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Abstract

Given a set of objects P and a set of ranking functions F over P, an interesting problem is to com-

pute the top ranked objects for all functions. Evaluation of multiple top-k queries finds application in

systems, where there is a heavy workload of ranking queries (e.g., online search engines and produc-

t recommendation systems). The simple solution of evaluating the top-k queries one-by-one does not

scale well; instead, the system can make use of the fact that similar queries share common results to

accelerate search. This paper is the first, to our knowledge, thorough study of this problem. We propose

methods that compute all top-k queries in batch. Our first solution applies the block indexed nested loops

paradigm, while our second technique is a view-based threshold algorithm. We propose appropriate op-

timization techniques for the two approaches and demonstrate experimentally that the second approach

is consistently the best. In addition, we demonstrate the utility of our approach in solving other complex

queries that depend on the computation of multiple top-k queries. We show that our adapted methods for

these complex queries outperform the state-of-the-art by orders of magnitude.

1 Introduction

Many real life applications support ranking of products according to user preference functions. For exam-

ple, assume that a customer desires to purchase blu-ray discs from an online store (e.g., Amazon). The

store would rank the blu-ray discs according to the preferences of the customer; these preferences could

be expressed by the user explicitly, or they could be implicitly derived from the customer purchase records

[1]. For instance, assume that movie cast and release date are the two features of blu-ray discs for which

customers mostly care. Recent movies having a good cast would rank higher than others. To simplify

illustration and analysis, we assume that these features take values from a normalized numerical domain;

e.g., the quality of casting takes a score from 0 (worst) to 1 (best). This way, the products can be modeled

by multidimensional points; e.g., points p1, p2, and p3 are used to represent three products respectively in

Fig. 1. Modeling objects in such a multidimensional feature space is common for diverse types of queries,

such as top-k queries [10, 12, 20], skyline queries [8, 19], and market analysis queries [23, 24].

Given a preference function f , we can rank the products p ∈ P according to f(p). Fig. 1 shows three

linear functions fa, fb, and fc which create three object rankings as shown in the right part of the figure.

Each function is of the form f [x]x + f [y]y, such that 0 ≤ f [x], f [y] ≤ 1 and f [x] + f [y] = 1. The

functions are represented as vectors in the space that contains the points. The object ranking for a specific

function f can be determined by the order of the points are met if we sweep a line perpendicular to the

vector of f from point (1, 1) towards point (0, 0). In general, different customers may have completely

different preferences. For instance, fb represents the preferences of a customer, ub who is concerned much
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more about the quality of casting than the release date. Accordingly, p2 is the best product according to

ub’s preferences.

Generally speaking, users are more interested in top ranked products. Given a constant k, top-k
queries[10, 12, 20] can be defined in Definition 1, according to a given ranking function f .

Definition 1 (Top-k query, TOP k(f)). Given a set of products P , a preference function f , and a positive

integer k, the top-k query TOP k(f) returns a subset of k products from P , such that f(pi) ≥ f(pj),
∀pi ∈ TOP k(f), pj ∈ P\TOP k(f).

For example, in Fig. 1, there are four products in the system and only two features, quality of casting

and release date, are taken into account. Suppose that k = 3 and there is a customer ua who equally

weighs these two features. As shown in the figure, ua’s preferences are captured by a linear function

fa = 0.5x + 0.5y; this corresponds to the order of the points are swept by the perpendicular plane to a

vector from (1, 1) to (0, 0). According to fa, the system recommends TOP 3(fa) = {p3, p2, p1} to ua.
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Figure 1: Top-k queries for online stores

In most online recommendation applications, top-k queries for multiple users may have to be evalu-

ated simultaneously. Recommendation systems of online stores is such an application. As an example,

consider a second-hand cars company wants to recommend cars to customers before the summer season;

the company issues multiple top-k queries, one for each customer (depending on his/her individual prefer-

ences), simultaneously. The customer preferences may have to be collected from previous purchase records

of the users. The recommendations can be computed by issuing an individual top-k query for each user,

TOP k(fi). This iterative approach becomes too expensive when a large number of queries have to be e-

valuated over a large number of products. Thus, developing specialized techniques for processing multiple

top-k queries is an important problem that has been overlooked in past research. Definition 2 formally

defines this problem.

Definition 2 (All top-k query, ATOP k). Given a set of products P , a set of preference functions F , and a

positive integer k, the all top-k query ATOP k returns TOP k(f) for every function f ∈ F .

To the best of our knowledge, there is no efficient approach to compute multiple top-k queries simulta-

neously (ATOP k). In this paper, we study two batch processing techniques for this problem. The first is a

batch indexed nested loops approach and the second is a views-based threshold algorithm. We also propose

several novel optimization techniques for these methods.

Besides products recommendation, other tasks, such as product promotion analysis[21] and identifying

the most influential products [22], can benefit from an efficient approach for computing multiple top-k
queries simultaneously, as we discuss in Section 2. We demonstrate the utility of our result in these complex

analysis tasks; when ATOP k is used as search module for reverse top-k [21] and top-m influential [22]

queries, the evaluation cost of these queries greatly decreases.

In the rest of the paper, we assume that object features (i.e., dimensions) are normalized in the range

[0, 1], and larger values are better. In addition, we assume that the set F of multiple ranking queries contains

only linear preference functions and the coefficients of every function are normalized; the score f(p) of an

object p is computed by the inner product
∑d

i=1 f [i] · p[i] of f ’s weights vector with p’s feature vector.
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The rest of the paper is organized as follows. The applicability of all top-k queries is discussed in

Section 2. An intuitive batch processing technique is introduced in Section 3. In Section 4, we present an

alternative batch processing approach which extends the views-based threshold algorithm [11] and fully

optimize it. Section 5 discusses how we can extend our techniques to support related queries, including

reverse top-k and top-m influential queries. In Section 6, we experimentally evaluate our methods using

synthetic and real data. Section 7 discusses related work. Finally, Section 8 concludes the paper. Table 1

summarizes the notation used throughout the paper.

Table 1: Summary of Notations

Symbol Meaning

F the set of user preferences

P the set of products

f(p) score of product p by user preference f

p[i] the i-th dimension value of p

f [i] the i-th coordinate (weight) of f

TOP k a top-k query

ATOP k a all top-k query

RTOP k a reverse top-k query

Ik(p) top-k influence score of product p

ITOPm
k a top-m influential query

2 Applications

Product promotion is one possible application that can make use of ATOP k. Suppose that a property agent

is promoting a new building to customers via web advertisements. To minimize cost, the agent should

advertise the building only to those customers who are potentially interested in it; in other words, product

pi should be advertised to users who highly rank pi, based on their known preferences. This problem is

known as reverse top-k (RTOP k(pi)) query [21], which is formally defined in Definition 3. Intuitively,

given product pi and a set of user preferences, RTOP k(pi) returns the users who have pi in their top-k
result.

