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In this article we introduce new methods for the analysis of high dimensional data in
tensor formats, where the underling data come from the stochastic elliptic boundary
value problem. After discretisation of the deterministic operator as well as the pre-
sented random fields via KLE and PCE, the obtained high dimensional operator can
be approximated via sums of elementary tensors. This tensors representation can be
effectively used for computing different values of interest, such as maximum norm,
level sets and cumulative distribution function. The basic concept of the data anal-
ysis in high dimensions is discussed on tensors represented in the canonical format,
however the approach can be easily used in other tensor formats. As an intermedi-
ate step we describe efficient iterative algorithms for computing the characteristic
and sign functions as well as pointwise inverse in the canonical tensor format. Since
during majority of algebraic operations as well as during iteration steps the rep-
resentation rank grows up, we use lower-rank approximation and inexact recursive
iteration schemes.

1 Introduction

Let us give an example which motivates much of the following formulation and
development. Assume that we are interested in the time evolution of some system,
described by

d

dt
u(t) = A(p)(u(t)), (1)

where u(t) is in some Hilbert space U and A(p) is some parameter dependent oper-
ator; in particular A(p) could be some parameter-dependent differential operator,
for example

∂

∂t
u(x, t) = ∇ · (κ(x, ω)∇u(x, t)) + f(x, t), x ∈ G ⊂ R

d, t ∈ [0, T ] (2)

where κ(x, ω) is a random field dependent on a random parameter in some proba-
bility space ω ∈ Ω, and one may take U = L2(G).

One may for each ω ∈ Ω seek for solutions in L2([0, T ],U) ∼= L2([0, T ]) ⊗ U .
Assigning

S = L2([0, T ]) ⊗ L2(Ω),

one is looking for a solution in U ⊗ S. L2(Ω) can for random fields be further
decomposed

L2(Ω) = L2(×jΩj) ∼=
⊗

j

L2(Ωj) ∼=
⊗

j

L2(R, Γj).
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with some measures Γj . Then the parametric solution is sought in the space

U ⊗ S = L2(G) ⊗



L2([0, T ]) ⊗
⊗

j

L2(R, Γj)



 . (3)

The more tensor factors there are, the more difficult and high-dimensional the prob-
lem will be. But on the other hand a high number of tensor factors in Eq. (3) will also
allow very sparse representation and highly effective algorithms—this is of course
assuming that the solution is intrinsically on a low-dimensional manifold and we
‘just’ need to discover it.

This paper is about exploiting the tensor product structure which appears in
Eq. (3) for efficient calculations to be performed on the solution. This tensor prod-
uct structure—in this case multiple tensor product structure—is typical for such
parametric problems. What is often desired, is a representation which allows for the
approximate evaluation of the state of Eq. (1) or Eq. (2) without actually solving
the system again. Sometimes this is called a ‘response surface’. Furthermore, one
would like this representation to be inexpensive to evaluate, and for it to be con-
venient for certain post-processing tasks, for example like finding the minimum or
maximum value over some or all parameter values.

1.1 Tensorial quantities

Computations usually require that one chooses finite dimensional subspaces and
bases in there, in the example case of Eq. (2) these are

span {wn}N
n=1 = UN ⊂ U , dimUN = N,

span {τk}K
k=1 = TK ⊂ L2([0, T ]) = SI , dim TK = K,

∀m = 1, . . . ,M :

span {Xjm
}Jm

jm=1 = SII,Jm
⊂ L2(R, Γm) = SII , dimSII,Jm

= Jm.

Let P := [0, T ]× Ω, an approximation to u : P → U is thus given by

u(x, t, ω1, . . . , ωM ) ≈
N∑

n=1

K∑

k=1

J1∑

j1=1

. . .

JM∑

jM=1

ûj1,...,jM

n,k wn(x) ⊗ τk(t) ⊗
(

M⊗

m=1

Xjm
(ωm)

)

. (4)

Via Eq. (4) the tensor ûj1,...,jM

n,k represents the state u(x, t, ω1, . . . , ωM ) and is thus
a concrete example of a ‘response surface’.

To allow easier interpretation later, assume that {x1, . . . , xN} ⊂ G are unisol-
vent points for {wn}N

n=1, and similarly {t1, . . . , tK} ⊂ [0, T ] are unisolvent points
for {τk}K

k=1, and for each m = 1, . . . ,M the points {ω1
m, . . . , ω

Jm

M } ⊂ Ωm are unisol-

vent points for {Xjm
}Jm

jm=1. Then the same information which is in Eq. (4) is also
contained in the evaluation at those unisolvent points:

∀n = 1, . . . , N, k = 1, . . . ,K, m = 1, . . . ,M, jm = 1, . . . , Jm :

uj1,...,jm,...,jM

n,k = u(xn, tk, ω
j1
1 , . . . , ω

jm
m , . . . , ωJM

M ), (5)

this is just a different choice of basis for the tensor. In keeping with symbolic index
notation, we denote by (uj1,...,jm,...,jM

n,k ) the whole tensor in Eq. (5).
Model reduction or sparse representation may be applied before, during, or after

the computation of the solution to Eq. (1) for new values of t or (ω1, . . . , ωM ). It may
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be performed in a pure Galerkin fashion by choosing even smaller, but well adapted
subspaces, say for example UN ′ ⊂ UN , and thus reducing the dimensionality and
hopefully also the work involved in a new solution. This is sometimes termed ‘flat’
Galerkin. In this kind of reduction, the subspace UN

′′ = UN ⊖ UN
′ is completely

neglected.
In nonlinear Galerkin methods, the part uN

′ ∈ UN
′ is complemented by a pos-

sibly non-linear map υ : UN
′ → UN

′′ to uN ≈ uN
′ + υ(uN

′ ) ∈ UN
′ ⊕ UN

′′ = UN .
The approximate solution is not in a flat subspace anymore, but in some possibly
non-linear manifold, hence the name. Obviously this procedure may be applied to
any of the approximating subspaces.

Another kind of reduction works directly with the tensor (uj1,...,jM

n,k ) in Eq. (5).

