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Abstract

Search operations in large sets of complex ob-
jects usually rely on similarity-based criteria, due
to the lack of other general properties that could
be used to compare the objects, such as the to-
tal order relationship, or even the equality re-
lationship between pairs of objects, commonly
used with data in numeric or short texts domains.
Therefore, similarity between objects is the core
criterion to compare complex objects. There are
two basic operators for similarity queries: Range
Query and k-Nearest Neighbors Query. Much
research has been done to develop effective al-
gorithms to implement them as standalone op-
erations. However, algorithms to support these
operators as parts of more complex expressions
involving their composition were not developed
yet. This paper presents two new algorithms spe-
cially designed to answer conjunctive and dis-
junctive operations involving the basic similarity
criteria, providing also support for the manipu-
lation of tie lists when the k-Nearest Neighbor
query is involved. The new proposed algorithms
were compared with the combinations of the ba-
sic algorithms, both in the sequential scan and in
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the Slim-tree metric access methods, measuring
the number of disk accesses, the number of dis-
tance calculations, and wall-clock time. The ex-
perimental results show that the new algorithms
have better performance than the composition of
the two basic operators to answer complex simi-
larity queries in all measured aspects, being up to
40 times faster than the composition of the basic
algorithms. This is an essential point to enable
the practical use of similarity operators in Rela-
tional Database Management Systems.

Keywords: Query processing, complex simi-
larity queries, similarity search algorithms.

1 Introduction

The currently available Relational Database
Management Systems (RDBMS) were developed
to manipulate data expressed as numeric or short
textual attributes, considering the total ordering
relationship among the elements of these data
domains. However, the volume and types of
data stored and manipulated in the RDBMS has
increased continually, and now includes several
other data types. The new data types, commonly
called complex data, usually do not present the
total ordering relationship. Therefore, the ex-
isting search operations and the traditional in-
dexing structures used in RDBMS are not use-
ful. Regarding complex data domains, such as
image, video, spatial references, genomic se-
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quences, time series, and others, the similarity

between pairs of elements is the most impor-
tant property [13]. Therefore, a new class of
queries based on the similarity between elements
emerged as the more adequate to manipulate data
in complex data domains, that are called similar-

ity queries. Similarity queries require the exis-
tence of a dissimilarity function on the data do-
main, also called a distance function or simply
a “metric” [9].

There are basically two types of similarity
queries in metric domains: the range queries ex-
pressed by the Rq predicate and the k-nearest
neighbor queries expressed by the kNNq predi-
cates [18]. A range query recovers stored objects
that differ up to a given dissimilarity degree from
the query center. An example of a range query on
a data set of genomic sequences is the following:
“Choose the polypeptide chains which are dis-

similar from the given chain p by up to 5 codons”.
A k-nearest neighbor query recovers the k stored
objects that are the nearest to the query central
object, where k is an integer value determining
the number of objects retrieved. An example of
a k-nearest neighbor query on the genomic data
set is the following: “Choose the 10 polypeptide

chains nearest to the given polypeptide chain p”.
Most of the existing reports in the literature

deal with the two similarity predicates imple-
mented as isolated operations, not considering
them as part of more complex expressions involv-
ing more predicates. In other words, existing al-
gorithms designed to answer each one of these
similarity queries do not allow optimizations that
could be performed on combinations of them.
Consequently, a complex similarity query involv-
ing more than one similarity operation tends to
be processed inefficiently, requiring the execu-
tion of set-theoretical operators (as union and/or
intersection) to combine the intermediate results
obtained by the basic similarity operators.

The expansion of multimedia data stored in to-
day RDBMS fosters the need of efficient ways
to answer advanced queries, such as the simi-

larity queries. A natural way to provide sup-
port to these data types is including support for
similarity queries in the standard query language
(SQL), allowing similarity predicates to be ex-
pressed as an extension of SQL. Hence, these
predicates could be used as selection clauses to-
gether with the other existing clauses in SQL.To
this intent, two main points need to be consid-
ered: how these predicates can be used together
with others; and how operations composed of the
basic predicates often used together can be sup-
ported by specific algorithms that are more effi-
cient than the sequential execution of the basic
algorithms followed by the set-theoretical opera-
tions.

In this paper we address the problem of how
to develop specific algorithms combining simi-
larity queries into more complex expressions and
how to provide support for similarity queries in
RDBMS. We propose two new algorithms, called
kAndRange() and kOrRange(), which provide
specific support for complex similarity queries
using the AND/OR clauses to compose queries
centered at the same query object. Both algo-
rithms are independent of the indexing structure
used. To evaluate the effectiveness of the new al-
gorithms they were implemented using both the
sequential scan as well as the Slim-tree [23, 24]
metric access method. Experimental measure-
ments were performed comparing them with the
measurements obtained by the execution of the
two basic algorithms (range and k-nearest neigh-
bors) followed by the required set-theoretical op-
erations (the intersection operator to obtain the
“and” operation, and the union operator to ob-
tain the “or” operation). The results show that
the proposed algorithms are more efficient and
present better scalability, being able to reduce the
number of disk accesses to as low as 1/12, the
number of distance calculations to as low as 1/20,
and executing more than one hundred times faster
than the sequential execution of the basic algo-
rithms followed by the set-theoretical operations.

A preliminary version of this paper was pre-



sented at SBBD 2003 [2]. Here, we show the
following aspects that were not addressed in that
previous version. We detail the treatment of tie
lists in the k-nearest neighbor queries and how
it affects the performance and the usability of
the algorithms that perform k-nearest neighbor
queries. We also provide examples of ties in
complex queries involving k-NN queries in real
data sets. And finally we detail the two proposed
algorithms, and present a more complete evalu-
ation of them, through the use of other two real
and a synthetic data sets, including scalability ex-
periments.

The remainder of this paper is structured as
follows. In the next section, we first present a
brief history of the development of algorithms to
answer similarity queries. Section 3 presents re-
quired concepts and the motivation to develop the
new algorithms. Section 5 presents the new al-
gorithms kAndRange() and kOrRange(). Sec-
tion 6 describes the experimental results. Finally,
Section 7 gives the conclusions of this paper.

2 Related Work

In the last years, algorithms to answer simi-
larity queries have motivated many researches,
most of them based on supporting hierarchical
index structures. A common approach used is
the “branch-and-bound” technique, where a tree
is traversed from the root down to the leaf nodes.
At each node, heuristics are used to determine
which branches should be traversed next, and
which branches can be pruned from the search.
Pruning branches during the search requires to
consider specific properties of the data domain.

