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Abstract. This work describes algorithms for the inference of minimum size deterministic automata consistent
with a labeled training set. The algorithms presented represent the state of the art for this problem, known to be
computationally very hard.

In particular, we analyze the performance of algorithms that use implicit enumeration of solutions and algorithms
that perform explicit search but incorporate a set of techniques known as dependency directed backtracking to
prune the search tree effectively.

We present empirical results that show the comparative efficiency of the methods studied and discuss alternative
approaches to this problem, evaluating their advantages and drawbacks.
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1. Introduction and related work

This work addresses the problem of inferring a finite automaton with minimum size that
matches a labeled set of input strings. This problem has been extensively studied in the
literature, both from a practical and theoretical point of view.

Selecting the minimum DFA consistent with a set of labeled strings is known to be
NP-complete. Specifically, Gold (Gold, 1978) proved that given a finite alphabet6, two
finite subsetsS, T ⊆ 6∗ and an integerk, determining if there is a k-state DFA that
recognizesL such thatS⊂ L andT ⊂ 6∗ − L is NP-complete. Furthermore, it is known
that even finding a DFA with a number of states polynomial on the number of states of the
minimum solution is NP-complete (Pitt & Warmuth, 1993).

If all strings of lengthn or less are given (auniform-completesample), then the problem
can be solved in time polynomial on the size of the training set (Porat & Feldman, 1988).
Note, however, that the size of the input is in itself exponential on the number of states in the
resulting DFA. Angluin has shown that even if an arbitrarily small fixed fraction(|6(n)|)ε ,
ε > 0 is missing, the problem remains NP-complete (Angluin, 1978).

The problem becomes easier if the algorithm is allowed to make queries or experiment
with the unknown automaton. Angluin (Angluin, 1987) proposes an algorithm based on
the approach described by Gold (Gold, 1972) that solves the problem in polynomial time
by allowing the algorithm to ask membership queries. Schapire (Schapire, 1992) proposes
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an interesting approach that does not require the availability of a reset signal to take the
automaton to a known state.

All these algorithms address simpler versions of the problem discussed here where we
assume the learner is given a set of labeled strings and is not allowed to make queries
or experiment with the automaton. The basic search algorithm for this problem was pro-
posed by Biermann (Biermann & Feldman, 1972). Later, the same author proposed an
improved search strategy that is much more efficient in the majority of the complex prob-
lems (Biermann & Petry, 1975). Section 5.1 describes these algorithms in detail. More
recently, the applicability of implicit enumeration techniques to this problems was studied
(Oliveira & Edwards, 1996). These techniques are analyzed in Section 4.

One contribution of this work is the demonstration that advanced search techniques can
be applied to this inference problem, improving the efficiency of the search algorithms by
several orders of magnitude. More specifically, we show how the application of dependency-
directed backtracking techniques improves significantly the search algorithm proposed by
Biermann. These techniques, applied to date in other domains like truth maintenance systems
(Stallman & Sussman, 1977) and boolean satisfiability solvers (Silva, 1995), allow the
search algorithm to prune large sections of the search tree by diagnosing the ultimate
causes of conflicts encountered during the search. In many cases, these conflicts are caused
by assignments that were made several levels above and significant parts of the search tree
can be removed from consideration. These techniques are described in Section 5.2.

The algorithms described are evaluated in a set of problems with known solutions. The
results presented in Section 6 show that some of the algorithms described actually extend
the scope of applicability of the search techniques and make the algorithms able to handle
many problems of non-trivial size.

A different approach is to view the problem of selecting the minimum automaton con-
sistent with a set of strings as equivalent to the problem of reducing an incompletely
specified finite automaton. This problem is more general than the one addressed here and
was also proved to be NP-complete by Pfleeger (Pfleeger 1973). However, previous work
(Oliveira & Edwards, 1996) has shown that these algorithms are extremely inefficient
when applied to this problem, and present no advantages over the approaches presented
here.

Other techniques have been proposed for the inference of finite state automata, some of
them based on recurrent neural network architectures (Giles et al., 1992; Pollack, 1991).
Although these methods may exhibit, from a conceptual standpoint, some advantages,
published results (Horne & Giles, 1995) show that neural network based methods are not
competitive in inference problems where the exact identification of the minimum finite state
automaton is the objective at hand.

2. Motivation

Our objective in this work is the study of algorithms for the inference of the exact minimum
DFA that is consistent with a given training set. It may seem that this is a goal too ambitious,
since, from a point of view of hypothesis accuracy, a DFA that is not minimum may still be
used to classify unseen strings with a high level of accuracy.
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In fact, heuristic methods for this problem that aim at selecting a small but not necessarily
minimum size solution have been proposed and met considerable success (Lang et al., 1998).
The most successful approaches to date are based on the idea of merging states that are
compatible (Trakhtenbrot & Barzdin, 1973; Oncina & Garcia, 1992; Lang, 1992). These
methods, commonly known asEvidence Driven State Merging(EDSM) algorithms, can
be made to run in polynomial time if no backtrack or only limited backtrack is allowed.
Furthermore, it is known that if the learning set includes a characteristic set (Oncina &
Garcia, 1992) whose size is quadratic on the size of the target DFA, then these algorithms
return the exact solution to the problem. In many situations, however, it is impossible to
enforce the presence of a characteristic set. In this case, the algorithms can still be applied,
but without the warranty of convergence to the global optimum solution.

When this is the case, several mergings are possible, but only some choices will lead
to the optimum solution. A number of heuristic approaches has been proposed to guide
the search process (Juill´e & Pollack, 1998), leading to a set of algorithms that have been
remarkably successful solving problems of significant complexity (Lang et al., 1998). Given
the known complexity of the problem, it is likely that the induction of large DFAs can only
be accomplished when heuristic methods as these are used. However, it is well known that,
as the size of the labeled training set gets smaller, methods that do not perform search
lose the ability to identify DFAs of a size comparable with the minimum solution and
become ineffective as a method to infer accurate classification rules for strings (Lang et al.,
1998).

