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Abstract

t-distributed Stochastic Neighborhood Embedding (t-SNE) is widely used for visualizing single-
cell RNA-sequencing (scRNA-seq) data, but it scales poorly to large datasets. We dramatically 
accelerate t-SNE, obviating the need for data downsampling, and hence allowing visualization of 
rare cell populations. Furthermore, we implement a heatmap-style visualization for scRNA-seq 
based on one-dimensional t-SNE for simultaneously visualizing the expression patterns of 
thousands of genes.

1. Main

scRNA-seq enables high-throughput transcriptome profiling at the individual cell level and 
is increasingly being used to study cell-to-cell heterogeneity in both physiologic and disease 
processes. Data visualization techniques have played a pivotal role in both analyzing the 
expression of different marker genes in known cell populations and in identifying new cell 
types. Over the last decade data visualization using t-SNE has become a cornerstone of 
scRNA-seq analysis. t-SNE is used to embed a scRNA-seq dataset into a low-dimensional 
space such that proximal pairs of single cells in the high-dimensional transcriptome space 
remain proximal in the low dimensional space. The embedding is often colored by the 
expression levels of a gene of interest, one gene at a time.

Several difficulties arise when applying t-SNE to scRNA-seq data. The number of cells 
profiled in scRNA-seq experiments has been growing exponentially,1 with recent datasets 
measuring the expression of 30,000 genes in over 1,000,000 cells.2 Profiling such large 
numbers of cells facilitates the characterization of rare and moderately-sized subpopulations 
not apparent in smaller samples. However, existing algorithms for constructing t-SNE 
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embeddings are computationally expensive, often necessitating downsampling of the cells 
prior to running t-SNE, which can in turn result in rare cell populations being missed. 
Furthermore, removal of the few cells which may express a given marker gene can make 
even moderately sized populations difficult to identify.

An additional difficulty with applying t-SNE to scRNA-seq data is that overlaying the 
expression levels of marker genes on separate 2D t-SNE plots is cumbersome owing to the 
large number of marker genes for each dataset. Practically, only a modest number of such 
plots can be visually compared.

In this paper, we present two improvements for the application of t-SNE to scRNA-seq data 
visualization. First, we present FFT-accelerated Interpolation-based t-SNE (FIt-SNE), an 
algorithm for rapid computation of one- and two-dimensional t-SNE based on polynomial 
interpolation and further accelerated using the fast Fourier transform. We also present t-SNE 
heatmaps, a heatmap-style visualization method based on one-dimensional t-SNE, which 
simultaneously visualizes expression patterns of hundreds to thousands of genes.

FIt-SNE.

t-SNE is often run many times with different parameters and initializations, so that the 
embedding most consistent with prior knowledge can be chosen. FIt-SNE is a dramatically 
accelerated implementation of t-SNE, allowing practitioners to analyze entire datasets as 
opposed to first downsampling. By doing so, FIt-SNE allows practitioners to identify known 
populations using marker genes which may not be expressed in sufficiently many cells post-
downsampling. For example, we used FIt-SNE to embed a dataset consisting of 1.3 million 
mouse brain cells2 and identified two known cell types from the Allen Brain Atlas3 which 
cannot be identified using a random subset of 50,000 cells (Figure 1), as the latter does not 
have enough cells expressing both markers. Specifically, GABAergic neurons from the 
caudal ganglionic eminence which express marker genes Sncg and Slc18a8 and a population 
of vascular leptomeningeal cells (VLMC) expressing marker genes Spp1 and Col15a1 can 
both be identified using only the full embedding, as opposed to a random subset.

The t-SNE algorithm solves an optimization problem for embedding the cells (points) in a 
low-dimensional space based on their transcriptome similarities. Formally, this problem is 
equivalent to a physical system of particles (points) in which particles exert repulsive and 
attractive forces on each other. Naively implemented, computing the force each particle 
exerts on all the other particles is prohibitively slow; we devise approximation schemes for 
evaluating the repulsive and attractive forces that can scale to millions of points.

Computation of the repulsive forces between every pair of the N points is the most time-
consuming step in t-SNE. Instead of calculating the interaction of each point with all the 
other points (which requires N2 computations), Barnes-Hut (BH) t-SNE4 —the fastest 
published t-SNE implementation—uses a tree structure to compress the interaction between 
distant cells, hence requiring N log N computations. We take a different approach by 
defining a small number p of interpolation nodes, which “mediate” the interaction between 
the points. First, we calculate the interaction of each point with those nodes (p · N 
computations). Then we compute the interaction of those nodes with each other (p2 naively, 
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p log p using FFTs). Finally, we interpolate from the interpolation nodes to all of the original 
points (also p · N computations). Hence, we can approximate the repulsive force in ~ 2p · N 
computations, as opposed to N2 or N log N (Table 1 and S1). We prove rigorous bounds on 
the approximation error in the Online Methods; in particular, we show that the number of 
interpolation nodes p required for a certain level of accuracy is independent of N. We set the 
default FIt-SNE parameters to give an approximation at least as accurate as BH t-SNE’s 
default setting (Figure S1 and Section §8.3.3).

The attractive force between two points decays exponentially fast as a function of the 
distance between them, so that a point only exerts a significant attractive force on its nearest 
neighbors. In BH t-SNE, the k–nearest neighbors of each point are identified using vantage-
point (VP) trees5 which tend to be prohibitively expensive for high-dimensional datasets. In 
FIt-SNE, there are two options for identifying nearest neighbors—multithreaded VP trees 
and approximate nearest neighbors using ANNOy6 (Tables 2 and S2). Multithreaded VP 
trees are exactly as accurate as the VP tree implementation of BH t-SNE, just substantially 
faster. The use of approximate nearest neighbors is even faster, but could theoretically 
obscure subtle detail. In practice, however, we find the resulting embedding quality to be 
essentially indistinguishable (Figures S2, S3, S4, and S5).