One of the most influential algorithms in this
category was proposed by Roussopoulos et al.
[22], which finds the k nearest neighbors using an
R-tree [14] to index points in a multidimensional
space. Cheung and Fu [8] simplified this algo-
rithm by reducing some heuristics while main-
taining its efficiency. The algorithm proposed in
[4] finds the nearest-neighbors of points contin-

uously moving in a surface, also based on the
work of Roussopoulos et al., and is the first one
to consider multiple execution of the basic algo-
rithms to perform complex similarity searches.
The algorithms to answer similarity queries in
metric spaces also follow the branch-and-bound
approach, as those proposed to work on the M-
tree [10] and on the Slim-tree [24]. Modify-
ing the index structures to enhance branch-and-
bound algorithms have also been considered, as
for examples those proposed in the SS-tree [25]
and in the SR-tree [17].

Other approaches were also proposed. One of
them uses incremental algorithms to answer k-
NN queries. A successful algorithm was pro-
posed by Hjaltason and Samet [16]. It can effi-
ciently find the k + 1 nearest neighbor after hav-
ing find the k nearest neighbors. Park and Kim
[21] proposed a complementary algorithm that
can partially prune worthless tuples that will not
fulfill the remaining non-similarity-based predi-
cates in a query. The technique proposed by Hib-
ino and Rundensteiner [15] processes incremen-
tal range queries in a direct manipulation through
a visual query environment. An alternative pro-
posed by Berchtold et al. [5] indexes an approx-
imation of the Voronoi diagram associated to the
data set. All of these works refer to algorithms
considering just one simple similarity predicate.

More recently, operators to answer complex
similarity queries combining more than one basic
similarity predicate has been highlighted. Com-
plex similarity queries over multiple features are
considered in [6, 7, 12], and over a single feature
in [11]. In [7, 12], the basic idea is that the evalu-
ation of complex similarity predicates cannot be
performed independently since the whole query
depends on the combined scores of each single
predicate. In [6, 11], index structures are used
to enhance complex similarity queries in rele-
vance feedback environments. Every algorithm
in these works use an intermediary scoring func-
tion that, applied to each object retrieved by each
basic predicate, evaluates the overall scores in or-



der to determine the answer of the complex sim-
ilarity query. In all of these works, the operators
were designed to be called explicitly and alone in
a query command, as a predefined query. To the
best of the authors’ knowledge, no algorithm has
been published aiming at combining similarity-
based predicates into generic expressions.

Queries involving multiple similarity-based
predicates are useful in many applications, and
their combinations yield optimizations that can
improve the performance of search operations.
Therefore, the objective of this work is to provide
algorithms that can be used to execute complex
similarity queries, allowing optimizations to be
detected and handled by the query optimization
module of the RDBMS. The algorithms were de-
signed to allow for algebraic rules to guide the
query optimization process following the rela-
tional algebra. According to the best of the au-
thors’ knowledge, no other published work has
achieved this goal before.

3 Motivation and Background

This section presents the fundamental con-
cepts required to understand the proposed
kAndRange() and kOrRange() algorithms,
which are detailed in Section 5, and also the mo-
tivation for their development.

3.1 Metric Domains and Similarity Queries

Similarity queries can be posed only over data
in a metric space. A metric space is a pair
M =< S, d() >, where S denotes the uni-
verse of valid elements and d() is a function
d : S × S → R

+ that expresses a measure of
“distance”(dissimilarity) between elements of S,
that is, the smaller the distance, the more similar
or closer are the elements.

A distance function must satisfy the follow-
ing three rules to fulfill a metric space: symme-

try: d(s1, s2) = d(s2, s1), non negativity: 0 <
d(s1, s2) < ∞ if s1 6= s2 and d(s1, s1) = 0, and

triangular inequality: d(s1, s3) ≤ d(s1, s2) +
d(s2, s3), where s1, s2, s3 ∈ S.

3.2 Similarity Queries

There are two main types of basic similar-
ity predicates in metric domains. Considering a
data set S ⊂ S, these queries can be described as:

1. Range Query - Rq: given an object
sq ∈ S and a maximum search distance
rq, the range query represented by the
σ(Rq(sq ,rq))S predicate selects every el-

ement si ∈ S such that d(si, sq) ≤ rq,
that is:

σ“

Rq(sq,rq)

”S = ARq ,

ARq = {si|si ∈ S, d(si, sq) ≤ rq} (1)

2. k-Nearest Neighbor Query - kNNq:
given an object sq ∈ S and an inte-
ger value k ≥ 1, the k-nearest neighbor
query represented by the σ(kNNq(sq ,k))S

predicate, selects the k elements si ∈ S
that have the shortest distance from sq,
that is:

σ“

kNNq(sq,k)

”S = AkNN ,

AkNN = {si|si ∈ S, |AkNN | = k,

∀sj ∈ S − AkNN ⇒ d(sq, si) ≤ d(sq, sj)} (2)

Notice that the query center sq ∈ S does not
need to pertain to the data set S.

Access methods specific to index data in met-
ric spaces, such as the M-tree [10] and the
Slim-tree [23], are called Metric Access Meth-
ods (MAM). These structures were developed to
improve the search algorithms that executes the
similarity predicates. Efficient searching algo-
rithms are important issues when retrieving mul-
timedia data, as the cost of distance calculations
on multimedia data is very high.

The fundamental property allowing similarity
searching optimization is the triangular inequal-
ity. When the data set is indexed by a tree-
based metric access method, this property en-
ables the searching algorithm to prune whole



branches (subtrees), thus reducing the number of
distance calculations needed to answer a query.
As a consequence, better performance in the se-
lect operations is reached, because it is not nec-
essary to compute the distances from the query
center object sq to every stored object si. The
triangular inequality is able to perform branch
pruning when one of the two following condi-
tions holds [10].

d(srep, sq) > rrep + rq, (3)

d(srep, sq) < |rrep − rq| . (4)

where sq is the query center, srep is the routing
object in any intermediary node of the tree, rq is
the query radius and rrep is the minimal covering
radius of the node (or of the subtree). Table 1
shows the main symbols used in this paper.

Table 1: Table of symbols used in the paper.

S Set of all valid elements in the data domain.

S Data set where queries are posed. S ⊆ S

d(s1, s2) Distance function, or dissimilarity function.

d : S × S → R
+, s1, s2 ∈ S

dk The Dynamic radius in a Nearest operator

k Number of neighbors in a Nearest operator

rq Range radius for Range query

sp Routing object of a node

si Object ∈ S

sq Query object (query center). sq ∈ S

srep Routing object covering a subtree in a

routing node

rrep Covering radius of the srep object in a node

tie a variable indicating whether a tie list is

required, or a sampling or a biased subset

3.3 Motivation

The main motivation to develop specific algo-
rithms to answer complex similarity queries is
that real systems often need the composition of
similarity predicates, as exemplified in the fol-
lowing queries.

