
Efficient Allocation of Seed Servers in Peer-to-Peer

Streaming Systems with Scalable Videos

Kianoosh Mokhtarian and Mohamed Hefeeda
School of Computing Science

Simon Fraser University

Surrey, BC, Canada

Abstract—We study streaming of scalable videos over peer-to-
peer (P2P) networks. We focus on efficient management of seed
servers resources, which need to be deployed in the network to
make up for the limited upload capacity of peers in order to
deliver higher quality video streams. These servers have finite
serving capacity and are often loaded with a volume of requests
larger than their capacity. We formulate the problem of allocating
this capacity for optimally serving scalable videos. We show that
this problem is NP-complete, and propose two approximation
algorithms to solve it. The first one allocates seeding resources
for serving peers based on dynamic programming, and is more
suitable for small seeding capacities (≤ 10 Mbps). The second al-
gorithm follows a greedy approach and is more efficient for larger
capacities. We evaluate the proposed algorithms analytically and
in a simulated P2P streaming system. The results confirm the
efficiency and near-optimality of the proposed algorithms, and
show that higher-quality videos are delivered to peers if our

algorithms are employed for allocating seed servers.

I. INTRODUCTION

The demand for multimedia services has seen a rapid growth

in the past few years, which is even expected to accelerate

in the future [1], [2]. To meet portions of this demand, P2P

streaming systems have been designed and deployed for large-

scale user communities [3]–[6]. In current P2P streaming

systems, a video is encoded at a certain bitrate, typically

ranging from 300 kbps to 1 Mbps [7]. To support a wider

range of receivers, a lower-bitrate video is preferred, but this

provides low quality for everyone. This problem may be solved

by encoding and distributing multiple versions of the video,

which is called simulcasting. However, a video has to be

encoded many times for different combinations of decoding

capabilities, bandwidths, and viewing resolutions. Moreover,

switching among versions is not easy, because (i) for every

switching, a client has to wait, possibly for a few seconds, for

the next intra-coded frame of the new version, and (ii) streams

of different versions could be asynchronous [8]. In addition,

P2P streaming with multiple video versions divides users to

separate networks which may result in reduced connectivity

and less efficient utilization of peers’ resources. As an alterna-

tive, Multiple Description Coding (MDC) can encode a video

into multiple descriptions, where the quality of the video is

proportional to the number of descriptions received. However,

MDC techniques are well known for having considerable

bitrate overhead and being computationally complex [8].

In contrast, a scalable video has the advantage that it can

be encoded once and a wide range of heterogenous clients

can benefit from the video. In addition, heterogeneous clients

receiving different layers can still share common layers and

participate in the same overlay network, leading to a larger

pool of resources. Moreover, scalable coding has a lower

overhead and is simpler than MDC coding [8]. Recent scalable

video coding techniques, e.g., H.264/SVC [9], have further

improved this coding efficiency and significantly outperformed

previous ones [10]. Accordingly, they have received an in-

creasing adoption in practice [11], [12]. Our goal in this paper

is to leverage scalable video streams to improve the quality

observed by diverse clients as well as to optimally utilize the

resources in P2P streaming systems.

There are a number of challenges traditionally faced by

P2P streaming systems. They include efficient overlay con-

struction and maintenance, asymmetry between peers’ down-

load and upload bandwidth, dynamics and unreliability of

peers and connections, and system considerations such as

NAT traversal—recent surveys on these issues can be found

in [13], [14]. These challenges become more serious in case of

employing scalable videos. As the data demanded/possessed

by peers gets more heterogeneous, seeding the data to the

network and having peers select their partners in arbitrary

ways, as in current P2P streaming systems [7], will result

in poor management of resources and inefficient utilization

of data. Moreover, the flexibility offered by scalable video

streams should be appropriately taken advantage of to best

satisfy peers’ demands using the limited resources.

In this paper, we study streaming of scalable videos over

P2P networks. We consider both live streaming and video on-

demand scenarios. We focus on efficient management of the

resources of seed servers, which are needed in high-quality

P2P streaming systems to make up for the limited upload

capacity of peers. We formulate the problem of optimally

allocating the resources of seed servers when they serve scal-

able videos. We show that this problem is NP-complete. We

then propose two approximation algorithms for the problem,

and show that they produce near-optimal results, while being

computationally efficient and run in real-time. In addition, we

rigorously evaluate the proposed algorithms in a simulated

P2P streaming system. Our simulation results confirm the

efficiency and near-optimality of the algorithms.

This paper is organized as follows. Related works are

summarized in Section II. In Section III, the considered archi-

tecture is presented and the seed server allocation problem is

978-1-4244-3876-1/09/$25.00 ©2009 IEEE

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 15, 2009 at 14:36 from IEEE Xplore. Restrictions apply.

formulated and proven to be NP-complete. Two approximation

algorithms for the problem are presented in Section IV. We

evaluate the proposed system in Section V, and conclude the

paper in Section VI.

II. RELATEDWORK

Cui et al. [15] and Rejaie et al. [16] study P2P streaming

systems with scalable videos, focusing on the tasks of peers.

An algorithm is presented in [15] to be run on each peer

independently that decides how to request video layers from a

given set of heterogeneous senders, assuming layers have equal

bitrate and provide equal video quality. Hefeeda et al. [17]

study this problem for Fine-Grained Scalable (FGS) videos,

taking into account the rate-distortion model of the video for

maximizing the perceived quality, which is more accurate than

assuming all layers have equal quality enhancements as sup-

posed in [15]. We too consider video layers with heterogenous

rates and quality enhancements. In the framework presented

in [16], the problem of requesting from a set of senders is

studied from a practical perspective. A receiver periodically

sends an ordered list of requested packets to each sender, and

the sender provides packets in the given order according to its

TCP-friendly congestion control mechanism.