Although FIt-SNE makes it practical to run t-SNE on datasets with millions of points, the 
choice of parameters which lead to an ideal embedding is an active area of research. For 
example, when the number of points is large, the attractive forces must be exaggerated 
during the beginning stages of t-SNE in order to ensure optimal embedding of large numbers 
of points7 (Supplemental Figure S6). While this paper was in revision, a new paper by 
Belkina and colleagues (2018)8 proposed an approach for automatically determining the step 
size and the optimal number iterations to exaggerate the attractive forces, which they 
validate using CyTOF and scRNA-seq datasets. In another very recent work, Kobak and 
Berens (2018)9 proposed a protocol for exploratory analysis of scRNA-seq data using FIt-
SNE (including suggested parameter choices), which leads to dramatically improved 
embedding quality, particularly with regard to preservation of multi-scale and global 
structure.

Heatmaps.

Exploration of scRNA-seq data using t-SNE consists of tiling two-dimensional t-SNE plots, 
each colored by the expression pattern of a different marker gene. Although this information 
is presented in two dimensions, users are most interested in which genes are associated with 
which clusters, not the shape or relative locations of the clusters. It has been shown that t-
SNE preserved the cluster structure of well-clustered data regardless of the embedding 
dimension,7 and thus, one-dimensional t-SNEs usually contain the same information as two-
dimensional t- SNEs. Furthermore, multiple one-dimensional t-SNEs, each using different 
groups of markers, have been previously used to visualize CyTOF data10 We develop a 
related approach which exploits the compactness of a single one-dimensional embedding to 
enable simultaneous exploration of expression patterns of hundreds to thousands of genes in 
heatmap form. This approach also allows us to discover new marker genes and organize the 
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genes based on their smoothed expression patterns along the one-dimensional t-SNE 
representation of the cells.

In t-SNE Heatmaps, we first construct a one-dimensional t-SNE embedding of the cells. 
Next, we discretize the one-dimensional t-SNE embedding into b bins, where b is user 
specified, and represent each gene by the sum of its expression in the cells contained in each 
bin. We then visualize these vectors in heatmap format (i.e. each row is a gene and each 
column is a bin) using an interactive visualization tool called heatmaply.12 Notably, unlike 
dotplots which present the average expression of genes in each cluster (e.g. Figure 2A of 
Shekhar et al. (2016)11), it does not require pre-clustering, and hence can discover patterns 
in poorly clustered data that might be missed if averaging across clusters.

Various strategies can be used to select the genes presented in the heatmap. If the user has 
prior knowledge as to genes of interest, these genes can be presented, along with genes 
whose onedimensional t-SNE binned representation are most similar, allowing for marker 
gene discovery. If the user wants to identify genes specific to clusters, a “metagene” can be 
constructed, which is 1 on cells in a cluster and 0 elsewhere. Then genes whose one-
dimensional t-SNE binned representation are most similar to these “metagenes” (ie. specific 
to a cluster) can be presented in the heatmap. “Metagenes” for combinations of clusters can 
also be constructed.

Figure 2 demonstrates t-SNE heatmaps using retinal bipolar cells from Shekhar et al. (2016).
11 In this work, scRNA-seq was used to profile ~ 25,000 mouse retinal bipolar cells and 
classify them into 15 types. Using graph-based clustering techniques, cells were clustered, 
and marker genes corresponding to each of the putative subtypes of bipolar cells were 
subsequently identified. We embedded these bipolar cells using 1D t-SNE and found the 25 
genes most associated with the marker genes listed in Table S2 of Shekhar et al. (2016). We 
also found the 25 genes most associated with “metagenes” for each cluster in the 2D t-SNE. 
The resulting t-SNE heatmap (Figure 2, Supplementary Figures S7, and S8) identified all 16 
of the new bipolar cell markers listed in Figure 2A of Shekhar et al. (2016). The clustered 
structure of the dataset is evident in the heatmap, and the user can zoom in to identify the 
genes that characterize and distinguish different regions of the embedding. We note that the 
structure is substantially clearer than a heatmap of the same genes binned using standard 
hierarchical clustering, even when the rows are ordered as in the t-SNE heatmaps (Figure 
S9).

2. Methods

R, Python, and Matlab implementations of FIt-SNE and an R implementation of t-SNE 
heatmaps are available from https://github.com/KlugerLab/. Methods, including statements 
of data availability and any associated accession codes and references, are available in the 
online version of the paper. The Life Sciences Reporting Summary was also completed.

8. Online Methods

We first briefly review the t-SNE approach and then then present FIt-SNE’s method for 
optimizing the computation of the repulsive force in Section §8.3. Section §8.4 presents an 
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implementation of out-of-core PCA for the analysis of datasets too large to fit in the 
memory. Finally, Section §8.5 provides details of the embedding of 1.3 million mouse brain 
cells (Figure 1), Section §8.6 describes the demonstration of t-SNE heatmaps (Figure 2), and 
Section §8.7 provides details about our comparison of VP trees to approximate nearest 
neighbors on three scRNA-seq datasets.

8.1. t-distributed Stochastic Neighborhood Embedding.

Given a d-dimensional dataset X = {x1, x2, …, x
N

} ⊂ ℝd, t-SNE aims to compute the low-

dimensional embedding

Y = {y1, y2, …, y
N

} ⊂ ℝs,

where s ≪ d, such that if two points xi and xj are close in the input space, then their 
corresponding points yi and yj are also close. Affinities between points xi and xj in the input 
space, pij, are defined as

p
i ∣ j

=
exp ( − ‖x

i
− x

j
‖2 ∕ 2σ

i
2)

∑
k ≠ i

exp ( − ‖x
i
− x

k
‖2 ∕ 2σ

i
2)

and p
i j

=
p

i ∣ j
+ p

j ∣ i

2N
.

Here σi is the bandwidth of the Gaussian distribution is computed based on the user-
specified perplexity Pi (the conditional distribution of all other points given xi). Similarly, 
the affinity between points yi and yj in the embedding space is defined using the Cauchy 
kernel

q
i j

=
(1 + ‖y

i
− y

j
‖2)−1

∑
k ≠ l

(1 + ‖y
k

− y
l
‖2)−1

.

t-SNE finds the points {y1, …, yn} that minimize the Kullback-Leibler divergence between 
the joint distribution of points in the input space P and the joint distribution of the points in 
the embedding space Q,

C(�) = KL(P‖Q) = ∑
i ≠ j

p
i j

log
p

i j

q
i j

.