It has formally R
′′

= N ×K ×
∏M

m=1 Jm terms. The minimum number R of terms
needed to represent the sum is defined as the rank of that tensor. One might try to
approximately express the sum with even fewer R

′ ≪ R ≤ R
′′

terms, this is termed
a low-rank approximation. It may be seen as a non-linear model reduction.

In this way the quantity in Eq. (5) is expressed as

(uj1,...,jm,...,jM

n,k ) ≈
R

′

∑

ρ=1

uρwρ ⊗ τρ ⊗
(

M⊗

m=1

Xρm

)

, (6)

where wρ ∈ R
N , τρ ∈ R

K , and for each m = 1, . . . ,M : Xρm
∈ R

Jm .
Hence Eq. (6) is an approximation for the response, another—sparse—‘response

surface’. With such a representation, one wants to perform numerous tasks, among
them

• evaluation for specific parameters (t, ω1, . . . , ωM ),
• finding maxima and minima,
• finding ‘level sets’.

2 Discretisation of diffusion problem with uncertain

coefficient

Since the time dependence in Eq. (1) doesn’t influence on the proposed further
methods we demonstrate our theoretical and numerical results on the following
stationary example

− div(κ(x, ω)∇u(x, ω)) = f(x, ω) a.e. x ∈ G, G ⊂ R
2,

u(x, ω) = 0 a.e. x ∈ ∂G. (7)

This is a stationary diffusion equation described by a conductivity parameter
κ(x, ω). It may, for example, describe the groundwater flow through a porous sub-
surface rock / sand formation [5, 16, 21, 30, 36]. Since the conductivity parameter
in such cases is poorly known, i.e. it may be considered as uncertain, one may model
it as a random field.

Let us introduce a bounded spatial domain of interest G ⊂ R
d together with

the hydraulic head u appearing in Darcy’s law for the seepage flow q = −κ∇u,
and f as flow sinks and sources. For the sake of simplicity we only consider a
scalar conductivity, although a conductivity tensor would be more appropriate. The
conductivity κ and the source f are defined as random fields over the probability
space Ω. By introduction of this stochastic model of uncertainties Eq. (7) is required
to hold almost surely in ω, i.e. P-almost everywhere.

As the conductivity κ has to be positive, and is thus restricted to a particular
case in a vector space, we consider its logarithm as the primary quantity, which may
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have any value. We assume that it has finite variance and thus choose for maximum
entropy a Gaussian distribution. Hence the conductivity is initially log-normally
distributed. Such kind of assumption is known as a priori information/distribution:

κ(x) := exp(q(x)), q(x) ∼ N(0, σ2
q). (8)

In order to solve the stochastic forward problem we assume that q(x) has covariance
function of the exponential type Covq(x, y) = σ2

q exp(−|x − y|/lc) with prescribed
covariance length lc.

In order to make sure that the numerical methods will work well, we strive to
have similar overall properties of the stochastic system Eq. (7) as in the deterministic
case (for fixed ω). For this to hold, it is necessary that the operator implicitly
described by Eq. (7) is continuous and continuously invertible, i.e. we require that
both κ(x, ω) and 1/κ(x, ω) are essentially bounded (have finite L∞ norm) [2, 30,
27, 33]:

κ(x, ω) > 0 a.e., ‖κ‖L∞(G×Ω) <∞, ‖1/κ‖L∞(G×Ω) <∞. (9)

Two remarks are in order here: one is that for a heterogeneous medium each re-
alisation κ(x, ω) should be modelled as a tensor field. This would entail a bit more
cumbersome notation and not help to explain the procedure any better. Hence for
the sake of simplicity we stay with the unrealistically simple model of a scalar con-
ductivity field. The strong form given in Eq. (7) is not a good starting point for the
Galerkin approach. Thus, as in the purely deterministic case, a variational formu-
lation is needed, leading—via the Lax-Milgram lemma—to a well-posed problem.
Hence, we search for u ∈ U := U ⊗ S such that for all v ∈ U holds:

a(v, u) := E (a(ω)(v(·, ω), u(·, ω))) = E (〈ℓ(ω), v(·, ω)〉) =: 〈〈ℓ, v〉〉. (10)

Here E (b) := E (b(ω)) :=
∫

Ω b(ω) P(dω) is the expected value of the random variable
(RV) b. The double bracket 〈〈·, ·〉〉U is interpreted as duality pairing between U and
its dual space U ∗.

The bi-linear form a in Eq. (10) is defined using the usual deterministic bi-linear
(though parameter-dependent) form :

a(ω)(v, u) :=

∫

G

∇v(x) · (κ(x, ω)∇u(x)) dx, (11)

for all u, v ∈ U := H̊1(G) = {u ∈ H1(G) | u = 0 on ∂G}. The linear form ℓ in
Eq. (10) is similarly defined through its deterministic but parameter-dependent
counterpart:

〈ℓ(ω), v〉 :=

∫

G

v(x)f(x, ω) dx, ∀v ∈ U , (12)

where f has to be chosen such that ℓ(ω) is continuous on U and the linear form ℓ

is continuous on U , the Hilbert space tensor product of U and S.
Let us remark that—loosely speaking—the stochastic weak formulation is just

the expected value of its deterministic counterpart, formulated on the Hilbert tensor
product space U ⊗ S, i.e. the space of U-valued RVs with finite variance, which is
isomorphic to L2(Ω,P;U). In this way the stochastic problem can have the same
theoretical properties as the underlying deterministic one, which is highly desirable
for any further numerical approximation.