Lan et al. [18] present a high level architecture for data-

driven P2P streaming with scalable videos. The authors pro-

pose a scheduling algorithm for peers to request data from

senders. This algorithm, however, does not explicitly take the

scalable nature of the video into account. The packet schedul-

ing problem for scalable video steams is more challenging than

nonscalable streams. Due to their adaptability to bandwidth

variations, naively fetching video data from other peers may

result in frequent variations in the number of video layers.

This causes fluctuations in the video quality, which may be

even worse than just watching a low quality video [19]. This

packet scheduling problem is studied in [20], [21].

All of these works do not consider the functionalities of

seed servers, which are critical to provide high-quality video

streaming services. This is because the upload bandwidths of

peers are often far less than their demanded download rates.

For example, an average-to-good quality video stream requires

about 1–2 Mbps, whereas the average upload capacity of home

users with DSL and cable connections is often less than a

few hundred kilobytes. To make up for this asymmetry, a

number of seed servers need to be deployed in the network.

Xu et al. [22] study the functionality of seed servers for

P2P streaming. However, their work is only for nonscalable

video streams. The case for scalable video streams is more

challenging as various substreams need to be handled. In [15],

seed servers are assumed to always have enough capacity to

serve all requests, which is not realistic. In this paper, we

consider a more practical scenario in which seed servers have

finite capacity, and this finite capacity needs to be optimally

allocated to requesting peers such that a higher-quality video

is delivered to all peers.

III. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we describe the considered system model

and state the resource allocation problem addressed in this

paper.

A. System Overview

The considered P2P streaming architecture consists of track-

ers, seed servers, and peers. Peers join the system by contact-

ing one of the trackers. The tracker receives periodic update

reports from peers, informing it about their available data and

capacity. A number of seed servers exist in the network to

serve requests when there is not enough capacity in the peer

population. Our problem is to decide which subset of requests

should be served by the seed servers to maximize a system-

wide utility function. This problem is important because the

volume of requests to be served often exceeds the seeding

capacity. Allocating seeding resources optimally will lead to

better utilization of seed servers, and higher video quality for

users, especially during periods with excessive loads which

are typically the most difficult to handle in real systems.

Peers are expected to use their limited upload bandwidth for

serving lower layers first, so as to avoid having some peers

starving while other peers are receiving highest rates. Peers

serve as many layers as they can upload. For example, if all

layers have a rate of 100 kbps and a peer has 250 kbps upload

bandwidth, it will upload the two lowest layers at rate 100 kbps

and the third one at 50 kbps.

B. Problem Statement and Hardness

Peers’ requests are gathered in the tracker’s request queue.

The tracker decides every ∆ seconds, which is a few seconds,
and accepts some requests (to be served by a seed server)

and rejects others. Let V denote the set of video files in an

on-demand session or the set of channels in a live streaming

scenario. We divide a video into short time intervals, called

video segments, the number of which is Tv for each video
v ∈ V . A video segment is considered an atomic unit of

adaptation, meaning that the number of layers received by

a peer is assumed constant during a media segment, but

may vary between consecutive segments. Pv is the set of

peers currently participating in the streaming session of a

video v ∈ V . At each time the tracker solves the allocation
problem, there are K requests in the queue. Each request reqk
is in the form {reqk.p, reqk.t, reqk.l1, reqk.l2}, meaning
that peer reqk.p is requesting layers reqk.l1 through reqk.l2
(inclusive) of the stream, starting at segment reqk.t; the peer
could be receiving layers 1 through reqk.l1 − 1 from other

peers. Since reqk is for nk = reqk.l2 − reqk.l1 + 1 layers
and may be admitted partially, we break it to nk sub-requests,
denoted by reqk,j where 1 ≤ j ≤ nk. A sub-request reqk,j
represents a request for the j lowest requested layers, i.e.,
reqk,j corresponds to layers reqk.l1 through reqk.l1 + j − 1.
Let rv,l denote the bitrate (bps) of the l-th layer of the video
v, and up be the upload capacity (bps) of peer p.
Serving each sub-request reqk,j has a cost ck,j for seed

servers which is the sum of the bitrates of the j requested

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 15, 2009 at 14:36 from IEEE Xplore. Restrictions apply.

layers. Letting ν denote the requested video ν = vreqk.p in
reqk, we denote the costs of reqk’s sub-requests by:

ck,j =

reqk.l1+j−1X

l=reqk.l1

rν,l (1 ≤ k ≤ K , 1 ≤ j ≤ nk). (1)

Moreover, by admitting reqk,j , a utility (benefit) bk,j is
gained by the system, which consists of the utility of serv-

ing the associated layers to the corresponding peer, that

is,
Preqk.l1+j−1

l=reqk.l1
bself(reqk.p, l), and the utility gained when

the peer shares those layers with the network, denoted byPreqk.l1+j−1
l=reqk.l1

bshare(reqk.p, l). Our algorithms are not restricted
to a specific bself(p, l) function; we see in Section IV-C a

sample utility function to provide max-min fairness among

quality received by peers according to their demands. For

calculating bshare(p, l), we need to consider the peer serving
those layers (or part of them) to its partners, those partners

serving (partially) to their partners, and so on. Taking these

neighborhood details into account requires knowledge of the

network topology, which is difficult to maintain for dynamic

P2P systems. We therefore compute bshare(p, l) as the expected
utility that the system gains when a peer shares some video

layers with the network. In Section IV-C we see how to

calculate these expected utilities according to bself(p, l).

Problem 1: (Seed Server Allocation) Given the requests

req1, . . . , reqK , their costs ck,j bps and utilities bk,j (1 ≤ k ≤
K, 1 ≤ j ≤ nk), and a seeding capacity C bps, find the

xk (0 ≤ xk ≤ nk) value for each reqk which indicates that
sub-requests reqk,1, reqk,2, . . . , reqk,xk should be served out
of reqk in order to maximize the system-wide utility.

This problem is formulated as follows. Find xk in order to:

max
KX

k=1

bk,xk (2a)

s.t.
PK

k=1 ck,xk ≤ C (2b)

xk ∈ {0, 1, . . . , nk} (1 ≤ k ≤ K) (2c)

Theorem 1: The seed server allocation problem defined in

Eq. (2) is NP-complete.