Definition 3 (Reverse top-k query[21]). Given a product p, a positive integer k, a set of products P and a

set of user preferences F , the reverse top-k query RTOP k(p) returns a subset of user preferences F , such

that RTOP k(p) ⊆ F , and fi ∈ RTOP k(p) if and only if ∃q ∈ TOP k(f) such that f(p) ≥ f(q).

For example, for the data in Fig. 1, RTOP 2(p2) returns functions fa and fb since p2 is ranked 2nd and

1st by fa and fb, respectively. We note that the solution for this problem proposed in [21] does not scale

well, because every reverse top-k query is answered by issuing a set of essential top-k queries. If multiple

reverse top-k queries are issued (e.g., multiple products are to be promoted at a holiday season), some of

these top-k queries might even have to be executed multiple times.

A related application is to find products of significant impact in the market. Identifying products of

high influence in a large database (e.g., database of houses, second-hand cars, etc.) is an important market

analysis task, which can help companies to assess the popularity of their current products and/or design new

ones with features similar to most popular products. For instance, the iPad is considered a good product

because it is ranked highly by many customers in a survey [2]. Intuitively, the influence of a product in

the market is the number of customers who consider it intriguing (i.e., rank it high in their preferences).

In Fig. 1, p3 is the most intriguing product since it is ranked highly by all three functions. The problem

of finding the most influential products has been recently studied by Vlachou et al. [22]. They define the

3



influence score Ik(pi) of a product pi in Definition 4, using the number of customers have pi in their top-k
preferences.

Definition 4 (Influence score, Ik[22]). Given product dataset P , user preferences F and a positive integer

k, the influence score of a product p is defined as Ik(p) = |F ′|, where F ′ ⊆ F and F ′ = RTOP k(p).

Accordingly, the top-m most influential query is defined in Definition 5. The ranking criterion is based

on the influence scores Ik.

Definition 5 (Top-m influential query[22]). Given a product dataset P , a set of users preferences F and a

positive integer k. The top-m influential query ITOPm
k returns a subset of m products from P , such that

ITOPm
k ⊆ P and |ITOPm

k | = m, Ik(pi) ≥ Ik(pj), ∀pi ∈ ITOPm
k , pj ∈ P\ITOPm

k .

For example, in Fig. 1, let k = 3 and consider the three user preference functions F = {fa, fb, fc}.
The four products {p1, p2, p3, p4} have influence scores {3, 2, 3, 1}, respectively. The score of p4 is only 1

because it appears in the top-3 set of only one function (fc). Thus, ITOP 2
3 returns {p3, p1}. In [22], the

object influence scores are calculated by reverse top-k queries, therefore the proposed solution does not

scale well according to our discussion above.

In Fig. 2, we briefly summarize the relationship between the all top-k (ATOP k) query that we study

in this paper and RTOP k(f)/ITOPm
k . In [21], a reverse top-k query RTOP k(f) is computed by a set

of top-k queries; however, not all these queries need to be evaluated due to the use of pruning strategies.

In addition, according to [22], the influence score of a product Ik(p) is equivalent to the size of the reverse

top-k result. Given a set of products and a set of preference functions, the top-m influential query ITOPm
k

is evaluated using the influence scores of the products. Therefore, a large number of top-k queries are

implicitly involved in a top-m influential query. Although pruning strategies and fine-tuned execution

ordering are employed in the state-of-the-art solutions for RTOP k(f) and ITOPm
k queries in [21] and

[22], respectively, neither solution optimizes the core ATOP k module of these queries. In other words,

an efficient evaluation technique for all top-k queries (ATOP k) would greatly benefit the evaluation of

RTOP k(f)/ITOPm
k queries.

Figure 2: Relationship of different queries

3 Batch Top-k Processing

Top-k queries are extensively studied in the literature [10, 11, 12, 20]. The state-of-the-art techniques aim

at minimizing the cost of a single top-k query with the use of thresholding and/or indexing structures.

However, there is a lack of research on multiple top-k evaluation. Motivated by this, in this section, we

propose a batch processing technique that indexes not only the objects but also the functions, to support all

top-k computation.

Roughly speaking, batch processing can be considered as the counterpart of block indexed nested-

loops in relational databases and spatial join queries in spatial databases [26]. Suppose that the objects are
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indexed by a multidimensional index, e.g., R*-tree [6], and the functions are also partitioned in groups.

To group the functions, we can first order them according to their position on the Hilbert curve [7] that

indexes the space of function coefficients. Then, we split the curve into subintervals, each defining a group,

such that each group contains no more than a ratio δ of the functions. Intuitively, a group contains a

small number of similar functions that would share a number of results. Processing the functions in the

group simultaneously would be faster than executing the queries individually, as some search cost would

be shared among the functions in the group. In Section 6, we study the choice of δ.

Let Fg be a group of functions; the group maximum score s
Fg
max(p) of an object p computed by the

functions of the group is s
Fg
max(p) =

∑d
i=1 maxfg∈Fg

{fg[i]}p[i]. For a given Fg , we traverse the nodes

and objects in the R*-tree (e.g. Fig. 3(a)) in descending order of the group maximum score. We first

load the root of the R*-tree, calculating s
Fg
max of all entries in it (i.e., for each minimum boundary rectangle

(MBR)). The maximum possible score s
Fg
max(m) of an MBR m is the maximum score of any possible object

inside m. If higher values are preferred in each dimension, the corner point of an MBR corresponding to

the combination of the largest values is the point with the maximum score. We put all accessed R*-tree

entries and their maximum scores into a priority queue and access them in descending maximum score

order. Each time an entry e is de-heaped, if e is a non-leaf entry (e.g., Ma in Fig. 3(a)), we calculate the

maximum scores for all its children and insert them into the priority queue. If e is a leaf MBR (e.g., mb

in Fig. 3(a)), then all functions in Fg are computed using the points in the corresponding leaf node. As

an optimization (see Lemma 1 below), we avoid processing an MBR m for a function f ∈ F if the upper

bound f(m) (computed using the best corner of m) is worse than the k best scores of f computed so far.

We name this batch processing technique as Batch Indexed Nested Loops algorithm (BINL). We list the

pseudocode for BINL in Algorithm 1.

Algorithm 1 BINL Algorithm

Algorithm BINL(R,F, k)
R is the R*-Tree index of the set of objects P

1: partition F into a set of g groups {F1, . . . , Fg} by Hilbert curve

2: for all Fi ∈ {F1, . . . , Fg} do

3: en-heap (R.root, 0) into PQ
4: while PQ is not empty do

5: de-heap the top element m from PQ
6: if m is an non-leaf MBR then

7: for all mi ∈ m do

8: compute the maximum possible score sFi
max(mi) to mi

9: en-heap (mi, s
Fi
max(mi)) into PQ

10: else if m is a leaf MBR then

11: for all fi ∈ Fi do

12: if fi(mi) is better than k-th candidate of fi then

13: evaluate fi for all objects in mi

Lemma 1 (MBR Pruning). An MBR m needs not be evaluated by a function f if f(m) is no better than

the k-th score for the objects being seen so far, where f(m) is the maximum score of function f for any

point in m.

