
Efficient Algorithms for Solving Overdefined Systems of Multivariate
Polynomial Equations

Nicolas Courtois1,3, Alexander Klimov2, Jacques Patarin3, and Adi Shamir4

1 SIS, Toulon University, BP 132, F-83957 La Garde Cedex, France
courtois@minrank.org

2 Dept. of Appl. Math. & Cybernetics, Moscow State University, Moscow, Russia
ask@ispras.ru

3 Bull CP8, 68, route de Versailles, BP45, 78431 Louveciennes Cedex, France
J.Patarin@frlv.bull.fr

4 Dept. of Applied Math. The Weizmann Institute of Science, Rehovot 76100, Israel
shamir@wisdom.weizmann.ac.il

Abstract. The security of many recently proposed cryptosystems is based on the difficulty of solving large
systems of quadratic multivariate polynomial equations. This problem is NP-hard over any field. When the
number of equations m is the same as the number of unknowns n the best known algorithms are exhaustive
search for small fields, and a Gröbner base algorithm for large fields. Gröbner base algorithms have large
exponential complexity and cannot solve in practice systems with n ≥ 15. Kipnis and Shamir [9] have recently
introduced a new algorithm called ”relinearization”. The exact complexity of this algorithm is not known, but
for sufficiently overdefined systems it was expected to run in polynomial time.
In this paper we analyze the theoretical and practical aspects of relinearization. We ran a large number of
experiments for various values of n and m, and analysed which systems of equations were actually solvable. We
show that many of the equations generated by relinearization are linearly dependent, and thus relinearization
is less efficient that one could expect. We then develop an improved algorithm called XL which is both simpler
and more powerful than relinearization. For all 0 < ε ≤ 1/2, and m ≥ εn2, XL and relinearization are expected

to run in polynomial time of approximately nO(1/
√

ε). Moreover, we provide strong evidence that relinearization
and XL can solve randomly generated systems of polynomial equations in subexponential time when m exceeds
n by a number that increases slowly with n.

Note: An extended version of this paper is available from the authors.

Key words: NP-completeness, cryptography, multivariate cryptography, polynomial equations over
finite fields, relinearization, Gröbner bases.

1 Introduction

In this paper we consider the problem of solving systems of multivariate polynomial equations. This problem
is NP-complete even if all the equations are quadratic and the field is GF (2). It has many applications
in cryptography, since a large number of multivariate schemes had been proposed (and cryptanalysed)
over the last few years. In addition, the problem arises naturally in other subareas of Mathematics and
Computer Science, such as optimization, combinatorics, coding theory, and computer algebra.

The classical algorithm for solving such a system is Buchberger’s algorithm for constructing Gröbner
bases, and its many variants (see, e.g., [1]). The algorithm orders the monomials (typically in lexicographic
order), and eliminates the top monomial by combining two equations with appropriate polynomial co-
efficients. This process is repeated until all but one of the variables are eliminated, and then solves the
remaining univariate polynomial equation (e.g., by using Berlekamp’s algorithm over the original or an
extension field). Unfortunately, the degrees of the remaining monomials increase rapidly during the elimi-
nation process, and thus the time complexity of the algorithm makes it often impractical even for a modest
number of variables. In the worst case Buchberger’s algorithm is known to run in double exponential time,
and on average its running time seems to be single exponential. The most efficient variant of this algorithm
which we are aware of is due to Jean-Charles Faugere (private communication [5, 6]) whose complexity in
the case of m = n quadratic equations is:

2 Courtois Klimov Patarin Shamir c©IACR

– If K is big, the complexity is proved to be O(23n) and is O(22.7n) in practice.
– When K =GF(2), the complexity is about O(22n) (which is worse than the O(2n) complexity of

exhaustive search).

In practice, even this efficient variant cannot handle systems of quadratic equations with more than about
n = 15 variables.

In this paper we are interested in the problem of solving overdefined systems of multivariate polynomial
equations in which the number of equations m exceeds the number of variables n. Random systems of
equations of this type are not expected to have any solutions, and if we choose them in such a way that one
solution is known to exist, we do not expect other interference solutions to occur. We are interested in this
type of systems since they often occur in multivariate cryptographic schemes: if the variables represent the
cleartext then we want the decryption process to lead to a unique cleartext, and if the variables represent
the secret key we can typically write a large number of polynomial equations which relate it to the known
public key, to the cleartexts, and to the ciphertexts.

Gröbner base techniques do not usually benefit from the fact that the number of equations exceeds the
number of variables, since they proceed by sequentially eliminating a single monomial from a particular
pair of equations. Unfortunately, this cryptographically important case received very little attention in
the vast literature on Gröbner base algorithms. To see that much better algorithms exist in this case,
consider a system of n(n + 1)/2 random homogeneous quadratic equations in n variables x1, ...xn. The
well known linearization technique replaces each product xixj by a new independent variable yij . The
quadratic equations give a system of n(n + 1)/2 linear equations in n(n + 1)/2 variables which can be
solved efficiently by Gauss elimination. Once we find all the yij values, we can find two possible values for
each xi by extracting the square root of yii in the field, and use the values of yij to combine correctly the
roots of yii and yjj .

At Crypto 99, Kipnis and Shamir [9] introduced a new method for solving overdefined systems of
polynomial equations, called relinearization. It was designed to handle systems of εn2 quadratic equations
in n variables where ε is smaller than 1/2. The basic idea of relinearization is to add to the given system
of linear equations in the yij additional nonlinear equations which express the fact that these variables
are related rather than independent. In its simplest form, relinearization is based on the commutativity of
multiplication of 4-tuples of variables: For any a, b, c, d, (xaxb)(xcxd) = (xaxc)(xbxd) = (xaxd)(xbxc) and
thus yabycd = yacybd = yadybc. There are several generalizations of relinearization, including higher degree
variants and a recursive variant. The relinearization technique can solve many systems of equations which
could not be solved by linearization, but its exact complexity and success rate are not well understood.

In the first part of this paper, we analyse the theoretical and practical aspects of the relinearization
technique. We concentrate in particular on the issue of the linear independence of the generated equations,
and show that many of the generated equations are provably dependent on other equations, and can thus
be eliminated. This reduces the size of the linearized systems, but also limits the types of polynomial
equations which can be successfully solved by the technique.