Starting with a random initialization, the cost function C(�) is minimized by gradient 

descent, with the gradient13

∂C

∂y
i

= 4 ∑
j ≠ i

(p
i j

− q
i j

)q
i j

Z(y
i
− y

j
),

where Z is a global normalization constant
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Z = ∑
k ≠ l

(1 + ‖y
k

− y
l
‖2)−1 .

We split the gradient into two parts

1
4

∂C

∂y
i

= ∑
j ≠ i

p
i j

q
i j

Z(y
i
− y

j
) − ∑

j ≠ i

q
i j
2

Z(y
i
− y

j
)

where the first sum Fattr,i corresponds to an attractive force between points and the second 
sum Frep,i corresponds to a repulsive force

1
4

∂C

∂y
i

= Fattr, i
− Frep, i

.

The computation of the gradient at each step is an N-body simulation, where the position of 
each point is determined by the forces exerted on it by all other points. Exact computation of 
N-body simulations scales as O(N2), making exact t-SNE computationally prohibitive for 
datasets with tens of thousands of points. It should be noted that since the input similarities 
do not change they can be precomputed and hence do not dominate the computational time.

8.2. Early Exaggeration.

In the expression for the gradient descent, the sum of attractive and repulsive forces,

1
4

∂C

∂y
i

= α ∑
j ≠ i

p
i j

q
i j

Z(y
i
− y

j
) − ∑

j ≠ i

q
i j
2

Z(y
i
− y

j
),

the numerical quantity α > 0 plays a substantial role as it determines the strength of 
attraction between points that are similar (in the sense of pairs xi, xj with pij large). In early 
exaggeration, first α =12 for the first several hundred iterations, after which it set13 to 1. One 
of the main results of Linderman and Steinerberger (2017)7 is that α plays a crucial role and 
that when it is set large enough, t-SNE is guaranteed to separate well-clustered data and also 
successfully embed various synthetic datasets (e.g. a swiss roll) that were previously thought 
to be poorly embedded by t-SNE.

8.3. Accelerating computation of repulsive forces in FIt-SNE.

In existing methods, the repulsive forces Frep,i are approximated at each iteration using the 
Barnes-Hut Algorithm,17 a tree-based algorithm which scales as O(N log N), where N is the 
total number of data points. In this work, we present an interpolation-based fast Fourier 
transform accelerated algorithm for computing Frepul,i which scales as O(N). Moreover, 
empirical tests show a significant improvement over the Barnes-Hut approach for any sized 
system.
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Recall that, {y1, y2, … , yN} is the s-dimensional embedding of a collection of d-
dimensional vectors {x1, … , xN}. At each step of gradient descent, the repulsive forces are 
given by

Frep, k(m) = ∑
ℓ = 1

ℓ ≠ k

N yℓ(m) − yk(m)

(1 + ‖yℓ − yk‖2)2
/ ∑

j = 1

N

∑
ℓ = 1

N

ℓ ≠ j

1

(1 + ‖yℓ − y j‖
2)

, (1)

where k = 1, 2, … N, m = 1, 2 … s, and yi(j) denotes the jth component of yi. Evidently, the 
repulsive force between the vectors {y1, …, yN} consists of N2 pairwise interactions, and 
were it computed directly, would require CPU-time scaling as O(N2). Even for datasets 
consisting of a few thousand points, this cost becomes prohibitively expensive. Our 
approach enables the accurate computation of these pairwise interactions in O(N) time. 
Since the majority of applications of t-SNE are for at most two-dimensional embeddings, in 
the following we focus our attention on the cases where s = 1 or 2. However, we note that 
our algorithm extends naturally to arbitrary dimensions. In such cases, though the constants 
in the computational cost will vary, our approach will still yield an algorithm with a CPU-
time which scales as O(N).

We begin by observing that the repulsive forces Frep,k defined in eq. (1) can be expressed as 
s + 2 sums of the form

ϕ(yi) = ∑
j = 1

N

K(yi, y j)q j (2)

where the kernel K(y, z) is either

K1(y, z) =
1

(1 + ‖y − z‖2)
, or K2(y, z) =

1

(1 + ‖y − z‖2)2
, (3)

for y, z ∈ ℝs. Note that both of the kernels K1 and K2 are smooth functions of y, z for all y, 

z ∈ ℝs. The key idea of our approach is to use polynomial interpolants of the kernel K in 

order to accelerate the evaluation of the N–body interactions defined in eq. (2).

8.3.1. Mathematical Preliminaries.—First, we demonstrate with a simple example 
how polynomial interpolation can be used to accelerate the computation of the N–body 
interactions with a smooth kernel. Suppose that y1,…, yM ∈ (y0, y0 + R) and z1, … , zN ∈ 
(z0, z0 + R). Let Iy0 and Iz0 denote the intervals (y0, y0 + R) and (z0, z0 + R), respectively. 
Note that no assumptions are made regarding the relative locations of y0 and z0; in 
particular, the case y0 = z0 is also permitted.

Now consider the sums
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ϕ(yi) = ∑
j = 1

N

K(yi, z j)q j, i = 1, 2, …M . (4)

Let p be a positive integer. Suppose that z 1, …, z
p
, are a collection of p points on the interval 

Iz0 and that y1, …, y
p
, are a collection of p points on the interval Iy0. Let Kp(y, z) denote a 

bivariate polynomial interpolant of the kernel K(y, z) satisfying

K
p

(y
j
, z ℓ) = K(y

j
, z ℓ), j, ℓ = 1, 2, …p .

A simple calculation shows that Kp(y, z) is given by

K p(y, z) = ∑
ℓ = 1

p

∑
j = 1

p

K(y j, z ℓ)L j, y(y)Lℓ, z (z), (5)

where L
j, y

(y) and Lℓ, z
(z) are the Lagrange polynomials

Lℓ, y
(y) = ∏

j = 1

j ≠ ℓ

p

(y − y
j
)/ ∏

j = 1

j ≠ ℓ

p

(yℓ − y
j
), and Lℓ, z

(z) = ∏
j = 1

j ≠ ℓ

p

(z − z
j
)/ ∏

j = 1

j ≠ ℓ

p

(z ℓ − z
j
),

ℓ =1, 2 … p. In the following we will refer to the points y1, …, y
p
, and z 1, …, z

p
 as 

interpolation points.