Fig. 3(b) illustrates an example for BINL. Assume that we are processing the group of functions Fg =

{fa, fb}. The accessing order based on s
Fg
max can be conceptually captured by the order a perpendicular

plane to the dashed arrow in the figure crosses the MBRs. Suppose that k = 2 and we have already

accessed four MBRs, M , Ma, mb, and Mb. Then, p2 and p3 have been seen by fa and fb already and we

only have {md,ma,mc} in the priority queue. Next, we get md from the priority queue, which is a leaf

MBR, therefore its contents are evaluated using the functions in Fg . Note that only fb evaluates the objects

in md while fa prunes md because fa(md) < fa(p2) < fa(p3).

Discussion. Techniques similar to BINL have been proposed before for All Nearest Neighbors Queries
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(a) R*-tree grouping (b) BINL processing

Figure 3: An example of batch indexed nested loops

(ANN) [26] in spatial databases. We note that BINL does not support early termination, because the group

traversing order is generally different from the early termination order of every single user preference

function in that group, which means that we have to traverse the R*-tree once for every functions group.

4 A View-based Approach

In this section, we investigate an alternative, more efficient approach than BINL. A well-accepted general

paradigm for efficient query processing, for different data and query types, is to take advantage of materi-

alized views with pre-computed results [13]. Answering top-k queries using materialized views has been

studied in [11]. The materialized top-k views used could be cached results of previously computed top-k
queries. The algorithm proposed in [11] is a Linear Programming adaptation of the Threshold Algorithm

(LPTA). The execution paradigm is based on the Threshold Algorithm (TA) [12]: an iterative processing

technique which combines two or more ranked object lists. LPTA sequentially accesses the results of two

or more materialized rankings of objects, based on different functions, in order to compute the top-k objects

based on a new function. When an object p is accessed from view vi, a random access is performed at each

of the other views to calculate the aggregate feature score of object p. LPTA keeps track of the k objects

with the highest scores seen so far. These k objects will become the final top-k result if they have better

scores than the maximum possible score for all unseen objects. The maximum possible score is computed

by linear programming in [11].

We demonstrate LPTA by an example in Fig. 4(a). In this example, we use the same objects set from

Fig. 1 and construct two views, v1 and v2. We can find the top-1 result of fa by sorted accesses to these

views using LPTA. Assuming that v1 and v2 have been accessed 2 times, the regions being accessed are

shaded in the figure. Note that the unseen region must be convex if all preference functions are linear.

Given a linear function, the maximum score of any objects in the convex unseen region must be smaller

than or equal to the scores of the convex points (of the unseen region), which can be computed by linear

programming. After these sorted accesses, only three objects, p2, p3, and p4, are seen so far and the

preference function fa keeps p3 as the top-1 candidate. LPTA returns p3 for fa since the current maximum

possible score smax(fa) is already worse than the candidate’s score, fa(p3).
To support batch processing, when an object p is accessed from a view, we can evaluate its scores for

multiple top-k queries. For every top-k query being evaluated, we update the current result set if necessary.

A function is marked as stopped if its k-th candidate score is no worse than the maximum possible score.

Based on this idea, we can answer multiple top-k queries by traversing each view once. We call this

method Batched Linear Programming adaptation of the Threshold Algorithm (BLPTA). The pseudo code

of BLPTA can be found in Algorithm 2.

At every iteration of BLPTA, we fetch the next object p from one of the views in a round-robin fashion

and update the top-k candidates for each of the running functions. In Fig. 4(b), the top-1 candidates of

fa, fb, and fc are p3, p2, and p3 respectively after the 2nd access from each of views. The maximum

possible scores, smax, of the functions are illustrated by three different lines in Fig. 4(b). In this example,
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(a) LPTA computation (b) BLPTA computation

Figure 4: Top-k computation using ranking views

Algorithm 2 BLPTA Algorithm

Algorithm BLPTA(V, P, F, k)
1: for all f ∈ F do

2: TOP k(f)← ∅ and mark f as running

3: while F is not empty do

4: for all v ∈ V do ⊲ access the views in round-robin fashion.

5: fetch next object p from v and update accessed regions

6: for all f ∈ F not marked as stopped do

7: if f(p) is better than k-th object TOP k(f) then

8: remove k-th object and insert p into TOP k(f)

9: compute maximum possible score smax(f)
10: if k-th object in TOP k(f) is better than smax(f) then

11: mark f as stopped and remove f from F

all functions are marked as stopped after the 2nd access from each of views. Therefore, BLPTA exits the

iterative process and returns the all top-k result.

BLPTA can terminate early if all functions are marked as stopped. However, BLPTA can be slow since

(1) the maximum possible scores are computed by linear programming, (2) functions are not partitioned

into groups, and (3) every object being accessed from views is unavoidably evaluated. In remaining of this

section, we discuss and resolve these three issues and propose an optimized version of the algorithm, called

Efficient adaptation of the Threshold Algorithm (ETA).

4.1 Avoiding linear programming

The maximum possible score in BLPTA is computed by linear programming. Considering the fact that

this computation will be carried out for all running preference function against all accessed objects, it is

very time consuming. Motivated by this, we redesign our method as follows. Instead of using previously

computed ad-hoc views, before all top-k evaluation, we construct the views, using some constraints, such

that the maximum possible score can be derived from the cross point of d hyperplanes (technique to be dis-

cussed shortly). We first introduce the constraints that we impose when constructing views (Definition 6).

Definition 6 (d-bounding views). A preference function f is bounded by d views {v1, . . . , vd} if and only

if there exists a d-dimensional vector r, such that ∀ri, ri ≥ 0 and
∑d

i=1 rivi = f .

Intuitively, a preference function f being bounded by d views means that the direction of f is enclosed

by the directions of d views. Fig. 5(a) demonstrates an example of d-bounding views. Suppose that

fa = 1
2x + 1

2y and consider two views, v1 = 2
3x + 1

3y and v2 = 4
9x + 5

9y, in the system. There exists

a vector r = ( 14 ,
3
4 ) that makes r1v1 + r2v2 = fa. Therefore, we say that views v1 and v2 are a set of

d-bounding views for fa.
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(a) By d-bounding views (b) By other views

Figure 5: Example of different views settings

Besides, we define as the scanning hyperplane of a view v, the hyperplane which is perpendicular to the

v’s vector and intersects the last object seen in v. The dashed lines (orthogonal to the preferences vectors)

in Fig. 5 illustrate scanning hyperplanes. Formally, if s is the last score seen in v, the scanning hyperplane

of v is defined by the set of points x which satisfy v[1]x[1] + . . .+ v[d]x[d] = s.