2.1 Spatial Discretisation

Let us discretise the spatial part of Eq. (10) by a standard finite element method.
However, any other type of discretisation technique may be used with the same
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success. Since we deal with Galerkin methods in the stochastic space, assuming this
also in the spatial domain gives the more compact representation of the problem. Let
us take a finite element ansatz UN := {ϕn(x)}N

n=1 ⊂ U [34, 6, 39] as a corresponding
subspace, such that the solution may be approximated by:

u(x, ω) =
N∑

n=1

un(ω)ϕn(x), (13)

where the coefficients {un(ω)} are now RVs in S. Inserting the ansatz Eq. (13) back
into Eq. (10) and applying the spatial Galerkin conditions [30, 27], we arrive at:

A(ω)[u(ω)] = f(ω), (14)

where the parameter dependent symmetric and uniformly positive definite matrix
A(ω) is defined similarly to a usual finite element stiffness matrix as (A(ω))m,n :=
a(ω)(ϕm, ϕn) with the bi-linear form a(ω) given by Eq. (11). Furthermore, the right
hand side (r.h.s.) is determined by (f (ω))m := 〈ℓ(ω), ϕm〉 where the linear form ℓ(ω)
is given in Eq. (12), while u(ω) = [u1(ω), . . . , uN (ω)]T is introduced as a vector of
random coefficients as in Eq. (13).

The Eq. (14) represents a linear equation with random r.h.s. and random matrix.
It is a semi-discretisation of some sort since it involves the variable ω and is still
computationally intractable, as in general we need infinitely many coordinates to
parametrise Ω.

2.2 Stochastic Discretisation

The semi-discretised Eq. (14) is approximated such that the stochastic input data
A(ω) and f (ω) are described with the help of RVs of some known type. Namely,
we employ a stochastic Galerkin (SG) method to do the stochastic discretisation of
Eq. (14) [16, 29, 21, 2, 36, 25, 30, 3, 36, 1, 37, 32, 14, 33]. Basic convergence of such
an approximation may be established via Céa’s lemma [30, 27].

In order to express the unknown coefficients (RVs) un(ω) in Eq. (13), let us
choose as the ansatz functions multivariate Hermite polynomials {Hα(θ(ω))}α∈J

in Gaussian RVs, also known under the name Wiener’s polynomial chaos expansion
(PCE) [24, 16, 29, 30, 27]

un(θ) =
∑

α∈J

uα
nHα(θ(ω)), or u(θ) =

∑

α∈J

uαHα(θ(ω)), (15)

where uα := [uα
1 , . . . , u

α
n]T . The Cameron-Martin theorem assures us that the alge-

bra of Gaussian variables is dense in L2(Ω). Here the index set J is taken as a finite

subset of N
(N)
0 , the set of all finite non-negative integer sequences, i.e. multi-indices.

Although the set J is finite with cardinality |J | = R and N
(N)
0 is countable, there

is no natural order on it; and hence we do not impose one at this point.
Inserting the ansatz Eq. (15) into Eq. (14) and applying the Bubnov-Galerkin

projection onto the finite dimensional subspace UN ⊗ SJ , one requires that the
weighted residuals vanish:

∀β ∈ J : E ([f (θ) − A(θ)u(θ)]Hβ(θ)) = 0. (16)

With fβ := E (f(θ)Hβ(θ)) and Aβ,α := E (Hβ(θ)A(θ)Hα(θ)), Eq. (16) reads:

∀β ∈ J :
∑

α∈J

Aβ,αuα = fβ , (17)
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which further represents a linear, symmetric and positive definite system of equa-
tions of size N × R. The system is well-posed in a sense of Hadamard since the
Lax-Milgram lemma applies on the subspace UN ⊗ SJ .

To expose the structure of and compute the terms in Eq. (17), the parametric
matrix in Eq. (14) is expanded in the Karhunen-Loève expansion (KLE) [30, 28,
17, 15] as

A(θ) =

∞∑

j=0

Ajξj(θ) (18)

with scalar RVs ξj . Together with Eq. (10), it is not too hard to see that Aj can
be defined by the bilinear form

aj(v, u) :=

∫

G

∇v(x) · (κjgj(x)∇u(x)) dx, (19)

and (Aj)m,n := aj(ϕm, ϕn) with κjgj(x) being the coefficient of the KL expansion
of κ(x, ω):

κ(x, ω) = κ0(x) +

∞∑

j=1

κjgj(x)ξj(θ),

where

ξj(θ) =
1

κj

(κ(·, ω) − κ0, gj)L2(G) =
1

κj

∫

G

(κ(x, ω) − κ0(x)) gj(x)dx.

Now these Aj can be computed as “usual ”finite element stiffness matrices with
the “material properties ”κjgj(x). It is worth noting that A0 is just the usual
deterministic or mean stiffness matrix, obtained with the mean diffusion coefficient
κ0(x) as parameter.
Knowing the polynomial chaos expansion of κ(x, ω) =

∑

α κ
(α)Hα(θ), compute the

polynomial chaos expansion of the ξj as

ξj(θ) =
∑

α∈J

ξ
(α)
j Hα(θ),

where

ξ
(α)
j =

1

κj

∫

G

κ(α)(x)gj(x)dx

Later on we, using the PCE coefficients κ(α)(x) as well as eigenfunctions gj(x),
compute the following tensor approximation

ξ
(α)
j ≈

s∑

l=1

(ξl)j

∞∏

k=1

(ξl, k)αk
,

where (ξl)j means the j-th component in the spatial space and (ξl, k)αk
the αk-th

component in the stochastic space.
The parametric r.h.s. in Eq. (14) has an analogous expansion to Eq. (18), which

may be either derived directly from the R
N -valued RV f (ω)—effectively a finite di-

mensional KLE—or from the continuous KLE of the random linear form in Eq. (12).
In either case

f (ω) =

∞∑

i=0

√

λiψi(ω)f i, (20)

where the λi are the eigenvalues [26, 22, 23], and, as in Eq. (18), only a finite number
of terms are needed. For sparse representation of KLE see [22, 23]. The components
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in Eq. (17) may now be expressed as fβ =
∑

i

√
λif

i
βf i with f i

β := E (Hβψi). Let
us point out that the random variables describing the input to the problem are {ξj}
and {ψi}.