In the second part of the paper, we introduce the XL (eXtended Linearization) technique which can be
viewed as a combination of bounded degree Gröbner bases and linearization. The basic idea of this technique
is to generate from each polynomial equation a large number of higher degree variants by multiplying it
with all the possible monomials of some bounded degree, and then to linearize the expanded system. This is
a very simple technique, but we prove that it is at least as powerful as relinearization. We analyse the time
complexity of the XL technique, and provide strong theoretical and practical evidence that the expected
running time of this technique is:

– Polynomial when the number m of (random) equations is at least εn2, and this for all ε > 0.
– Subexponential if m exceeds n even by a small number.

If the size of the underlying field is not too large, we can sometimes apply this subexponential technique
even to an underdefined (or exactly defined) systems of equations by guessing the values of some of the
variables and simplifying the resulting equations.

Solving Multivariate Quadratic Equations 3

2 Experimental Analysis of the Relinearization technique

In this part we concentrate on systems of randomly generated homogeneous quadratic equations of the
form: ∑

1≤i≤j≤n

aijkxixj = bk, k = 1 . . .m (1)

The general idea of the relinearization method is to first use linearization in order to solve the system
of m linear equations in the n(n+1)/2 variables yij = xixj . The system is typically underdefined, and thus
we express each yij as a linear combination of l < n(n + 1)/2 new parameters t1, . . . , tl. We then create
additional equations which express the commutativity of the multiplication of xi which can be paired in
different orders. Let (a, b, c, d, . . . , e, f) ∼ (a′, b′, c′, d′, . . . , e′, f ′) denote that the two tuples are permuted
versions of each other. Then:

(xaxb)(xcxd)...(xexf) = (xa′xb′)(xc′xd′)...(xe′xf ′) (2)

This can be viewed as an equation in the yij variables, and thus also as an equation in the (smaller
number of) parameters ts expressing them. The new system of equations derived from all the possible
choices of tuples of indices and their permutations can be solved either by another linearization or by
recursive relinearization.

2.1 Degree 4 relinearization

We have applied the degree 4 relinearization technique to a large number of systems of randomly generated
homogeneous quadratic equations of various sizes. We always got linearly independent equations (except
when the field was very small). For several small values of n, the critical number of equations which make
the system (barely) solvable is summarized in the following table:

n m l n′ m′

6 8 13 104 105
8 12 24 324 336
10 16 39 819 825
15 30 90 4185 4200

Table 1. Fourth degree relinearization

n Number of variables in original quadratic system
m Number of equations in original quadratic system
l Number of parameters in the representation of the yij

n’ Number of variables in the final linear system
m’ Number of equations in the final linear system

Assuming the linear independence of the derived equations (which was experimentally verified), we can
easily derive the asymptotic performance of degree 4 relinearization for large n: The method is expected to
find the solution (in polynomial time) whenever the number of equations exceeds εn2 for ε > 1/2−1/

√
6 ≈

0.1. This case is thus well understood.

2.2 Higher degree relinearization

The problem becomes much more complicated when we consider degree 6 relinearizations, which are based
on all the equations of the form:

yabycdyef = yghyijykl, where (a, b, c, d, e, f) ∼ (g, h, i, j, k, l) (3)

Note that these equations are cubic in the free parameters ts (even if the original equations are quadratic),
so we need many more equations to relinearize it successfully.

4 Courtois Klimov Patarin Shamir c©IACR

Unlike the case of degree 4 relinearizations, many of these equations were experimentally found to
be linearly dependent. We have identified several distinct causes of linear dependence, but its complete
characterization is still an open research problem.

We first have to eliminate trivial sources of linear dependence. We only have to consider 6-tuples of
indices (a, b, c, d, e, f) which are sorted into non-decreasing order within each successive pair (a, b), (c, d),
(e, f), and then into non-decreasing lexicographic order on these pairs. For 6-tuples which contain 6 distinct
indices such as (0,1,2,3,4,5), we get 15 (rather than 6! = 720) legal permutations:

(0, 1, 2, 3, 4, 5) (0, 1, 2, 4, 3, 5) (0, 1, 2, 5, 3, 4)
(0, 2, 1, 3, 4, 5) (0, 2, 1, 4, 3, 5) (0, 2, 1, 5, 3, 4)
(0, 3, 1, 2, 4, 5) (0, 3, 1, 4, 2, 5) (0, 3, 1, 5, 2, 4)
(0, 4, 1, 2, 3, 5) (0, 4, 1, 3, 2, 5) (0, 4, 1, 5, 2, 3)
(0, 5, 1, 2, 3, 4) (0, 5, 1, 3, 2, 4) (0, 5, 1, 4, 2, 3)

so we can create 14 possible equations. But for the 6-tuple (0, 1, 1, 1, 1, 2), there are only 2 legal permu-
tations (0, 1, 1, 1, 1, 2) and (0, 2, 1, 1, 1, 1) and thus we get only one equation. In general, there are 32
types of repetition of values in the given 6-tuple, and each one of them gives rise to a different number of
equations. Table (2) summarizes the number of non-trivial equations which can actually be formed using
6-tuples for small values of n.

n equations

4 136
5 470
6 1309
7 3136
8 6720
9 13212
10 24255
11 42108
12 69784
20 1388520

Table 2. Number of non trivial equations defined by 6-tuples

2.3 Eliminating redundant linear equations

In this section we show that most of the non-trivial equations defined so far are redundant, since they can
be linearly derived from other equations. Consider a typical non-trivial equation generated by degree r
relinearization:

yi1i2yi3i4 . . . yir−1ir = yj1j2yj3j4 . . . yjr−1jr with (i1, . . . , ir) ∼ (j1, . . . , jr) (4)

We call such an equation special if the lists of y’s are the same on both sides of the equation, except
for exactly two y’s whose indices are permuted. For example, the non-trivial equation

y01y23y45y67y89 = y01y27y36y45y89 (5)

is special since 3 out of the 5 terms are common in the two expressions. For large n only a small fraction
of the equations are special, but we can prove:

Lemma: The set of special equations linearly span the set of all the non-trivial equations for the same
relinearization degree.

Proof (sketch): Consider two particular permutations A and B of the same r-tuple of indices, which
define one of the possible equations. A basic property of permutation groups is that any permutation can
be derived by a sequence of transpositions which affect only adjacent elements. Consider the pairing of
consecutive indices which defines the sequence of y’s. Applying a single transposition of adjacent indices

Solving Multivariate Quadratic Equations 5

can permute the indices of at most two y’s, and thus we can derive the equality of the product of y’s for any
two permuted versions of some subset of indices from the transitivity of the equality in special equations.