In BLPTA (and LPTA), the maximum possible score smax is computed by linear programming which

is a well accepted method for linear optimization problems. Consider a preference function f , d views

(v1, . . . , vd), and their last accessed scores si. The optimization problem can be defined as the follow.

maximize f(x)

subject to vi(x) ≥ si, i = 1, . . . , d.

However, it is not necessary to execute linear programming if x can be determined simply. By basic

geometry, we can easily show that there is only one cross point φ being intersected by d hyperplanes in

the d dimensional space. We illustrate the cross point φ in Fig. 5(a). Assume that all user preferences in

the system are bounded by d views. Theorem 1 shows that the cross point φ is the point x that maximizes

the score of any unseen objects (proofs of all theorems are in Appendix A). For completeness, we show in

Fig. 5(b) that if f is not bounded by the views, then f(φ) is no longer the maximum possible score.

Theorem 1. For a set of user preferences F being bounded by d-bounding views (v1, . . . , vd), f(φ) is no

worse than the score of any unseen objects, where φ is the cross point of the scanning hyperplanes of the

d-bounding views.

According to Theorem 1, f(φ) is equivalent to the maximum possible score smax(f) in BLPTA. Clear-

ly, we can mark a function as stopped if f is bounded by the corresponding d-bounding views and the value

of f(φ) is not better than the k-th candidate score. The remaining problem is to calculate the cross point φ
of d scanning hyperplanes. This can be done by solving a simple linear system. For every view vi and its

last seen score si, we have

vi[1]φ[1] + ...+ vi[d]φ[d] = si

Since we have d different equations in total, φ can be found by solving a simple linear system, φ = A−1B,

where A is the set of d views and B is the set of last seen scores. Formally:

φ =











v1[1] . . . v1[d]
v2[1] . . . v2[d]

...
...

...

vd[1] . . . vd[d]











−1 









s1
s2
...

sd











Discussion. The views based computation can stop early if the preferences functions are bounded tightly

by the views. For instance, we can mark fa as stopped after accessing one object from each of views in

Fig. 5(a); while we need to access four objects in total from the views in Fig. 4(a). However, finding the
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tightest d-bounding views is a hard problem in high dimensional spaces. The most loose d-bounding views

are the base views (e.g., v1 = x, v2 = y, and v3 = z in the 3D space). In next section, we study how to

tighten these views by a partitioning technique.

4.2 Views-based partitioning

We can take advantage of partitioning the functions into groups instead of processing them one-by-one.

Before we introduce the partitioning process, we show how to construct a (d − 1)-simplex by projecting

the vectors of d-bounding views to a hyperplane HP (i.e., HP(X ) = x[1] + . . . + x[d] = 1). For a set

of d-bounding views, we can find their corresponding point using a linear system. For instance, pv1 and

pv2 are the corresponding points of v1 and v2, respectively, in Fig. 6(a). These d corresponding points

construct a (d− 1)-simplex (∆d-1) [18] on hyperplaneHP , that is a (d− 1)-dimensional generalization of

a 2D triangle or a 3D tetrahedron. In Fig. 6, we illustrate two such simplexes in 2 and 3 dimensional spaces

(the 1-simplex ∆1 is a line segment and the 2-simplex ∆2 is a 2D triangle).

(a) 1-simplex (b) 2-simplex

Figure 6: Examples of d-bounding views projection

A simplex can easily be partitioned by a point inside it (see Definition 7). In Fig. 7, for example, we

have three basic bounding views and four functions in the 3D space. On the hyperplane, we create a ∆2

according to the corresponding points from v1, v2, and v3. We can partition the ∆2 into three sub-simplexes

(i.e., ∆2
1, ∆2

2, and ∆2
3) by adding the view v4 (see Fig. 7(b)).

Definition 7 (Simplex partitioning). Given a ∆d-1 and a point p inside the simplex, ∆d-1 can be partitioned

into d isolated ∆d-1s being split from p towards the vertices of the simplex.

Theorem 2 shows that the function fa passes through point pfa in the interior of ∆d-1 = {pv1
, . . . , pvd

}
if and only if f is bounded by {v1, . . . , vd}. In Fig. 7(b), the corresponding d-bounding views of ∆2

1,

∆2
2, and ∆2

3 are {v1,v2,v4}, {v1,v3,v4}, and {v2,v3,v4}, that bound functions {fa,fb}, {fd}, and {fc},
respectively.

Theorem 2. A function (or a view) is bounded by a set of d-bounding views if and only if it passes through

the interior of the (d-1)-simplex defined by the d-bounding views.

Note that simplex partitioning creates new sets of d-bounding views that are tighter than the original d-

bounding views. This makes computation more efficient as discussed in Section 4.1. For instance, finding

the top-k result of fd using {v1, v3, v4} is faster than using {v1, v2, v3}. For the sake of generating tighter

boundings, we can recursively partition the simplex. On the other hand, this might create a large amount

of views. Therefore, there is a tradeoff between achieved tightness and the number of views, which should

be considered in the process.

Accordingly, we propose an algorithm that recursively partitions the initial simplex. After each par-

titioning, we assign each function to the sub-simplex where its projection falls. We use a parameter λ to

control the number of views being created during this process. We do not further split a simplex if the

9



(a) Simplex construction (b) Splitting using v4

Figure 7: An example of partitioning

number of functions being bounded by it is less than a ratio λ of the total. The partitioning algorithm can

be found in Algorithm 3.

In Algorithm 3, we first construct the simplex ∆d-1 based on the d-bounding views V (e.g., v1, v2,

and v3 in Fig. 7) and assign the entire set of preferences functions to ∆d-1.F , where ∆d-1.F denotes the

associated preference function set F of the simplex ∆d−1. Lines 3 to 12 describe an iterative process that

recursively partitions the simplex. Given a point inside a simplex (e.g., the average point of all vertices,

vavg), we can partition the simplex ∆d-1 into d sub-simplex using Definition 7 (in line 5). Every bounding

function f of ∆d-1 is assigned to one of the d sub-simplexes. Clearly, the simplex is not tight enough if it

bounds many functions. Therefore, we further partition a sub-simplex if the number of bounding functions

is larger than a threshold (e.g., being controlled by λ in our algorithm).