Let ϕ(y
i
) denote the approximation to φ(yi) obtained by replacing the kernel K in eq. (4) by 

its polynomial interpolant Kp, i.e.

ϕ(y
i
) = ∑

j = 1

N

K
p

(y
i
, z

j
)q

j
,

for i = 1, 2 … M. Clearly the error in approximating φ(yi) via ϕ(y
i
) is bounded (up to a 

constant) by the error in approximating K(y, z) via Kp(y, z). In particular, if the polynomial 
interpolant satisfies the inequality

sup
y ∈ (y0, y0 + R)

z ∈ (z0, z0 + R)

∣ K p(y, z) − K(y, z) ∣ ≤ ε, (6)

then the error ∣ ϕ(y
i
) − ϕ(y

i
) ∣ is given by
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∣ ϕ(y
i
) − ϕ(y

i
) ∣ = ∑

j = 1

N

(K
p

(y
i
, z

j
) − K(y

i
, z

j
))q

j

≤ ∑
j = 1

N

∣ K
p

(y
i
, z

j
) − K(y

i
, z

j
) ∣ ∣ q

j
∣

≤ ε ∑
j = 1

N

∣ q
j

∣ .

A direct computation of φ(y1), … , φ(yM) requires O(M · N) operations. On the other hand, 

the values ϕ(y
i
), i =1, 2, … M, can be computed in O((M + N) · p + p2) operations as 

follows. Using eq. (5), ϕ(y
i
) can be rewritten as

ϕ(y
i
) = ∑

j = 1

N

∑
ℓ = 1

p

∑
m = 1

p

K(yℓ, z
m

)Lℓ, y
(y

i
)L

m, z
(z

j
)q

j
,

= ∑
ℓ = 1

p

Lℓ, y
(y

i
) ∑

m = 1

p

K(yℓ, z
m

) ∑
j = 1

N

L
m, z

(z
j
)q

j
,

for i =1, 2, … M. The values ϕ(y1), …, ϕ(y
M

), are computed in three steps.

• Step 1: Compute the coefficients wm defined by the formula

w
m

= ∑
j = 1

N

L
m, z

(z
j
)q

j
,

for each m = 1, 2, … p. This step requires O(N · p) operations.

• Step 2: Compute the values vℓ at the interpolation nodes yℓ defined by the 

formula

vℓ = ∑
m = 1

p

K(yℓ, z
m

)w
m

for all ℓ = 1, 2, … p. This step requires O(p2) operations.

• Step 3: Evaluate the potential ϕ(y
i
) using the formula

ϕ(y
i
) = ∑

ℓ = 1

p

Lℓ, y
(y

i
)vℓ,

for all i = 1, 2 … M. This step requires O(M · p) operations.

See Figure S10 for an illustrative figure of the above procedure.
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8.3.2. Algorithm.—In this section, we present the main algorithm for the rapid 
evaluation of the repulsion forces eq. (2). The central strategy is to use piecewise polynomial 
interpolants of the kernel with equispaced points, and use the procedure described in Section 
§8.3.1.

Specifically, suppose that the points yi, i = 1, 2, … N are all contained in the interval [ymin, 

ymax]. We subdivide the interval [ymin, ymax] = ⋃
i = 1

Nint
I

j
, into Nint intervals of equal length. 

Let y
j, ℓ denote p equispaced nodes on the interval Il given by

y j, ℓ = h ∕ 2 + (( j − 1) + (ℓ − 1) ⋅ p) ⋅ h, (7)

where h = 1/(Nint · p), j = 1, 2 … p, and ℓ = 1, 2 …Nint.

Remark 1. The nodes y
j, ℓ, j = 1, 2 … p, and ℓ =1, 2, … Nint, defined in eq. (7), are also 

equispaced on the whole interval [ymin, ymax].

The interaction between any two intervals I, J, i.e.

∑
y

j
∈ J

K(y
i
, y

j
)q

j
, y

i
∈ I

can be accelerated via the algorithm discussed in section 8.3.1. This procedure amounts to 
using a piecewise polynomial interpolant of the kernel K(y, z) on the domain y, z ∈ [ymin, 
ymax] as opposed to using an interpolant on the whole interval. We summarize the procedure 
below.

• Step 1: For each interval Iℓ, ℓ = 1, 2, … Nint, compute the coefficients wm,ℓ 
defined by the formula

w
m, ℓ = ∑

y
j

∈ Iℓ

L
m, y

ℓ(y
j
)q

j
,

for each m = 1, 2, … p. This step requires O(N · p) operations.

• Step 2: Compute the values vm,n at the equispaced nodes y
m, n

 defined by the 

formula

vm, n = ∑
j = 1

Nint

∑
ℓ = 1

p

K(ym, n, yℓ, j)wℓ, j (8)

for all m = 1, 2, … p, n = 1, 2 … Nint. This step requires O((Nint · p)2) 
operations.
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• Step 3: For each interval Iℓ, ℓ =1, 2, … Nint, compute the potential φ(yi) via the 
formula

ϕ(y
i
) = ∑

j = 1

p

L
j, y

ℓ(y
i
)v

j, ℓ,

for all points yi ∈ Iℓ. This step requires O(N · p) operations.

In this procedure, the functions L
j, y

ℓ, j = 1, 2, …p, are the Lagrange polynomials 

corresponding to the equispaced interpolation nodes on interval Iℓ.

In Step 2 of the above procedure, we are evaluating N–body interactions on equispaced grid 
points. For notational convenience, we rewrite the sum eq. (8)

vi = ∑
j = 1

Nint ⋅ p

K(y i, y j)w j , (9)

i = 1, 2, … Nint · p. The kernels of interest (K1 and K2 defined in eq. (3)) are translationally-
invariant, i.e., the kernels satisfy K(y, z) = K(y + δ, z + δ) for any δ. The combination of 
using equispaced points, along with the translational-invariance of the kernel, implies that 
the matrix associated with the evaluation of the sums eq. (9) is Toeplitz. This computation 
can thus be accelerated via the fast-Fourier transform (FFT), which reduces the 
computational complexity of evaluating the sums eq. (9) from O((Nint · p)2) operations to 
O(Nint · p log (Nint · p)).