Introducing the expansion Eq. (18) into Eq. (17) we obtain:

∀β :
∞∑

j=0

∑

α∈J

∆j
β,αAju

α = fβ , (21)

where ∆j
β,α = E (HβξjHα). Denoting the elements of the tensor product space

R
N ⊗ ⊗

⊗M

µ=1 R
Rµ in an upright bold font, as for example u, and similarly linear

operators on that space, as for example A, we may further rewrite Eq. (21) in terms
of a tensor products [30, 27]:

Au :=





∞∑

j=0

Aj ⊗ ∆j





(
∑

α∈J

uα ⊗ eα

)

=

(
∑

α∈J

fα ⊗ eα

)

=: f , (22)

where eα denotes the canonical basis in
⊗M

µ=1 R
Rµ . With the help of Eq. (20) and

the relations directly following it, the r.h.s. in Eq. (22) may be rewritten as

f =
∑

α∈J

∞∑

i=0

√

λif
i
αf i ⊗ eα =

∞∑

i=0

√

λif i ⊗ gi, (23)

where gi :=
∑

α∈J f i
αeα. Later on, splitting gi further [12], obtain

f ≈
R∑

k=1

f̃k ⊗
M⊗

µ=1

gkµ. (24)

The similar splitting work, but in application in another context was done in [11,
13, 9, 10, 4]. Now the tensor product structure is exhibited also for the fully discrete
counterpart to Eq. (10), and not only for the solution u and r.h.s. f , but also for
the operator or matrix A.

The operator A in Eq. (22) inherits the properties of the operator in Eq. (10) in
the sense of symmetry and positive definiteness [30, 27]. The symmetry may be ver-
ified directly from Eq. (17), while the positive definiteness follows from the Galerkin
projection and the uniform convergence in Eq. (22) on the finite dimensional space

R
(N×N) ⊗⊗M

µ=1 R
(Rµ×Rµ). In order to make the procedure computationally fea-

sible, of course the infinite sum in Eq. (18) has to be truncated at a finite value,
say at M . The choice of M is now part of the stochastic discretisation and not an
assumption.

Due to the uniform convergence alluded to above the sum can be extended far
enough such that the operators A in Eq. (22) are uniformly positive definite with
respect to the discretisation parameters [30, 27]. This is in some way analogous to
the use of numerical integration in the usual FEM [34, 6, 39].
The equation 22 is solved by iterative methods in the low-rank canonical tensor
format in [31]. The corresponding matlab code is implemented in [38]. Additional
interesting result in [31] is the research of different strategies for the tensor-rank
truncation after each iteration. Other works devoted to the research of properties
of the system matrix in Eq. (25), developing of Kronecker product preconditioning
and to the iterative methods to solve system in Eq. (25) are in [35, 7, 8].

Applying further splitting to ∆j [12], the fully discrete forward problem may
finally be announced as
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Au =

(
s∑

l=1

Ãl ⊗
M⊗

µ=1

∆lµ

)



r∑

j=1

uj ⊗
M⊗

µ=1

ujµ



 =
R∑

k=1

f̃k ⊗
M⊗

µ=1

gkµ = f , (25)

where Ãl ∈ R
N×N , ∆lµ ∈ R

Rµ×Rµ , uj ∈ R
N , ujµ ∈ R

Rµ , f̃k ∈ R
N and gkµ ∈

R
Rµ . The similar splitting work, but in application in another context was done in

[11, 13, 9, 10, 4].

3 The canonical tensor format

Let T :=
⊗d

µ=1 R
nµ be the tensor space constructed from (Rnµ , 〈, 〉

R
nµ ) (d ≥ 3).

From a mathematical point of view, a tensor representation U is a multilinear
map from a parameter space P onto T , i.e. U : P → T . The parameter space

P = ×D
ν=1 Pν (d ≤ D) is the Cartesian product of tensor spaces Pν , where in gen-

eral the order of every Pν is (much) smaller then d. Further, Pν depends on some
representation rank parameter rν ∈ N. A standard example of a tensor representa-
tion is the canonical tensor format.

Definition 1 (r-Terms, Tensor Rank, Canonical Tensor Format, Elemen-
tary Tensor, Representation System). The set Rr of tensors which can be
represented in T with r-terms is defined as

Rr(T ) := Rr :=

{
r∑

i=1

d⊗

µ=1

viµ ∈ T : viµ ∈ R
nµ

}

. (26)

Let v ∈ T . The tensor rank of v in T is

rank(v) := min {r ∈ N0 : v ∈ Rr} . (27)

The canonical tensor format in T for variable r is defined by the mapping

Ucp :
d×

µ=1

R
nµ×r → Rr, (28)

v̂ := (viµ : 1 ≤ i ≤ r, 1 ≤ µ ≤ d) 7→ Ucp(v̂) :=

r∑

i=1

d⊗

µ=1

viµ.

We call the sum of elementary tensors v =
∑r

i=1 ⊗d
µ=1viµ ∈ Rr a tensor represented

in the canonical tensor format with r terms, where an elementary tensor is of the
form

⊗d

µ=1 vµ ∈ R1, vµ ∈ Vµ. The system of vectors (viµ : 1 ≤ i ≤ r, 1 ≤ µ ≤ d) is
a representation system of v with representation rank r.

Note that the representation rank refers to the representation system (viµ : 1 ≤
i ≤ r, 1 ≤ µ ≤ d), not to the represented tensor. In our applications we work
only with tensors represented in a tensor format. A tensor u ∈ Rr ⊂ T with
∏d

µ=1 nµ entities is represented on a computer system with a representation system
û = (uiµ ∈ R

nµ : 1 ≤ i ≤ r, 1 ≤ µ ≤ d) and the use of Ucp, i.e. u = Ucp(û). The

memory requirement for the representation system û is only r
∑d

µ=1 nµ. Later we
will see that the efficient data representation in tensor formats has several benefits
for the data analysis in high dimensions. For the data analysis we need operations
described in Lemma 1.

Lemma 1. Let r1, r2 ∈ N, u ∈ Rr1
and v ∈ Rr2

. We have
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(i) 〈u, v〉T =
∑r1

j1=1

∑r2

j2=1

∏d
µ=1 〈uj1µ, vj2µ〉Rnµ . The computational cost of 〈u, v〉T

is O
(

r1r2
∑d

µ=1 nµ

)

.

(ii)u+ v ∈ Rr1+r2
.

(iii)u⊙v ∈ Rr1r2
, where ⊙ denotes the point wise Hadamard product. Further, u⊙v

can be computed in the canonical tensor format with r1r2
∑d

µ=1 nµ arithmetic
operations.