Algorithm 3 d-bounding views partitioning

Algorithm partitioning(V, F, λ)
1: construct ∆d-1 for V and set ∆d-1.F := F
2: push ∆d-1 into a queue Q
3: while Q is not empty do

4: ∆d-1 := Q.pop()
5: partition ∆d-1 into {∆d-1

1 , . . . ,∆d-1
d } using vavg := AVGvi ∈ V

6: for all f ∈ ∆d-1.F do

7: assign f to ∆d-1
i if f is in the interior of ∆d-1

i

8: for all ∆d-1
i ∈ {∆d-1

1 , . . . ,∆d-1
d } do

9: if size(∆d-1
i .F ) ≥ λ · size(F ) then

10: push ∆d-1
i into Q ⊲ further partition ∆d-1

i

11: else

12: Fg := Fg ∪∆d-1
i .F

13: return Fg

4.3 Accessing multiple objects from views

Recall that whenever a leaf MBR m is accessed by BINL, every function fg in Fg first examines whether

m can be pruned by the candidate set of fg , according to Lemma 1 (see Section 3). However, the objects

being accessed from views are unavoidably evaluated by the functions in BLPTA. For the sake of batch

pruning, we fetch ω objects from a view instead of one object at each access. Subsequently, we construct an

MBR for these ω objects and apply the same pruning idea as BINL, such that not every object is necessarily

evaluated by the functions, improving the efficiency of pruning.

10



4.4 Putting all together

We are now ready to present our ETA algorithm (Efficient adaptation of the Threshold Algorithm), which

integrates all techniques been discussed. ETA first partitions the functions into groups such that each

of group is bounded by a corresponding set of d-bounding views (see Section 4.2). For every group, we

evaluate the functions in batch using the corresponding d-bounding views. At every iteration, in each group,

we access the views in round-robin fashion. At each access, we fetch ω objects and construct the MBR for

these objects (see Section 4.3). Subsequently, we update the cross point φ of d scanning hyperplanes (see

Section 4.1).

After we construct the MBR m for the accessed objects, we examine whether the objects belonging

to m should be examined by a function using the MBR pruning technique (see Lemma 1 in Section 3).

Moreover, the result of a function f is confirmed by the condition whether f(φ) is no better than the

candidate set of f , and f is marked as stopped in this case (see Section 4.1). The all top-k results of

a group found as soon as all functions in the group are marked as stopped. Algorithm 4 is a detailed

pseudocode for ETA.

Algorithm 4 ETA Algorithm

Algorithm ETA(V, P, F, k, ω, λ)
1: for all f ∈ F do

2: TOP k(f)← ∅ and mark f as running

3: Fg := partitioning(V, F, λ) ⊲ Section 4.2

4: for all F ∈ Fg do

5: while F is not empty do

6: for all v ∈ V do

7: fetch next ω object p from v ⊲ Section 4.3

8: construct the MBR m for ω objects ⊲ Section 4.3

9: compute cross point φ using d-scan hyperplanes ⊲ Section 4.1

10: for all f ∈ F do

11: if f(m) is better than k-th score in TOP k(f) then

12: for all p ∈ m do

13: if f(p) is better than k-th score in TOP k(f) then

14: remove k-th object and insert p into TOP k(f)

15: if f(φ) is no better than k-th score in TOP k(f) then

16: mark f as stopped and remove f from F

In our implementation for ETA, we assume that the set of objects is indexed by a multidimensional

access method and that the views are not pre-computed and materialized. A view is computed on-demand

at the simplex partitioning phase (Section 4.2) using an off-the-shelf top-k computation algorithm (e.g.,

BRS [20]).

5 Efficient reverse top-k and top-m influential computation

According to our discussion in Section 2, the reverse top-k RTOP k(p) and top-m influential ITOPm
k

queries can use our all top-k algorithms to accelerate searching. We first briefly review the state-of-the-art

solutions to these problems from [21] and [22]. Then, we show how we can evaluate these queries more

efficiently using ATOP k.

5.1 State-of-the-art RTOP
k solution

Given a set of objects P and a set of preference functions F , the reverse top-k query of an object p ∈ P
returns the subset of F that contains p in their top-k result. A naı̈ve method computes a reverse top-k query

by evaluating the preference functions one by one. [21] proposed the evaluation of the functions in a given

order. Intuitively, the top-k results are similar (or exactly the same) if two functions, fi and fj , are very
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close1. In other words, if fi does not have p in its top-k result, then most probably p is not in fj’s top-k
either. Therefore, we can skip the evaluation of fj if fj(p) < maxpi∈TOPk(fi) fj(pi) since p is ranked

worse than at least k other objects. This method is termed Reverse top-k Threshold Algorithm (RTA) in

[21]. However, this process might evaluate all functions, in the worst case.

We demonstrate the reverse top-k computation in Fig. 8(a). Given the execution order based on cosine

similarity (i.e., fc, fa, fb) and k = 3, we want to answer RTOP k(p5). According to the given order,

we first evaluate fc where the top-k result is {p3, p1, p4} and find that fc is not in the reverse top-k set

of p5. Before we evaluate next function fa, we first apply fa on fc’s top-k set and compute a threshold

θ = max{fa(p3), fa(p1), fa(p4)}). In this example, fa(p5) < θ, which indicates that fa is not the reverse

top-k of p5 and needs not be evaluated. On the other hand, fb(p5) ≥ θ, therefore fb has to be evaluated.

(a) Reverse top-k query (b) Top-m influential query

Figure 8: Examples of other queries

5.2 State-of-the-art ITOP
m

k
solution

Given a set of objects P , a set of functions F , and k, the top-m influential query returns the m objects

that have the highest influence scores, defined by the size of RTOP k(p). A straightforward solution is to

evaluate a reverse top-k query for each object. Note that each reverse top-k query is evaluated by multiple

top-k queries. The cost becomes too high if F and P are large. In [22], a technique that estimates the

maximum possible influence score U(q) of an object q is proposed. This can be computed by

U(q) = | ∩∀pi∈CDS(q) RTOP k(pi)|,

where CDS(q) is the constrained dynamic skyline of q (see Definition 8).

Definition 8 (Constrained Dynamic Skyline Set). Given a set of objects P and an object q, we denote as

Pc ⊆ P the set of all objects pi, such that ∀di=1 : q[j] ≤ pi[j]. An object pi ∈ Pc belongs to the constrained

dynamic skyline set CDS(q) of object q, if it is not dynamically dominated with respect to q by any other

point p′ ∈ Pc.

CDS(q) finds a set of dynamic skyline objects in the region being constrained by q; this region is

bounded from q towards the best point (1, . . . , 1). In the example of Fig. 8(b), suppose k is set to 3,

CDS(p5) contains {p1, p2} and U(p5) = 2 (= |{fa, fb} ∩ {fa, fb, fc}|).
Assuming that P is indexed by a multidimensional access method, we can traverse the objects pi ∈ P

in decreasing order of U(pi). Similar to other branch-and-bound (BB) processing techniques (e.g., [20]),

the first m de-heaped objects are the result of the query. This BB algorithm is the best approach in [22]

and it is much faster than the straightforward solution. However, the top-m influential query essentially

executes a large amount of top-k queries indirectly, since every reverse top-k query is evaluated by a set of

top-k queries.