Algorithm 1 describes the fast algorithm for evaluating the repulsive forces eq. (2) in one 
dimension (s=1) which has computational complexity O(N · p + (Nint · p) log (Nint · p)).
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Algorithm 1: FFT-accelerated Interpolation-based t-SNE (FIt-SNE)

Input: Collection of points {y
i
}
i = 1
N , source strengths {q

i
}
i = 1
N , number of intervals Nint,

number of interpolation points per interval p

Output: ϕ(y
i
) = ∑

N

j = 1
K(y

i
, y

j
)q

j
for i = 1, 2, …N

1 For each interval Iℓ, form the equispaced nodes y
j, ℓ, j = 1, 2, …p given by eq. (7)

2 for I 1 to N
int

do

3

Compute the coefficients w
m, ℓ given by

w
m, ℓ = ∑

y
i

∈ Iℓ

L
m, y

ℓ(y
i
)q

i
,

m = 1, 2, …p .

4 end

5 Use the fast‐Fourier transform to compute the values of v
m, n

given by

(10)

v1, 1

v2, 1

⋮

v
p − 1, Nint

v
p

, Nint

= K ⋅

w1, 1

w2, 1

⋮

w
p − 1, Nint

w
p

, Nint

,

where K is the Toeplitz matrix given by

(11) K
i, j

= K(y
i
, y

j
),

i, j = 1, 2, …Nint ⋅ p .

6 for I 1 to N
int

do

7

Compute ϕ(y
i
) at all points y

i
∈ Iℓ via

ϕ(y
i
) = ∑

j = 1

p

L
j, y

ℓ(y
i
)v

j, ℓ

8 end

8.3.3. Optimal choice of p and Nint.—Recall that the computational complexity of 
Algorithm 1 is O(N · p + Nint · p log (Nint · p)). We remark that the choice of the parameters 
Nint and p depends solely on the specified tolerance ε and is independent of the number of 
points N. Generally, increasing p will reduce the number of intervals Nint required to obtain 
the same accuracy in the computation. However, we observe that the reduction in Nint for an 
increased p is not advantageous from a computational perspective—since, as the number of 
points N increases, the computational cost is independent of Nint and is only a function of p. 
Moreover, for the t-SNE kernels K1 and K2 defined in eq. (3), it turns out that for a fixed 
accuracy the product Nint · p remains nearly constant for p ≥ 3. Thus, it is optimal to use p = 
3 for all t-SNE calculations. In a more general environment, when higher accuracy is 
required and for other translationally invariant kernels K, the choice of the number of nodes 
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per interval p and the total number of intervals Nint can be optimized based on the accuracy 
of computation required.

Remark 2. Special care must be taken when increasing p in order to achieve higher accuracy 
due to the Runge phenomenon associated with equispaced nodes. In fact, the kernels that 
arise in t-SNE are archetypical examples of this phenomenon. Since we use only low-order 
piecewise polynomial interpolation (p = 3), we encounter no such difficulties.

In our simulations, we set the values of p = 3 and Nint = max(50, ⌈ymax – ymin⌉). These 
values are chosen to ensure that the computation of Frep,i is at least as accurate as the 
Barnes-Hut approximation at default setting (θ = 0.5). We test the accuracy of the two 
methods by comparing the repulsive forces computed using BH t-SNE and FIt-SNE to the 
exact repulsive forces computed using direct algorithm on a dataset with 4000 points. In 
Figure S1, we report the relative error of the BH t-SNE and FIt-SNE approximations at 
default values and note that the latter achieves the same (or better) accuracy. Since the 
approximation error is independent of the number of points (Section §8.3.6), this error 
analysis applies to datasets of any size.

8.3.4. Extension to two dimensions.—The above algorithm naturally extends to two-
dimensional embeddings (s=2). In this case, we divide the computational square [ymin, ymax] 
× [ymin, ymax] into a collection of Nint × Nint squares with equal side length, and for 
polynomial interpolation, we use tensor product p × p equispaced nodes on each square. The 

matrix K mapping the coefficients w to the coefficients v which is of size (Nint · p)2 × (Nint · 

p)2, is not a Toeplitz matrix, however, it can be embedded into a Toeplitz matrix of twice its 
size. The computational complexity of the algorithm analogous to Algorithm 1 for two-
dimensional t-SNE is O(N · p2 + (Nint · p)2 log (Nint · p)).

8.3.5. Performance comparison.—The datasets for comparing the CPU-time 
performance of BH t-SNE and FIt-SNE in Tables 1, 2, S1, and S2 are generated in the 
following manner. For each N, we sample N/10 points from 10 gaussians in d–dimensions 

with mean c
j

∈ ℝd and fixed variance σ = 0.0001. The experiments were performed on two 

systems—a 2017 Macbook Pro laptop with 2.9 GHz (Turbo up to 3.6GHz) Intel i7 CPU 
with 2 cores (each supporting 4 threads) and 16GB RAM; and a server with Intel Xeon 
CPUs with 24 cores clocked at 2.4 GHz and 500GB RAM. In FIt-SNE, the computation of 
nearest neighbors when computing input similarities, the summing of attractive forces at 
each iteration of gradient descent, and step 3 of the interpolation scheme outlined above are 
all multithreaded using C++11 threads, whereas the rest of the computation of the repulsive 
forces is done via single thread FFTs owing to the small size of FFTs involved. The poorer 
performance of both BH t-SNE and FIt-SNE on the server as compared to the Macbook can 
be attributed to the slower single processor clock speed.

8.3.6. Approximation error estimates.—In this section we prove error estimates 
related to interpolation by equispaced points on a subinterval of the computational domain. 
First we fix x0 and suppose that K(x0, y) is to be approximated on the interval [a, b] by the 
p-point Lagrange inter-polant wp(y). For ease of exposition, let f (y) = K(x0, y) where K(x, 

Linderman et al. Page 13

Nat Methods. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



y) is either K1 or K2 given by eq. (3). Then, a classical theorem in approximation theory (see 
Dalquist and Björck (2008)18 for example) states that for all y ∈ (a, b) there exists a ζy ∈ (a, 
b) such that

E
p

(y) = f (y) − w
p

(y) =
f
(p)(ζ

y
)

p!
π

p
(y),

where f(p) denotes the pth derivative of f, and

π
p

(y) = ∏
k = 1

p

(y − y
j
) .