Proof: We prove the NP-completeness by reducing the

Knapsack Problem [23] to a simplified version of the seed

server allocation problem. Suppose that all videos are single-

layer coded and thus all requests are for the first layer. In

this case, all xi values are either 0 or 1. This special case of
the problem is equivalent to the 0-1 Knapsack Problem. In

addition, a solution for the seed server allocation problem can

easily be verified in polynomial time. Hence, the seed server

allocation problem is NP-complete. ¤

IV. PROBLEM SOLUTIONS

In this section, we present two approximation algorithms

for the seed server allocation problem. The first algorithm

produces close-to-optimal results for small seeding capacity

C, but as the capacity increases, it has to get far from the

optimal in order to operate in real-time. The second algorithm

runs in a time independent of the seeding capacity and can

always operate in real-time. It provides close-to-optimal results

for large seeding capacities, but becomes far from the optimal

for small capacities.

A. SRA DP Algorithm: Seed Resource Allocation using Dy-

namic Programming

Since our server allocation problem has some similarities

with the Knapsack problem, it is intuitive to check the appli-

cability of Knapsack solutions to our problem. The Knapsack

problem has an interesting optimal solution using dynamic

programming, and a consequent approximation solution [23].

However, if to be applied to the seed server allocation problem,

this algorithm can function only for the single-layer allocation

problem (see the proof of Theorem 1). We propose a dynamic

programming algorithm for the general case with multi-layer

videos. Unlike the approximation algorithm for the Knapsack

problem, our algorithm accounts for the consistency in serving

sub-requests of each request reqk. That is, no higher layer must

be served unless all of its lower layers are already served. We

first transform all utility values bk,j , which are real numbers,

to integers b0k,j = b
bk,j
M
c where M is a constant real number

greater than zero, e.g., we set M = 0.1 for neglecting the
second and further decimal points of bk,j values. We then
optimally solve the problem with b0k,j values. The value M
determines the approximation factor and the running time of

the algorithm, as we analyze shortly.

The dynamic programming algorithm, denoted by SRA DP,

operates as follows. Let B0

max denote the maximum b0k,j for
all valid (k, j) values, Cmin the minimum ck,j , i.e., the bitrate

of the base layer, and K0 =
PK

k=1 nk the total number of sub-
requests. Thus, C/Cmin is an upperbound on the number of

sub-requests that can be served, and I = C
Cmin

B0

max is an

upperbound on the total utility that can be gained. We define

a[k, i] (0 ≤ k ≤ K, 0 ≤ i ≤ I) as the minimum cost that a
subset of requests req1, . . . , reqk can have, whose total utility
exactly equals i; a[k, 0] for all 0 ≤ k ≤ K is set to 0 and

a[0, i] for all 1 ≤ i ≤ I is assigned ∞. If no subset of sub-
requests with a total utility of i can be formed, a[k, i] is set
to ∞. Having initialized a[k, 0] and a[0, i] values, the rest of
the matrix is calculated as in Eq. (3):

a[k, i] = min

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a[k − 1, i],
a[k − 1, i− b0k,1] + ck,1, if i ≥ b0k,1
a[k − 1, i− b0k,2] + ck,2, if i ≥ b0k,2
...

a[k − 1, i− b0k,nk] + ck,nk if i ≥ b0k,nk
(3)

In Eq. (3), the first option represents the case that no layer of

reqk is served, the second option represents the case when one

layer is served, and so on. The min-cost value among these

options is chosen. Suppose x layers are to be served out of the
nk layers of reqk in order to make a total utility of i, which

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 15, 2009 at 14:36 from IEEE Xplore. Restrictions apply.

is only possible if b0k,x ≤ i. Then, the total cost will be that of
x layers from reqk, i.e., ck,x, as well as the minimum cost for
obtaining a utility of i−b0k,x using the previous k−1 requests,
which add up to b[k−1, i−b0k,x]+ck,x as represented in Eq. (3).
The optimal utility that can be gained using the capacity C is
obtained by finding the maximum i such that a[K, i] does not
exceed C, and we denote this utility by i∗.
To keep track of how these optimal sub-solutions are built,

i.e., to obtain xk values in Eq. (2), we keep another matrix
y[k, i] (0 ≤ k ≤ K, 0 ≤ i ≤ I). Each y[k, i] for nonzero
k and i values holds the number of sub-requests served from
the request reqk in the solution to subproblem (k, i). y[0, i]
and y[k, 0] are set to zero. In each iteration where an a[k, i] is
calculated according to Eq. (3), y[k, i] is set to the number of
sub-requests, i.e., the row index (starting from 0) in Eq. (3),

that makes the minimum. Finally, we obtain the x[k] values
for Eq. (2) as follows. Let s be a pointer that is initially set
to i∗. First, x[K] is set as x[K] = y[K,s]. Then, s is reduced
by b0K,x[K], i.e., the utility of serving x[K] sub-requests out
of the K-th request. The new s value points to the best utility
we got using requests req1, . . . , reqK−1. Thus, x[K − 1] is
obtained as x[K − 1] = y[K − 1, s]. Then, the pointer s is
updated accordingly, i.e., reduced by b0K−1,x[K−1], and so on.
The running time of the algorithm is analyzed shortly.

We now derive the approximation factor for the proposed

algorithm. The proof proceeds in a similar way to the proof of

the Fully Polynomial Time Approximation Scheme (FPTAS)

for Knapsack [23]. We, however, provide a tighter approxima-

tion factor by using the characteristics of our problem.

Theorem 2: The SRA DP algorithm returns a solution for

the seed server allocation problem (Problem 1) with worst-

case approximation factor of 1− CM

CminBmax
, where C (C ≥

ck,j), Cmin, and Bmax are the seeding capacity, the bitrate

of the base layer, and the maximum utility among all sub-

requests, respectively. Furthermore, the time complexity of the

SRA DP algorithm is of O(K0b
CBmax

CminM
c), where K0 is the

total number of sub-requests.