Proof. (i) and (ii) are trivial. For (iii), let u =
∑r1

j1=1

⊗d
µ=1 uj1µ and v =

∑r2

j2=1

⊗d

µ=1 vj2µ. We have

u⊙ v =

r1∑

j1=1

r2∑

j2=1

[
d⊗

µ=1

uj1µ

]

⊙
[

d⊗

µ=1

vj2µ

]

=

r1∑

j1=1

r2∑

j2=1

d⊗

µ=1

[
uj1µ ⊙nµ

vj2µ

]
,

where ⊙nµ
denotes the Hadamard product in R

nµ . Obviously, we need r1r2
∑d

µ=1 nµ

operations to determine a representation system of u⊙ v.

Later we will use operations like the Hadamard product and the addition of tensors
in the canonical format in iterative procedures. From Lemma 1 it follows that the
numerical cost grows only linear respect to the order d and the representation rank
of the resulting tensors will increase. The last fact makes our iterative process not
feasible. Therefore, we need an approximation method which approximates a given
tensor represented in the canonical format with lower rank tensors up to a given
accuracy.

Definition 2 (Approximation Problem). For given v ∈ RR and ε > 0 we are

looking for minimal rε ≤ R and x̂∗ ∈×d
µ=1 R

nµ×rε
µ such that:

(i) ‖v − Ucp(x̂
∗)‖ ≤ ε‖v‖,

(ii)‖v − Ucp(x̂
∗)‖ = dist (v,Rrε

) = min
x̂∈×d

µ=1
R

nµ×r‖v − Ucp(x̂)‖, where x̂ ∈

×d
µ=1 R

nµ×r is bounded.

The solution of this problem was already discussed in [9, 13, 11]. In the following we
will denote a solution of the approximation problem from Definition 2 with Appε(v).

Note 1. Let v ∈ RR, ε > 0 and Ucp(x̂
∗) a solution of the approximation problem as

analysed in [9, 13, 11]. During the article, Ucp(x̂
∗) is denote by

Appε(v) := Ucp(x̂
∗). (29)

4 Analysis of high dimensional data

In the following section let I = ×d
µ=1 Iµ, where Iµ = {i ∈ N : 1 ≤ i ≤ nµ}. For

the analysis of tensor structured data in high dimensions, the focus of attention
is a problem depended recursively defined sequence (uk)k∈N≥0

represented in the
canonical tensor format, i.e. we have a map ΦP : T → T such that

uk := ΦP (uk−1), (30)

where u0 ∈ Rr0
is given. The map ΦP is constructed with the help of addition, scalar

and pointwise Hadamard multiplications of tensors represented in the canonical ten-
sor format. According to Lemma 1, the representation rank of uk from Eq. (30) will
increase. Therefore, we have to compute lower representation ranks approximations
and continue the iterative process. This results in the following general inexact
iteration scheme:
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zk := ΦP (uk−1), (31)

uk := Appεk
(zk),

Where the convergence of such inexact iterations is analysed in [20].

4.1 Computation of the maximum norm and corresponding index

We describe a approach for computing the maximum norm of u =
∑r

j=1

⊗d

µ=1 ujµ ∈
Rr,

‖u‖∞ := maxi:=(i1,...,id)∈i|ui| = maxi:=(i1,...,id)∈i

∣
∣
∣
∣
∣
∣

r∑

j=1

d∏

µ=1

(ujµ)
iµ

∣
∣
∣
∣
∣
∣

, (32)

and the corresponding multi- index. Since the cardinality of I grows exponential
with d, #I =

∏d

µ=1 nµ, the known methods are already inefficient for small values
of nµ and d. To build an efficient algorithm we use the special tensor structure of
u and show that computing ‖u‖∞ is equivalent to a very simple tensor structured
eigenvalue problem. Let i∗ := (i∗1, . . . , i

∗
d) ∈ I be the index with

‖u‖∞ = |ui∗ | =

∣
∣
∣
∣
∣
∣

r∑

j=1

d∏

µ=1

(ujµ)
i∗µ

∣
∣
∣
∣
∣
∣

and e(i
∗) :=

d⊗

µ=1

ei∗µ
,

where ei∗µ
∈ R

nµ the i∗µ-th canonical vector in R
nµ (µ ∈ N≤d). Then for the point-

wise Hadamard product of u⊙ e(i
∗) have

u⊙ e(i
∗) =





r∑

j=1

d⊗

µ=1

ujµ



⊙
[

d⊗

µ=1

ei∗µ

]

=

r∑

j=1

d⊗

µ=1

ujµ ⊙ ei∗µ
=

r∑

j=1

d⊗

µ=1

[

(ujµ)i∗µ
ei∗µ

]

=





r∑

j=1

d∏

µ=1

(ujµ)i∗µ





︸ ︷︷ ︸

ui∗=

d⊗

µ=1

e(i∗µ),

from which follows
u⊙ e(i

∗) = ui∗e
(i∗). (33)

Eq. (33) is an eigenvalue problem. By defining the following diagonal matrix

D(u) :=

r∑

j=1

d⊗

µ=1

diag
(
(ujµ)lµ

)

lµ∈N≤nµ

(34)

with representation rank r, obtain D(u)v = u⊙ v for all v ∈ T :

Corollary 1. Let u, i∗ and D(u) are defined as described above. Then elements of
u are the eigenvalues of D(u) and all eigenvectors e(i) are of the following form:

e(i) =

d⊗

µ=1

eiµ
, (35)

where i := (i1, . . . , id) ∈ i is the index of ui. Therefore ‖u‖∞ is the largest eigenvalue

of D(u) with the corresponding eigenvector e(i
∗).
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Algorithmus 1 Computing the maximum norm of u ∈ Rr by vector iteration

1: Choose y0 :=
Nd

µ=1

1

nµ
1, where 1 := (1, . . . , 1)T ∈ R

nµ , kmax ∈ N, and take ε :=

1×10−7.
2: for k = 1, 2, . . . , kmax do

3:

qk = u ⊙ yk−1, λk = 〈yk−1, qk〉 , zk = qk/
p

〈qk, qk〉,

yk = Appε(zk).