It turns out that, in many domains, the size of the available training set is the dominating
factor, and exact determination of the minimum DFA consistent with the training set is the
most promising approach for the inference of the desired target hypothesis. This is usually
the case whenever human intervention is required to perform the labeling of the examples in
the training set. Although the methods described here have a specific application domain in
mind, similar restrictions on the size of the training set will exist in other domains, making,
in some situations, exact methods the best choice. We therefore believe that the algorithms
presented here are highly relevant to the machine learning community, even outside the
particular domain under consideration.

The particular domain we are concerned with is digital circuit design and, more specif-
ically, the synthesis of a finite state controller from descriptions of observed input/output
signals. We assume the designer has available a set of waveforms describing input/output
relationships, and is interested in deriving a finite state controller that generates those
waveforms. Sets of waveforms represent a very natural way for circuit designers to repre-
sent protocols, and are commonly used to specify properties and characteristics of a variety
of digital devices.

In general, the designer is interested in a finite state controller that not only generates
the waveforms presented, but also behaves correctly in a variety of similar, but distinct,
conditions. Under certain general conditions, it is possible to obtain such a controller without
providing all possible input/output waveforms. To achieve this goal, we first transform the
set of waveforms specified by the designer into a DFA with output of a particular type, a
loop-free DFA (LFDFA), formally defined in the next section. Intuitively a LFDFA is a
DFA that exhibits a state transition graph that is loop free and has no re-convergent paths.
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Figure 1. Sample waveforms for a dynamic memory controller.

The goal of deriving the desired finite state controller can then be achieved by selecting the
DFA with minimum number of states that is equivalent to this LFDFA.

To exemplify the task at hand, consider the waveforms shown in figure 1. They represent
the waveforms that should be generated by a dynamic memory controller (RAS,CAS,
READY) in response to a read request from the processor or cache controller (RD). It
is clear that these particular waveforms can be generated by the Mealy type LFDFA1 shown
in figure 2.

This is valid in general for any set of input/output waveforms that start at a known reset
state. If instead of a single waveform we have a set of waveforms, all starting at a known
reset state, we obtain atree likestate transition graph, as shown in figure 3.

Clearly, the LFDFAs generated directly from the set of input/output waveforms provided
are of limited utility as a specification of the desired controllers, because they will not be
able to generate the control signals in situations that do not match exactly the waveforms
present in the traces.

Although we will not address in detail the arguments over the merit of the Occam’s
razor approach (Blumer et al., 1987), we argue that the selection of a minimum size DFA
compatible with this specification is the method most likely to yield the desired result. In
fact, a variety of results show that there is a strong correlation between the complexity of
the generated hypothesis (Peark, 1978; Blumer et al., 1986; Li & Vit´anyi, 1994) and the
probability of obtaining a controller that implements the desired behavior. In the example

Figure 2. LFDFA that generates the waveforms for the dynamic memory controller.
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Figure 3. Traces and loop free DFA for a modulus 2 counter.

Figure 4. Minimal size DFA for the memory controller.

shown above, the minimum DFA compatible with the waveforms in figure 1 is shown in
figure 4. This finite state controller generates not only control signals compatible with the
waveforms shown in figure 1, but also captures the essence of the protocol intended by the
designer. Clearly, for this method to be reliable, the process of providing waveforms and
generating the finite state controller has to go through several iterations, with the designer
providing additional details at each iteration. However, the details of this procedure are
outside the scope of this work, since here we are specifically concerned with algorithms
that efficiently generate the automaton in figure 4 from the automaton in figure 2.

Other applications may also require exact solutions for the problem of finding mini-
mum states DFAs compatible with given LFDFAs. Recently, one of the authors proposed a
methodology for the reduction of states in finite state controllers that uses, as a subroutine,
an exact method for the reduction of LFDFAs (Pena & Oliveira, 1998).

3. Problem definition

3.1. Basic definitions

We follow Gold’s notation (Gold, 1978), and we use the following definition of finite state
automata:
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Definition 1. A deterministic finite automaton (DFA) is a Mealy model finite state au-
tomaton represented by the tupleM = (6,1, Q,q0, δ, λ) where6 6= ∅ is a finite set of
input symbols,1 6= ∅ is a finite set of output symbols,Q 6= ∅ is a finite set of states,
q0 ∈ Q is the initial “reset” state,δ(q,a) : Q × 6 → Q ∪ {φ} is the transition function,
andλ(q,a) : Q×6→ 1 ∪ {ε} is the output function.

We will assume thatQ = {q0,q1, . . . ,qn} and will useq ∈ Q to denote a particular state,
a ∈ 6 a particular input symbol andb ∈ 1 a particular output symbol. For Moore type
DFAs λ(q,a1) = λ(q,a2) for all a1,a2 ∈ 6. For Moore type DFAs with a binary output
alphabet, a state is considered an accepting state if the output is 1, and non-accepting if the
output is 0. In the sequence, we will consider that the DFAs are of the Mealy type, although
the methods can be directly applicable to Moore type DFAs.

An automaton is incompletely specified if the destination or the output of some transition
is not specified. When referring to incompletely specified automata, we will useφ to denote
an unspecified transition andε to denote an unspecified output. The functionδ(q,a) defines
the structure of the state transition graph of the automaton while the functionλ(q,a) defines
the labels present in each of the edges of that graph.

We say that an outputbi is compatible with an outputbj (and writebi ≡ bj ) if bi = bj

or bi = ε or bj = ε.
The domain of the second variable of functionsλ andδ is extended to strings of any

length in the usual way.

Definition 2. The output of a sequences = (a1, . . . ,ak) applied to stateq, denoted by
λ(q, s), represents the output of an automaton after a sequence of inputs(a1, . . . ,ak), is
applied in stateq. The output of such a sequence is defined to be

λ(q, s) = λ(δ(δ(· · · δ(q,a1) · · ·),ak−1),ak) (1)

Definition 3. The destination state of a sequences = (a1, . . . ,ak), denoted byδ(q, s),
represents the final state reached by an automaton after a sequence of inputs(a1, . . . ,ak),

is applied in stateq. This state is defined to be

δ(q, s) = δ(δ(. . . δ(δ(q,a1),a2) . . .),ak) (2)

To avoid unnecessary notational complexities,λ(φ,a) = ε andδ(φ,a) = φ, by defini-
tion.