Let h = (b – a)/p and the interpolation nodes on the interval (a, b) are yj = a + (j – 1/2)h, j = 
1, …, p.

We bound πp(y) in the following way (see Trefethen (2013)19 for example). Suppose that yj 

< y < yj+1. Then

∣ π
p

(y) ∣ = ∣ y − y1 ∣ ⋅ ∣ y − y2 ∣ … ∣ y − y
p

∣

≤ h j⋯2h (y − y
j
)(y

j + 1 − y)2h ⋅ 3h⋯(p − j)h

= h
p − 2

j! (p − j)!(y − y
j
) (y

j + 1 − y)

=
h

p
j!(p − j)!

4
.

Clearly this is bounded by h
p(p − 1)!

4
. Similarly, if y < y1, or y > yp then

∣ π
p

(y) ∣ ≤
h

2
3h

2
…

2p − 1
2

=
(2p)!

22p
p!

h
p .

In order to bound f(p)(ζy) we first consider the case where f(y) = K1(x0, y). Then

f (y) =
1

1 + ‖y − x0‖2
=

1 ∕ 2
1 + i(y − x0)

+
1 ∕ 2

1 − i(y − x0)
.

Taking p derivatives we obtain

f
(p)(y) =

1
2

p!ip
( − 1)p

[1 + i(y − x0)]p
+

1

[1 − i(y − x0)]p

and hence
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∣ f
(p)(y) ∣ ≤ p!

Similarly, if f(y) = K2(x0, y) then

f (y) =
1

(1 + ‖y − z‖2)2
=

1 ∕ 4

[1 + i(y − x0)]2
+

1 ∕ 4

[1 − i(y − x0)]2
−

1 ∕ 4
1 + i(y − x0)

−
1 ∕ 4

1 − i(y − x0)
,

from which it follows that

∣ f
(p)(y) ∣ ≤

p + 2
2

p! .

Putting the above estimates together gives

∣ E
p

(y) ∣ ≤
(2p)!

22p
p!

h
p p + 2

2
=

(2p)!

22p
p!

(b − a)p 1

p
p

p + 2
2

,

which holds for both K1 and K2. Using Stirling’s approximation (see Abramowitz and 
Stegun (1965),20 for example) it follows that

∣ E
p

(y) ∣ ≤
p + 2

2
b − a

e

p
e

1
24p .

We now use this estimate to construct an error bound of the form given in eq. (6). First, for 
fixed x ∈ [a, b] let Kr(x, y) denote the polynomial interpolant for y ∈ [c, d]. Then

max
x ∈ [a, b]

max
y ∈ [c, d]

∣ K(x, y) − K
r
(x, y) ∣ ≤

p + 2
2

d − c

e

p
e

1
24p .

Similarly, for fixed y ∈ [c, d] let Kl(x, y) denote the polynomial interpolant for x ∈ [a, b], in 
which case

max
x ∈ [a, b]

max
y ∈ [c, d]

∣ K(x, y) − Kℓ(x, y) ∣ ≤
p + 2

2
d − c

e

p
e

1
24p .

Note that by construction,

K
r
(x, y) = ∑

j = 1

p

L
j, [c, d](y)K(x, y

j
),

and
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Kℓ(x, y) = ∑
j = 1

p

L
j, [a, b](x)K(x

j
, y),

where Lj,[c,d], j = 1, … , p are the Lagrange polynomials for the nodes y1, … , yp ∈ [c, d].

As above, let Kp(x, y) denote the polynomial interpolant of K(x, y) which is degree p in both 
x and y for x ∈ [a, b] and y ∈ [c, d]. Evidently,

K
p

(x, y) = ∑
j = 1

p

∑
m = 1

p

L
j, [c, d](y)L

m, [a, b](x)K(x
m

, y
j
) .

Hence

max
x ∈ [a, b]

max
y ∈ [c, d]

∣ K
p

(x, y) − K
r
(x, y) ∣ ≤ max

x ∈ [a, b]
max

y ∈ [c, d]
∑

j = 1

p

L
j, [c, d](y)

K(x, y
j
) − ∑

m = 1

p

L
m, [a, b](x)K(x

m
, y

j
)

= max
x ∈ [a, b]

max
y ∈ [c, d]

∑
j = 1

p

L
j, [c, d](y) ∣ K(x, y

j
) − Kℓ(x, y

j
) ∣

≤
p + 2

2
b − a

e

p
e

1
24p ∑

j = 1

p

max
y ∈ [c, d]

∣ L
j, [c, d](y) ∣ .

A slight modification of the argument presented in Trefethen and Weideman (1991)21 yields 
the following bound,

max
y ∈ [c, d]

∣ L
j, [c, d](y) ∣ ≤ 8

2p

p
,

from which it follows that

max
x ∈ [a, b]

max
y ∈ [c, d]

∣ K
p

(x, y) − K
r
(x, y) ∣ ≤ 8

p + 2
2p

2(b − a)
e

p
e

1
12p .

Then

∣ K(x0, y0) − K
p

(x0, y0) ∣ ≤ ∣ K(x0, y0) − K
r
(x0, y0) ∣ + ∣ K

r
(x0, y0) − K

p
(x0, y0) ∣

≤ 8
p + 2

2p

2(b − a)
e

p
e

1
12p +

p + 2
2

d − c

e

p
e

1
24p

which is the estimate we require. In particular, if L = b – a = d – c we obtain the bound
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∣ K(x0, y0) − K
p

(x0, y0) ∣ ≤ 7
(p + 2)

p

2p
L

p

e
p

.

Note that if L <
e

2
 then the error will decay exponentially in p.

In two-dimensions an almost identical analysis shows that the error is bounded by

∣ K(x0, y0) − K
p

(x0, y0) ∣ ≤ 163(p + 2)

8p
3

8p
L

p

e
p

.

In principle this guarantees convergence only when L <
e

8
. In practice, extensive numerical 

evidence suggests that the error decays exponentially in p provided that L < 1.4.