4: end for

There are different methods for the computation of the largest eigenvalue and cor-
responding eigenvector [18]. In this example, we simple use the power iteration to
solve the eigenvalue problem. Since the tensor rank of zk grows up monotonically,
the power method described in Algorithm 1 is modified accordingly to Eq. (31).
Accordingly to [19] there are

O
(
d logn− log ε

ε

)

. (36)

iteration steps necessary to compute the maximum norm of u up to the relative
error ε ∈ R>0. To guaranty convergence one takes the initial guess y0 as

y0 :=

n1∑

l1=1

· · ·
nd∑

ld=1

d⊗

µ=1

1

nµ

elµ =

d⊗

µ=1




1

nµ

n∑

lµ=1

elµ



 =

d⊗

µ=1

1

nµ

1̃µ. (37)

We recall that the presented method is only an approximate method to compute
‖u‖∞ and e(i

∗). In general the vector iteration is not appropriate for solving eigen-
value problems. A possible improvement is the inverse vector iteration method,
which is applied on a spectrum shift of u. Therefore is computing of the pointwise
inverse necessary. Many other well-known methods require orthogonalisation, which
seems for sums of elementary tensors not practicable.

4.2 Computation of the characteristic

The key object of the following approaches is a tensor which we call characteristic
of u ∈ T in I ⊂ R.

Definition 3 (Characteristic, Sign). The characteristic χI(u) ∈ T of u ∈ T in
I ⊂ R is for every multi- index i ∈ I pointwise defined as

(χI(u))i :=

{
1, ui ∈ I;
0, ui /∈ I.

(38)

Furthermore, the sign(u) ∈ T is for all i ∈ I pointwise defined by

(sign(u))i :=







1, ui > 0;
−1, ui < 0;
0, ui = 0.

(39)

Similar to the computation of the maximum norm, the computational cost of
standard methods grows exponential with d, since we have to visit

∏d

µ=1 nµ en-
tries of u. If u is represented in the canonical tensor format with r terms, i.e.
u =

∑r

j=1

⊗d

µ=1 ujµ, there is a possibility to compute the characteristic χI(u) since
there are methods to compute the sign(u).
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Lemma 2. Let u ∈ T , a, b ∈ R, and 1 =
⊗d

µ=1 1̃µ, where 1̃µ := (1, . . . , 1)t ∈ R
nµ .

(i) If I = R<b, then we have χI(u) = 1
2 (1 + sign(b1− u)).

(ii)If I = R>a, then we have χI(u) = 1
2 (1− sign(a1− u)).

(iii)If I = (a, b), then we have χI(u) = 1
2 (sign(b1− u) − sign(a1− u)).

Proof. Let i ∈ I. (i) If ui < b⇒ 0 < b−ui ⇒ sign(b−ui) = 1 ⇒ 1
2 (1+sign(b−ui)) =

1 = (χI(u))i. If ui > b ⇒ b − ui < 0 ⇒ sign(b − ui) = −1 ⇒ 1
2 (1 + sign(b − ui)) =

0 = (χI(u))i.
(ii) Analog to (i). (iii) Follows from (i) and (ii).

In the following part we analyse bounds for the representation rank of the charac-
teristic χI(u).

Definition 4 (Cartesian Index Set, Cartesian Covering). Let M ⊂ I be a
subset of multi- indices. We call M a Cartesian index set if there exist Mµ ⊂ Iµ

such that M = ×d
µ=1Mµ. We call a set ccov (M) = {U ⊂ I : U is Cartesian} a

Cartesian covering of M if

M =
⋃̇

U∈ccov (M)
U,

where the symbol ˙⋃ stands for disjoint union.

Note that for every set M ⊆ I there exist a Cartesian covering.

Lemma 3. Let I ⊆ R, u ∈ T , and M := suppχI(u). We have

rank(χI(u)) ≤ min{m1,m2 + 1}, (40)

where m1 := min{#C1 ∈ N : C1 is a Cartesian covering of M} and m2 :=
min{#C2 ∈ N : C2 is a Cartesian covering of M c := I \M}.

Proof. Let {Ml = ×d
µ=1Ml, µ : 1 ≤ l ≤ m1} a Cartesian covering of M and

{Nl = ×d
µ=1Nl, µ : 1 ≤ l ≤ m2} a Cartesian covering of M c. We have

χI(u) =
∑

i∈M

d⊗

µ=1

eiµ
=

m1∑

l=1

∑

i1∈Ml, 1

· · ·
∑

id∈Ml, d

d⊗

µ=1

eiµ

=

m1∑

l=1

d⊗

µ=1




∑

iµ∈Ml, µ

eiµ



 ⇒ rank(χI(u)) ≤ m1,

where eiµ
∈ R

nµ is the iµ-th canonical vector in R
nµ . Further, we have

χI(u) = 1−
∑

i∈Mc

d⊗

µ=1

eiµ
= 1−

m2∑

l=1

∑

i1∈Nl, 1

· · ·
∑

id∈Nl, d

d⊗

µ=1

eiµ

= 1−
m2∑

l=1

d⊗

µ=1




∑

iµ∈Nl, µ

eiµ



 ⇒ rank(χI(u)) ≤ m2 + 1.

The most widely used and analysed method for computing the sign function sign(A)
of a matrix A is the Newton iteration,

Xk+1 =
1

2
(Xk +X−1

k ), X0 = A. (41)
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The connection of the iteration with the sign function is not immediately obvious.
The iteration can be derived by applying the Newton’s method to the equation
X2 = I. It is also well known that the convergence of the Newton iteration is
quadratically, i.e. we have

‖Xk+1 − sign(A)‖ ≤ 1

2
‖X−1

k ‖‖Xk − sign(A)‖2.