3.2. Training sets and loop free automata

The objective is to infer an automaton with minimum number of states that is consistent
with a given training set. A training set is specified by one or more sequences of input-output
pairs:

Definition 4. A training set is a set of pairsT = {(s1, l1), . . . , (sm, lm)} where each pair
(s, l ) ∈ 6k × {1 ∪ ε} represents one input string and the output observed for that string.
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Accepted: 1 11 1111
Rejected: 0 101

Figure 5. Training set specified as a set of accepted and rejected strings.

Figure 6. Loop free automaton for the example training set shown.

If the output alphabet is the set{0, 1} the training set can be viewed as specifying a set of
accepted strings (the ones that output 1) and a set of rejected strings (the ones that output 0).
We will say thatT contains a strings if (s, l ) is in T andl 6= ε. An example of a possible
training set is given in figure 5.

Alternatively, the training set can be specified by one or more sequences where, at each
time, the value of the input/output pair is known. Both forms of training set descriptions
are equivalent and can be viewed as defining a particular type of incompletely specified
automata, aLoop Free Automata(LFDFA). A LFDFA is a DFA that has a state transition
graph without loops or re-convergent paths. Figure 6 shows the LFDFA that corresponds to
the training set in figure 5.

There is a one to one correspondence between loop free automata and training sets. A
loop free automaton represents a training set iff

1. Its output for each input sequence present in the training set agrees with the label in that
training set.

2. The output for input sequences not present in the training set is undefined.

Formally,

Definition 5. An automaton is said to be the loop free automaton representing a training
setT if it satisfies Definition 1 and the following additional requirements:

∀q ∈ Q \ q0, ∃1(qi ,a) ∈ Q×6 s.t. δ(qi ,a) = q

∀q ∈ Q, ∀a ∈ 6 δ(q,a) 6= q0

λ(q0, si ) = l i if (si , l i ) ∈ T,

λ(q0, s) = ε if (s, l ) 6∈ T
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These requirements specify that there exists one and only one (symbol∃1) string that,
when applied at stateq0 makes the automaton reach stateq and that stateq0 is not reachable
from any other state. This is the same as saying that the graph that describes the LFDFA is
a tree rooted at stateq0.

Since the training setT defines uniquely the corresponding loop-free automaton, we will
useT to denote both the training set itself and the LFDFA that it defines. We will in general
use quoted symbols (Q′, δ′, etc) to refer to the loop free automata and unquoted symbols
to refer to the resulting completely specified automata that is the result of the algorithm.

The aim is to construct an automatonM that exhibits a behavior equivalent toT , that is,
an automatonM that outputs the same output asT every time this output is defined.

Definition 6. An automatonM = (6,1, Q,q0, δ, λ) is equivalent to a LFDFAT =
(6,1, Q′,q′0, δ

′, λ′) iff, for any input strings= (a1, . . . ,ak) λ(q0, s) ≡ λ′(q′0, s).

Given a specific mapping functionF : Q′ → Q with F(q′0) = q0 from the states inT to
the states inM , it defines a valid solution iff it satisfies the following two requirements:

Definition 7. A function F satisfies the output and transition requirements iff:

∀q = F(q′), λ′(q′,a) ≡ λ(q,a) (3)

∀q = F(q′), F(δ′(q′,a)) = δ(q,a) (4)

It is known that the minimum finite state automaton that satisfies the training set can be
found by selecting an appropriate mapping function that maps the states inT to the states
in M .

Let T = (6,1, Q′,q′0, δ
′, λ′) be an LFDFA andM = (6,1, Q,q0, δ, λ) be a com-

pletely specified DFA. Consider now a relationF between the states ofT and the states of
M defined as follows:

Definition 8. Let F : Q′ → Q be defined byF(δ′(q′0, s)) = δ(q0, s) for each strings
contained inT .

In these conditions, the following lemma applies:

Lemma 1. F is a many to one mapping, mapping each state in T to one and only one
state in M.

Proof: sinceT is an LFDFA each state inT can be reached byone and only onestring.
Therefore, the definition ofF will assign a unique state inM to each state inT . 2

Theorem 1. Let T be a LFDFA. Then, for any automaton M compatible with T, the
function F as defined above is a valid mapping function between the states of T and the
states of M.

Proof: SinceM is equivalent toT , it gives an output compatible withT , for every string
s applied at the reset state, i.e.,λ(q0, s) ≡ λ′(q′0, s). Consider two statesq′ ∈ Q′ andq ∈ Q
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and assume thatF(q′) = q becauseδ′(q′0, s) = q′ andδ(q0, s) = q (definition ofF). Now,
λ′(q′,a) = λ′(q′0, sa) ≡ λ(q0, sa) = λ(δ(q0, s),a) = λ(q,a), and therefore equation 3 is
respected. On the other hand,F(δ′(q′,a)) = F(δ′(q′o, sa)) = δ(q0, sa) = δ(δ(q0, s),a) =
δ(q,a) = δ(F(q′),a) and therefore equation 4 is also respected. Therefore,F is a mapping
function satisfying equations (3) and (4). 2

This result has been implicitly used by Biermann (Biermann & Petry, 175) and a slightly
different proof has been presented in Oliveira and Edwards (1996). Is is important to note
that, in general, the minimum DFA equivalent to a given incompletely specified DFA can
not be obtained by selecting a mapping function in this way. This result is only valid for
LFDFAs, not for generic DFAs (Pena & Oliveira, 1998).

Since any automaton that satisfies these requirements can be found by selecting a mapping
function, the objective of selecting the minimum consistent DFA can be attained by selecting
a mapping function that exhibits a range of minimum cardinality.

For the sake of simplicity, we follow Biermann’s original notation and will defineSi as
the index of the state in the target automaton that stateq′i in the original LFDFA maps to,
i.e.,qSi = F(q′i ) (Biermann & Petry, 1975).

An equivalent DFA withN states can therefore be found by selecting an assignment to
the variablesS0, . . . , Sn, such that eachSi is assigned a value between 0 andN − 1, and
this assignment defines a mapping function that satisfies (3) and (4).