1. “Choose at least 20 DNA sequences that

are the most similar to the given se-

quence s including everyone differing

up to 10 codons”:
σkNNq(20,s)DNAdb ∪ σRq(10,s)DNAdb;

2. “Using a word processor, when a wrong

word is written, show up to 10 words

that differ at most 2 characters from the

wrong word w”:
σkNNq(10,w)WordDb ∩ σRq(2,w)WordDb;

3. “Find the 10 nearest restaurants from

here that are not farther than 1 kilome-

ter”:
σkNNq(10,here)RestDb ∩ σRq(1km,here)RestDb;

Although queries like these are common, ex-
isting algorithms deal only with the basic similar-
ity queries. Moreover, the SQL standard does not
include specifications for selection criteria based
on similarity. However, there is currently a trend
in support them, including the development of a
standard to handle spatial data including similar-
ity queries, as part of the ISO SQL/MM (SQL
Multimedia Spatial Standard) [1, 19].

Currently, there exist some systems that sup-
port query commands involving similarity pred-
icates on a limited basis. An example is the
CIRCE system [3], aiming at extending SQL to
answer similarity predicates on image data sets.
However, multiple similarity criteria must be ex-
pressed in separated commands (through sub-
select commands) using the basic Range() and
Nearest() algorithms to process the similarity
predicates, combining their results using the set-
theoretical operations.

However, this approach does not lead to the
best performance regarding the execution time
and the numbers of disk accesses and distance
calculations. A more efficient approach should
be to use algorithms tailored to answer complex
similarity queries. This approach is similar to the
one taken to implement the relational join oper-
ator. This operator is equivalent to the combi-
nation of two basic operations of the relational
algebra, the Cartesian product followed by a se-



lection, although the join operator is much more
efficient. In the same way, algorithms tailored to
answer complex similarity queries would com-
bine the basic algorithms into more sophisticated
similarity operators, which can deliver an im-
proved query answering procedure for similarity
queries, allowing flexibility in its parameteriza-
tion by the query optimizer of a RDBMS.

Therefore, it is important to develop algo-
rithms that execute often-used complex similarity
queries in a much more efficient way instead of
the sequential execution of the basic algorithms.
This is a required step in extending commercial
systems to support complex similarity queries.
This work proposes two new algorithms to ex-
ecute conjunctions and disjunctions of similarity
predicates, two of the most frequently used com-
binations of the basic algorithms. Table 2 sum-
marizes the correspondence in the execution of
the proposed algorithms and the combinations of
the basic algorithms to answer queries.

4 Basic Algorithms for Similarity Predicates

This section discusses the basic Range() and
Nearest() algorithms which execute the two
main types of similarity predicates presented in
Section 3.2. The specific case of ties in the
Nearest() algorithm is treated in Section 4.1.

The range query algorithm Range(sq, rq)
searches the data set S for the elements that are
at distance rq from the query center sq or closer.
The Nearest(sq, k) algorithm collects the k ele-
ments si that are the nearest in data set S to the
query center sq, sorted by the distance from each
element si to the query center. The algorithm
starts computing the distance from sq to any ele-
ment in S, until k elements are found, initializing
the answer set with those elements. Afterward, a
“dynamic radius” keeps track of the largest dis-
tance from elements si to sq. Whenever an ele-
ment si nearer to sq is found, it replaces the far-
thest one in the answer set, reducing the dynamic
radius accordingly.

This description applies both to searching
through sequential scan as well as using an in-
dexing structure. In the absence of an indexing
structure, both algorithms require comparing the
query center with every object stored in the data
set. Due to the high computational cost to cal-
culate the distance between pairs of elements in
metric domains, similarity queries commonly use
indexing structures to accelerate the processing,
since they allow reducing the number of distance
calculations by pruning subtrees. Consequently,
index structures are even more important in met-
ric domains than they are in domains that pos-
sess the total ordering property (the typical do-
mains of the data handled in current RDBMS).
However, sometimes an indexing structure does
not exist, as for example when processing the
intermediary results from previous selection op-
erations, when creating an indexing structure is
worthless. Sequential scans can be used in any
situation, even when there is no indexing struc-
ture, so it is important the algorithms be able to
be executed also through sequential scanning.

An index structure recursively groups objects
under covering radii centered at representative
objects, so the triangular inequality property
can prune subtrees using a limiting radius and
equations 3 and 4. The limiting radius in the
Range(sq, rq) algorithm is the range radius rq,
thus the pruning ability (“prunability”) of this al-
gorithm using index structures is usually high.
As there is no static limiting radius to perform
a k-nearest neighbor query, the dynamic radius is
used as the limiting radius in the Nearest(sq, k)
algorithm. Hence, until k elements are found, no
pruning can be executed, and after that the dy-
namic radius may shrink, allowing that many un-
suitable elements had been temporarily included
in the answer set. Therefore, even using index
structures, the Nearest() algorithm tends to have
a much lower prunability than the Range() algo-
rithm, which makes the cost of a nearest neigh-
bor query larger than the cost of a range query, in
general by one or two orders of magnitude.



Table 2: Equivalence of the proposed operators and the basic algorithms to answer conjunctive and
disjunctive predicates.

Complex Operator Answer-set composition

of the basic algorithms

Conjunction σ(Rq(sq,rq) ∧ kNNtq(sq,k,tie)) S σ(Rq(sq,rq)) S ∩ σ(kNNtq(sq,k,tie)) S

Disjunction σ(Rq(oq,rq) ∨ kNNtq(sq,k,tie)) S σ(Rq(sq,rq)) S ∪ σ(kNNtq(sq,k,tie)) S

4.1 Tie Lists in Nearest() Algorithms

The Levenshtein metric LEdit(s1, s2), also
called the edit-string distance LEdit, is a metric
that counts the minimal number of symbols
needed to be inserted, deleted, or substituted to
transform the string s1 into the string s2. For
example, LEdit( “computer”, “competent”)=3:
two substitutions and one insertion. Searching
an English dictionary with 25,153 words for the
words differing up to two edit-string operations
from the word “computer”has found 7 words:
“computer”, “compute”, “copter”, “compacter”,
“compote”, “compete” and “commute”, where the
distance from “computer” to the first word is
zero, to the second is one, and to the others is
two. If a k-nearest neighbor query with k = 3 is
posed, that is,

σ(kNNq(“computer”,3)) EnglishWords

then there are five distinct correct answers. How
a Nearest() algorithm would treat this query?
What elements should be returned?

