
highest weight (B, C, E); An arbitrary vertex, C, is chosen and added to the set 
C+. (d) The process is repeated and now vertex A is chosen and added to C+. (e) 
The process continues; Vertex F is chosen and added to C+. The process is 
complete are all weights are now 0. (f) The resultant vertex cover set with shaded 
color. 

Figure 2 shows the steps of vertex cover algorithm using our  
example graph (from Figure 1). Figure 2(a) shows the sample 
input graph with the weights of the vertices initialised to the 
vertex’ number of edges. The highest weight vertex of the graph 
is D, so it is selected to be added to the set C+ as shown in Figure 
2(b). Its weight is set to 0 (zero), and its immediate neighbours 
have their weight value decreased by 1. In the figure, vertex D 
is shaded and its incident edges are dashed. Figure 2(c) shows 
there are three vertices with what is now the highest weight, i.e., 
B, C, E.  The algorithm arbitrarily chooses vertex C, adding it 
to the set C+. The process iterates: Vertex A is chosen, its 

weights and the weights of its neighbours updated (Figure 2(d)). 
Finally, vertex F is chosen and the weights updated (Figure 
2(e)). The resultant vertex cover is shown in Figure 2(f). Its 
contains four vertices A, C, D, and F. Finally, the comparison of 
the efficiency of our algorithm with both traditional and optimal 
solutions is shown in Figure 3.     

 

 
Figure 3: Comparison of Vertex-Cover results. (a) The original graph G. (b) The 
optimal cover set for G. (c) Cover set obtained with the traditional method [1]. 
(d) Cover set obtained from our algorithm. 

The space complexity our algorithm is Θ(V + E) as 
described in [1], because we represent the graph as an adjacency 
list. The time complexity of our algorithm is as follows. For step 
4, the complexity is O(V). In the for-loop, i.e., from steps 8 to 
10, the algorithm needs to search its reference vertices for each 
individual vertex. The worst time complexity calculation of our 
approach is: O(V ∗ (V − 1)) = O(V2). Thus, the worst time 
complexity of the algorithm is Θ(V2). 

We now show how our proposed approximate vertex algorithm 
is a polynomial-time (2 − ε)-approximation algorithm.  Cormen 
et al.‘s APPROX-VERTEX-COVER [1] is a polynomial-time 
2-approximation algorithm, for C a set of vertex and C* the 
optimal vertex cover, i.e., |C| ≤ 2| C*|.In our approach, the 
algorithms always picks one vertex and remove the edges 
connected to that vertex. This means that, most of the times, the 
algorithms does not consider both end points of an edge, which 
is what occurs in Cormen et al.’s algorithm.  For our proposed 
method, we consider the resultant set of vertex as C+, then |C+| 
= |C| −ε. ⇒ |C+| = (2 − ε) |C*|, 0 ≤ ε ≤ 1. 

In some cases, C+ will approach the optimal set of vertices when 
the value of ε is 1. If there is always only one highest weight 
vertex in each iteration, then our proposed algorithm’s output 
set of vertices will be the optimal solution.    

It is important to note that Khot et al. [13] show that the 
vertex cover might be hard to approximate to within 2− ε, 
because it is a NP-Hard problem. Our proposed method 
computes the vertex cover in 2− ε approximation. 

B. A Solution for the Approximate Vertex Reach Problem 

We follow a similar process to solve the vertex reach 
problem. The vertex reach problem is to find a minimum 
number of vertices to reach all the vertices of a given graph 
within a specified number of hops – we use a single hop here.  



Our approach is shown in Algorithm II and a simple illustration 
of the algorithm is shown in Figure 4. 