1Closeness can be measured by a cosine function.
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5.3 Using all top-k computation

In this section, we study how we can use ATOP k to evaluate RTOP k and ITOPm
k . We also discuss why

our approach is superior to the state-of-the-art solutions.

RTOP k using ATOP k. After having computed an ATOP k, we have the top-k results of all functions.

For the objects and functions of Fig. 8, the ATOP k results are shown in Fig. 9(a). By “inverting” this

table, as shown in Fig. 9(b) we can obtain the reverse top-k sets of all objects. Thus, any RTOP k query

can be answered easily by fetching a row in the inverted table. The space requirement is only O(|F | · k).

TOP k top-3 result

fa p3, p2, p1
fb p2, p3, p1
fc p3, p1, p4

(a) All top-k results

RTOP k reverse top-3 result Ik

p1 fa, fb, fc 3

p2 fa, fb 2

p3 fa, fb, fc 3

p4 fc 1
(b) Inverted table

Figure 9: All reverse top-k computation

ITOPm
k using ATOP k. Having computed the inverted table, which lists the reverse top-k set of each

object, we can easily find the influence score of any object by accessing the corresponding row. In fact,

for a ITOPm
k query, we only need the cardinality of each list; our objective is to find the m lists with the

largest cardinality. Thus, even if we do not have the inverted table, we can simply scan the all top-k result

and find the objects with the largest influence scores. The details are listed in Algorithm 5.

Algorithm 5 Top-m influential query using ATOP k

Algorithm ITOP −ATOP (V, P, F, k, λ)
1: for ∀p∈P I

k(p)← 0 ⊲ Initialize influence scores

2: ATOP k ← run all top-k computation

3: for all f ∈ F do

4: for all p ∈ ATOP k[f ] do ⊲ ATOP k[f ] ≡ TOP k(f)
5: Ik(p)← Ik(p) + 1

6: return the top-m objects p with respect to Ik(p)

Discussion. In [21] and [22], many top-k queries are evaluated if F and P are large, while in [22] multiple

reverse top-k queries are executed and some of them may even share the same top-k queries, which are

evaluated multiple times in this case. For a fair comparison, we implemented an optimized version of

BB, named Optimized Branch-and-Bound algorithm (OBB), which caches the results of previously issued

top-k queries and reuses them if necessary. Still, as we show in Section 6, OBB is much slower than our

“ITOPm
k using ATOP k” approach.

6 Experimental Evaluation

According to the methodology in [8], we generated three types of datasets, independent (IND), correlated

(COR), anti-correlated (ANT). In IND datasets, the feature values are generated uniformly and indepen-

dently. COR datasets contain objects whose values are correlated in all dimensions. ANT datasets contain

objects whose values are good in one dimension and tend to be poor in other dimensions. In addition, we

generate clustered (CLU) datasets by randomly selecting C independent objects, and treat them as cluster

centers. Each cluster object is generated by a Gaussian distribution with mean at the selected cluster center

and standard deviation 5% of each dimension domain range. We set C to 10 by default.

In addition, we experimented with two real datasets, NBA [3] and Household [4]. NBA contains

12,278 statistics from regular seasons during 1973-2008, each of which corresponds to the statistics of
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an NBA player’s performance in 6 aspects (minutes played, points, rebounds, assists, steals, and blocks).

Household consists of 3.6M records during 2003-2006, each representing the percentage of an American

family’s annual expenses on 4 types of expenditures (electricity, water, gas, and property insurance).

All methods were implemented in C++ and the experiments were performed on an Intel Core2Duo

2.66GHz CPU machine with 8 GBytes memory, running on Ubuntu 10.04. Table 2 shows the ranges of the

investigated parameters and their default values (in bold). In each experiment, we vary a single parameter,

while setting the others to their default values. Our system uses a 4KB page size. In order to measure the

exact I/O cost, we assume no memory buffer is available.

Table 2: Range of parameter values

Parameter Values

|P | (in thousand) 10, 25, 50, 100, 200, 400

|F | (in thousand) 10, 25, 50, 100, 200

Dimensionality d 2, 3, 4, 5, 6

Data distribution for P IND, ANT, COR, CLU

Data distribution for F IND, CLU

k 2, 5, 10, 20, 40, 80

m 2, 5, 10, 20, 40, 80

BINL grouping ratio, δ 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1

ETA splitting ratio, λ 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1

ETA number of accessed objects, ω 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000

Parameter tuning. We first study the effect of the various tuning parameters on the algorithms, BINL and

ETA. We investigate the effect of δ (grouping ratio in BINL), λ (splitting ratio in ETA), and ω (number of

accessed objects in ETA). Figure 10(a) shows the effect of δ on the cost of the BINL algorithm for different

dimensionality d. For δ = 1 or very small δ, the cost is high since either forming a single group or many

small groups is not beneficial for BINL. Therefore we set δ = 0.02 by default; BINL performs well with

this value at any dimensionality.

ETA has two parameters, λ and ω, and its cost is affected by both of them. We investigated how various

values of these parameters affect the cost. Here, we plot the cost of ETA as a function of one parameter (λ
or ω) while setting the other to the default value. Based on the result, we choose λ = 0.02 and ω = 10 that

show robust performance at any dimensionality.

Scalability experiments. In this set of experiments, we demonstrate the superiority of our all top-k meth-

ods, BINL (Section 3) and ETA (Section 4.4) to the naı̈ve approach. The naı̈ve approach evaluates the

top-k queries one-by-one using BRS [20]. Fig. 11(a) shows the response times of the three methods as a

function of dimensionality d, after setting all other parameters to their default values. Cost grows exponen-

tially with d for all methods. ETA is at least 8.7 and 1.6 times faster than Naı̈ve and BINL, respectively in

all experiments. For large values of d, the gap between BINL and ETA becomes smaller, since the MBRs

that group multiple accessed objects in ETA becomes too large, reducing the effect of the MBR pruning

technique.

Fig. 11(b) compares performance as a function of k. ETA is at least 8 and 2.4 times faster than Naı̈ve

and BINL, respectively. All methods are sensitive to k since the problem becomes harder as k increases.

The response times for different numbers of products |P | are shown in Fig. 11(c). The cost is not very

sensitive to |P | since the products are indexed and we only need to access a small fraction of the data.

Fig. 11(d) shows the response time of all methods for different numbers of functions |F |. The response

time increases linearly with |F |, since there are more top-k queries being evaluated.