Proof: According to the definition and usage of x[k] values,
it is clear that the serving of sub-request is consistent. To

obtain the approximation factor, we first need to make sure that

the proposed dynamic programming algorithm is optimal with

rounded utility values b0k,j . For this purpose, we only highlight
the point that the problem has optimal substructure property,

and skip the rest of the proof to save space as it easily follows

this property. The optimal substructure property means that

the optimal solution to the problem contains within it optimal

solutions to subproblem. This is true for our problem, because

if in the optimal solution (with utility a[K, i∗]) the solution to
a subproblem (k, i) is not optimal —meaning that a utility of i
could have been achieved out of the first k requests at a lower
cost that a[k, i]— we can simply replace that part of the final

optimal solution and obtain a better utility than a[K, i∗], which
is contradiction. We now analyze the approximation factor.

Suppose the optimal solution to the original problem with bk,j

values is the set O of sub-requests, and the solution to the

problem with b0k,j values is O
0. Let the function b(O) denote

the sum of the bk,j utilities of sub-requests in O; likewise for
b0(O) that sums b0k,j values. Thus, the obtained utility and the
optimal one are w = b(O0) and OPT = b(O), respectively.
Since we round down bk,j values by a factor of M , we have:

bk,j ≥Mb0k,j ⇒ b(O0) ≥Mb0(O0)

bk,j −Mb0k,j ≤M ⇒ b(O)−Mb0(O) ≤ |O|M ≤ C

Cmin
M

where the latter inequality is based on the observation that

any subset O of sub-requests that fits in a capacity of C has

at most C/Cmin elements. Because the subset O
0 is optimal

with b0k,j values, we have:

b0(O0) ≥ b0(O)⇒ w = b(O0) ≥Mb0(O0) ≥Mb0(O)

≥ b(O)− C

Cmin
M ⇒ w ≥ (1− CM

CminOPT
)OPT

⇒ w ≥ (1− CM

CminBmax
)OPT. (4)

For each row k of the matrices a[k, i] and y[k, i] together,
O(Ink) comparisons are performed, where I =

C
Cmin

B0

max is

an upperbound on the total utility that can be gained. Thus,

the running time of the algorithm is:

KX

k=1

O(Ink) = O(K0I) = O(K0b
CBmax

CminM
c). (5)

¤

We numerically analyze the running time of the algorithm

and its relation to the approximation factor γ = 1− CM
CminBmax

.

As Eq. (4) and Eq. (5) show, by decreasing the rounding factor

M , the approximation factor approaches 1, which, on the
other hand, increases the computational complexity. To have

an estimate of this relation, suppose the number of iterations

that the tracker can perform in ∆ seconds, i.e., till next turn

to run the seed server allocation algorithm, is given as Ω.
Each iteration of the algorithm consists of a few lookups, one

addition, two comparisons, and possibly one assignment. Also

suppose the number of iterations needed by the algorithm

is simply K0 CBmax

CminM
, which must not exceed Ω. Therefore,

according to Eq. (4) and Eq. (5), the approximation factor γ
will be as follows:

M ≥ K0CBmax

ΩCmin
⇒ γ ≥ 1− K0

Ω
(

C

Cmin
)2. (6)

This is illustrated in Figure 1 where the guaranteed approx-

imation factor γ is depicted versus the computational power,
assuming that the base layer of the videos is at 100 kbps,

there are K0 = 1000 sub-requests in the queue, and that each
iteration roughly takes 100 machine instructions to execute.

According to Figure 1, a tracker with seed servers of total

capacity 10 Mbps whose allocation is decided every second,

can make sure that the approximation result is at least as good

as 90% of the optimal if it can perform 10 giga low-level

instructions per second.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 15, 2009 at 14:36 from IEEE Xplore. Restrictions apply.

0 5 10 15 20
0.2

0.4

0.6

0.8

1

Computational power (GIPS)

A
p
p
ro

x
im

a
ti
o
n

fa
ct

o
r

γ

5 Mbps seed
10 Mbps seed
15 Mbps seed

Fig. 1. Tradeoff between approximation factor and computational complexity.

In sum, the SRA DP algorithm obtains answers very close

to the optimal for small seeding capacities, but it has to

sacrifice some non-negligible approximation factor for large

seeding capacities. We propose another approximation algo-

rithm for these cases in the next subsection.

B. SRA GREEDY: Seed Resource Allocation using a Greedy

Algorithm

We present another approximation algorithm for the seed

server allocation problem, whose running time is independent

of the seeding capacity and only depends on the number

of requests in the queue. We show that the result of this

approximation gets very close to the optimal answer as the

seeding capacity increases, e.g., C = 50 Mbps, though is
worse than the algorithm SRA DP if the seeding capacity is

small, e.g., C = 10 Mbps. Our approximation is based on
relaxing the Integer Programming (IP) problem in Eq. (2) to

its equivalent Linear Programming (LP) problem, in which the

constraint (2c) is relaxed to (7a) and (7b).

0 ≤ x0k ≤ nk (1 ≤ k ≤ K) (7a)

x0k ∈ R. (7b)

In other words, we now allow a layer to be partially served,

though it is not meaningful in practice. Having solved the LP

problem in Eq. (7) and obtained the x0k values, we obtain a
valid solution to the original IP problem by rounding down all

x0k values: xk = bx
0

kc. Clearly, xk values form a valid answer
for the IP form in Eq. (2), since they satisfy both constraints