The Newton iteration is one of the seldom circumstances in numerical analysis where
the explicit computation of the inverse is required. One way to try to remove the
inverse in Eq. (41) is to approximate it by one step of the Newton’s method for the
inverse, which has the form Yk+1 = Yk(2I − BYk) for computing B−1. This leads
to the Newton-Schulz iteration adapted to our tensor setting

uk+1 =
1

2
uk ⊙ (31− uk ⊙ uk), u0 := u. (42)

It is known that the Newton-Schulz iteration retains the quadratic convergence
of the Newton’s method. However, it is only locally convergent, with convergence
guaranteed for ‖1 − u0 ⊙ u0‖ < 1 in some suitable norm. According to Eq. (31)
the inexact Newton-Schulz iteration in tensor formats is described by Algorithm 2,
where the computation of the pointwise inverse is described in Section 4.4.

Algorithmus 2 Computing sign(u), u ∈ Rr (Hybrid Newton-Schulz Iteration)

1: Choose u0 := u and ε ∈ R+.
2: while ‖1− uk−1 ⊙ uk−1‖ < ε‖u‖ do

3: if ‖1− uk−1 ⊙ uk−1‖ < ‖u‖ then

4: zk := 1

2
uk−1 ⊙ (31− uk−1 ⊙ uk−1)

5: else

6: zk := 1

2
(uk−1 + u−1

k−1
)

7: end if

8: uk := Appεk
(zk)

9: end while

4.3 Computation of level sets, frequency, mean value, and variance

For the computation of cumulative distribution functions it is important to compute
level sets of a given tensor u ∈ T .

Definition 5 (Level Set, Frequency). Let I ⊂ R and u ∈ T . The level set
LI(u) ∈ T of u respect to I is pointwise defined by

(LI(u))i :=

{
ui, ui ∈ I ;
0, ui /∈ I ,

(43)

for all i ∈ I The frequency FI(u) ∈ N of u respect to I is defined as

FI(u) := # suppχI(u), (44)

where χI(u) is the characteristic of u in I, see Definition 3.

Proposition 1. Let I ⊂ R, u ∈ T , and χI(u) its characteristic. We have

LI(u) = χI(u) ⊙ u (45)
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and rank(LI(u)) ≤ rank(χI(u))rank(u). Furthermore, the frequency FI(u) ∈ N of u
respect to I can by computed by

FI(u) = 〈χI(u),1〉 , (46)

where 1 =
⊗d

µ=1 1̃µ, 1̃µ := (1, . . . , 1)T ∈ R
nµ .

Proposition 2. Let u =
∑r

j=1

⊗d

µ=1 ujµ ∈ Rr, then the mean value u can be
computed as a scalar product

u =

〈



r∑

j=1

d⊗

µ=1

ujµ



 ,

(
d⊗

µ=1

1

nµ

1̃µ

)〉

=
r∑

j=1

d⊗

µ=1

〈
ujµ, 1̃µ

〉

nµ

=
r∑

j=1

d∏

µ=1

1

nµ

(
nµ∑

k=1

ujµ

)

,

(47)
where 1̃µ := (1, . . . , 1)T ∈ R

nµ . According to Lemma 1, the numerical cost is

O
(

r ·
∑d

µ=1 nµ

)

.

Proposition 3. Let u ∈ Rr and

ũ := u− u
d⊗

µ=1

1

nµ

1 =
r+1∑

j=1

d⊗

µ=1

ũjµ ∈ Rr+1, (48)

then the variance var(u) of u can be computed as follows

var(u) =
1

∏d

µ=1 nµ

〈ũ, ũ〉 =
1

∏d

µ=1 nµ

〈(
r+1∑

i=1

d⊗

µ=1

ũiµ

)

,





r+1∑

j=1

d⊗

ν=1

ũjν





〉

=

r+1∑

i=1

r+1∑

j=1

d∏

µ=1

1

nµ

〈ũiµ, ũjµ〉 .

According to Lemma 1, the numerical cost is O
(

(r + 1)2 ·∑d
µ=1 nµ

)

.

4.4 Computation of the pointwise inverse

Computing the pointwise inverse u−1 is of interest, e. g. by improved computation of
the maximum norm and by iterative computations of sign(u) or

√
u. Let us further

assume that ui 6= 0 for all i ∈ I. The mapping Φk : T → T from Eq. (31) is defined
as follows:

x 7→ Φ(x)u−1 := x⊙ (21− u⊙ x). (49)

This recursion is motivated through application of the Newton method on the func-
tion f(x) := u − x−1, see [20]. After defining the error by ek := 1 − u ⊙ xk, we
obtain

ek = 1− uxk = 1− uxk−1 (1 + ek−1) = ek−1 − uxk−1ek−1 = (1− uxk−1) ek−1 = e2
k

0

and (xk)k∈N converges quadratically for ‖e0‖ < 1. Then for ek have

u−1 − xk = u−1ek =
(
u−1 − xk−1

)
u
(
u−1 − xk−1

)
= u

(
u−1 − xk−1

)2
.

The abstract method explained in Eq. (31) is for the pointwise inverse of u specified
by Algorithm 3.
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Algorithmus 3 Computing u−1, u ∈ Rr, ui 6= 0 for all i ∈ I
1: Choose u0 ∈ T such that ‖1− u ⊙ u0‖ < ‖u‖ and ε ∈ R+.
2: while ‖1− u ⊙ uk−1‖ < ε‖u‖ do

3:

zk := uk−1 ⊙ (21− u ⊙ uk−1),

uk := Appεk
(zk),

4: end while

Algorithmus 4 Inexact recursive iteration

1: Choose u0 ∈ T and ε ∈ R+.
2: while error(uk−1) < ε do

3:

zk := ΦP (uk−1),

uk := Appεk
(zk),

4: end while

5 Complexity Analysis

All discussed methods can be viewed as an inexact iteration procedure as mentioned
in Eq. (31). For given initial guess and ΦP : T → T we have a recursive procedure
defined in the following Algorithm 4. According to Lemma 1 and the problem de-
pended definition of ΦP the numerical cost of a function evaluation zk = ΦP (uk−1)
is cheap if the tensor uk−1 is represented in the canonical tensor format with mod-
erate representation rank. The dominant part of the inexact iteration method is the
approximation procedure Appεk

(zk).