Data Distribution. As shown in Fig. 12(a), ETA is at least one order of magnitude faster than Naı̈ve and

2.5 times faster than BINL for different data distributions of P and independently distributed F . ANT
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Figure 10: Sensitivity experiments

distributed objects are the hardest case since top-k computation becomes hardest in this case. Interestingly,

the gap between ETA and the other methods widens in this case. One of the reasons is that our d-bounding

views partitioning technique provides better grouping than the Hilbert curve grouping. We also evaluat-

ed our methods for the CLU F where we generate the functions coefficients in clusters. As shown in

Fig. 12(b), ETA is again the best method which is at least one order of magnitude faster than Naı̈ve and 1.6

times faster than BINL. We conclude that ETA is the best method for all distribution combinations.

Fig. 12(c) plots the response time of all methods on the NBA real dataset. We instantiated P from

this dataset (12,278 records) and set other parameters to their default values. Again, ETA is consistently

better than Naı̈ve and BINL for all values of d. Summing up, ETA is the best solution for ATOP k queries,

typically being one order of magnitude faster than Naı̈ve solution and 2-3 times faster than BINL.

In Fig. 12(d), we demonstrate the response time of all methods using another real dataset, Household.

We instantiated P from the Household dataset (including 3.6M records). We divided Household into four

datasets with 516K, 514K, 1.25M, and 1.35M records from years 2003, 2004, 2005, and 2006 respectively.

The feature values in Household are discrete, so there are some tuples having the same feature values in

all dimensions; in this case the objects are grouped to a single capacitated object. The number of different

discrete objects are 242K, 250K, 520K, and 542K, respectively in the four years. We demonstrate the

response time of all three methods as a function of the data in these four years in Figures 12(d). ETA again

performs best in all cases, being at least 36 and 4 times faster than Naı̈ve and BINL, respectively.

I/O cost and peak memory usage. Fig. 13(a) and 13(b) show the I/O cost and peak memory usage2 of all

three methods as a function of dimensionality d, after setting all other parameters to their default values.

The I/O costs of all three methods (Naı̈ve, BINL, and ETA) grow exponentially with the dimensionali-

ty. This result is consistent with the corresponding response time experiment (Fig. 11(a)); ETA accesses

2We get the peak memory usage by adding/substracting the memory usage of data structures on their construction/destruction.
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Figure 11: Effect of different parameters for ATOP k

several times to two order of magnitude fewer pages than other two methods. However, ETA may use

more memory than Naı̈ve and BINL since each view keeps some data structures for incremental top-k
computation; still the required memory is not excessive.

Reverse top-k and top-m influential computation. We now demonstrate the use of ATOP k queries in

the computation of reverse top-k and top-m influential queries. For these two problems, we compare the

state-of-the-art solutions [21, 22] to the ATOP k-based alternatives that we introduced in Section 5.3.

For reverse top-k queries, we plot the cost ratio between an ATOP k query using ETA and a single

RTOP k query using RTA [21]. As shown in Fig. 14(a), RTA is only 1.95 to 13.2 times faster than ETA

when dimensionality d varies from 2 to 6. However, ETA computes the all top-k result which can be used to

answer any reverse top-k result (see Fig. 9(b)). In other words, if we are to execute more than 13 RTOP k

queries in d = 6, ETA should be preferred to RTA. Thus, RTA is not appropriate in settings where multiple

reverse top-k queries are to be executed. Comparing the two queries for different values of k (Fig. 14(b))

leads to similar conclusions.

For top-m influential queries, we compare our ITOPm
k using ATOP k (ITOP-ATOP) approach (see

Section 5.3) to the state-of-the-art solution BB and its optimized version OBB (as discussed in Section 5.3).

Fig. 15(a) shows the response time for these methods as a function of k. As k increases, OBB becomes

much better than original BB since OBB caches the results of previous top-k computations. However,

OBB is still 16 times slower than our ITOP-ATOP approach, which performs an all top-k query and uses

its results to evaluate the ITOPm
k query. Fig. 15(b) shows how the cost is affected by m. The response

times of BB and OBB are linearly increasing with m, because BB and OBB unavoidably compute more

maximum possible influence scores when m becomes larger and this introduces additional reverse top-k
queries. However, our approach is completely insensitive to m since we have already collected all necessary

data for ITOPm
k by an ATOP k computation.

Fig. 16 shows some additional experiments on ITOP k
m queries (varying dimensionality and data dis-
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Figure 13: Extra experiments for ATOP k

tribution). We can see that our ITOP-ATOP method can consistently beat other methods by 1 to 2 orders

of magnitude for varying d. In addition, for different distributions of P for IND F , our method greatly

outperforms the BB and OBB, especially in the ANT case where BB and OBB take 3022 and 649 seconds,

respectively, while ITOP-ATOP runs in only 0.61 seconds.

In summary, running an all top-k query using our best method ETA is a much better alternative that

repetitive executions of RTA if multiple reverse queries are to be evaluated. In addition, evaluating an all

top-k query using ETA and using its result to evaluate an ITOPm
k query is 1-2 orders of magnitude faster

than the state-of-the-art method proposed in [22], even if this method is optimized to re-use cached results
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of top-k queries.
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7 Related Work

7.1 Top-k queries

Top-k queries [10, 12, 20] provide a convenient way for users to find important objects according to their

preferences. In [12], a threshold algorithm (TA) has been proposed to combine object ranks from different

sorted lists with a help of an aggregate function f . TA scans the lists sequentially, in a round-robin fashion,

and computes the aggregate score of each encountered object, while maintaining the top-k set. As soon as

the aggregate scores of the remaining objects cannot exceed the top-k scores found so far, TA terminates.

Due to its popularity, many variants of TA have been proposed (e.g., [10]). Onion [9] and PREFER [14, 15]

are two top-k methods which rely on pre-processing techniques. Onion [9] pre-computes the convex hulls

of the data, and organizes them by layers. Linear top-k computation is then processed by scanning objects

incrementally, from exterior layers to interior layers. Onion will stop when it knows that the remaining lay-

ers cannot contain any other results. The major disadvantage of Onion is that the costs of pre-computation

and query are very expensive, due to the complexity of convex hull computation (O(nd/2) in d-dimensional

space). Also Onion cannot be used when dataset is frequently updated because re-computations of convex

hulls are needed in this case. PREFER [14, 15] first generates materialized views; a top-k query is answered

by scanning the views with most similar preferences of the query. [15] proposed an algorithm to determine

the best views to be materialized when top-k queries are pipelined. However, as demonstrated in [15], we

need to materialized many views before we can ensure satisfactory performance. In addition, PREFER is

only suitable for static data, which is the same as Onion. The performance of Onion can be improved with

the use of robust indexing [25]. However, building such robust indexing [25] is rather expensive.

BRS [20] is a branch-and-bound approach to answer top-k queries over a set of objects that are indexed

by an R*-Tree. BRS uses a heap to maintain candidate entries, traversing the R*-tree in a top-down manner.