3.3. Compatible and incompatible states

Two statesq′i andq′j in a finite state automatonT are incompatible if, for some input string
s, λ(q′i , s) 6≡ λ(q′j , s). This information can be represented by a graph, theincompatibility
graph. The nodes in this graph are the states inQ′, and there is an edge between stateq′i
andq′j if these states are incompatible.

The incompatibility graph is represented by a functionI : Q′ × Q′ → {1, 0}. I (q′i ,q
′
j )

is 1 if and only if statesq′i andq′j are incompatible.
A clique in the incompatibility graph gives a lower bound on the size of the minimum

automaton. By definition, pairs of incompatible states cannot be mapped to the same state
and therefore, a clique in this graph corresponds to a group of states that must map to
different states in the resulting automaton. Identifying the largest clique in a graph is in
itself an NP-complete problem (Garey & Johnson, 1979). A large clique (not necessarily
the maximum one) can be identified using a slightly modified version of a well known exact
algorithm (Carraghan & Pardalos, 1990). The size of the clique provides a lower bound
on the number of states needed in the resulting automaton. This lower bound is used as
the starting point for the search algorithms described in the next section. If the algorithms
described in the next section fail to find an automaton with a number of states equal to the
lower bound, we increaseN by one and re-execute the algorithms.

3.4. DFA inference as a constraint satisfaction problem

As shown in Section 3.2, the objective is to select a mapping functionF that has a range
of minimum cardinality. It is now straightforward to re-state this problem as a constraint
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satisfaction problem (CSP). The constraints that need to be obeyed by the mapping function
are the following:

1. If two statesq′i andq′j in the original LFDFA are incompatible, thenSi 6= Sj .
2. If two statesq′i andq′j have successor statesq′k andq′l for some inputu, respectively,

thenSi = Sj ⇒ Sk = Sl .

These two conditions can be rewritten as:

I (q′i ,q
′
j ) = 1 ⇒ Si 6= Sj (5)

and

q′k = δ′
(
q′i ,a

) ∧ q′l = δ′
(
q′j ,a

) ⇒ Si 6= Sj ∨ Sk = Sl (6)

For any given training set, equations (5) and (6) will generate a set of restrictions that have
to be obeyed in order to generate a valid solution. As an example, consider the training set
considered in figure 5 and the corresponding LFDFA in figure 6. The constraints generated
by this training set are shown in Table 1.

In this case, it is trivial to verify by inspection that the following assignment will provide
a solution of minimum cardinality:S0 = S1 = S2 = S3 = S4 = 0 andS5 = S6 = S7 = 1.
Once the mapping is obtained, the generation of the minimum inferred DFA inferred is
straightforward. There will be one state for each value in the range of the mapping function,
and transitions will be labeled in accordance with the transitions specified in the LFDFA.
In this example, this mapping generates the minimum DFA shown in figure 7.

Table 1. Subset of constraints generated from the training set in figure 5.

Constraint Condition imposing constraint

S0 6= S5 I (q′0,q
′
5) = 1

S1 6= S5 I (q′1,q
′
5) = 1

S3 6= S5 I (q′3,q
′
5) = 1

S0 6= S1 ∨ S1 = S2 q′1 = δ′(q′0, 1) ∧ q′2 = δ′(q′1, 1)
S0 6= S2 ∨ S1 = S3 q′1 = δ′(q′0, 1) ∧ q′3 = δ′(q′2, 1)
S0 6= S3 ∨ S1 = S4 q′1 = δ′(q′0, 1) ∧ q′4 = δ′(q′3, 1)
S1 6= S2 ∨ S2 = S3 q′2 = δ′(q′1, 1) ∧ q′3 = δ′(q′2, 1)
S1 6= S3 ∨ S2 = S4 q′2 = δ′(q′1, 1) ∧ q′4 = δ′(q′3, 1)
S2 6= S3 ∨ S3 = S4 q′3 = δ′(q′2, 1) ∧ q′4 = δ′(q′3, 1)

Figure 7. Minimum DFA inferred from the training set in figure 5.
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One may think that, given that the problem can be posed as a CSP, a general purpose
CSP solver would be able to perform this optimization task in an efficient way. However,
our experiments with a number of existing CSP solvers have shown that this is not the case.
General purpose CSP solvers are too general to be efficient in this particular problem, and
we had no success applying them to this task. One must note that the set of constraints
generated by even a relatively small training set is extremely large, a factor that seems to
strongly limit the performance of general purpose CSP solvers.

Other authors have also realized that the DFA inference problem can be stated as a CSP
problem (Coste & Nicolas, 1998). The approaches described in this work follows a similar
formulation, but the search methods proposed to solve it are significantly different.

The two algorithms described in the following sections can also be viewed as CSP solvers,
but they have been specifically designed for this problem, and therefore perform much more
efficiently. In fact, they trade efficiency for generality. General CSP solvers are able to accept
more general constraints, but that generality has a severe impact of the complexity of their
internal data structures and on their efficiency on this particular problem.

4. Implicit search algorithms

Recent research in the field of logic synthesis (Coudert, Berthet & Madre, 1989) and discrete
optimization (Kam et al., 1994) has shown that implicit enumeration algorithms can be
very effective in dealing with search problems with extremely large search spaces. Implicit
enumeration algorithms are based on the idea of replacing the explicit search for a solution
by a description, in implicit form, of a function describing all the possible solutions.

The implicit approach described in this section follows that philosophy and avoids the
need to explicitly search for the right mapping function. It does so by keeping an implicit
description of all the mapping functions that satisfy the output and transition requirements.
This approach makes the implicit algorithm very simple to describe, but incurs the over-
head imposed by the use of discrete function manipulation primitives. This overhead can
be recovered if the regularities of the problem make the use of an implicit enumeration
technique more efficient than an explicit one.

To simplify the explanation, we assume that the output alphabet1 is equal to the set
{0, 1}. The approach can be easily applied to the more general case.