In a first approach, the Nearest() algorithm
returns just k elements, including the objects that
are nearer to the query center than the largest
radius found, plus enough objects tied at the
largest radius to complete the required quantity
k. This approach returns a non repeatable answer
to the query as posing the same query twice can
bring different answers. However, it respects the
required number k of elements in the answer. A
second approach is to return the answer in two
sets: the basic list Lb containing the objects that
are nearer to the query center than the largest
radius found, and a tie list Lt containing all the
objects found at the largest radius distance of

the query center. The answer of this approach
is repeatable, but the application receives more
than the number k of elements asked. When a
tie list is required, the expression governing the
k-nearest neighbor queries must be redefined as:

k-Nearest Neighbor query with tie list -
kNNtq: given an object sq ∈ S and an integer
value k ≥ 1, the k-nearest neighbor query with
tie list σ(kNNtq(sq ,k))S selects at least k elements

si ∈ S that have the shortest distance from sq

such that:

σ“

kNNtq(sq,k)

”S = AkNN = Lb ∪ Lt,

|Lb| ≤ k, |Lb ∪ Lt| ≥ k, where
Lb = {si|si ∈ S,

∀sj ∈ S − Lb ⇒ d(sq, sj) > d(sq, si)},

Lt = {sg, sh|sg, sh ∈ S, d(sg, sq) = d(sh, sq),

∀si ∈ Lb ⇒ d(sq, si) < d(sq, sg),

∀sj ∈ S − {Lb ∪ Lt} ⇒ d(sq, sj) > d(sq, sg)} (5)

The basic Nearest(sq, k) algorithm can be
changed to support answering k-nearest neigh-
bor queries with tie lists by including a param-
eter tie, which indicates whether tie list should
be returned or not. Thus, from now on we
use the syntax of the Nearest() algorithm as
Nearest(sq, k, tie), where tie = true means
that a tie list must be returned in the answer set,
otherwise, ties are arbitrarily chosen to return k
elements.

Thus, rewriting the previous query in this
section to

σ(kNNtq(“computer”,3)) EnglishWords

the answer set for the query is: Lb ∪ Lt, where
Lb = { “computer”, “compute”} and Lt = {
“copter”, “compacter”, “compote”, “compete”,
“commute”

′}.



We consider that there are two basic ap-
proaches that a tie list-enabled Nearest() algo-
rithm can use to choose elements in the Lt list to
return k elements when tie-lists are not requested,
that we call biased and sampled tie lists. Each ap-
proach changes the way the Nearest() algorithm
chooses elements of the internal Lt list to return
k elements.

In the biased approach the algorithm proceeds
in a deterministic path across the stored data, so
that if the database is not updated, two consecu-
tive queries asking for the same predicate always
return the same answer. As a consequence, some
objects that could be part of the answer will never
be retrieved, no matter how many times the query
is posed. In the sampled tie list, the algorithm in-
cludes a random sampling technique to choose
the elements of the Lt to assure that each query
call will return correct but distinct answers wher-
ever more than one exists.

The approach of choice depends on the appli-
cation. To many applications, always returning
the same answer is an undesirable effect. Com-
mon examples are those presenting large tie lists
and few updates, such as systems storing health
care data, specially those designed for teaching
purposes. These databases have most of the at-
tributes as categorical ones, leading to large num-
ber of ties, and as they store data from selected
patients aiming illustration purposes, each one
has few updates. Moreover, as the retrieved data
is usually employed to feed the human interface
modules of the application, the number of neigh-
bors asked cannot allow too many samples, so the
use of the tie list can be burdensome to the appli-
cation and/or the human user. Therefore, present-
ing a variety of similar cases at different issues of
the same query can be a valuable resource.

To other applications, having the same answer
for the same query posed twice is a better op-
tion. In this case, the algorithm should prepare
the answer in a deterministic way. This occurs for
example if whenever an element is found to be
inserted at the current tie list, it always replaces

or always not replace those previously chosen to
be given as part of the answer set. As both ap-
proaches are interesting to different applications,
the algorithms presented in the next section em-
brace both of them. Therefore, the tie param-
eter of the Nearest(sq, k, tie) algorithm has its
domain broadened to allow asking for the com-
plete tie list (tie = true), a random sample
(tie = sample) or a biased subset of the tie list
(tie = biased).

Notice that neither approach guarantees a de-
terministic kNNq answer, as updates in the
database can change the results, even when the
update does not change the Lb + Lt result. Sup-
porting a tie list does not increase significantly
the computational cost of the Nearest() algo-
rithm since the number of disk accesses and num-
ber of distance calculations remain the same. The
total time is only slightly larger in data sets with
many ties. We show in Section 6 that this in-
crease is indeed almost null.

5 Combining Similarity Operators: The

New Algorithms

This section presents the kAndRange() and
the kOrRange() algorithms. They follow the
branch-and-bound approach and they are de-
scribed here considering the data organized fol-
lowing a hierarchical MAM with every object
stored at the leaf nodes, as the Slim-tree or the
M-tree. However, the concept of the algorithms
are independent of the particular MAM used and
can also be applied on a non indexed data set.
We present only the algorithms to search met-
ric structures, as their implementation consider-
ing sequential scan can be developed straightfor-
wardly. As the complex queries involve kNN
predicates, the new algorithms were developed
considering the processing of a tie list following
the rules expressed as Equation 5.

For simplicity, we refer to the distance from
the query center to an object as the radius of
the object in the query. We assumed the Eu-



clidean metric to generate the figures of this sec-
tion, so the radii are represented by circumfer-
ences. However, pay attention that, as any metric
can be employed, the real shape of the covered
areas depends on the metric used.

5.1 Conjunction of kNNq and Rq predicates

The kAndRange() algorithm performs con-
junctive complex similarity query equivalent to
a Rq(sq, rq) AND a kNNq(sq, k, tie) where the
query center is the same. It must recover every
object that satisfies both basic similarity predi-
cates, that is, the intersection of the intermediate
results from both basic operators. Considering a
data set S this can be defined as:

σ(Rq(sq ,rq))S ∩ σ(kNNq(sq ,k,tie))S ⇔

σ(Rq(sq ,rq) ∧ kNNq(sq ,k,tie))S ⇔

σ(kAndRq(sq ,rq ,k,tie))S

where kAndRq is the conjunctive predicate exe-
cuted by the kAndRange() algorithm.

The result of the conjunctive query satisfies the
most restrictive condition between the two basic
predicates involved, so the condition resulting in
the smallest limiting radius contains the final an-
swer: the radius of the k-th object of the nearest
neighbor operator, which we call the nearest ra-
dius, or the query radius of the range operator,
which we call the range radius. Figure 1 repre-
sents this idea, showing the three possible situa-
tions: a) range radius larger than nearest radius;
b) range radius shorter than nearest radius; and c)
range radius equal to nearest radius.

In Figure 1, sq represents the query center, the
continuous-line-border circle shows where the
answer to the range predicate can be found, the
dashed line border circle shows where the answer
to the nearest neighbors predicate can be found,
the gray circle is where the answer set of the com-
plex query can be found, numObj is the max-
imum number of objects recovered by a query,
TL is the tie list and tie states if the tie list is
required.

Figure 1.a represents the case when the an-
swer is restricted by the nearest-neighbor condi-
tion. The answer set in Figure 1.b represents the
case when the answer is restricted by the range
predicate, and Figure 1.c shows the case when
the range radius is equal to the radius of the k-th
nearest neighbor, so the answer set contains ev-
ery object that satisfies both predicates.