To further reduce the number of equations, recall that each yij variable is a linear combination of
a smaller number of parameters ts. Instead of having all the possible common products of yij variables
on both sides of the equation, it suffices to consider only common products of ts parameters, since each
product of the first type is expressible as a linear combination of products of the second type. We can thus
consider only the smaller number of equations of the form:

yabycdtetf · · · tg = yacybdtetf · · · tg = yadybctetf · · · tg (6)

The common t’s on both sides of the equation seem to be cancellable, and thus we are led to believe
that degree r relinearization is just a wasteful representation of degree 4 relinearization, which can solve
exactly the same instances. However, division by a variable is an algebraic rather than linear operation,
and thus we cannot prove this claim. The surprising fact is that these seemingly unnecessary common
variables are very powerful, and in fact, they form the basis for the XL technique described in the second
part of this paper. As a concrete example, consider a slightly overdefined system of 10 quadratic equations
in 8 variables. Experiments have shown that it can be solved by degree 6 relinearization, whereas degree
4 relinearizations need at least 12 quadratic equations in 8 variables. Other combinations of solvable cases
are summarized in table 3.

n m l n’ m”

4 8 2 9 9
4 7 3 19 19
4 6 4 34 40
4 5 5 55 86

5 9 6 83 83
5 8 7 119 129
5 7 8 164 215
5 6 9 219 443

6 10 11 363 394
6 9 12 454 548
6 8 13 559 806
6 7 14 679 1541

7 11 17 1139 1363
7 10 18 1329 1744
7 9 19 1539 2318

8 12 24 2924 3794
8 11 25 3275 4584
8 10 26 3653 5721

9 13 32 6544 9080
9 12 33 7139 10567
9 11 34 7769 12716

n Number of variables in the original quadratic system
m Number of equations in the original quadratic system
l Number of parameters in the representation of the yij

n’ Number of variables in the final linear system
m” number of equations which were required to solve the final linear system

Table 3. Experimental data for degree 6 relinearization

As indicated in this table, even the equations derived from special equations are still somewhat de-
pendent, since we need more equations than variables in the final linear system. We have found several
other sources of linear dependence, but due to space limitations we cannot describe them in this extended
abstract.

6 Courtois Klimov Patarin Shamir c©IACR

3 The XL Algorithm

We present another algorithm for solving systems of multivariate polynomial equations called XL (which
stands for eXtended Linearizations, or for multiplication and linearization). As we will see, each independent
equation obtained by relinearization exists (in a different form) in XL, and thus XL can be seen as a
simplified and improved version of relinearization.

Let K be a field, and let A be a system of multivariate quadratic equations lk = 0 (1 ≤ k ≤ m)
where each lk is the multivariate polynomial fk(x1, . . . , xn)− bk.

The problem is to find at least one solution x = (x1, . . . , xn) ∈ Kn, for a given b = (b1, . . . , bn) ∈ Km.
In all the following notations we suppose the powers of variables taken over K, i.e. reduced modulo q

to the range 1, . . . , q − 1, because of the equation aq = a of the finite field K.
We say that the equations of the form

∏k
j=1 xij ∗ li = 0 are of type xkl, and we call xkl the set of all

these equations. For example the initial equations A are of type l.
We also denote by xk the set of all terms of degree exactly k,

∏k
j=1 xij . It is a slightly modified extension

of the usual convention x = (x1, . . . , xn).
Let D ∈ IN. We consider all the polynomials

∏
j xij ∗ li of total degree ≤ D.

Let ID be the set of equations they span. ID is the linear space generated by all the xkl, 0 ≤ k ≤ D−2.
ID ⊂ I, I being the ideal spanned by the li (could be called I∞).
The idea of the XL algorithm is to find in some ID a set of equations which is easier to solve than the

initial set of equations I0 = A. As we show later, the XL algorithm with maximal degree D completely
contains the relinearization technique of degree D.

Definition 3.01 (The XL algorithm) Execute the following steps:

1. Multiply: Generate all the products
∏k

j=1 xij ∗ li ∈ ID with k ≤ D − 2.
2. Linearize: Consider each monomial in the xi of degree ≤ D as a new variable and perform Gaussian

elimination on the equations obtained in 1.
The ordering on the monomials must be such that all the terms containing one variable (say x1) are
eliminated last.

3. Solve: Assume that step 2 yields at least one univariate equation in the powers of x1. Solve this equation
over the finite fields (e.g., with Berlekamp’s algorithm).

4. Repeat: Simplify the equations and repeat the process to find the values of the other variables.

The XL algorithm is very simple, but it is not clear for which values of n and m it ends successfully, what
is its asymptotic complexity, and what is its relationship to relinearization and Gröbner base techniques. As
we will see, despite it’s simplicity XL may be one of the best algorithms for randomly generated overdefined
systems of multivariate equations.

Note 1: The equations generated in XL are in xkl and belong to I, the ideal generated by the li. There
is no need to consider more general equations such as l21 since they are in I4 and are thus in the linear
space generated by the equations of type x2l ∪ xl ∪ l.

Note 2: Sometimes it is more efficient to work only with a subset of all the possible monomials. For
example, when all the equations are homogeneous quadratic equations, it suffices to use only monomials
of odd (or even) degrees.

Note 3: A related technique was used by Don Coppersmith to find small roots of univariate modular
equations [2]. However, in that application he used LLL rather than Gauss elimination to handle the
generated relations, and relied heavily on the fact that the solution is small (which plays no role in our
application).