4.1. Discrete functions and multi-valued decision diagrams

The discrete function manipulation needed to keep this implicit list of possible mappings is
performed using multi-valued decision diagrams to represent the discrete functions involved.
A full description of this technique is outside the scope of this work and only a brief
introduction is made here. The reader is referred to Kam & Brayton (1990) for a more
complete treatment. Any binary valued function ofk discrete variables,x1, x2, . . . , xk

F : P1× P2× · · · × Pk → {0, 1} (7)

can be represented by a Multi-valued Decision Diagram (MDD). An MDD is a rooted,
directed, acyclic graph where each non-terminal node is labeled with the name of one input
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variable. An MDD forF has two terminal nodesnz andno that correspond to the leaves of
the graph. Every non-terminal nodeni , labeled with variablexj , has|Pj | outgoing edges
labeled with the possible values ofxj . Each of these edges points to one child node. The
value of F for any point in the input space can be computed by starting at the root and
following, at each node, the edge labeled with the value assigned to the variable tested at
that node. The value of the function is 0 if this path ends in nodenz and 1 if it ends in
nodeno.

A decision diagram is calledreducedif no two nodes exist that branch exactly in the
same way and it is never the case that all outgoing edges of a given node terminate in the
same node (Bryant, 1986). A decision diagram that is both reduced and ordered is called a
reduced ordered decision diagram. For a given variable ordering, reduced, ordered MDDs
are canonical representations for functions defined over that domain.

Packages for the manipulation of discrete functions using MDDs allow the user to realize
(Kam & Brayton, 1990), amongst others, the following operations:

1. Creation of a function from an arithmetic relation. For example,f := (xi = xj ) returns
the function that is 1 for all points of the input space wherexi = xj .

2. Boolean combination of existing functions. For example,f := g∧h returns the function
that is 1 only when functionsg andh are 1.

As an example, figure 8 depicts the MDDs for the functionsf := (x 6= 3), g := (x = y)
andh := f ∧ g, all defined overP × P, P = {1, 2, 3}.

4.2. Implicit enumeration of solutions

The objective is to satisfy the constraints expressed in Section 3.4 using as few values as
possible for the values ofSi in equations (5) and (6). The idea is to keep an implicit list
of the valid solutions to this CSP that can be directly manipulated using simple Boolean
operations. This list is kept by considering a functionF : {0, . . . , N − 1}|Q′| → {0, 1}
defined as follows:

Figure 8. Graphic representation of the MDDs for functionsX 6= 3, X = Y andX 6= 3∧ X = Y.
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Definition 9. F(S0, S1, . . . , S|Q′|−1) = 1 for the pointv0, v1, . . . , v|Q′|−1 if the mapping
function F defined byS0 = v0, S1 = v1, . . . , S|Q′|−1 = v|Q′|−1 corresponds to a mapping
function satisfying constraints (5) and (6).

A solution of the CSP described in Section 3.4 can now be found in a trivial way by
simply computing the MDD representation of the following expression

F
(
S0, S1, . . . , S|Q′|−1

) = ∧
i, j s.t. I (q′i ,q

′
j )= 1

Si 6= Sj

∧
k,l ,i, j s.t. q′k = δ′(q′i ,a)∧q′l = δ′(q′j ,a)

Si 6= Sj ∨ Sl = Sk (8)

where the domain of eachSi (and therefore, of each MDD variable) ranges from 0 toN−1,
whereN is the current target for a solution of the constraint satisfiability problem.

Note that the actual implementation of this expression involves two rather trivial iteration
loops, since the MDD manipulation package internally handles all the operations on the
MDDs. However, the actual computation of the MDD representing expression 8 may require
extensive amounts of memory and computation, even if the final solution can be represented
by an MDD with a small number of nodes. If there are onlyk solutions with sizeN, it is
guaranteed that the MDD representing those solutions will not have more thank|Q′| nodes
(Oliveira et al., 1998). However, MDDs resulting from intermediate computations can have
an exponentially higher number of nodes, representing the bottleneck of this computation.

4.3. Ordering and other efficiency issues

There are two important ordering problems to be addressed in the algorithm. The first one is
the order in which states are processed when expression (8) is computed. The experiments
have shown that no other ordering improved significantly the performance when compared
with the ordering obtained by performing a breadth first search in the graph that representsT .
This is the ordering used, by default.

The second ordering that deserves consideration is the ordering in which variables are
stored internally in the MDD package. The best results were obtained by sorting the states
according to the degree of the respective nodes in the incompatibility graph.

5. Explicit search algorithms

5.1. The basic search algorithm

The explicit search algorithm for the solution of the CSP posed in Section 3.4 searches for
a solution for the constraints (5) and (6) by constructing a search tree and backtracking
whenever some partial assignment is found to lead to a contradiction. When looking for
an automaton withN states, the basic search with backtrack procedure iterates through the
following steps:

1. Select the next variable to be assigned,S, from among the unassigned variablesSi .
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2. Extend the current assignment by selecting a value from the range 0. . . N − 1 and
assigning it toS. If no more values exist, undo the assignment made to the last variable
chosen.

3. If the current assignment leads to a contradiction, undo it and goto step 2. Else goto
step 1.

This search process can be viewed as a search tree (or decision tree). We define the
decision level as the level in this tree where a given assignment was made. The assignment
made at the root is at decision level 0, the second assignment at decision level 1, and so on.

To illustrate the fundamental differences between this and succeeding search techniques,
consider an hypothetical example where a search is being performed by an automaton with
3 states. Under these conditions, eachSi can assume only the values 0, 1 or 2. Suppose
that variables will be assigned in the orderS0, S1, . . . , S9 and that the following constraints
exist in this problem:

S1 6= S2 ∨ S8 = S9 (9)

S8 6= S9 ∨ S2 = S3 (10)

The section of the search tree depicted in figure 9 is obtained by the basic search algorithm
described above. In every leaf of this tree a conflict was detected and backtracking took
place.

Biermann noted (Biermann & Petry, 1975) that a more effective search strategy can be
applied if some bookkeeping information is kept and used to avoid assigning values to
variables that will later prove to generate a conflict. This bookkeeping information can also

Figure 9. Search tree for simple backtrack algorithm.
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be used to identify variables that have only one possible assignment left, and should therefore
be chosen next. This procedure can be viewed as a generalization to the multi-valued domain
of the unit clause resolution of the Davis-Putnam procedure (Davis & Putnam, 1960), and
can be very effective in the reduction of the search space that needs to be explored.