Notice that the number of objects retrieved by
a conjunctive similarity query can change de-
pending on whether the option tie is active or
not, and on whether the answer set is bounded by
the nearest-neighbor predicate or not, cases de-
picted in both Figure 1.a and 1.c. Figure 2 exem-
plify the case when the answer is restricted by the
nearest-neighbor condition (case (a) in Figure 1)
regarding a data set S containing seven elements,
to answer the predicate kAndRq(sq, rq, 2, tie).
Notice that in this case the range condition is
looser than the nearest condition, so if the tie list
is not required, the number of objects returned
numObj = 2 equals the required k, as shown in
Figure 2.a. If the tie list is required, the number
of objects returned can be larger than k to include
the whole tie list, as shown in Figure 2.b.
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Figure 2: Tie list in conjunctive similarity queries
where the range condition is looser than the near-
est condition. a) with tiefalse; b) with tietrue.

5.1.1 Algorithms to Manage the tie list

The answer of both the kAndRange() and the
kOrRange() algorithms is a list Answer, which
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Figure 1: Graphical representation of the conjunction kNN ∧ Rq.

is kept sorted by the distances of each element
si to the query center. This list is managed
by the following methods: Add(obj, distance)
inserts a new element keeping the list sorted;
Length() returns the number of elements in the
list; DropLast(k, tie) removes the farthest ele-
ment(s) in the list, maintaining the tie list; and
MaxDist() returns the largest distance from the
query center to an element in the list. The tie
list is kept in the end of this list, so the max-
imum number of elements stored can be larger
than k. Therefore, before return, algorithms
kAndRange() and the kOrRange() must check
if a tie list is required and, if not, then the method
ChopAnswer(k) is called to choose a random
or a biased subset of elements tied at the farthest
distance to be returned.

Algorithms Add(), Length() and MaxDist()
are straightforward to be implemented. Algo-
rithm DropLast() is shown as Algorithm 1.
When called, it drops from the list every ob-
ject farther than the object at position k from
the query center. Algorithm ChopAnswer() is
shown as Algorithm 2. When tie asks for a bi-
ased subset of the tie list, it cuts every object af-
ter position k (steps 9 and 10). When tie asks
for a sampled subset of the tie list, it randomly
remove objects tied with the object at position k

until only k objects remains (steps 2 to 7).

Algorithm 1 Answer.DropLast(k, tie)

1: p := Answer.Length()

2: if Aux > k then

3: while Answer[k].dist < Answer[p].dist do

4: Answer.RemoveLast()

5: p := p − 1

Algorithm 2 Answer.ChopAnswer(k)

1: if tie =sample then

2: LargetDist := Answer[k].dist

3: while Answer[k].dist = LargestDist∧k > 1 do

4: k := k − 1

5: while Answer.Length() > k do

6: p := Random[LargestDist, Answer.Length()]

7: Answer.Delete(p)

8: else if tie =biased then

9: while Answer.Length() > k do

10: Answer.RemoveLast()

5.1.2 The kAndRange() Algorithm

The kAndRange(sq, rq, k, tie) algorithm,
shown as Algorithm 3, executes the conjunc-
tion Rq(sq, rq) ∧ kNNq(sq, k, tie). It takes
advantage of a global priority queue (Queue)
to choose the paths that lead to best pruning.



The priority queue contains pointers to the
active subtrees, i.e., subtrees where qualifying
objects can be found. It has the following two
methods: Insert() to add a new active node;
and GetNode() to get the higher priority node.
The priority is defined as the distance of the
representative of the node srep to the query
center, that is d(srep, sq).

The kAndRange() is a recursive algorithm
that receives the root Node of the (sub-)tree
to be traversed, and navigates down to the leaf
nodes, applying the triangular inequality prop-
erty to prune branches that do not store objects of
the answer (see Algorithm 3). This algorithm re-
turns the objects that are the nearest to the query
center and that are also inside of the range radius.

The kAndRange() algorithm starts reading
the root node of the (sub-)tree to be traversed
(line 1) and, using the priority queue Queue, nav-
igates in deep-first mode down to the leaf nodes.
It uses the triangular inequality property and the
k and rq limiting values to prune branches that
cannot store objects of the answer. In a non leaf
node (lines 14 to 19), this algorithm performs an
ordered insertion of subtrees that could not be ex-
cluded by the triangle inequality.

Leaf nodes are handled at lines 3 to 13. If an
object si in a leaf node cannot be pruned based on
the distance between the node representative sp

and the query center sq (Line 5), then the distance
of the object si to the query center is calculated in
Line 6. If it is inside the range radius rq (line 7),
si is put in the answer set. Line 6 checks if the
size of the list holding the answer set is shorter
than the required number k of nearest neighbors.
If so the object si is added to the answer set (Line
8). Otherwise, Line 10 checks if the distance be-
tween this object and the query center is smaller
or equal to the largest distance between the query
center and the objects that are in the result list.
When the condition in Line 10 is satisfied, the
object si is added to the result list, which is kept
sorted by the distances from each object to the
query center (Line 11), and the DropLast func-

tion is called (Line 12). This function uses the
number k of nearest neighbors required and the
variable tie to appropriately maintain the result
list and the tie list, deleting objects in both if
the newly inserted object reduces the current dy-
namic radius. Line 13 is an optimization step that
reduces the query radius rq if k elements nearer
to the query center than rq were already found.

Algorithm 3 The kAndRange(sq, rq, k, tie) al-
gorithm
1: Queue.Insert(RootNode, 0)

2: while (Node := Queue.GetNode()) 6= Empty do

3: if Node is a leaf node then

4: for each si ∈ Node do

5: if |d(sp, sq) − d(si, sp)| ≤ rq then

6: Compute d(si, sq)

7: if d(si, sq) ≤ rq then

8: if Answer.Length() < k then

9: Answer.Add(si, d(si, sq))

10: else if d(si, sq) ≤ Answer.MaxDist()

then

11: Answer.Add(si, d(si, sq))

12: Answer.DropLast(k, tie)

13: rq := Answer.MaxDist()

14: else

15: for each sp ∈ Node do

16: if |d(sp, sq) − d(srep, sp)| ≤ rq + rrep then

17: Compute d(srep, sq)

18: if d(srep, sq) ≤ rq + rrep then

19: Queue.Insert(sq, d(srep, sq))

20: if tie 6= true then

21: Answer.ChopAnswer(k)

5.2 Disjunction of kNNq and Rq Predicates

The kOrRange() algorithm performs disjunc-
tive similarity query equivalent to a Rq(sq, rq)
OR a kNNq(sq, k, tie) where the query center is
the same. It must recover every object that satis-
fies at least one of the complex query predicates,
that is, the union of the intermediate results from
both basic operators. Considering a data set S
this can be defined as:



σ(Rq(sq ,rq))S ∪ σ(kNNq(sq ,k,tie))S ⇔

σ(Rq(sq ,rq) ∨ kNNq(sq ,k,tie))S ⇔

σ(kOrRq(sq ,rq ,k,tie))S

where kOrRq is the disjunctive operator.
The result of the disjunctive query satisfies any

of the two basic predicates involved, so the an-
swer consists of the objects covered by the pred-
icate with the largest limiting radius. Figure 3
represents this idea, using the same notation of
Figure 1. The same three situations described in
Section 5.1 occurs with disjunctive queries too.