4 A toy example of XL

Let µ 6= 0. Consider the problem of solving:

Solving Multivariate Quadratic Equations 7{
x2

1 + µx1x2 = α (4.1)
x2

2 + νx1x2 = β (4.2)

For D = 4 and even degree monomials, the equations we generate in step 1 of the XL algorithm are
l ∪ x2l. Those are the 2 initial equations and 6 = 2 ∗ 3 additional equations generated by multiplying the
initial 2 equations li by the 3 possible terms of degree 2: x2

1, x1x2, x
2
2 ∈ x2.

x4
1 + µx3

1x2 = αx2
1 (4.3)

x2
1x

2
2 + νx3

1x2 = βx2
1 (4.4)

x2
1x

2
2 + µx1x

3
2 = αx2

2 (4.5)
x4

2 + νx1x
3
2 = βx2

2 (4.6)
x3

1x2 + µx2
1x

2
2 = αx1x2 (4.7)

x1x
3
2 + νx2

1x
2
2 = βx1x2 (4.8)

In step 2 we eliminate and compute:
From (4.1): x1x2 = α

µ −
x2
1

µ ;
From (4.2): x2

2 = (β − αν
µ) + ν

µx2
1;

From (4.3): x3
1x2 = α

µx2
1 −

x4
1

µ ;
From (4.4): x2

1x
2
2 = (β − αν

µ)x2
1 + ν

µx4
1;

From (4.8): x1x
3
2 = αβ

µ + (αν2

µ − βν − β
µ)x2

1 − ν2

µ x4
1;

From (4.6): x4
2 = (β2 − 2αβν

µ) + (2νβ
µ + βν2 − αν2

µ)x2
1 + ν3

µ x4
1;

Finally from (4.5) we get one equation with only one variable x1:

α2 + x2
1(αµν − βµ2 − 2α) + x4

1(1− µν) = 0.

5 Experimental results on XL

5.1 Experimental results with m = n over GF(127)

When m = n our simulation has shown that we need D = 2n in order to be able to solve the equations (so
the algorithm works only for very small n).

An explanation of this is given in the paragraph 6.2.
3 variables and 3 homogenous quadratic equations, GF (127)

XL equations ∆ B XL unknowns (B degrees)
type Free/All (Free+B-T-1) T type

l 3/3 -3 1 6 x2

xl ∪ l 12/12 -5 3 19 x3 ∪ x2 ∪ x
x3l ∪ xl 30/39 -2 3 34 x5 ∪ x3 ∪ x

x5l ∪ x3l ∪ xl 66/102 -1 4 70 x7 ∪ x5 ∪ x3 ∪ x
x6l ∪ x4l ∪ x2l ∪ l 91/150 0 4 94 x8 ∪ x6 ∪ x4 ∪ x2

x7l ∪ x5l ∪ x3l ∪ xl 121/210 0 5 5 125 x9 ∪ x7 ∪ x5 ∪ x3 ∪ x
x17l ∪ x15l ∪ x13l ∪ . . . 821/1845 4 9 825 x19 ∪ x17 ∪ x15 ∪ . . .

4 variables and 4 homogenous quadratic equations, GF (127)

XL equations ∆ B XL unknowns (B degrees)
type Free/All (Free+B-T-1) T type

l 4/4 -6 1 10 x2

x4l ∪ x2l ∪ l 122/184 -5 3 129 x6 ∪ x4 ∪ x2

x8l ∪ x6l ∪ x4l ∪ x2l ∪ l 573/1180 -3 5 580 x10 ∪ x8 ∪ x6 ∪ x4 ∪ x2

x12l ∪ x10l ∪ . . . 1708/4144 -1 7 1715 x14 ∪ x12 ∪ . . .
x14l ∪ x12l ∪ x10l ∪ . . . 2677/6864 0 8 2684 x16 ∪ x14 ∪ x12 ∪ . . .

8 Courtois Klimov Patarin Shamir c©IACR

T: number of monomials ∆ ≥ 0 when XL solves the equations, (∆ = Free+B-T-1)

B: nb. of monomials in one variable e.g. x1 Free/All: numbers of free/all equations of given type

5.2 Experimental results with m = n + 1 over GF(127)

When m = n + 1 our simulations show that we have to take D = n in order to obtain ∆ ≥ 0 and be able
to solve the equations.

4 variables and 5 homogenous quadratic equations, GF (127)

XL equations ∆ B XL unknowns (B degrees)
type Free/All (Free+B-T-1) T type

l 5/5 -4 1 10 x2

xl ∪ l 25/25 -8 3 34 x3 ∪ x2 ∪ x
x2l ∪ l 45/55 1 2 45 x4 ∪ x2

8 variables and 9 homogenous quadratic equations, GF (127)

XL equations ∆ B XL unknowns (B degrees)
type Free/All (Free+B-T-1) T type

l 9/9 -27 1 36 x2

x2l ∪ l 297/333 -68 2 366 x4 ∪ x2

x4l ∪ x2l ∪ l 2055/3303 -25 3 2082 x6 ∪ x4 ∪ x2

x5l ∪ x3l ∪ xl 4344/8280 -5 4 4352 x7 ∪ x5 ∪ x3 ∪ x
x6l ∪ x4l ∪ x2l ∪ l 8517/18747 3 4 8517 x8 ∪ x6 ∪ x4 ∪ x2

T: number of monomials ∆ ≥ 0 when XL solves the equations, (∆ = Free+B-T-1)

B: nb. of monomials in one variable e.g. x1 Free/All: numbers of free/all equations of given type

5.3 Experimental results with m = n + 2 over GF(127)

In case m = n+2 it may be possible to take D =
√

n+C but the data is still inconclusive. We are currently
working on larger simulations, which will be reported in the final version of this paper.

8 variables and 10 homogenous quadratic equations, GF (127)

XL equations ∆ B XL unknowns (B degrees)
type Free/All (Free+B-T-1) T type

l 10/10 -26 1 36 x2

x2l ∪ l 325/370 -40 2 366 x4 ∪ x2

x3l ∪ xl 919/1280 1 3 920 x5 ∪ x3 ∪ x

9 variables and 11 homogenous quadratic equations, GF (127)

XL equations ∆ B XL unknowns (B degrees)
type Free/All (Free+B-T-1) T type

l 11/11 -34 1 45 x2

x3l ∪ xl 1419/1914 -40 3 1461 x5 ∪ x3 ∪ x
x4l ∪ x2l ∪ l 3543/5951 2 3 3543 x6 ∪ x4 ∪ x2

T: number of monomials ∆ ≥ 0 when XL solves the equations, (∆ = Free+B-T-1)

B: nb. of monomials in one variable e.g. x1 Free/All: numbers of free/all equations of given type

Solving Multivariate Quadratic Equations 9

6 Complexity evaluation of XL

Given m quadratic equations with n variables, we multiply each equation by all the possible xi1 · . . . ·xiD−2 .
The number of generated equations (of type xD−2l) is about α = nD−2

(D−2)! ·m while we have about β = nD

D!

linear variables of type xD ∪ xD−2.
If most of the equations are linearly independent in XL (we will comment on this critical hypothesis

below), we expect to succeed when α ≥ β, i.e. when

m ≥ n2

D(D − 1)
(7)

We get the following evaluation

D ≥ about
n√
m

. (8)

6.1 Case m ≈ n

If m ≈ n, and if we expect most of the equations to be independent, we expect the attack to succeed
when D ≈

√
n. The complexity of the algorithm is thus lower bounded by the complexity of a Gaussian

reduction on about nD

D! variables, D ≈
√

n. Its working factor is thus at least

WF ≥
(

n
√

n

√
n!