 

Algorithm II: Approximate Vertex Reach Algorithm for a 
Social Network 

 

Required: In the List we introduce another field weight 
The weight is number of node in reference of the node (ref) 
1: C++ ← ϕ 
2: L=List 
3: L[w]= weight 
4: (h, v) = highest weight of the list and respective vertex 
5: if h ≠ -1 then 
6:    C++ ← C++ ∪ v 
7:    v[w] ← -1 
8:    for all vertices of List L[ref]{k} ∈ {v} do 
9:       L[w] ← -1 
10:       for all vertex of List L[ref] ∈ {k} do 
11:          if L[w]  ≠ -1 then 
12:             L[w] ← L[w] -1 
13:          end if 
14:       end for 
15:    end for 

16:    go to 4  
17: else 

18:    return C++ 
19: end if  

 

As the vertex reach is a NP-Hard problem, our approach 
works on approximation. The reference weight initialization 
process is the same as the one described for vertex cover 
algorithm and it is shown in step 7 and 12 of Algorithm II. In 
the main step of the algorithm, the vertex with the highest 
weight is chosen in every iteration and all weights are updated 
as follows: the weight of the chosen vertex and that of all its 
immediate (one-hop) are set to  -1; the weights of the neighbours 
of the selected node’s neighbour are decreased by 1 if they are 
not already equal to -1. The selected node is added to C++ and 
the process repeats. Selected one hop neighbors from the list are 
stored in set v and two hop neighbors from the list are stored in 
set k as shown in step 8 and 10 of Algorithm II, respectively. 
This process continues until the weight of every node is -1; the 
final set C++provides a solution for the vertex reach problem.  

The space complexity of the algorithm is Θ(V + E), which is 
the same as for the vertex cover algorithm described earlier,  
again because we represent the graph as an adjacency list. Also 
as before, the time complexity of the Algorithm II’s step 4 
search in the list is O(V). As there are two for-loops, one inside 
the other for the number of vertex computation, the worst time 
complexity of the algorithm will be Θ(V2).  

Figure 4 shows the steps of vertex reach algorithm for our 
sample graph. The weights are initialised, as shown in Figure 
4(a). The vertex with the highest weight is D; it is thus first 
selected, as shown in Figure 4(b) – shown shaded. Its weight is 
set to -1, as is the weight of all the nodes directly connected to 

D (edges are indicated by dashes in the figure); the weight of 
D’s neighbour’s neighbours is decreased by 1;  D is added to the 
set C++. The process is repeated. At this stage, as shown in 
Figure 4(c), there are two vertices with the same weight, i.e., A 
and B.  The algorithm arbitrarily chooses one, in this case  vertex 
B. It is added to the set C++ and all weights are updated again. 
The process continues until all weights are set to -1.  The 
resultant set is shown in Figure 4(d). It contains two vertices B, 

and D.  

 
Figure 4: The operation of our approximate Vertex-Reach. (a) The input graph 
G, with the weights of the vertices initialised. (b) D is the vertex  with the highest 
weight, and it is thus selected to be added to the set C++ . Its weight is set to -1, 
as is the weight of all its immediate (one hop) neighbours, and the weights of its 
two hop neighbours (neightbours’ neighbours) decrease by 1. (c) The process 
repeats.  A and B have same weight, and B is chosen arbitrarily. It is added to 
C++. All weights are now -1, and the process stops. (d) The resultant Vertex-
Reach set.  

IV. EXPERIMENT AND EVALUATION 

In the earlier section, we have shown theoretically that our 
algorithms take less space and time complexity compared to the 
standard traditional method [1]. In this section, our focus is to 
validate and demonstrate the performance of our algorithms 
experimentally. To this end, we conducted experiments on both 
dense and sparse graphs.  