The answer set shown in Figure 3.a is the range
condition. The answer set in Figure 3.b includes
every object that satisfies the nearest-neighbor
condition, and Figure 3.c shows the case where
both the range radius and the radius of the k-th
nearest neighbors predicates are equal. The tie
list is also considered and it can change the max-
imum number of recovered objects as in conjunc-
tive queries, which in disjunctive predicates can
occur in the case shown in Figure 3.b.

5.2.1 The kOrRange() Algorithm

The kOrRange(sq, rq, k, tie) algorithm,
shown as Algorithm 4, executes the disjunction
Rq(sq, rq) ∨ kNNq(sq, k). It is similar to the
kAndRange() algorithm, and also uses a global
priority queue (Queue) similar to the one used in
the kAndRange() algorithm to choose the paths
that lead to the best pruning.

The kOrRange() algorithm starts reading the
root node of the (sub-)tree to be traversed (line 1)
and, using the priority queue, navigates in deep-
first mode down to the leaf nodes. As the range
condition cannot define an upper-bound limit for
the whole query, the dynamic radius is initially
set to infinity in line 2. Whenever a non leaf node
is read (lines 14 to 19), this algorithm inserts in
Queue the subtrees that could not be excluded by
the triangle inequality.

Leaf nodes are handled in lines 3 to 16. If an
object si in a leaf node cannot be pruned based
on the distance between the node representative
sp and the query center sq (Line 6), then the dis-
tance of the object si to the query center is cal-
culated in Line 7. Whenever an object satisfies
at least one of the operators, i.e., if object si is
inside the dynamic radius dk (line 8), it is added
to the answer set (line 9). After the first k ob-
jects were already found and a new object is in-
serted, the exceeding elements must be deleted
from the result (lines 10 to 12). However, this is
done only if the dk value is greater than rq, oth-
erwise the object is just inserted, to comply with
the disjunction rule. Notice that, the dynamic ra-
dius dk is progressively updated as more suitable
elements are found during the search, but it never
drops below rq (lines 13 to 16).

Algorithm 4 kOrRange(sq, rq, k, tie)
1: Queue.Insert(RootNode, 0)

2: dk := ∞

3: while (Node := Queue.GetNode()) 6= empty do

4: if Node is a leaf then

5: for each si ∈ Node do

6: if |d(sp, sq) − d(si, sp)| ≤ dk then

7: Compute d(si, sq)

8: if d(si, sq) ≤ dk then

9: Answer.Add(si, d(si, sq))

10: if dk > rq then

11: if Answer.Length() ≥ k then

12: Answer.DropLast(k, tie)

13: if Answer.MaxDist() ≤ rq then

14: dk := rq

15: else

16: dk := Answer.MaxDist()

17: else

18: for each sp ∈ Node do

19: if |d(sp, sq) − d(srep, sp)| ≤ rrep + dk then

20: Compute d(srep, sq)

21: if d(srep, sq) ≤ dk + rrep then

22: Queue.Insert(sq, d(srep, sq))

23: if tie 6= true then

24: Answer.ChopAnswer(k)
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Figure 3: Graphical representation of the disjunction kNN ∨ Rq.

5.3 Considerations About the New Algorithms

Prunability. By comparing the two new al-
gorithms with the basic algorithms discussed in
Section 4, we can do the following considerations
related to the query radius. The kAndRange()
algorithm always has a maximum radius defined
in the query. Therefore, when the data set is in-
dexed by a hierarchical MAM, it prunes subtrees
with a high pruning ability (prunability), usually
at a much higher rate than the one obtained by
the basic nearest neighbor algorithm. This is due
to the basic k-nearest neighgbor algorithm can-
not use a limiting radius initially. In the exper-
iments we verified that the kAndRange() algo-
rithm always has a prunability and a performance
equivalent or better than those of the basic range
query algorithm, which in turn usually have a
much higher prunability then the basic Nearest
algorithm.

The kOrRange() algorithm does not have a
maximum radius defined in the query parame-
ters, and presents a lower prunability than the
kAndRange() algorithm. However, as it also
evaluates two predicates at once, it has a prun-
ability higher than the prunability of the basic k-
nearest neighbor algorithm.

Algebraic Rules. To define algebraic rules to
guide optimization processes of complex queries

is not the objective of this paper. However, the
proposed algorithms were designed considering
that algebraic rules could be applied. There-
fore, we show here four algebraic rules that give
an intuition of how these rules can be used by
the query optimizer enabling the proposed algo-
rithms to answer complex similarity queries. In
fact, a complex similarity query involving two
basic similarity predicates of the same type (that
is, two Rq or two kNNq predicates) with the
same central object can be changed into one basic
query of the same type. This can be performed by
suitably choosing the respective radius or number
of objects, observing the following rules for con-
junctive or disjunctive similarity queries:

AND:

1. σ(Rq(sq ,rq1))S ∧
σ(Rq(sq ,rq2))S | rq1≤rq2 ⇐⇒ σ(Rq(sq ,rq1))S

2. σ(kNNq(sq ,k1,tie))S ∧
σ(kNNq(sq ,k2,tie))S | k1≤k2 ⇐⇒
σ(kNNq(sq ,k1,tie))S

OR:

1. σ(Rq(sq ,rq1))S ∨
σ(Rq(sq ,rq2))S | rq1≤rq2 ⇐⇒
σ(Rq(sq ,rq2))S

2. σ(kNNq(sq ,k1,tie))S ∨
σ(kNNq(sq ,k2,tie))S | k1≤k2 ⇐⇒
σ(kNNq(sq ,k2,tie))S



Using these rules, a query optimizer can
change any expression involving multiple simi-
larity predicates centered at the same query cen-
ter into an expression that can be answered by the
two proposed algorithms.

Multiple Centers. The composition consid-
ering more than one similarity predicate of the
same type (Rq or kNNq) with distinct query ob-
jects can also be changed into only one query of
the same type. This can be performed by a suit-
able choice from respective radius or object num-
bers, applying the algorithms proposed in this pa-
per, and filtering their results. For example, two
range queries can be executed by choosing one of
them as the complex query center, and setting the
query radius as the summation of their basic radii
extended by the distance between the centers of
the complex similarity query. After executing the
changed query, the results are compared to each
one of the original centers, thus filtering the fi-
nal answer. The calculation of the corresponding
query radius or object numbers to be used in the
algorithms proposed in this paper and the filter-
ing of their results can be executed using alge-
braic rules. This allows using the proposed algo-
rithms to answer any complex similarity query.