(2b) and (2c). We will see shortly that after this relaxation

and down-rounding, how close the objective function (2a) will

be to the optimal solution. The proposed algorithm is called

SRA GREEDAY and is shown in Figure 2. Sub-requests are

sorted in decreasing order of utility-to-cost ratio and are picked

one by one in each iteration. Since some sub-requests are

overlapping, i.e., each sub-request (k, j) is a subset of sub-
requests (k, j+1), . . . , (k, nk), in each iteration we take those
layers from sub-request (k, j) that are not already served by
another sub-request (k, j0 < j). The algorithm consists of

sorting sub-requests, which runs in O(K0 logK0) where K0 is

SRA GREEDY

GreedyAllocation (K, C, n[], b[][], c[][])
1. // K: number of requests, C: seeding capacity
2. // n[k]: number of sub-requests in the k-th requests
(1 ≤ k ≤ K)
3. // b[k][j], c[k][j]: utility and cost of the j-th sub-request
of the k-th request (1 ≤ j ≤ n[k]); b[k][0] and c[k][0] are
assigned 0
4. // Output: x[]: number of sub-requests to serve from the
k-th request
5. K0 =

PK
k=1 n[k] // total number of sub-requests

6. S[] ←− the K0 sub-requests sorted in decreasing order of

utility-to-cost ratio

7. z ←− 0 // will be the total obtained utility

8. x[] ←− CreateArray(K, 0)
9. for (k, j) ∈ S do
10. if x[k] > j then continue
11. cost←− c[k][j]−c[k][x[k]]
12. utility←− b[k][j]−b[k][x[k]]
13. if cost ≤ C then

14. C ←− C − cost
15. z ←− z + utility
16. x[k] ←− j
17. done

18. return z, x[]

Fig. 2. A greedy algorithm for the seed server allocation problem.

the total number of sub-requests, and performing K0 iterations

of O(1), which makes the total running time O(K0 logK0).
This is easily practical in real-time for reasonable K0 values

(< 500K).

Theorem 3: If all costs ck,j are bounded as ck,j ≤ cmax <
C for all valid k, j values, the algorithm SRA GREEDY is a

cmax

C − cmax
-factor approximation for the seed server allocation

problem, i.e., z ≥ (1− cmax

C − cmax
)OPT.

Proof: Consider the following two modifications to the

algorithm in Figure 2: (i) after line 16 in the code, if cost > C
then pick a portion θ (0 ≤ θ < 1) of the current sub-request
(k, j) which can fill the capacity C, and quit the loop, (ii)
after line 16 in the code, if cost > C then just quit the loop.

Case (i) refers to the solution to the LP problem in Eq. (7)

and provides the optimal answer for this problem; the proof

is skipped as it is easy and similar to that of the solution to

Knapsack’s LP-relaxation. Let z∗ denote the utility obtained
by this solution, which is at least as good as OPT since it refers

to the LP-relaxation of the original problem. Case (ii) is only

for a comparison purpose. Since its solution is a subset of

the solution obtained by our algorithm in Figure 2, the utility

obtained by case (ii), denoted by z0, is a lower bound on our
obtained utility z, i.e., z0 ≤ z.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 15, 2009 at 14:36 from IEEE Xplore. Restrictions apply.

Let m+ 1 and m be the number of sub-requests taken by

modifications (i) and (ii), respectively. Also let b1, . . . , bm+1
and c1, . . . , cm+1 be the short for the utilities and costs of
these sub-requests. Since the m+1-st sub-request served has
a utility-to-cost ratio less than or equal to each of the previous

m ones, we have:

bm+1
cm+1

≤ bi
ci
for all i ∈ {1, 2, . . . ,m}

⇒ bm+1
cm+1

ci ≤ bi ⇒ bm+1 ≤ cm+1

Pm
i=1 biPm
i=1 ci

(8)

The margin between z and OPT is bounded as follows:

z0 ≤ z ≤ OPT ≤ z∗ ⇒ � = 1− z

OPT
≤

1− z0

z∗
=

z∗ − z0

z∗
=

Pm
i=1 bi + θbm+1 −

Pm
i=1 biPm

i=1 bi + θbm+1
≤

bm+1Pm
i=1 bi

≤ cm+1

Pm
i=1 biPm
i=1 ci

1Pm
i=1 bi

≤ cmaxPm
i=1 ci

≤
cmax

C − cmax
⇒ z ≥ (1− cmax

C − cmax
) OPT (9)

¤

For example, for a 2 Mbps video and a seeding capacity

of 25 Mbps, it is guaranteed that the greedy approximation

solution will produce results as good as 91% of the optimal.

For larger seeding capacities, this factor approaches 1. For

small seeding capacities (≤ 10 Mbps), however, the approx-

imation factor is low, e.g., 75% for C = 10 Mbps. In this
case, employing the SRA DP algorithm is recommended as

its factor is close to 1 for small seeding capacities.

In sum, according to the seeding capacity, the computational

power, and the maximum bitrate of the videos being served,

one can determine the guaranteed approximation factor of both

algorithms SRA DP and SRA GREEDY using Equations (6)

and (9) choose the more appropriate one.

C. The Utility Function

The proposed allocation algorithms are general and can

adopt different utility functions to suit the objective of various

practical systems. In this section, we define a sample utility

function, which is to provide max-min fairness among quality

received by peers according to their demands.

Let qp denote the quality, e.g., Y-PSNR, of the video that a
peer p receives and dp denote the quality demand of peer p.
Referring to the fraction qp/dp as peer satisfaction, the goal
is to have those peers be served whose received quality is

farthest from their demand (those with least satisfaction). That

is, maximizing the minimum peer satisfaction. For example,

if the resources in the network are half the total demanded, in

the ideal case every peer should receive half of its demanded

quality, not some peers completely satisfied and others starv-

ing. To achieve this, we define the utility function as:

bself(p, l) =
dp − q(vp, l − 1)
dp − q(vp, 0)

(10)

where vp is the video being watched by peer p and q(vp, l)
denotes the video quality added by the l-th layer of this

video. Notice that q(vp, 0) is also needed and thus needs to
be realistically defined; note that a blank video can produce a

Y-PSNR of 10 to 20 dB, depending on the original video. The

q(vp, 0) value determines the importance of the base layer and
does not considerably affect the way the enhancement layers

are served in our algorithm: q(vp, 1)− q(vp, 0) can be defined
superior to any other q(vp, l)− q(vp, l − 1) in order to make
sure that everyone will receive the base layer. We set q(vp, 0)
as 25 dB in our experiments in Section V.