Consider a situation awareness application responding to the 
emergency scenario using Twitter data [32], where we would 
like to reach all members in the community to convey the 
current information (vertex reach problem), and we would also 
like to collect messages from their interactions to understand the 
emotional situation of the community (vertex cover problem). 
We thus want to identify the minimum sets of nodes required 
for these goals. We build a network matrix from the Twitter data 
interactions as the basis for the network analysis. We use 
UCINET software [7] for the visual demonstration of the 
analysis for our experiments where the nodes can be visually 
represented in a readable way in a two dimensional space. 
UCINET is a comprehensive program for analysing social 
networks, and it has been often used for this purpose since the 
early 1980s. The program contains network analysis routines 
(e.g., centrality measures, dynamic cohesion measures, 
positional analysis algorithms). The data sets given to UCINET 
are shown as binary networks with ties having the values of 1 
and 0, where 1 represents a link between two nodes and 0 
represents no links between two nodes. The experimental data 
set is randomly generated using the Excel software program and 



imported to UCINET. We next describe the results of our 
experiments. 

A. Experiments with a Dense Graph  

We first considered a dense graph with 25 nodes, and ran 
both the vertex cover and the vertex reach algorithms. We next 
describe the results of our experiments.  

1. Results of the Vertex Coverage 

We first ran the traditional standard algorithm [1] and then 
our proposed algorithm. Figure 5 shows the results of the 
traditional vertex coverage algorithm for the 25 node randomly 
generated dense graph. The resultant cover set contains the 
nodes shown in red. It contains 22 nodes, meaning that these 22 
nodes are required to cover 25 nodes of the original graph. The 
result of our algorithm is shown in Figure 6, and again the 
resultant cover set is shown in red. The set contains only 17 
nodes.  

  

 
Figure 5: Experimental results for the traditional vertex cover method [1], 
showing the final cover set, which contains 22 nodes (shown in red). 

 
Figure 6: Experimental results for our proposed method. The resultant cover set 
contains 17 nodes (shown in red). 

2. Results of the Vertex Reach 

Figure 7 shows the dense graph used for vertex reach 
experiment. Similar to the experiment for the vertex cover 
problem, this graph contains 25 nodes. The result of our vertex 
reach algorithm is also shown in Figure 7, with the selected nodes 
in red.  The resultant set contains 4 nodes, meaning that we can 
reach all nodes of the graph through these four nodes.  We note 
that we cannot compare our algorithm with other methods as 
there are none available (note the difference between reachability 
and vertex reach problem).  

 
Figure 7: Experimental results for our proposed method: the reach set contains  4 
nodes (shown in red). 

B. Experiments with a Sparse Graph  

We now consider a sparse graph with 25 nodes but only 71 
edges, as shown in Figure 8. Similar to previous sub-section, we 
next describe the results for both the vertex cover and vertex 
reach algorithms.   

1. Results of the Vertex Coverage Algorithm 

We ran the experiment on the random sparse graph of Figure 
8, first using the traditional standard vertex cover algorithm and 
then with our proposed algorithm. The results of the traditional 
approach is shown in Figure 8(a), where the red nodes represent 
the resultant set. It took 16 nodes to cover this sparse 25 node 
graph. In comparison, our algorithm found a set with fewer nodes 
(14) to cover the same network, as shown in red in Figure 8(b). 

                       (a)                     (b) 

 

 

 

(C) 

Figure 8:  (a) Experimental results of the traditional vertex cover method over the 
sparse graph. (b) Experimental results for our proposed vertex cover algorithm. 
(c) Experimental results for our proposed vertex reach algorithm.  

2. Results of the Vertex Reach 

The input graph for the vertex reach experiment is the same 
as vertex cover as shown in Figure 8: a sparse graph with 25 
nodes and 71 edges. The result of the proposed vertex reach 
algorithm is shown in Figure 8(c). The result set contain 7 nodes 
to reach all the nodes of the graph that are shown in red.    



C. Scalability 

We have illustrated the performance of our proposed vertex 
cover and vertex reach algorithms random graphs of 25 nodes, 
with both dense and sparse connectivity. In a real life scenario, 
considering the more than one billion Facebook users or 288 
million active users in Twitter, we need to deal graphs with a 
much larger number of nodes. In order to show that our proposed 
approach is scalable to graphs with a large number of nodes, we 
ran our algorithms (both vertex cover and vertex reach) as well 
as the traditional method for vertex cover with graphs of varying 
number of nodes up to 1,000,000 with intervals of 5000 nodes. 
The result is shown in Figure 9. We see that our proposed method 
always resulted in a vertex cover set with fewer nodes than that 
of the traditional approach. We also see that the result of vertex 
reach algorithm is consistently about 10% of the total number of 
nodes in the graph. As the vertex reach algorithm is significant 
for information flow, it means we only need to target 10% of all 
people in a social network in order to reach the entire population 
of the network.      