)ω

where ω = 3 in the usual Gaussian reduction algorithm, and ω = 2.3766 in improved algorithms. By
simplifying this expression, we get the subexponential complexity bound of approximately:

WF ≥ eω
√

n(lnn
2

+1) (9)

Notes:

– When n is fixed the XL algorithm is expected to run in polynomial time (in the size of K).
– When K is fixed and n → ∞, the formula indicates that XL may run in sub-exponential time. We

will see however that this is likely to be true only when m − n is ”sufficiently” big while still m ≈ n.
This point is the object of the study below.

6.2 Case m = n

When m = n our simulation showed that D = 2n (instead of D ≈
√

n).
It is possible to give a theoretical explanation of this fact: If we look at the algebraic closure K

n of K
we have generally 2n solutions for a system of n equations with n variables. So the final univariate equation
we can derive should be generally of degree 2n.

6.3 Case m = n + 1

For m = n+1 our simulations show that D = n (instead of
√

n). The reason for this is not clear at present.

6.4 Case m = n + C, C ≥ 2

For m = n+C, C ≥ 2, it seems from our simulations that even for small values of C we will have D ≈
√

n.
This remark will lead to the FXL algorithm below.

In order to know for what value of C it is reasonable to assume that D ≈
√

n we need more simulations.
Many of them will be included in the extended version of this paper, however given the limited computing
power available, the results do not give a precise estimation of C.

10 Courtois Klimov Patarin Shamir c©IACR

6.5 Case m = εn2, ε > 0

Let 0 < ε ≤ 1/2 and m = εn2. We expect XL to succeed when

D ≈ d1/
√

εe. (10)

The working factor is in this case WF ≈ nωd1/
√

εe

(d1/
√

εe)! . So the algorithm is expected to be polynomial (in
n) with a degree of about ω/

√
ε.

Remark: The fact that solving a system of ε · n2 equations in n variables was likely to be polynomial
was first suggested in [9]. Despite the fact that the relinearization is less efficient than what could have
been expected, the complexity of solving εn2 equations in n variables is still expected to be polynomial.

7 The FXL algorithm

In our simulations it is clear that when m ≈ n, the smallest working degree D decreases dramatically when
m − n increases. For example, if m = n then D = 2n, if m = n + 1 then D = n, and if m is larger we
expect to have D ≈

√
n.

We are thus led to the following extension of XL called FXL (which stands for Fixing and XL):

Definition 7.01 (The FXL algorithm)

1. Fix µ variables (see below for the choice of µ).
2. Solve with XL the resultant system of m equations in n− µ variables.

We choose the smallest possible µ such that in step 2 we have D ≈
√

n, in order to have minimal
complexity in step 2.

The complexity of the FXL algorithm is qµec
√

nlnn, as we have qµ choices for µ variables in step 1, and
XL is ec

√
nlnn for D ≈

√
n.

How µ increases when n increases is an open question. We can notice that if µ = O(
√

n), then the
complexity of the FXL algorithm would be about qO(

√
n)eC

√
nlnn, which is approximately eC

√
n(lnn+lnq).

Thus the FXL algorithm might be sub-exponential, even when m = n, but we have no rigorous proof of
this conjecture.

8 XL and relinearization

In this part we explain how relinearization can be simplified and leads to XL.
We have formally proved that the set of equations defined by a successful relinearization of degree D

is equivalent to a subset of equations derived from the XL algorithm with the same D.
Given a system of m quadratic equations in n variables A.
The proof is based on a series of effective syntactic transformations on the system of equations C derived

from the degree D relinearization of A.
In order to simplify the proof we restricted to the case of one iteration of the relinearization method

and to the homogenous equations case.
Note: It is not obvious to prove the claim, because it is not enough to show that the equations we obtain

in a relinearization are contained in XL equations modulo some correspondence. Indeed in a polynomial
elimination we have polynomials of very small degree (usually linear) that are always included in the ideal
generated by the initial polynomials. However in order to find them we may need to generate a great many
higher degree polynomials.

Therefore we need to find an effective correspondence between relinearization and XL, and this effec-
tiveness must be of the sort to be able to transform a whole working relinearization computation process
into an algorithm that is a subcase of XL.

Solving Multivariate Quadratic Equations 11

8.1 The structure of the proof.

The proof is based on a series of effective syntactic transformations on the system of equations C derived
from the degree D relinearization of A.

On one hand, we transform the original relinearization.

1. We start from a working relinearization algorithm with n variables, m equations and with D tuples.
2. From the initial set of equations that we get in relinearization called C, we generate another set of

equations D that is an improved form of relinearization with less equations and less variables. This
transformation is not bijective, but we show it preserves the feasibility of relinearization.

3. Then we transform D and E to equations on different variables, this transformation is bijective modulo
an equivalence relation on the monomials, D and it is also shown to preserve the feasibility.

On the other hand, we do an effective, parallel construction.

1. We write the substitution that lead to C, as a series of single substitutions, and we construct C′ that
contains the same equations written in a ‘special form’ that we introduce. We define a property called
special degree SpecDeg and we show that SpecDeg(C′) ≤ D.

2. We transform C′ to D′. We show that D′ are the equations of D written in a special form, and with
SpecDeg(D′) ≤ D.

3. Then we transform D′ to E ′. We show that E ′ ⊂ ID, and that they are an effective expression of the
equations of E as a subcase of XL algorithm with the same D.

The following theorem immediately follows from all the above steps:

Theorem 8.11 (Relinearization as a subcase of XL algorithm.) For any working relinearization al-
gorithm with n variables, m equations and with D tuples, and the equations C. We have constructed a set
of equations E that preserves the feasibility of the algorithm. Then we have constructed

E ′ ⊂ ID,

which is an effective expression of the equations of E as the subcase of XL algorithm.

Since the proof is constructive, one must be very careful about the details and we need to describe
precisely each step. We are going to explain the whole process on an example, with the preservation proofs
that come at the end.