6 Experiments

This section presents experimental measure-
ments on the proposed algorithms, comparing
them with the correspondent measurements ob-
tained by compositions of the basic algorithms.
Every algorithm was implemented in two ver-
sions: through a sequential scanning over the
data set (SeqScan) and using the Slim-tree met-
ric access method. The algorithms were im-
plemented in C++, and the experiments were
run in an Intel Pentium-4 1.6GHz machine, with
512MB of RAM memory and a 40GB disk spin-
ning at 7200RPM, under the Microsoft Windows
2000 operating system. The following subsec-
tion presents the settings that we have used in
experiments and Subsection 6.2 shows the mea-

surements obtained.

6.1 Experimental Setup

To evaluate the performance and efficiency of
the proposed algorithms, we have used a vari-
ety of data sets, both synthetic and from the real
world, although in this paper we present only the
results obtained from the following four data sets.

• Synthetic - a synthetic set of points uni-
formly distributed in 6-dimensions;

• LBeach - a set of geographical points
in a 2-dimensional space describing the
coordinates of the road intersections in
Long Beach City, CA, from the TIGER
system of the U.S. Bureau of Census;

• CorelHisto - a set of attributes de-
scribing colors in images in 32 di-
mensions, from the UCI repository
(kdd.ics.uci.edu);

• Words - a set of words extracted from a
Portuguese language dictionary [20].

For the Words data set we used the Levenshtein
metric. The other are dimensional data sets, so
we used the Euclidean metric (L2). The object
size changes in each data set, so the maximum
node capacity of the Slim-tree changes too, to test
trees using the same node size of 4kBytes. The
properties of the four data sets and the maximum
node capacity are summarized in Table 3.

Table 3: Data sets used in the experiments.

Name # of objects Metric Node Capacity

Synthetic 50,000 L2 68

LBeach 36,298 L2 72

CorelHisto 68,040 L2 60

Words 21,223 LEdit 50

The kAndRange() and kOrRange() algo-
rithms were compared with the equivalent com-
position of the basic algorithms producing the
same answer set. A union/intersection of the
basic algorithms corresponds to execute the



Nearest() algorithm, the Range() algorithm
and then the set union or the set intersection oper-
ator. The set operators are performed in memory.

Every measurement represents the average of
500 queries regarding the number of distance cal-
culations, the number of disk accesses and the to-
tal time in milliseconds. Each set of 500 queries
has its query center object chosen in the follow-
ing way: 250 were sampled from the respec-
tive data set but were kept in the data set; the
other 250 objects were sampled from the respec-
tive data set and removed from it. Therefore, the
queries cover both the biased queries regarding
the distribution of the data set elements and the
randomly distributed queries scattered in the data
domains, both of them occurring in real applica-
tions. Each measurement considers a range ra-
dius rq and a fixed number k of nearest neigh-
bors, averaging the results over the set of 500
query centers. In each plot, the abscissa repre-
sents the number of objects retrieved, expressed
as a percentile of the data set.

In each experiment, the number of neighbors
and the range radius varies as follows. The ra-
dius for the Synthetic, LBeach and CorelHisto

data sets varies from 0.01% up to 10% of the data
set diameter. For the Words data set the radius
varies from 1 up to 10 editions. The values of k
for the Synthetic, LBeach and CorelHisto is re-
spectively 0.01%, 0.02%, 0.05% of the data set,
and is 5 words for the Words data set.

6.2 Performance Evaluation

This section presents the results obtained from
the kAndRange(), kOrRange() and the ba-
sic algorithms both searching a Slim-tree and
through the SeqScan.

Figure 4 compares the proposed and the basic
algorithms to answer 500 queries in the four data
sets. The plots are presented in log-log scale for
the Synthetic, LBeach, CorelHisto data sets, and
in linear-log scale for the Words data set. Every
experiment asks for the tie list. The figure shows

the plots of the average number of disk accesses
(Figures 4.A, D, G and J), the average number of
distance calculations (Figures 4.B, E, H and K),
and the total time (Figures 4.C, F, I and L).

Considering the SeqScan, the union/intersec-
tion of the basic algorithms (plots F and H in
the graphs) and kOrRange()/kAndRange() al-
gorithms (plots E and G) present a constant num-
ber of disk accesses and distance calculations
considering query range and k. However, the
traditional approach requires twice as many dis-
tance calculations and number of disk accesses
as our proposed algorithms. Searching the Slim-
tree using either the union or intersection of ba-
sic algorithms (plots B and D) has the same
number of disk accesses and of distance calcu-
lations. However, either the kAndRange() or
kOrRange() algorithms (plots A and C) requires
up to 30% less disk acesses and distance calcu-
lations. Moreover, the kandRange() algorithm
grow linearly up to the maximum variation of
k and then assumes a sub-linear behavior, and
tends to stabilize (plot A). This is easily seen in
the CorelHisto data set, as shown in Figures 4.G
and 4.H.

The new algorithms have a different behavior
when using the Slim-tree in the Words data set
(Figures 4.J and 4.L), as both algorithms have
closer behavior and their numbers of disk ac-
cesses and distance calculations quickly become
constant. This happens because the results of
the LEditdistance function give discrete values
and produces many ties. Figure 4.J shows that
the Slim-tree requires a number of disk accesses
larger than the SeqScan. This is because the
Slim-tree requires more disk space to store the
structure itself. However, as the number of dis-
tance calculations drops as shown in 4.L, the to-
tal time of every algorithm is smaller in the Slim-
tree than in its SeqScan counterpart (4.M).

The behavior of each algorithm regarding the
numbers of disk accesses and distance calcula-
tions influences its total time, as is shown in 4.C,
4.F, 4.I and 4.M. When the radius grows, the to-



Figure 4: Comparing the performance to answer 500 queries using the proposed and the basic algorithms
using the Slim-tree and the SeqScan, on the Synthetic, LBeach, CorelHisto and Words data sets. (A, D,
G, J) Average number of disk accesses per query. (B, E, H, K) Average number of distance calculations
per query. (C, F, I, L) Total time for 500 queries in seconds.

tal time grows too, as is evidenced in the algo-
rithms searching a Slim-tree. Besides, it must
be noticed that the union/intersection operations
just affect the time measurements of the SeqS-
can accesses (plots E, F, G and H). When search-

ing a Slim-tree, the kAndRange() algorithm is
at least 2 times faster for small radii (plots A, B,
C and D), increasing to be up to 14 times faster
for larger radii than the intersection of basic al-
gorithms counterpart, as shown in Figure 4.C for



the Synthetic data set. The kOrRange() Algo-
rithm is about two times faster than the union of
the basic algorithms for small radii, increasing to
be up to 3 times faster for large values of radii, as
shown in Figure 4.F for the LBeach data set.