 
Figure 9: Efficiency of our algorithms for reach and cover sets; the cover set 
algorithm is also compared to the traditional method for network coverage. 

V. APPLICATIONS 

There are many applications for both vertex cover and vertex 
reach solutions. In the introduction, we motivated the work 
through the need to stop the propagation of misinformation in 
Twitter. We now provide further applications beyond the 
limitation of misinformation, although the list is by no means an 
exclusive list of potential applications. We can broadly classify 
the applications into two groups: sensor network applications 
and social network applications. 

A critical aspect of applications using wireless sensor 
networks is network lifetime. Power-constrained wireless sensor 
networks are usable as long as they can communicate sensed data 
to a processing node. Sensing and communications consume 
energy; therefore judicious power management and sensor 
scheduling can effectively extend network lifetime. The vertex 
cover solution can help choose a set of nodes to cover the 
network which prolong the network life time [16][17]. The 
vertex cover solution can also be used for network base routing 
delays in tolerance network [3]. Other potential applications 
include network traffic measurement, monitoring nodes for 
bandwidth measurement and flow monitoring [4]. Finding 
alternate path selections during routing is one of the major 
applications that can utilise solutions for the vertex cover 

problem [5]. Delay Tolerant Networks (DTNs) for social 
network significantly disable the adequacy of information 
scattering. To solve this, Geo et al. [21] formulate relay 
selections for multicast as a unified knapsack problem by 
exploiting node centrality and social community structures. 
Solutions to the vertex cover problem can be used to solve DTNs 
for social network. 

The solutions to the vertex reach problem can be applied to 
“spread of influence” problems in social networks. For example, 
one such problem is determining to which k consumers a product 
should be marketed to ensure its widespread adoption.  In [18], 
Kempe et al. show that the objective function of this problem is 
submodular and, as a result, a greedy algorithm finds a solution 
within a constant factor from the optimal. The same property is 
observed by Leskovec et al. in [19].  In this work, the authors 
determine which k blogs one should read to detect quickly the 
outbreak of an important story. The dissemination of dynamic 
content, such as news or traffic information, over a mobile social 
network is another area where the solutions to the vertex reach 
problem can be applied. Another application is to improve 
coverage and increase capacity of mobile social network by 
sharing the updated contents among users [20], where the vertex 
reach and cover problem can be applied to improve the contacts.   

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed efficient vertex cover and vertex 
reach algorithms for social network applications. The proposed 
solutions can be applied to other graph based algorithms. We 
also showed through a theoretical analysis and an experimental 
evaluation that our proposed vertex cover approach provides a 
2 − ε approximation algorithm which results in a cover set with 
fewer number of nodes than the solution obtained by  the 
standard vertex cover algorithm, with less space complexity. 
Our proposed vertex reach solution reach individual nodes of 
the network with less number of nodes. The resulting set for our 
vertex reach algorithm contains about 10% to 15% of the total 
nodes in the graph.   

We plan to pursue a number of research avenues in future. 
The foremost is the application of our algorithms to social 
network applications such as limiting the flow of 
misinformation and targeted campaigning. We also plan to 
perform a study of our work on real life data sets. The proposed 
vertex reach algorithm works for a single hop. We plan to 
generalise the algorithm for a specified number of hops so that 
we can use the reachability to reduce the number of target nodes. 
The vertex reach algorithm also needs to consider the temporal 
aspect of edges (e.g., freshness of the interactions) so that the 
flow of information can be achieved within a certain time, which 
is important for emergency scenarios.   
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