We now calculate the utilities bshare(p, l) according to the
function bself(p, l) and peers upload bandwidths. As discussed
earlier (Section III-B), bshare(p, l) refers to the expected utility
gained by the system when peer p shares layer l with the
network. Let Lp denote the number of layers that peer p
demands. According to the way the peers are expected to

share their upload bandwidth for serving different layers

(Section III-B), we know the rate up,l at which a peer p will
serve each layer l of video v:

up,l = min
©
up −

l−1X

i=1

up,i, rv,l
ª
(1 ≤ l ≤ Lp). (11)

If the upload bandwidth of peer p is higher than the bitrate
of the demanded video, the bandwidth remained from Eq. (11)

is equally divided among layers, which adds to the right hand

side of Eq. (11) the term (up −
PLp

i=1 rv,i)/Lp.

Denote by Pv,l,p the set of peers who demand the video v at
layers higher than or equal to l, and who can possibly be served
by the peer p. Then, the function bshare(p, l) is calculated as:

bshare(p, l) =
up,l
rv,l

×
1

|Pv,l,p|
×

X

x∈Pv,l,p

¡
bself(x, l)+bshare(x, l)

¢
.

(12)

Calculation of Eq. (12) for each peer is in the order of

total number of peers for arbitrary bself(p, l) functions, which
is not efficient. However, for specific cases such as providing

max-min fairness, this can be estimated efficiently. Given the

upload/download bandwidth distribution of peers, which can

be obtained and updated during the streaming session, we can

calculate the chance that a peer p’s layer demand Lp equals

a given number l, to which we briefly refer as Prc(l). This
reduces the complexity of Eq. (12) from being in the order of

number of peers to the order of number of video layers:

bshare(p, l) =
up,l
rv,l

×
1

PL
i=l Prc(i)

×
LX

i=l

Prc(i)
i− q(vp, l − 1)
i− q(vp, 0)

.

(13)

In this calculations, a peer sharing data with its partners

is taken into account, whereas further hops, i.e., those peers

sharing, is not relied on, as it makes the accuracy of the calcu-

lated utilities very sensitive to network dynamics. Neglecting

them, on the other hand, may underestimate the utility of peers

sharing the layers, though underestimating the share utility

similarly for all peers is more acceptable. At last, each of the

bk,j values is calculated as:

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 15, 2009 at 14:36 from IEEE Xplore. Restrictions apply.

0 10 20 30 40 50 60
40

50

60

70

80

Time (minutes)

U
ti
li
ty

sc
o
re

Optimal
SRA DP
SRA GREEDY
FCFS
BT-like

(a) Utility score.

0 10 20 30 40 50 60
0.75

0.8

0.85

0.9

0.95

1

Time (minutes)

A
p
p
ro

x
im

a
ti
o
n

ra
ti
o

SRA DP

SRA GREEDY

FCFS

BT-like

(b) Gained utility over the maximum possible utility that can be gained.

Fig. 3. Near-optimality of the proposed algorithms.

bk,j =

⎧
⎪⎨
⎪⎩

0 j = 0
Preqk.l1+j−1

l=reqk.l1

¡
bself(reqk.p, l)+

bshare(reqk.p, l)
¢
1 ≤ j ≤ nk

(14)

V. EVALUATION

A. Simulation Setup

We simulate on-demand distribution of a video file encoded

in 10 quality layers at a bitrate of 2 Mbps, which a Y-PSNR

quality of 27 dB to 40 dB. The video length is 7 minutes.

We refer to the fraction of video quality received by a peer

over its demanded quality as peer satisfaction. The objective

of the system is to maximize the minimum peer satisfaction

(max-min fairness), as discussed in Section IV-C. Peers join

the network according to a Poisson distribution with expected

1 arrival per second. The network consists of 400–500 peers on

average. The simulation runs for 60 minutes. Each peer, once

finished watching the video, stays in the network for up to 3

minutes for serving others. Each peer may leave at any time

according to an exponential probability distribution, by which

25% of peers leave the network before they finish watching

the video and doing the expected seeding. For generating

download and upload bandwidths of peers, two classes of peers

are considered. The first class has 80% of peers and represents

home users, which have download bandwidths between 100

kbps to 4 Mbps and upload bandwidth between 100 kbps to

1 Mbps. The second class has 20% of peers and represents

campus users, which can have download and upload rates

between 100 kbps to 4 Mbps. Each peer is thus capable of

downloading and uploading the base layer at least.

Each request of a peer to the tracker is first tried to be

served by a list of potential senders. If there is no peer free

to serve the requested layers, the requesting peer is served by

the seed server. A peer might receive a layer from multiple

peers, with the total receiving rate equal to the bitrate of the

layer. The seed server, on the other hand, only serves whole

layers. The tracker gathers requests in its queue and runs the

seed server allocation algorithm once every 10 seconds. In

each such run, all streaming requests in the queue along with

those that are currently being served are considered together

and a new set of requests to be served is determined. Each

sender peer disconnects its connection to a receiver according

to a Bernoulli probability distribution with an expected value

of 1 minute. This is done to make enough dynamics in the

network and to simulate peer failures. Video segment length is

assumed 10 seconds. The simulation runs following an event-

driven procedure with 10-second steps, i.e., events are gathered

during a time step and applied at once the end. To avoid wide

quality fluctuations at receiver side, we take a simple heuristic

that does not allow more than 1 layer change in the number of

layers in two consecutive segments, i.e., the heuristic at each

peer drops the enhancement layers that violate this criterion.