8.4. Out-of-Core PCA.

The methods for t-SNE presented above allows for the embedding of millions of points, but 
can only be used to reduce the dimensionality of datasets that can fit in the memory. For 
many large, high dimensional datasets, specialized servers must be used simply in order to 
load the data. In order to allow for visualization and analysis of such datasets on resource-
limited machines, we present an out-of-core implementation of randomized PCA, which can 
be used to compute the top few (e.g. 50) principal components of a dataset to high accuracy, 
without ever loading it in its entirety.22 Note that out-of-core PCA was not used in the 
analysis above, but we include it as it can be useful for users interested in running t-SNE on 
large datasets using a resource-limited machine.

8.4.1. Randomized Methods for PCA.—The goal of PCA is to approximate the 
matrix being analyzed (after mean centering of its columns) with a low-rank matrix. PCA is 
primarily useful when such an approximation makes sense; that is, when the matrix being 
analyzed is approximately low-rank. If the input matrix is low-rank, then by definition, its 
range is low-dimensional. As such, when the input matrix is applied to a small number of 
random vectors, the resulting vectors nearly span its range. This observation is the core idea 
behind randomized algorithms for PCA: applying the input matrix to a small number of 
random vectors results in vectors that approximate the range of the matrix. Then, simple 
linear algebra techniques can be used to compute the principal components. Notably, the 
only operations involving the large input matrix are matrix-vector multiplications, which are 
easily parallelized, and for which highly optimized implementations exist. Randomized 
algorithms have been rigorously proven to be remarkably accurate with extremely high 
probability,25,26 because for a rank-k matrix, as few as l = k + 2 random vectors are 
sufficient for the probability of missing a significant part of the range to be negligible. The 
algorithm and its underlying theory are covered in detail in Halko et al. (2011).25 An easy-
to-use “black box” implementation of randomized PCA is available and described in Li et al. 
(2017),23 but it requires the entire matrix to be loaded in the memory. We present an out-of-
core implementation of PCA in C++/R, oocPCA, allowing for decomposition of matrices 
which cannot fit in the memory.
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Algorithm 2: Out-of-Core PCA (oocPCA)

Input: Matrix A of size m × n stored in slow memory, non‐negative integers its, k, l, b,

where 0 < k ≤ l < min(m, n), and l defaults to k + 2

Output: Orthonormal U of size m × k, non‐negative diagonal matrix Σ of size k × k,

orthonormal V of size n × k, such that A ≈ UΣV
∗

1 Generate uniform random matrix Ω of size n × l

2 Form Y0 = AΩ block‐wise, b rows at a time

3 Renormalize with LU factorization L0U0 = Y0

4 for i 1 to its do

5

6

7

8

From Y
i

= AA
∗

L
i − 1 block‐wise, b rows at a time

if i < its then

∣ Renormalize with LU factorization L
i
U

i
= Y

i

end

9 end

10 Renormalize with QR factorization QR = Y
i

11 Compute SVD of small matrix U′ΣV
∗ = Q

∗
A

12 Set U = QU′

8.4.2. Implementation.—Our implementation is described in Algorithm 1. Given an m 
× n matrix of doubles A, stored in row-major format on the disk of a machine with M bytes 
of available memory, the number of rows that can fit in the memory is calculated as 

b =
M

8mn
. The only operations performed using A are matrix multiplications, which can be 

performed block-wise. Specifically, the matrix product AB, where B is an n × p matrix 
stored in the fast memory, can be computed by loading the first b rows of A, and forming the 
inner product of each row with the columns of B. The process can be continued with the 
remaining blocks of the matrix, essentially “filling in” the product AB with each new block. 
In this manner, left multiplication by A can be computed without ever loading the full matrix 
A.

By simply replacing the matrix multiplications in the implementation of Li et al. (2017)23 

with block-wise matrix multiplication, an out-of-core algorithm can be obtained. However, 
significant optimization is possible. The run-time of an out-of-core algorithm is almost 
entirely determined by disk access time; namely, the number of times the matrix must be 
loaded to the memory. As suggested in Li et al. (2017),23 the renormalization step between 
the application of A and A* is not necessary in most cases, and in the out-of-core setting, 
doubles the number of times A must be loaded per power iterations. In our implementation, 
we remove this renormalization step, and apply AA* simultaneously, hence requiring the 
matrix only be loaded once per iteration.

Our implementation is in C++ with an R wrapper. For maximum optimization of linear 
algebra operations, we use the highly parallelized Intel MKL for all BLAS functions (e.g. 
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matrix multiplications). The R wrapper provides functions for PCA of matrices in CSV and 
in binary format. Furthermore, basic preprocessing steps including log transformation and 
mean centering of rows and/or columns can also be performed prior to decomposition, so 
that the matrix need not ever be fully stored in the memory.

To demonstrate oocPCA’s performance, we generated a random 1,000,000 × 30,000 rank-50 
matrix stored as doubles, which would require 240GB to simply store in the memory, far 
exceeding the memory capacity of a personal computer. Using oocPCA we can compute the 
top principal components of the matrix with much less memory. Using a 2017 Macbook Pro 
laptop with 16GB RAM, solid state drive, and a 2.9 GHz Intel i7 CPU, the rank-50 
approximation was computed in 38 minutes.

8.5. FIt-SNE of 1.3 million mouse brain cells.

The scRNA-seq dataset consisting of 1.3 million cells from the cortex, hippocampus, and 
ventricular zones of embryonic day 18 mouse brains were downloaded from the 10X 
Genomics website and processed using the normalization and filtering steps of Zheng et al.,
14 as implemented by the python package scanpy.15 Scanpy was also used to compute a 
neighborhood graph of the observations using a Gaussian kernel with adaptive widths, and 
then the points were clustered using the Louvain method. Subsequent analysis of this dataset 
was then performed in R. FIt-SNE of all 1,306,127 cells was computed with 4,000 iterations 
of gradient descent (2,000 of them being early exaggeration iterations) and other parameters 
set to defaults. FIt-SNE with the same parameters was also run on a random subset of 50,000 
cells. We sought to identify known cell types from the Allen Brain Atlas (http://
celltypes.brain-map.org/rnaseq/mouse) in the embedding, and gave two examples of cell 
populations (see Supplementary Table 9 of Tasic et al. (2018)3) that could be identified in 
the full dataset, but not in the downsampled embedding.

8.6. t-SNE heatmap of retinal cells.