This can be done in the following way2

• For each node inq′j ∈ Q′, a table is kept that lists the values thatSj can take.
• Every time someSi is assigned to the valuez, the tables for all unassigned nodes are

updated according to the following algorithm:

– If I (q′i ,q
′
j ) = 1, thenz is removed from the list of values thatSj can be assigned to.

(Equation (5))
– If the assignment ofSi forces some specific valuezon some nodeq′l (forced by equation

(6)), then all values exceptz are removed from the table of possible values in nodeq′l .

• When selecting the next variableSi to assign, priority is given to the variables that
correspond to nodes inQ′ that can at that depth take only one possible value.

Clearly, the information on these tables needs to be updated after every assignment is
made to someSi and also after each backtrack takes place. Biermann has shown, and our
experiments have confirmed, that for hard problems, this improved search strategy leads
to considerable improvements in speed, and expands the size of the problems that can be
addressed.

For the example considered above, the section of the search tree obtained is shown in
figure 10. Note that as soon as a value is assigned toS8, the algorithm automatically identifies

Figure 10. Reduced search tree for Biermann’s improved algorithm.
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that no solution exists because no value can possibly be assigned toS9. This may lead to very
considerable savings, specially ifS9 is not the next variable to be assigned. The search tree
obtained by this algorithm is qualitatively different because many nodes have a branching
factor equal to 1 and the order by which assignments are performed is no longer fixed.

5.2. Explicit search using dependency directed backtracking

In this section, we show that the application of recently developed search techniques can
improve considerably the efficiency of the search algorithm and extend the range of problems
that can be effectively solved. In particular, these techniques will avoid the need to explicitly
search all the replicated subtrees that are present in the search tree shown in figure 10.

The improvement proposed is the application ofconflict diagnosistechniques to allow
for the use ofdependency directed backtracking. In this paper, we use the termdependency
directed backtrackingto denote two techniques that can, in fact, be used independently.
The first technique is based on the realization that, under certain conditions, it is possible to
perform jumps in the decision tree that span one or more decision levels. These jumps are
callednon-chronological backtracksor backjumps(Russel & Norvig, 1996). The second
technique is based on the fact that, under similar conditions, it is possible to assert a set of
constraints that need to be obeyed in the future if a solution is to be found.

Before we describe these techniques, we will first reformulate slightly the problem at
hand. For this, we point out that the set of constraints (5) and (6) can be computed only
once at the beginning of the algorithm execution. This means that a set of constraints is
generated, where each constraint is of the form:

(X1 opX2) ∨ (X3 opX4) ∨ · · · ∨ (Xn−1 opXin) (11)

Each constraint is a disjunction of one or more elements of the formXi opXi+1 where
eachXi is either a variableSj or a constant in the range 0 toN − 1. Each operator op is
either= or 6=. Constraints generated from equation (5) have one element, while constraints
generated from equation (6) have 2 elements. It is clear that the algorithm can be easily
extended to satisfy any constraints with more than 2 elements, but the problem formulation
does not create them.

Conflict diagnosis (Silva & Sakallah, 1996) is a technique first proposed by Stallman and
used in the context of truth-maintenance systems (de Kleer, 1986) and constraint satisfia-
bility solvers (Stallman & Sussman, 1977). To make clear how conflict diagnosis can be
used to prune the search tree, consider again the example described above, and the section
of the search tree shown in figure 11. In this problem, for each possible value assigned to
S8, a conflict is detected as soon as all the values ofS9 are considered. In this example
the conflicts detected in the backtrack pointsA, B andC can be traced to the following
conditions: a)S1 = S2 and b)S2 6= S3. Under these conditions, all the possible assignments
to S8 andS9 failed to yield a solution, and therefore no solution can be found until one of
these assignments is removed. This fact has two immediate consequences:

1. No progress can be made by assigning other values toS4, S5 up toS7, until at least one
of the specific assignments made toS1, S2 andS3 are changed.
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Figure 11. Example of non-chronological backtracking used by the improved search algorithm (BIC).

2. If the conditions that caused this conflict, namely the specific assignments made toS1,
S2 andS3, are again present in some other part of the search tree, they will generate a
replica of this conflict.

Therefore, we can state that the current assignments toS1, S2 andS3 can not be present in
any assignments that lead to a solution. This means that we can perform a non-chronological
backtrack to the decision level whereS3 was assigned and that a new constraint can be added
to the constraints in the database.

These facts lead to the following general procedure for handling conflicts and controlling
the backtrack search procedure.

1. Every time a conflict is detected, diagnose the conflict and generate a constraint that
expresses that conflict. The result of this diagnosis is the consensus of all the assignments
that originated the conflict.

2. Identify the variable present in the conflict that is at the highest decision level, and
perform anon-chronological backtrackto that level.

3. Store the constraint generated by the conflict diagnosis engine in the constraint database,
and use it to restrict choices of variables in the future. This is usually described as
dependency directed backtracking.

5.3. Conflict diagnosis

Every time a conflict arises, the assignments that are directly responsible for the conflict are
identified. The conditions that need to be obeyed to resolve this conflict can be summarized
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in a constraint of the form of the general constraint (11). Consider again the example in
figure 11, and the conflicts detected in nodesA, B andC. At each of these nodes, it is found
that no possible assignments exist to variableS9.

Analyzing in more detail the conflict in nodeA, we see thatS9 cannot take the value
0 because the second constraint in the example, constraint (10) is not satisfied, given the
current assignmentsS2 = 0 andS3 = 1. The other values possible forS9, 1 or 2, are barred
because constraint (9) would not be satisfied, sinceS1 = 0 andS2 = 0. The condition that
leads to this conflict can therefore be written as:

S1 = 0∧ S2 = 0∧ S3 = 1∧ S8 = 0 (12)

This condition represents simply the consensus of all the constraints that lead to the conflict
in this node. The last element in the constraint,S8 = 0 is also a cause of the conflict, and
therefore should be listed in the condition.