At every iteration, BRS fetches the best entry from the heap. If the entry is a leaf entry of the R*-tree, then

it is output as the next result in the ranking; the algorithm stops if we have enough results. If the entry is in

an intermediate node, then the corresponding node is accessed and for each of its entries e a max score is

computed and e is inserted into the heap. As shown in [20], BRS is an I/O optimal algorithm which means

that it accesses only the tree nodes which may contain the top-k results. Since max score is a general

concept, this algorithm can be applied to both monotone and non-monotone preference functions.

Recently, a group recommendation problem has been studied in [5]. Given a group of people, a con-

sensus relevance score function is used to model the interests and preferences of all group members. The

score of an object is defined as a linear combination of group relevance and group disagreement. Using

the monotonicity of relevance and disagreement, a TA-like algorithm is designed for top-k processing.

This paper shares the same intuition with our paper to recommend products to a group of users. However,

we focus on providing different recommendations to different users based on their individual preferences,

while the goal in [5] is to provide a consensus recommendation of all users. Another technical difference

is that our methods are designed for computing multiple top-k queries simultaneously for a large number

(∼10K) of users, while the group size in [5] is very small (<10). The proposed solution in [5] is obviously

inapplicable to our problem.

7.2 Other related queries

As discussed in Section 2, reverse top-k [21] and top-m influence queries [22] have been recently proposed

to assess the influence of an object and find the most influential objects, respectively. We showed in this

paper that all top-k search can be used to answer these queries efficiently.

There is plenty of work on skyline evaluation (e.g., [8, 19, 27]). The concept of skyline is based on

the dominance relationship. The objective is to find the objects that are not dominated by others. The

skyline operator was first proposed in [8]. Papadias et al. [19] proposed an incremental skyline algorithm

that access a minimal number of nodes from an R*-Tree that indexes the data. An object-based space

partitioning method that provides efficient skyline computation in high dimensional spaces was proposed

in [27].

Several novel types of queries have been proposed recently to assist the analysis tasks of product man-

ufacturers. [16] was the first paper to use the concept of dominance for business analysis from a microe-
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conomic perspective. A data cube model (DADA) is proposed to summarize the dominance relationships

between objects in all combinations of dimensions. The space is modeled by the grid (i.e., matrix) of

dimensional value combinations (assuming that features have small integer domains) and each cell sum-

marizes the dominance of products in it. In [23], the problem of creating competitive products have been

studied. In [24], the authors aim at finding the best sub-space for a query object where it is highly ranked.

Miah et al. [17] studied an optimization problem that selects a subset of attributes of a product t such that

t’s shortened version still maximizes t’s visibility to potential customers.

8 Conclusion

In this paper, we studied the problem of batch evaluation of numerous top-k queries (all top-k queries,

ATOP k). To our knowledge, this is the first thorough study for this problem. We proposed two batch

processing techniques; the first is a batch indexed nested loops approach and the second is a views-based

threshold algorithm with a set of optimization techniques, including d-bounding views, simplex partition-

ing, and batch objects accessing. We demonstrated that ATOP k queries can be used to boost the perfor-

mance of reverse top-k and top-m influential queries. In the future, we plan to study alternative techniques

for ATOP k queries that employ parallel processing and improve the memory management for ETA (e.g.,

by finding an appropriate order to evaluate the simplexes). Moreover, we intend to study additional queries

that can make use of ATOP k as a module.
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APPENDIX

A Proof of Theorems

Theorem 1.

Proof. For any unseen object q, we know that vi(q) ≤ vi(φ) since we have accessed all objects p in vi that

vi(p) > vi(φ). According to Definition 6, each function f ∈ F can be represented by
∑d

i=1 rivi where
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r1, . . . , rd > 0. Therefore,

f(q) = f · q = (r1v1 + . . .+ rdvd) · q

= r1(v1 · q) + . . .+ rd(vd · q)

≤ r1v1(φ) + . . .+ rdvd(φ)

Since r1, . . . rd ≥ 0

= r1(v1 · φ) + . . .+ rd(vd · φ)

= (r1vi + . . .+ rdvd) · φ

= f(φ)

Theorem 2.

Proof. Given a function f , a hyperplaneHP and the maximum point o = (1, . . . , 1), the cross point f t of

f on the HP is a (d − 1) dimensional point. This cross point can be expressed by f t = o + αf and α is

a scalar that can be obtained using the equation of the hyperplane. Without loss of generality, we choose

d dimensional hyperplane HP to be the one with all points p having its d-th value p[d] = 0 which means

HP is orthogonal to the d-th dimension. It also implies that p ·h = p · (0, . . . , 0, 1)T = 0. We consider the

non-degenerate case that o /∈ HP .

Suppose we have a set of d dimensional views vectors {vi}, this mapping to (d− 1) space can be done

in two steps. First we find the cross point vti = o+ αivi (αi 6= 0) and vti · h = 0. Then we transform vti by

M(d−1)×d = (Id−1 0), and get d-1 point vti = Mvti = αiMvi +Mo. Notice that if we set Mt
d×(d−1) =

(

Id−1

0

)

, then we can get vi = M
tvti back. So we can get vi = (1/αi)(v

t
i−o) = (1/αi)M

tvti−(1/αi)o.

Assume that we have a set of views {vi} and a preference function f where their mapping points on

the HP are denoted as {vti} and f t. Also we assume that their corresponding α is not equal to 0 and have

the same sign (i.e., ∀αi > 0).

IF side. If f t ∈ ∆d−1, then f t =
∑d

i=1 r
t
iv

t
i , where

∑d
i=1 r

t
i = 1 and rti ≥ 0. Therefore,

f = (1/αf )M
tf t − (1/αf )o

=

d
∑

i=1

rti(1/αf )M
tvti − (

d
∑

i=1

rti)(1/αf )o

=

d
∑

i=1

rti((1/αf )M
tvti − (1/αf )o)

=

d
∑

i=1

(rtiαi/αf )vi

So by choosing ri = rtiαi/αf , then we can have f =
∑d

i=1 rivi, and all ri ≥ 0. Thus f is bounded by

{vi}.

ONLY IF side. If f =
∑d

i=1 rivi, and all ri ≥ 0, then we have f · h =
∑d

i=1 rivi · h. Therefore,
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(f t − o) · h =
∑d

i=1((riαf )/αi)(v
t
i − o) · h, which means

∑d
i=1 riαf/αi = 1. On the other hand,

f t = αfMf +Mo

=

d
∑

i=1

riαfMvi +Mo

=

d
∑

i=1

riαf/αi(MM
tvti −Mo) +Mo

=
d

∑

i=1

riαf/αiv
t
i

Then by choosing rti = riαf/αi, we know that f t =
∑d

i=1 r
t
iv

t
i , while

∑d
i=1 r

t
i = 1 and rti ≥ 0. Thus

f t ∈ ∆d−1.
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