Comments: One might say that the relinearization method is as a syntaxical transformation, and E gives
a semantics (a meaning) to the equations obtained in the relinearization. It is not exactly all the equations
that appear in the XL algorithm, and such is not the claim of this proof. We only prove that they are
contained in XL. However we claim that it fills 90% of the XL equations space. The XL equation sets are
smaller, for example, to solve 11 equations with 9 variables relinearization generated 12716 equations, 7769
of them were independent, while with XL the same computation is done with only about 3543 equations.

So we do not claim that relinearization gives exactly XL, but that XL does the same computation
simpler and with less equations.

The interest of the proof is small, compared to the understanding that the whole idea of adding new
variables and substituting is bad because it is bounded to generate a great many dependent equations.
It has been discovered in the relinearization (in the beginning of the present paper), however there is a
general reason it is so. Let us explain this reason first on a small example:

12 Courtois Klimov Patarin Shamir c©IACR

Why adding new variables is a bad idea: Let the equation to solve be l1 = 0 with

l1 = y13 + y12 − 1.

A parametrized solution to such equation(s) might contain:

y13 = 1− y12.

We observe that substituting a parametrized solution of the system to equations like, let’s say y12y34 =
y13y24 is equivalent to adding terms like l1y24 to these equations.

This is necessarily redundant because the li are linear in the yij , the number of all the liyjk is usually
about n3

2 while they live in a space of dimension n3

3! .
Such linear dependencies are commonly called syzygies in the vocabulary of Gröbner bases. Relineariza-

tion added new variables, and thus new syzygies. We claim (informal statement) that our transformation
(described below) eliminates all the syzygies in the li and the yij . However it does not eliminate the syzygies
between the li and the xi. There is a method that removes them, according to the author of it [5]. It is
called F4, is much more complex compared to XL, see [5], and it is unclear if it really produces better
results in practice.

Comments, conclusion: Finally, the only (but a very important) contribution of the relinearization method
is by drawing attention to the fact that algorithms similar to XL (known at least since the 80’s) are likely
to be subexponential when m > n while a lot of people working with Gröbner bases have been considering
mostly the case m = n.

Presentation of the original relinearization.

Linearization algorithm (folklore) consists of solving a system of equations, considering it as a system of
linear equations. To achieve this simply add new variables that correspond to all the monomials present
in the system.

Example: Given εn2 quadratic equations with n variables with ε ≥ 1/2, we put yij = xixj and we
have at least M linear equations with M variables, M ≈ n2/2.

Definition 8.12 (Trivial Equations) We call trivial all the equations on the yij that reduce to 0 = 0
after substitution of the yij = xixj. Example: y12y34 = y24y13. In fact they are generated by partitions of
the set of indexes, in parts of size 1 and 2.

When m < n2/2 linearization doesn’t work any more, and in this case we do what is called the relin-
earization technique [9]: We increase the number of equations by adding some new (but trivial) equations
that express how the new variables yij are related.

Then we get a new set of bounded degree equations that is expected to be easier solve that the initial
one.

Detailed description of the relinearization. We restrict to single-iteration relinearization applied to solving
a set of homogenous quadratic equations.

We write the system to solve
fi(x1, . . . , xn) = ci, i = 1..m

as
A = {li = 0}

with li = fi − ci.

Solving Multivariate Quadratic Equations 13

1. Parametrize. Let yij = xixj be new variables. We rewrite the initial m equations A = {li = 0}i=1..m

as linear expressions in about n2/2 variables {yij}. It is called A′ = {l′i = 0}.
We are supposed to find a parametric solution of this linear system which expresses each of yij as a
linear expression in some n2/2 − m = (1/2 − ε)n2 new variables zi. On a field, it is an unnecessary
complication, because if we consider a maximum rank independent set among the yij expressions, we
inverse this linear transformation, and express all the other yij as a function of the independent set.
Therefore we may suppose without loss of generality that the zi are a subset of the yij variables.
Let SA′ be such a parametric solution of A′.

2. Trivial equations. We write trivial equations in all the variables yij of degree at most D > 1, e.g.
y12y34 = y13y24. These algebraically dependent equations B are linearly independent as multivariate
polynomials of degree ≤ D. Let MB be the number of equations in B.

3. Substitution. Let C be the set of equations that we obtain when substituted all the variables of B
with their linear expressions of SA′ (In a way C = B ◦ SA′).
Let MC be the number of linearly independent equations in C. Let TC be the number of all monomials
in C.

4. Solving. For some degree D we expect:

MC ≥ TC (11)

and we solve by Gauss elimination on the TC terms.

Starting from the description of relinearization above, we will subsequently transform it. The whole
proof will be explained on a simple example.

A small example Let a system to solve be

A =


0 = l1
...
0 = ln

Let one of the equations in A be

l1 = f1(x)− c1 = x1x2 + x1x3 − 1.

In the transformed (linearized) system A′ the same equation becomes:

A′ =
{

0 = l′1 − y12 + y13 − 1
...

The parametric solution could be SA′ =


y13 = 1− y12

y12 = y12
...

In SA′ , all the differences between both sides of the ‘=‘ sign are simple linear combinations of initial
equations l′j ∈ A′.

We generate the set of all trivial equations with at most D indexes called B, in our example D = 4 and
the trivial equations contain for example this one:

B =

{
0 = y12y34 − y13y24
...

.

For each trivial equations of B we substitute the parametric solution SA′ . Thus in the equation above
we substitute y13 = 1− y12 and get:

C =

{
0 = y12y34 − (1− y12)y24
...

.

The key argument of the whole construction is the following:

14 Courtois Klimov Patarin Shamir c©IACR

8.2 Decomposing substitutions and special equations.

Any substitution of the yij can be decomposed as a chain of single substitutions of one variable yij . Each
single substitution is equivalent to adding a linear combination of l′j multiplied by a multiplicative term in
yij of degree ≥ 0.

Definition 8.21 A ‘special degree’ of a product of the l′j and the yij is:

SpecDeg
def
= 2 · (number of l′i with repetitions) +

+ (number of different indexes in the yij with repetitions)
A ‘special degree’ (SpecDeg) of an expression being a sum of products of the l′j and the yij, is by definition

the Max of SpecDeg for all the terms in the expression.

Definition 8.22 We call ‘special expressions’ the sums of products of the l′j and the yij.