For nodesB andC, a similar procedure could be followed and we would arrive at the
following two conditions:

S1 = 0∧ S2 = 0∧ S3 = 1∧ S8 = 1 (13)

S1 = 0∧ S2 = 0∧ S3 = 1∧ S8 = 2 (14)

Note that, in this simplified example, the three conditions are very similar, but that needs not
be the case in general. The cause of the conflict detected in nodeD can now be diagnosed
as the consensus of the causes of all the conflicts in the children nodes,A, B andC. The
consensus of a set of constraints is simply the conjunction of all constraint elements that
are in agreement in all the constraints in the set. A variable that is present in all the values
of its domain is removed. In this case, all the values for variableS8 were tried, and therefore
the conflict cannot be due to any specific choice ofS8. This is a general rule, and a non-
chronological backtrack can only be made after all the possible choices for a given variable
have been tried.

The conflict in nodeD is therefore diagnosed as being caused by

S1 = 0∧ S2 = 0∧ S3 = 1 (15)

To solve this conflict, the negation of this condition has to be asserted, and therefore the
constraint

S1 6= 0∨ S2 6= 0∨ S3 6= 1 (16)

can be added to the database, since this constraint will have to be satisfied in any assignments
that lead to a solution.

Clearly, this constraint can only be satisfied if a non-chronological jump to the level of
nodeE is performed. Note that the condition in (15) is propagated backwards as the cause
of the conflict in nodeD, and will be used in the computation of the cause of the conflict in
nodeE, if one exists.



EFFICIENT ALGORITHMS FOR THE INFERENCE OF MINIMUM SIZE DFAs 111

This leads to the following general procedure for the diagnosis of conflicts and control
of backtrack:

1. At each leaf in the search tree, compute the set of assignments involved in the conflict.
2. At each non-leaf node where a conflict is detected, compute the consensus of all the

conditions involved in the conflicts of children nodes.
3. Complement the resulting condition, and add it to the constraint database. Also, store

this condition as the cause of the conflict at this node.
4. Compute the highest decision level involved in this condition, and perform a non-

chronological backtrack to that level.

6. Experimental results

6.1. Performance comparison of the algorithms

To test the performance of the algorithms described in Sections 4, 5.1 and 5.2, we used
a randomly generated set of 115 Mealy type finite state automata with binary inputs and
outputs. These finite state automata were reduced and unreachable states were removed
before the experiments were run. The size of the automata (after reduction) varied between
3 and 19 states. A total of 575 training sets were generated, with each training set containing
twenty strings of length 30. Each program was given 30 minutes of CPU time and 128
Megabytes of memory to find the minimum consistent automaton in a 133 MHz Pentium
running Linux.

Of the total of 575 problems, Biermann’s approach (described in Section 5.1) solved 371,
the implicit algorithm (Iasmin) described in Section 4 solved 363, and the explicit search
algorithm improved with dependency directed backtracking (Bic) managed to solve 468.
The graph in figure 12 shows the fraction of problems that are solved by each algorithm,

Figure 12. Fraction of the problems solved by the Biermann’s algorithm,Iasmin andBic, respectively.
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plotted as a function of the number of states in the finite state automaton that represents the
solution.Bic manages to solve the large majority of the problems that have a solution with
no more than 12 states, while the other approaches start failing for problems with solutions
between 9 and 10 states. At first glance, it may seem that this difference is relatively small
and easily due to small differences in implementation details. However, that turns out not
to be the case. In fact, the problems with 12 states are several orders of magnitude harder
to solve, not only because the search space is much larger, but also because the training
set is, relatively speaking, much sparser. In fact, the advantage ofBic over the other two
approaches can be as large as several orders of magnitude.

Figure 13 shows the total CPU time spent byBic and Biermann’s original algorithm,
while figure 14 compares the CPU time ofBic againstIasmin. In both cases, the problems
were sorted in order of increasing CPU time taken by the algorithms.

Figure 13. Comparison of the CPU time spent by Biermann’s algorithm andBic, the explicit search algorithm
with dependency directed backtracking.

Figure 14. Comparison of the CPU time spent byIasmin andBic.
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It is interesting to note that the behavior of Biermann’s algorithm and the implicit search
method implement inIasmin give very comparable results. This happens despite the fact
that Biermann’s algorithm andIasmin search the solution space using radically different
approaches. However,Iasmin requires considerably more memory than Biermann’s ap-
proach, which basically requires an amount of memory linear on the size of the original
training set.

We have no clear idea why these two different algorithms perform so similarly in this set
of problems. Clearly, the intrinsic difficulty of this task when the DFA sizes approach 10
states justifies partially the similar results, but a more detailed analysis of the characteristics
of this problem is required to fully understand the reasons behind this phenomenon.

6.2. Analysis of the advantages of dependency directed backtracking

It is interesting to analyze how the use of dependency directed backtracking improves, in a
systematic way, the performance of the algorithm. For that, we performed a comparison of
the number of backtracks performed by Biermann’s algorithm andBic.

Figure 15 shows the number of backtracks required for each problem. It is clear that the
number of backtracks used byBic is much smaller than the number of backtracks used
by Biermann’s approach. However, each backtrack takes longer to execute in the modified
algorithm. Figure 16 shows the timeeachbacktrack takes to execute, for all the problems
that are solved in the alloted time. This graph shows that, in the interesting range, i.e.,
problems with index 250 to 360, each backtrack is on the order of 2 times more costly if
the dependency directed backtracking is used.3

From a point of view of generalization accuracy, we observed experimentally that for all
but two of the 468 problems solved byBic, the automaton was exactly recovered, therefore
implying that the test error is zero, independently of the test set chosen. This result validated
the assumption described in Section 2 that the search for the minimum equivalent automaton,
although computationally expensive, leads to very accurate hypotheses, under the conditions
used in this work.

Figure 15. Number of backtracks executed by the explicit search methods.
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Figure 16. Cpu time by executed backtrack in the search tree.

6.3. Comparison with EDSM methods

Given the success of the EDSM merging algorithms, it is also interesting to evaluate their
performance compared with the algorithms described in Sections 4 and 5. A direct com-
parison of the runtimes is uninteresting, since the heuristic nature of these methods makes
them much faster than the search methods described in this work. In fact, since there are no
warranties that the selected training sets include a characteristic set of strings, EDSM meth-
ods will return a result that, in many cases, will not be the minimum state DFA consistent
with the training set.