In addition to the proposed allocation algorithms, we con-

sider two other algorithms: First-Come First-Serve (FCFS)

and BitTorrent-like (BT-like). SRA DP, SRA GREEDY, and

FCFS operate as follows. First, each requests in the ordered

request queue is tried to be matched with available peers. The

ordering of the request queue is based on the utility-to-cost

ratio for SRA DP and SRA GREEDY, and based on arrival

time of the requests in FCFS. After matching requests to

available peers, a subset of the remaining requests is selected

to be served according to the employed seed server allocation

algorithm: SRA DP, SRA GREEDY, or serving in the order

of arrival (FCFS). In the fourth method, BT-like, a different

procedure is employed: requests are first responded by the

seed servers in an FCFS manner, then the remaining requests

are responded by a set of up to 30 randomly selected peers

who do have the requested data but might not have enough

available capacity. Being randomly selected to be served by a

seed server might result in quality fluctuation at the receiving

peer. Thus, a request that is randomly selected for serving is

continuously served at least for 1 minute.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 15, 2009 at 14:36 from IEEE Xplore. Restrictions apply.

0 50 100 150 200
0.2

0.4

0.6

0.8

1

Seed servers capacity (Mbps)

S
a
ti
sf
a
ct

io
n

fa
ct

o
r

SRA GREEDY
FCFS
BT-like

Fig. 4. Satisfaction experienced by at least 90% of peers.

B. Results

We first evaluate how close the utility gained by different

allocation methods is to the optimal. Figure 3 depicts the

result of this evaluation. The optimal utility in this figure is

calculated as follows. At each time step, we assume a virtual

seed server that is formed by aggregating the capacity of

all peers as well as the actual seed server, ignoring all data

availability constraints at peers. Therefore, the optimal utility

that can be gained using the virtual seed server is greater than

or equal to the optimal utility that can be actually gained

from the network. Since finding the optimal utility of the

virtual seed server is an NP-complete problem (Theorem 1),

we consider the optimal answer of the LP-relaxation of the

problem, which is at least as large as the actual optimal utility;

see Section IV-B. Thus, the optimal utility that we consider

in Figure 3 is an upperbound on the maximum utility that

can be gained in the network. Figure 3(a) shows how close

the two proposed algorithms are to the optimal. This figure

depicts the utility gained by the system (normalized to [0, 100])
over time using different seed server allocation algorithms.

Figure 3(b) illustrates the near-optimality of our proposed

algorithms. In this figure, the proposed algorithms SRA DP

and SRA GREEDY always gain beyond 90% of the optimal

with an average of 95%. The seed server capacity is 10 Mbps

in Figures 3(a) and 3(b). The theoretical approximation ratio

for this case is 96%, while we see it has reached slightly lower

values in practice. This is due to dynamics of the network

that were not involved in the approximation analyses, i.e.,

the experimental ratio would have been always higher that

96% if all peers stayed in the network as expected, they let

the tracker (and the tracker was able to) decide and update

their partnerships at every 10-second step, and all peers did

obey our assumptions about sharing their upload bandwidths

among layers, which we intentionally made them disobey

by deviating by up to 50% from Eq. (11). Figure 3 also

depicts that the two approximation algorithms operate almost

equally efficiently for a seed server capacity of 10 Mbps;

since the network consists of hundreds of peers we do not

0 1000 2000 3000 4000
26

28

30

32

34

Download bandwidth (kbps)

Q
u
a
li
ty

re
ce

iv
ed

(Y
-P

S
N

R
)

SRA GREEDY
FCFS
BT-like

2.1 dB

850 kbps

Fig. 5. Video quality for peers with different download bandwidths.

consider seeding capacities below 10 Mbps as such seed

servers will not be realistic. For larger capacities, the dynamic

algorithm takes a significant time to operate with reasonable

approximation factor. Thus, we do not consider this method

in next evaluations as they deal with large seeding capacities.

We now evaluate the increase in the overall peer satisfaction,

which is the fraction that a peer receives out of its demanded

video quality. Figure 4 plots the satisfaction experienced

by at least 90% of peers. The algorithm SRA GREEDY

considerably increase the satisfactions especially for limited

seeding capacities, which is often the case in practice. Figure 4

also shows that for a very large seeding capacity such as 200

Mbps, which is nearly enough for fully satisfying all peers

even with the FCFS method, the BitTorrent-like method still

could not increase the satisfaction as expected. That is because

this method followed a random peer matching, which caused

inefficient utilization of peers resources.

Next, we evaluate the video quality delivered to peers.

Figure 5 depicts the average Y-PSNR quality that peers with

different download bandwidths could receive. The seed servers

capacity is 25 Mbps in this figure. Without our algorithm,

some higher quality levels could not be achieved at all (beyond

32 dB). The other quality levels would require peers to have

a significantly larger bandwidth, e.g., beyond 2 Mbps for a

quality of 32 dB whereas it is achieved by 1.2 Mbps by

employing our algorithm. A quality increase of more than 2 dB

is obtained for most peers; the quality range of the considered

scalable video is 13 dB in total.

Our algorithms rely on knowing and utilizing the upload

bandwidth of peers. This could be a weakness if peers are

not cooperative. However, Figure 6 reveals how peers are

encouraged to cooperate: more cooperation will bring them

a significantly higher quality. For example, peers who shared

2 Mbps upload bandwidth received a video quality of 36 dB

on average, which is 2 dB higher that the quality received

by those contributing 1 Mbps, and 5 dB higher than those

contributing 250 kbps. One might argue that this result is

because peers with higher upload bandwidth also have higher

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 15, 2009 at 14:36 from IEEE Xplore. Restrictions apply.

0 1000 2000 3000 4000

30

32

34

36

38

Upload bandwidth (kbps)

Q
u
a
li
ty

re
ce

iv
ed

(Y
-P

S
N

R
)

SRA GREEDY, 100 Mbps seed

SRA GREEDY, 25 Mbps seed

FCFS, 100 Mbps seed

FCFS, 25 Mbps seed

BT-like, 100 Mbps seed

BT-like, 25 Mbps seed

Fig. 6. Incentive provided for peers to share upload bandwidth.

download bandwidth, and naturally receive more video lay-

ers. We see, however, that for methods FCFS and BT-like

this quality difference is marginal; the received quality is

almost independent of the upload bandwidth. Thus, the higher

quality achieved by our allocation algorithms is due peers’

cooperation. With our algorithm compared to FCFS and BT-

like algorithms, cooperating peers receive up to 7 dB higher

quality, which is even more than half of the entire quality

range of the video. This clearly shows the provided incentive

for peers to cooperate as much as they can.