Definition 8.23 We call ‘true special expressions’ sums of the special expressions with all terms of the
form l′i ·(a special expression). The reason is we call them ‘true’, is that in practical equations solving l′i = 0,
and it means that the terms containing a factor l′i are the equations that are true each time x satisfies the
intial equations.

The trivial equations of B are special equations with SpecDeg(B) ≤ D. We observe that

1. SpecDeg of an expression does not increase when we substitute an yij by it’s linear expression in other
yij .

2. SpecDeg of an expression does not increase when we rewrite this substitution of yij as adding an element
of form l′i · (a special expression).

3. SpecDeg of a special expression does not increase when we substitute an l′j by it’s linear expression
in the yij . An important detail of the proof is that we never do this last thing, unless a term is
quadratic in the l′j (explained later).

We decompose a set of substitutions that lead from B to C into single substitutions, and each time we
rewrite it conserving exactly the original equations, and adding ‘true special expressions’ (have to contain
only terms being a multiple of one of the l′i). We have described an effective way to express C as special
expressions with SpecDeg(C′) ≤ D.

At the end we may eliminate all the l′i · l′j products by substituting one of the l′i by it’s expression in
the yij . This operation also does not increase the SpecDeg.

We have just demonstrated that all the equations C are linear combinations of:

– trivial equations of B with SpecDeg ≤ D.
– special expressions with SpecDeg ≤ D and terms with at least one l′i.

Let C′ be this (equivalent) way of writing C.
On our example:

C =

{
0 = y12y34 − (1− y12)y24
...

.

C′ =
{

0 = (y12y34 − y13y24) + y24l
′
1

...
.

C and C′ are two different representations of the same equations.

Solving Multivariate Quadratic Equations 15

8.3 Eliminating a part of the equations, C 7→ D, C′ 7→ D′.

The next step of the transformation is to eliminate in C some terms and some equations, in order to have
only one term with the same set of indexes present. We do it rearranging indexes in increasing order, it
gives:

D =

{
0 = y12y34 − y24 − y12y24
...

.

It will be shown later that this transformation preserves the feasibility of the original algorithm. (In
practice also reduces the size of the system to solve.)

We do the same transformation on C′ (replacing the terms in the yij but without changing the l′i). It
preserves SpecDeg and we call D′ the output of this transformation on C′. On the example

D′ =
{

0 = (y12y34 − y12y34) + l′1y24
...

.

D and D′ are two different representations of the same equations.

8.4 Return to the original variables: D 7→ E, D′ 7→ E ′.

Let E be what we get when we substitute all the variables yij ← xixj in the equations D:

E =

{
0 = x1x2x3x4 − x2x4 − x1x

2
2x4

...
.

For D′ we do the same thing, we substitute yij ← xixj . We also substitute the variables absent in D,
namely we substitute l′j ← lj . We don’t replace (yet) the li with their expressions in the xi, Thus we get
E ′:

E ′ =
{

0 = 0 + l1x2x4
...

.

Now we re-write the series of all the successive steps that led to C′. Then for each step we replace
yij ← xixj and l′i ← li.

We note that:

1. The trivial equations will all disappear in this substitution.
2. Each term added was a ‘true special expression’ of SpecDeg≤ D (it contained at least one l′i). It will

be replaced by a term of the form (li) ·
∏

j xj with the maximum degree D − 2 in the xi.

Since E and E ′ are two different representations of the same equations, given the form of E ′ we have
proven that:

All the equations in E ′ are in what we call

ID = xD−2l ∪ xD−3l ∪ . . . ∪ l ⊂ I

It is the subset of the ideal I generated by the equations li with the total degree upper bounded by D.
On our example, we have effectively obtained in E ′ the equation

l1x2x4 ∈ x2l ⊂ I4.

And in E there is the same equation but expanded.

16 Courtois Klimov Patarin Shamir c©IACR

8.5 Preservation proofs.

We have a precise construction how to obtain the same equations E under a different form E ′ that are
explicitely proving their being in xD−2l ∪ xD−3l ∪ . . . ∪ l.

The only thing that remain to be proven is that the transformations

C → D → E

preserve the solvability of equations.

First preservation proof. We start with an original relinearization that works with a given (n, m,D).
We usually have the number of variables yij (about n2/2) much bigger than the number m of initial

equations in A. Thus most of the expressions of yij in the parametric solution SA′ are synonymous yij = yij .
They will not be changed in substitution of trivial equations B by SA′ and many of the equations of B will
remain trivial in C. To avoid these equations we constructed D:

Construction 8.51 Detailed construction of D. Repeat the substitutions that led to C and construct from
the beginning D instead, writing all the indexes arranged in the increasing order, so the equations that
remain trivial will be eliminated from the beginning without ever generating them.

For a given term Y =
∏

yij of degree ν let Y be the the class of all terms that have the same set of
indexes. The cardinal of Y is:

#Y = Θν = (2ν − 1)(2ν − 3)(2ν − 5) = (2ν)!/(2νν!).

Since Y has Θν elements, we have put in B exactly Θν − 1 corresponding trivial equations. Trivial
equations that are in B and remain the same in C will disappear in D because their terms have the same
set of indexes. Therefore:

Proposition 8.52 In each equivalence class Y the difference between C and D is:

– At most Θν − 1 equations disappear (those that exist in C).
– Exactly Θν − 1 variables disappear.

Example: Let us suppose that y12, y34, y13 and y24 are unchanged in SA′ . Each time we write y13y24 in C,
we write y12y34 instead in D. There are Θ2 = 2 terms related to this one, we suppress 1 = Θ2−1 equations
and also we have removed 1 = Θ2 − 1 variables.

Globally:

Corollary 8.53 If there are more equations than terms in C it is also true for D.

TC −MC = TD −MD (12)

Second preservation proof. We recall the construction: we substitute yij = xixj in all equations D. We
call E these equations, in fact we could have generated them directly without writing C and D equations.

It’s obvious that the numbers of terms and independent equations are the same in D and E :

Proposition 8.54 If there is more equations than terms in C it is also true for D and E.

TC −MC = TD −MD = TE −ME (13)

The whole construction and proof is completed now.

Solving Multivariate Quadratic Equations 17

Relinearization vs. XL in practice In practice, XL can be really better than relinearization. For
example, to solve 11 equations with 9 variables, relinearization requires the solution of a linear system with
7769 variables (see Table 3), whereas XL requires the solution of a system with only 3543 variables (see
5.3).