However, a comparison between the exact and the heuristic methods is still important,
since it has been shown that heuristic methods can be applied to problems one order of
magnitude larger than the exact search algorithms described in this work. In particular, we
would like to find out what fraction of problems in the benchmark can be solved exactly by
direct application of EDSM algorithms.

However, a direct comparison using the Mealy automata benchmark used in Section 6.1
is not possible, since these methods and the merging heuristics have been developed to be
applied only to Moore type automata. Although the essential idea of EDSM methods can be
readily adapted to Mealy type automata, adaptation of the heuristics that guide the search
is a more complicated issue and is clearly outside the scope of this work.

For this reason, a second benchmark that consists only of Moore type deterministic
finite automata was used in this comparison. Following a procedure similar to the one
described before, a total of 304 Moore type automata with binary inputs and outputs were
randomly generated. For each automata, 5 training sets with twenty strings of length 30
were randomly generated, for a total of 1520 problems.Bic, when applied to this set of
problems and constrained to look only for Moore type DFAs, solved 1431 problems, with
the solution sizes ranging between 2 and 18 states.4 For the set of problems solved byBic,
the graph in figure 17 shows the fraction of problems that were also solved exactly by the
TraxBar (Trakhtenbrot & Barzdin, 1973; Oncina & Garcia, 1992) and theBlue-Fringe
(Lang, Pearlmutter & Price, 1998; Juill´e & Pollack, 1998) EDSM methods. An analysis of
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Figure 17. Fraction of problems solved exactly by the heuristic merging algorithmsTraxBar andBlue-Fringe.

this graph shows that EDSM methods become progressively less effective as the complexity
of the problem increases. In this case, this increase in complexity is due simultaneously to
the larger size of the automata to be inferred and to the increased sparsity of the training
set. For problems in this range, application of the exact inference methods described in
this work is very interesting, since they are likely to obtain significantly higher accuracy
in classification tasks. This graph also confirms that theBlue-Fringe algorithms is more
successful at inferring the exact automaton than the originalTraxBar algorithm.

Finally, it is important to note that the exact methods described here are limited in their
scope of application, when compared with EDSM methods. In particular, exact search meth-
ods are applicable mainly in situations where the training set data is sparse and the target
DFA is not very large, somewhere in the order of a few tens of states. In particular, the
methods described here cannot be applied directly to the problems in the Abbadingo com-
petition (Lang, Pearlmutter & Price, 1998), where the training sets correspond to LFDFAs
with hundreds of thousands of states. For problems of this magnitude, the algorithm is not
directly applicable since even building the incompatibility graph is infeasible. However, we
believe the ideas set forth in this work can still be used, although the proposed approach
needs to be extensively changed.

7. Conclusions and future work

We presented algorithms that represent the state of the art for the problem of inferring the
finite state automaton with minimum number of states that is consistent with a given training
set.

The results show that, for the set of problems studied, the use of explicit search techniques
improved with the use of dependency directed backtracking results yield the most efficient
algorithm for this problem. In fact, and at least for this set of problems, the extra overhead
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incurred by the bookkeeping necessary to apply these techniques is recovered in the vast
majority of the problems, with the exception of the smaller and simpler ones.

For the set of problems studied, the most efficient algorithms described in this paper find
the exact solution in very little time in all problems that have solutions up to 11–12 states,
and become progressively less effective as the number of states increases. Naturally, the
dimension of the problems that can be solved depends strongly on the exact training set
used, the number of possible inputs and outputs, the type of the automaton and the structure
of the state transition graph. We believe, however, that the techniques described here will
be extremely effective in a variety of other situations.

There are several open problems that are of interest for future research. One of these
problems is related with the outer loop of the algorithm used in both the explicit and implicit
search methods. The current versions of these algorithms starts by looking for a automaton
with N states, whereN is the size of the largest clique found in the incompatibility graph.
If this search fails, it increases the target size by one, and restarts the algorithm, therefore
loosing all the information stored so far. It may be possible to use information from the
previous iteration to speed up subsequent phases of the search.

Another topic for future research is the applicability of additional pruning techniques
like recursive learning (Kunz & Pradhan, 1992) to speedup the explicit search process.
It may also be possible to improve the performance of the explicit search methods by a
considerable factor if a more strict control is imposed on constraints added to the constraint
database. The current version of the dependency directed search algorithm poses no limits
on the size of the constraints and does not analyze whether redundant constraints are added
to the database, although a simple fingerprinting technique is used to avoid duplication of
equivalent constraints.

For the implicit enumeration algorithm, it may be interesting to study a different rep-
resentation as the support for discrete function manipulation. On the other hand, implicit
enumeration algorithms based on MDDs are always very sensitive to the ordering se-
lected for the variables in the MDD. Although we examined several different orderings,
both dynamic and static, this direction for research was in no way exhausted by our
experiments.

A distinct possibility for the solution of this type of problems is the adaptation of EDSM
algorithms to the problem of exact inference. If a backtrack procedure is used on the merging
choices used by state merging algorithms, it will be possible to derive an exact algorithm
that works on a different principle and that has the potential to be more efficient in, at least,
a subset of the interesting problems.

Finally, it must be observed that the algorithms described here solve problems specified by
a very general set of constraints. Probably the most interesting direction for future research
is the application of these techniques to other problems that can be formulated in a similar
fashion.
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Notes

1. For this application domain, it is critical that the DFA be a Mealy type DFA, since immediate response to a
changing input is required. This justifies the choice of using only Mealy type DFAs in this work, although all
the concepts can be directly translated to the more commonly used Moore type DFAs.

2. The original formulation is made in slightly different terms. We present here an adapted description of
Biermann’s algorithm, suited to follow our different notation. The interested reader is referred to the reference
for the original formulation.

3. For the easier problems, the ones with an index lower than 250 in these graphs, very little CPU time is spent
overall and the statistic shown in figure 16 is not very significant.

4. The larger size of the problems solved in this benchmark is justified by the fact that inference of Moore type
DFAs is somewhat easier than Mealy type, given the richer behavior (for a given number of states) of Mealy
type automata.
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