Remark 1 The complexity of the method Appεk
(zk) described in [9, 11] is

O





rε∑

r=rk−1

mr ·
[

r · (r + rank(zk)) · d2 + d · r3 + r · (r + rank(zk) + d) ·
d∑

µ=1

nµ

]



(50)
and for the method described in [13] we have

O





rε∑

r=rk−1

m̃r ·
[

d · r3 + r · (r + rank(zk)) ·
d∑

µ=1

nµ

]

 (51)

where rk−1 = rank(uk−1) and mr is the number of iterations in the regularised
Newton method [9, 11] and m̃r is the number of iterations in the accelerated gradient
method [13] for the rank-r approximation.

6 Numerical Experiments

The following numerical experiments were performed on usual two-year-old PC. The
multi-dimensional problem to be solved is defined in Eq. (7). The computational
domain is 2D L-shape domain with N = 557 degrees of freedom (see Fig. 2). The
number of KLE terms for q in Eq. (8) is lk = 10, the stochastic dimension is
mk = 10 and the maximal order of Hermite polynomials is pk = 2. We took the
shifted lognormal distribution for κ(x, ω) (see Eq. (8)), i.e., log(κ(x, ω) − 1.1) has
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normal distribution with parameters {µ = 0.5, σ2 = 1.0}. The isotropic covariance
function is of the Gaussian type with covariance lengths ℓx = ℓy = 0.3. The mean
value and the standard deviation of κ(x, ω) are shown in Fig. 2.
For the right-hand side we took lf = 10, mf = 10 and pf = 2 as well as Beta
distribution with parameters {4, 2} for random variables. The covariance function
is also of the Gaussian type with covariance lengths ℓx = ℓy = 0.6. The mean value
and the standard deviation of κ(x, ω) are shown in Fig. 3.
The Dirichlet boundary conditions in Eq. (7) were chosen as deterministic. Thus
the total stochastic dimension of the solution u is mu = mk + mf = 20, i.e. the
multi- index α will consist of mu = 20 indices (α = (α1, ..., αmu

)). The cardinality

of the set of multi-indices J is |J | = (mu+pu)!
mu!pu! , where pu = 2. The solution tensor

u =

231∑

j=1

21⊗

µ=1

ujµ ∈ R
557 ⊗

20⊗

µ=1

R
3

with representation rank 231 was computed with the use of the stochastic Galerkin
library [38]. The number 21 is a sum of the deterministic dimension 1 and the
stochastic dimension 20. The number 557 is the number of degrees of freedom in
the computational domain. In the stochastic space we used polynomials of the max-
imal order 2 from 20 random variables and thus the solution belongs to the tensor
space R

557 ⊗
⊗20

µ=1 R
3. The mean value and the standard deviation of the solution

u(x, ω) are shown in Fig. 4.

Further we computed the maximal entry ‖u‖∞ of u respect to the absolute
value as described in Algorithm 1. The algorithm computed after 20 iterations the
maximum norm ‖u‖∞ effectually. The maximal representation rank of the interme-
diate iterants (uk)20k=1 was 143, where we set the approximation error εk =1.0×10−6

and (uk)20k=1 ⊂ R143 is the sequence of tensors generated by Algorithm 1. Finely,
we computed level sets sign(b‖u‖∞1 − u) for b ∈ {0.2, 0.4, 0.6, 0.8}. The re-
sults of the computation are documented in Table 1. The representation ranks
of sign(b‖u‖∞1 − u) are given in the second column. In this numerical example,
the ranks are smaller then 13. The iteration from Algorithm 2 determined after
kmax steps the sign of (b‖u‖∞1 − u), where the maximal representation rank of
the iterants uk from Algorithm 2 is documented in the third column. The error
‖1− ukmax ⊙ ukmax‖/‖(b‖u‖∞1− u)‖ is given in the last column.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

Fig. 1. Shifted lognormal distribution with parameters {µ = 0.5, σ2 = 1.0} (on the left)
and Beta distribution with parameters {4, 2} (on the right).

7 Conclusion

In this work we used sums of elementary tensors for the data analysis of solutions
from stochastic elliptic boundary value problems. Particularly we explained how the
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Fig. 2. Mean (on the left) and standard deviation (on the right) of κ(x, ω) (lognormal
random field with parameters µ = 0.5 and σ = 1).

Fig. 3. Mean (on the left) and standard deviation (on the right) of f(x, ω) (beta distri-
bution with parameters α = 4, β = 2 and Gaussian cov. function).

Fig. 4. Mean (on the left) and standard deviation (on the right) of the solution u.

Table 1. Computation of sign(b‖u‖∞1−u), where u is represented in the canonical tensor
format with canonical rank 231, d = 21, n1 = 557, and p = 2. The computing time to get
any row is around 10 minutes. Note that the tensor u has 320 ∗ 557 = 1, 942, 138, 911, 357
entries.

b rank(sign(b‖u‖∞1− u)) max1≤k≤kmaxrank(uk) kmax Error

0.2 12 24 12 2.9×10−8

0.4 12 20 20 1.9×10−7

0.6 8 16 12 1.6×10−7

0.8 8 15 8 1.2×10−7
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new methods compute the maximum, minimum norms (Section 4.1), sign and char-
acteristic functions (Section 4.2), level sets (Section 4.3), mean, variance (Section
4.3), and pointwise inverse (Section 4.4). In the numerical example we considered
a stochastic boundary value problem in the L-shape domain with stochastic di-
mension 20. Table 1 illustrates computation of quantiles of the solution (via sign
function). Here the computation showed that the computational ranks are of mod-
erate size. The computing time to get any row of Table 1 is around 10 minutes.
To be able to perform the offered algorithms the solution u must already be ap-
proximated in a efficient tensor format. In this article we computed the stochastic
solution in a sparse data format and then approximated it in the canonical tensors
format. In a upcoming paper [12] which will be submitted soon we compute the
stochastic solution direct in the canonical tensor format and no transformation step
is necessary.
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Loève expansion. Numerical Analysis and Applied Mathematics: Intern. Conf. on
Num. Analysis and Applied Mathematics, AIP Conf. Proc., 1048(1):311–314, 2008.

23. B. N. Khoromskij, A. Litvinenko, and H. G. Matthies. Application of hierarchical
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