VI. CONCLUSION

In this paper, we have considered streaming of scalable

videos over P2P networks. In these networks, due to the

asymmetry between peers download and upload bandwidths,

a number of seed servers need to be deployed in the network

for delivering high-quality videos to peers. We focused on the

problem of allocating these seeding resources to peers in order

to maximize a system-wide utility function. We formulated this

problem and showed that it is NP-complete. We then proposed

two approximation algorithms for the problem and proved

that they produce near-optimal results. The first algorithm

allocates seed servers based on dynamic programming and

is preferred for limited seeding capacities (≤ 10 Mbps). The
second algorithm is designed for larger capacities and follows

a greedy approach. We evaluated the proposed algorithms

by simulating a P2P streaming system. The results of our

evaluations confirm that the utility obtained by the proposed

algorithms is always beyond 90% of the optimal utility that can

be gained from the system. The results show that the proposed

seed server allocation algorithms result in peers receive more

video layers, and thus an enhanced video quality (over 2 dB).

Our algorithms also encourage peers to cooperate, as they

provide a significantly higher video quality for those peers

that upload more.

REFERENCES

[1] “Global IPTV market analysis (2006-2010),” RNCOS, Tech. Rep.,
August 2006, http://www.rncos.com/Report/IM063.htm.

[2] The Insight Research Corporation, “Streaming media, IPTV, and broad-
band transport: Telecommunications carriers and entertainment ser-
vices 2006-2011,” 2006, http://www.insight-corp.com/execsummaries/
iptv06execsum.pdf.

[3] “PPLive,” http://www.pplive.com/en/index.html.
[4] “SopCast,” http://www.sopcast.org/.
[5] “TVAnts,” http://www.tvants.com/.
[6] X. Zhang, J. Liu, B. Li, and T. Yum, “CoolStreaming/DONet: a data-

driven overlay network for peer-to-peer live media streaming,” in Proc.
of IEEE INFOCOM’05, Miami, FL, March 2005, pp. 2102–2111.

[7] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross, “A measurement study
of a large-scale P2P IPTV system,” IEEE Transactions on Multimedia,
vol. 9, no. 8, pp. 1672–1687, December 2007.

[8] B. Li and J. Liu, “Multirate video multicast over the Internet: An
overview,” IEEE Network, vol. 17, no. 1, pp. 24–29, February 2003.

[9] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video
coding extension of the H.264/AVC standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1103–
1120, September 2007.

[10] M. Wien, H. Schwarz, and T. Oelbaum, “Performance analysis of
SVC,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 17, no. 9, pp. 1194–1203, September 2007.

[11] T. Schierl, T. Stockhammer, and T. Wiegand, “Mobile video transmission
using scalable video coding,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 17, no. 9, pp. 1204–1217, September 2007.

[12] O. Hillestad, A. Perkis, V. Genc, S. Murphy, and J. Murphy, “Adap-
tive H.264/MPEG-4 SVC video over IEEE 802.16 broadband wireless
networks,” in Proc. of Packet Video Workshop (PV’07), Lausanne,
Switzerland, November 2007, pp. 26–35.

[13] Y. Liu, Y. Guo, and C. Liang, “A survey on peer-to-peer video streaming
systems,” Peer-to-Peer Networking and Applications, vol. 1, no. 1, pp.
18–28, March 2008.

[14] J. Liu, S. Rao, B. Li, and H. Zhang, “Opportunities and challenges of
peer-to-peer Internet video broadcast,” Proceedings of the IEEE, vol. 96,
no. 1, pp. 11–24, January 2008.

[15] Y. Cui and K. Nahrstedt, “Layered peer-to-peer streaming,” in Proc. of
ACM International Workshop on Network and Operating System Support
for Digital Audio and Video (NOSSDAV’03), Monterey, CA, June 2003,
pp. 162–171.

[16] R. Rejaie and A. Ortega, “PALS: peer-to-peer adaptive layered stream-
ing,” in Proc. of ACM International Workshop on Network and Op-
erating System Support for Digital Audio and Video (NOSSDAV’03),
Monterey, CA, June 2003, pp. 153–161.

[17] M. Hefeeda and C. Hsu, “Rate-distortion optimized streaming of fine-
grained scalable video sequences,” ACM Transactions on Multimedia
Computing, Communications and Applications, vol. 4, no. 1, pp. 2:1–
2:28, January 2008.

[18] X. Lan, N. Zheng, J. Xue, X. Wu, and B. Gao, “A peer-to-peer
architecture for efficient live scalable media streaming on Internet,” in
Proc. of ACM Multimedia Conference, Augsburg, Germany, September
2007, pp. 783–786.

[19] M. Zink, O. Kunzel, J. Schmitt, and R. Steinmetz, “Subjective impres-
sion of variations in layer encoded videos,” in Proc. of Workshop on
Quality of Service (IWQoS’03), Berkeley, CA, June 2003, pp. 137–154.

[20] X. Xiao, Y. Shi, and Y. Gao, “On optimal scheduling for layered video
streaming in heterogeneous peer-to-peer networks,” in Proc. of ACM
Multimedia Conference, Vancouver, BC, Canada, October 2008, pp.
785–788.

[21] R. Rajendran and D. Rubenstein, “Optimizing the quality of scalable
video streams on P2P networks,” Computer Networks, vol. 50, no. 15,
pp. 2641–2658, October 2006.

[22] D. Xu, M. Hefeeda, S. Hambrusch, and B. Bhargava, “On peer-to-
peer media streaming,” in Proc. of IEEE International Conference on
Distributed Computing Systems (ICDCS’02), Vienna, Austria, July 2002,
pp. 363–371.

[23] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Springer,
2004.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 15, 2009 at 14:36 from IEEE Xplore. Restrictions apply.