Regarding the Slim-tree, the new algorithms
provide higher improvements in every measured
aspect. The kAndRange() algorithm requires at
most half the numbers of distance calculations,
of disk accesses and total time to process queries
with small radii in every data set tested, as com-
paring with the intersection of the basic algo-
rithms (plots A and B). For higher values of radii,
e.g., when retrieving 10% of the data set, the re-
duction is even larger: it reduces to 1/12 of the
number of disk accesses in the LBeach data set
(Figure 4.D), to 1/23 of the number of distance
calculations in Synthetic data set (Figure 4.B),
and to less than one hundredth of the total time
in the LBeach and Synthetic data sets (Figures
4.C and 4.F). The kOrRange() algorithm also
requires equivalent reduction compared to the
union of the basic algorithms for small radii in al-
most all data sets (plots C and D). The exception
happens to the Words data set, where for small
radii the reduction is larger, as the kOrRange()
algorithm reduces to almost 50% every measured
aspect (Figures 4.J, 4.L and 4.M). For small val-
ues of radii (less than 0,2% of the data set, the
gain of the kOrRange() algorithm decreases to
only 10% in the number of disk accesses and dis-
tance calculations in LBeach and Random data
sets (Figures 4.A, 4.B, 4.D and 4.E). However,
the Words data set is again an exception, once this
new algorithm achieved improvements of at least
twice in every measured aspect as compared with
the union of the basic algorithms.

It is interesting to note that the proposed al-
gorithms provide the most remarkable improve-
ments in the total time for the queries most fre-
quently used in real systems, i.e., those queries
with small range radius and few neighbors.
Moreover, the experiments show that every mea-
surement performed using the kAndRange() or

kOrRange() algorithms presented better per-
formance than the correspondent intersection or
union of the basic algorithms, either searching a
Slim-tree or using a SeqScan.

In another experiment using the Synthetic data
set, we generated the data set in 10 steps, adding
10,000 elements at each step, and for each
database size we measured the total time to cal-
culate 500 queries using k = 0, 1% of the number
of elements in the database and r1 = 0, 1% of the
data set diameter. The result, shown in Figure 5,
shows that the proposed algorithms present lin-
ear behavior when varying the data set size, so
they are scalable regarding the data set size. It
also shows that as the data set size increases, the
more important is the use of a MAM.

(A) Slim-Tree: kAndRange

(B) Slim-Tree: kOrRange

(C) SeqScan: kAndRange

(D) SeqScan: kOrRange
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Figure 5: Measurement of wall-clock time to ex-
ecute 500 queries using the kAndRange() and
the kOrRange() algorithms using both SeqScan
and Slim-tree with varying data set size, showing
the scalability of the algorithms.

6.2.1 Measurements involving the tie list

In this subsection we show the impact of re-
trieving tie lists on the performance of complex
algorithms to answer similarity queries. The
number of disk accesses and the number of dis-
tance calculations remains the same whether a tie
list is required or not, in both kAndRange() and



kOrRange() algorithm. This is due to the fact
that both algorithms prune subtrees that are far-
ther than the region covering the algorithm’s lim-
iting radius, but does not exclude nodes that are
at nearer or at equal distance as the limiting ra-
dius. Thus, when an object in a leaf node qual-
ifies, it is added in the answer set and only then
the Answer.DropLast() method can check the
tie variable to determine if the new object will be
maintained in the answer set or not. Therefore,
the numbers of disk accesses and of distance cal-
culations are not affected, which was confirmed
in the experimental measurements.

However, the total time can change when a tie
list is required. This happens because managing
the answer set is slightly more complex when the
tie list is required. The experiments show that
total time increases proportionally to the number
of ties, but very slowly. Although we evaluated
every data set presented in this paper, only the
Word data set presented measurable differences.

Figure 6 shows the total time in conjunctive
and disjunctive queries measured in the Words

data set, comparing when asking for a biased
tie list, for a sampled tie list or for no tie
list. Both kAndRange() and kOrRange() algo-
rithms were tested searching a Slim-tree, because
being it faster, processing the tie list have a larger
impact in the total time. Notice that the increase
in total time is so slightly that it is barely visi-
ble in Figure 6. Numerically, the kAndRange()
algorithm takes 59.92s to calculate 500 queries
with k = 3 and rq = 9 without a tie list. The total
time increases 0.063s when asking for a biased
tie list, and 0.344s when asking for a sampled tie
list. The kOrRange() algorithm takes 2055.95s
to calculate 500 queries with k = 3 and rq = 9
without a tie list, increasing 0.078s when asking
for a biased tie list, and 6.640s when asking for a
sampled tie list.
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Figure 6: Comparing total time to answer 500
queries using kAndRange() and kOrRange()
algorithms over the Slim-tree, with and without
the tie list.

7 Conclusions

This paper presented two new algorithms,
called kAndRange() and kOrRange(), that were
developed to support the composition of simi-
larity operators using conjunction and disjunc-
tion between range and k-nearest neighbor con-
ditions in complex similarity queries centered at
the same query object. These algorithms were
created aiming to support a tie list in the result.
A tie list enables to control two problems exist-
ing in algorithms that involves the kNNq oper-
ator: the non repeatability answering similarity
queries and the hiding of results that can be rele-
vant in queries, as discussed in Section 4.1.

The experiments presented confirm that the
proposed algorithms are scalable and more effi-
cient than the correspondent composition of the
basics algorithms to answer complex similarity
queries. In addition, the measurements related to
the tie list show that supporting it does not re-
quire additional cost in query processing. The
experimental measurements demonstrate a con-
sistent improvement in answering complex sim-
ilarity queries and their efficiency and scalabil-
ity. The experiments also show that the new algo-



rithms reduce the total time and numbers of disk
accesses and distance calculations to at most half,
improving the most frequent queries posed in real
systems. Moreover, the experiments showed that
the new algorithms reduced up to 12 times the
number of disk accesses, more than 20 times the
number of distance calculations and can be more
than a hundred times faster than the correspon-
dent composition of the basic algorithms.

Notice that to answer those queries without
the new algorithms it is necessary to run the ba-
sic algorithms individually, composing the inter-
mediate results through intersections or unions
to produce the final result. Therefore, the main
contribution of this paper is enabling RDBMS
to perform complex similarity queries in a prac-
tical way, through the inclusion of the similar-
ity operators as an extension of SQL. In addi-
tion, this paper makes it possible to develop de-
sirable characteristics in similarity queries as fu-
ture works, such as the support for a query opti-
mizer to handle similarity queries through a set
of algebraic rules covering similarity predicates,
changing of any expression involving multiple
similarity predicates centered at the same query
center into an expression that can be answered by
the two proposed algorithms, or developing the
support for the composition of similarity queries
with distinct centers, as briefly suggested in Sec-
tion 5.3.
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