The scRNA-seq retinal cells data of Shekhar et al. (2016)11 was downloaded from GEO 
(GSE81905). The digital expression matrix was preprocessed using the code provided by the 
authors of the original publication (https://github.com/broadinstitute/BipolarCell2016). In 
short, libraries containing more than 10% mitochondrially derived transcripts were removed, 
cells with ≤ 500 genes were removed, as were genes with expression in ≤ 30 cells or having 
≥ 60 transcripts, resulting in 13,166 genes and 27,499 cells. Finally, the data were median 
normalized, log-transformed, and the genes were Z-scored. The top 37 principal components 
were computed and used as input to 1D FIt-SNE with perplexity 30 and for 1000 iterations. 
Finally, the t-SNE heatmap (Figure 2) was computed as described in the main text, with the 
marker genes (Tacr3, Rcvrn, Syt2, Irx5, Irx6, Vsx1, Hcn4, Grik1, Gria1, Kcng4, Hcn1, 
Cabp5, Grm6, Isl1, Scgn, Otx2, Vsx2, Car8, Sebox, Prkca) from Shekhar et al. (2016)11 

listed in Supplemental Table 2. Each marker gene was enriched with the 25 genes with most 
similar expression patterns. Genes associated with each cluster in the 2D embedding were 
obtained by running dbscan on the 2D t-SNE with the settings ϵ = 2 and a minimum number 
of points of 40. For each cluster i, a “metagene” ci of length 27,499 was generated, where 
ci(k) = 1 if the kth cell is in the ith cluster and ci(k) = 0 otherwise. These vectors were then 
treated as “genes” and enriched in the same fashion as the genes.
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8.7. Comparing approximate nearest neighbors and VP trees on scRNA-seq data.

To evaluate the effect of approximate nearest neighbors on embedding quality of scRNA-seq 
data, we compared the resulting embeddings on several scRNA-seq datasets where labels are 
predetermined by other sources. For each dataset, we also compute the 1-nearest neighbor 
error (1N error), defined as the percentage of cells for which the cell closest to them in the 
embedding belongs to a different label. We did the comparison on the 1.3 million mouse 
brain cells from above, purified PBMC populations from Zheng et al. (2017),14 and mouse 
visual cortex cells from Hrvatin et al. (2018).16

Filtered expression matrices for FACS purified peripheral blood monocyte (PBMC) 
populations were downloaded from the 10X website14 and concatenated them to a single 
expression matrix. The matrix was filtered to include cells expressing more than 400 genes 
and gene expressed in more than 100 cells, resulting in a matrix with 83,992 cells and 
12,776 genes. Purified CD4 helper T cells and cytotoxic T cells were removed, as they (by 
definition) are supersets of some of the other subtypes, leaving 64,664 cells. After library 
and log normalization, the top 25 principal components (PCs) were computed using 
randomized SVD.24 FIt-SNE using VP trees and approximate nearest neighbors were was 
computed on the the PCs and qualitatively compared in Figure S4.

The scRNA-seq expression matrix of mouse visual cortex cells from Hrvatin et al.16 was 
obtained from GEO (GSE102827). Genes with mean expression less than 0.00003 and non-
zero expression in less than 4 cells were excluded, resulting in a matrix with 65,539 cells 
and 19,155 genes. The cells were further subsetted to those assigned to subtypes, resulting in 
48,266 cells. After library and log normalization, the top 25 principal components were 
computed using randomized SVD. FIt-SNE using VP trees and approximate nearest 
neighbors were then computed on the PCs and compared in Figure S5.

9. Code Availability

FIt-SNE is available at https://github.com/KlugerLab/FIt-SNE. The code for all experiments 
is available at request and will be publicly available at https://github.com/KlugerLab/FIt-
SNE-paper on publication.

10. Data Availability

The 1.3 million mouse brain cells dataset and FACS purified PBMCs of Zheng et al.14 can 
be downloaded from 10X Genomics website (https://support.10xgenomics.com/single-cell-
gene-expression/datasets/). Two other public scRNA-seq datasets from NCBI Gene 
Expression Omnibus (GEO) were used: Hrvatin et al. (GSE102827) and Shekhar et al. 
(GSE81905).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

FIt-SNE allows for embedding of the full 1.3 million mouse brain cell dataset (left), 
enabling the identification of known cell populations that cannot be identified when 
downsampling to a random 50,000 cells (right). (For the left figure, instead of plotting all 1.3 
million embedded points, only 100,000 of the cells not expressing the marker genes are 
shown, whereas all the cells expressing the marker genes are shown.)
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Figure 2. 

Schematic and demo of t-SNE Heatmaps. Starting with the expression matrix (A) compute 
1D t-SNE, which is plotted in (B) colored by the expression of each gene (with added jitter). 
We bin the 1D t-SNE, and represent each gene by its average expression in each bin (C), and 
then generate a heatmap of these vectors, so that genes with similar expression patterns in 
the t-SNE are grouped together (D). In (E), we demonstrate t-SNE heatmaps using retinal 
bipolar cells11
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Table 1.

Time taken for 1000 iterations of the gradient descent phase of 2D t-SNE using Barnes-Hut t-SNE (BH t-SNE) 
compared to our implementation (FIt-SNE), as compared on a 2017 Macbook Pro for a given number of points 
N. See section 8.3.5 for more details.

N BH t-SNE FIt-SNE

10,000 1 min. < 1 min.

100,000 11 min. < 1 min.

500,000 1 hr. 10 min. 3 min.

1,000,000 3 hr. 9 min. 15 min.
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Table 2.

Time taken to compute input similarities in Barnes-Hut t-SNE (vptree) compared to FIt-SNE using either 
multithreaded vantage-point trees (vptreeMT) or a multi-threaded approximate nearest neighbor (annMT) 
approach on a 2017 Macbook Pro for a given number of points N.

50 Dimensions 100 Dimensions

N vptree vptreeMT annMT vptree vptreeMT annMT

10,000 < 1 min. < 1 min. < 1 min. < 1 min. < 1 min. < 1 min.

100,000 2 min. < 1 min. < 1 min. 3 min. < 1 min. < 1 min.

500,000 56 min. 15 min. 3 min. 1 hr. 30 min. 20 min. 4 min.

1,000,000 4 hr. 45 min. 1 hr. 15 min. 6 min. 7 hr. 9 min. 1 hr. 40 min. 8 min.
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