Moreover, XL can use any D while relinearization can only use composite values of D. For example,
to solve 10 quadratic equations with 8 variables we had to use the relinearization algorithm with D = 6,
but the XL algorithm could use the smaller value of D = 5. Consequently, the system of linear equations
derived from linearization had 3653 variables, while the system of linear equations derived from XL had
only 919 variables (see 5.3).

9 Gröbner bases algorithms

One way of implementing the XL algorithm is to combine the equations in an organised way, rather than
to multiply them by all the possible monomials. This would naturally lead to the classical Gröbner-bases
algorithms.

We define Ixi1
,...,xij

as a subspace of all the equations of I that can be written with just the variables
xi1 , . . . , xij . The XL method checks if there are any (univariate) equations in some (ID)x1 .

The Gröbner bases algorithms construct a basis of a space of (univariate) equations in Ix1 =
⋃

k(Ik)x1 .
However in order to get there, they compute successively bases of the Ix1,...,xk

for k = n . . . 1.
It is not clear what is the best way to use Gröbner bases to solve our problem of overdefined systems

of equations. A large number of papers have been written on Gröbner base techniques, but most of them
concentrate either on the case of fields of characteristic 0, or look for solution in an algebraic closure of
K

n, and the complexity analysis of these algorithms is in general very difficult.

10 Cryptanalysis of HFE with XL/relinearization attacks

The HFE (Hidden Field Equations) cryptosystem was proposed at Eurocrypt 1996 [11]. Two different
attacks were recently developed against it [3, 9], but they do not compromise the practical security of HFE
instances with well chosen parameters. Moreover it does not seem that these attacks can be extended
against variations of the HFE scheme such as HFEv or HFEv− described in [8].

The first type of attack (such as the affine multiple attack in [11]) tries to compute the cleartext from
a given ciphertext. It is expected to be polynomial when the degree d of the hidden polynomial is fixed,
and not polynomial when d = O(n). In [3] Nicolas Courtois presented several improved attacks in this
category, with an expected complexity of nO(ln(d)) (which is still not polynomial) instead of the original
complexity of nO(d).

A second line of attack tries to recover the secret key from the public key. The Kipnis-Shamir attack
described in [9] was the first attack of this type. It is also expected to be polynomial when d is fixed but
not polynomial when d = O(n).

To test the practicality of these attacks, consider the HFE ”challenge 1” described in the extended
version of [11] and in [4]. It is a trapdoor function over GF (2) with n = 80 variables and d = 96. A direct
application of the FXL to these 80 quadratic equations requires Gaussian reductions on about 809/9! ≈ 238

variables, and thus its time complexity exceeds the 280 complexity of exhaustive search, in spite of its
conjectured subexponential asymptotic complexity. The best attack on the cleartext (from [3]) is expected
to run on ”challenge 1” in time 262. The best attack on the secret key (from [9]) is expected to run in
time 2152 when XL is used, and to take even longer when relinearization is used. A possible improvement
of this attack (from [3], using sub-matrices) runs in time 282, which is still worse than the 280 complexity
of exhaustive search.

18 Courtois Klimov Patarin Shamir c©IACR

11 Conclusion

In this paper we studied the relinearization technique of Kipnis and Shamir, along with several improve-
ments. We saw that in high degree relinearizations the derived equations are mostly linearly dependent,
and thus the algorithm is much less efficient than originally expected.

We have related and compared relinearization to more general techniques, such as XL and Gröbner
bases. We have proved that XL ”contains” relinearization and demonstrated that it is more efficient in
practice. We also concluded that the complexity of solving systems of multivariate equations drops rapidly
when the number of equations exceeds the number of variables (even by one or two). Consequently, over
a small field the FXL algorithm may be asymptotically subexponential even when m = n, since it guesses
the values of a small number of variables in order to make the system of equations slightly overdefined.
However in many practical cases with fixed parameters m ≈ n, the best known algorithms are still close
to exhaustive search.

Finally, when the number of equations m and the number of variables n are related by m ≥ εn2 for any
constant 0 < ε ≤ 1/2, the asymptotic complexity seems to be polynomial with an exponent of O(1/

√
ε).

References

1. Iyad A. Ajwa, Zhuojun Liu, and Paul S. Wang: ”Grobner Bases Algorithm”, ICM Technical Reports, February 1995, see
http://symbolicnet.mcs.kent.edu/icm/reports/index1995.html.

2. Don Coppersmith: ”Finding a small root of a univariate modular equation”; Proceedings of Eurocrypt’96, Springer-Verlag,
pp.155-165.

3. Nicolas Courtois: The security of Hidden Field Equations (HFE); Cryptographers’ Track Rsa Conference 2001, San
Francisco 8-12 Avril 2001, LNCS2020, Springer-Verlag.

4. Nicolas Courtois: The HFE cryptosystem home page. Describes all aspects of HFE and allows to download an example
of HFE challenge. http://hfe.minrank.org

5. Jean-Charles Faugère: ”A new efficient algorithm for computing Gröbner bases (F4).” Journal of Pure and Applied Algebra
139 (1999) pp. 61-88. See www.elsevier.com/locate/jpaa

6. Jean-Charles Faugère: ”Computing Gröbner basis without reduction to 0”, technical report LIP6, in preparation, source:
private communication.

7. Rudolf Lidl, Harald Niederreiter: ”Finite Fields”; Encyclopedia of Mathematics and its applications, Volume 20, Cambridge
University Press.

8. Aviad Kipnis, Jacques Patarin, Louis Goubin: ”Unbalanced Oil and Vinegar Signature Schemes” ; Eurocrypt 1999,
Springer-Verlag, pp. 216-222.

9. Aviad Kipnis, Adi Shamir: ”Cryptanalysis of the HFE Public Key Cryptosystem”; Proceedings of Crypto’99, Springer-
Verlag.

10. Neal Koblitz: ”Algebraic aspects of cryptography”; Springer-Verlag, ACM3, 1998, Chapter 4 ”Hidden Monomial Cryp-
tosystems”, pp. 80-102.

11. Jacques Patarin: ”Hidden Field Equations (HFE) and Isomorphisms of Polynomials (IP): two new families of Asymmetric
Algorithms”; Eurocrypt’96, Springer Verlag, pp. 33-48. An extended up-to-date version can be found at http://www.univ-
tln.fr/∼courtois/hfe.ps

