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Abstract

Background: A number of large genomic datasets are being generated for studies of human ancestry and diseases.

The ADMIXTURE program is commonly used to infer individual ancestry from genomic data.

Results: We describe two improvements to the ADMIXTURE software. The first enables ADMIXTURE to infer ancestry

for a new set of individuals using cluster allele frequencies from a reference set of individuals. Using data from the

1000 Genomes Project, we show that this allows ADMIXTURE to infer ancestry for 10,920 individuals in a few hours (a

5× speedup). This mode also allows ADMIXTURE to correctly estimate individual ancestry and allele frequencies from

a set of related individuals. The second modification allows ADMIXTURE to correctly handle X-chromosome (and other

haploid) data from both males and females. We demonstrate increased power to detect sex-biased admixture in

African-American individuals from the 1000 Genomes project using this extension.

Conclusions: These modifications make ADMIXTURE more efficient and versatile, allowing users to extract more

information from large genomic datasets.

Keywords: Supervised learning, Reference panels, Pedigrees, Sex-chromosome, Sex bias, Ancestry inference,

Admixture

Background
The ADMIXTURE program [1] estimates individual

ancestry proportions for admixed individuals from

genomic datasets. It uses a likelihood model [2] that

assumes the diploid genotype nij for individual i at

biallelic SNP j, which represents the number of type

“1” alleles observed, is generated by binomial sampling

from a weighted sum of ancestral allele frequencies. For

each individual, the weights are given by the propor-

tions of ancestry derived from each ancestral population.

Given K ancestral populations, genotypes are sampled

as nij ∼ Binomial
(

2,
∑K

k=1 qikpkj

)

where qik the frac-

tion of individual i’s ancestry attributable to population

k and pkj is the frequency of the type 1 allele at SNP j

in population k. ADMIXTURE maximizes the resulting

biconcave log-likelihood (Eq. 1) using a block relaxation

algorithm.
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L(Q,P) =
∑

i,j

{

nij log

(

K
∑

k=1

qikpkj

)

+
(

2 − nij
)

log

(

1 −
K

∑

k=1

qikpkj

)}

(1)

We describe two extensions to the ADMIXTURE pro-

gram that accelerate the analysis of large datasets and

enable ancestry estimation for sex chromosomes. The first

extension (“projection”) allows ADMIXTURE to estimate

ancestry for a new set of individuals using ancestral pop-

ulations from an earlier ADMIXTURE run. It enables

efficient inference of ancestry on large genomic datasets

using ancestral populations estimated from reference pan-

els like the 1000 Genomes Project. It can also be used

to correctly infer individual ancestry in pedigrees. The

second extension allows ADMIXTURE to model the log-

likelihood for haploid chromosomes. This can be used

to correctly estimate ancestry on sex chromosomes and

therefore estimate sex bias in ancestry between the auto-

somes and sex chromosomes. We demonstrate the utility

of these extensions using data from the 1000 Genomes

Project [3] and the HapMap Project [4].
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Implementation

Projecting new samples on existing population structure

A number of large genome-wide datasets of human pop-

ulations such as the HapMap Project, 1000 Genomes

Project etc. are now publicly available. Many studies (e.g.

[5]) use these datasets as reference panels in combina-

tion with the study sample to estimate individual ancestry

using ADMIXTURE since these large datasets summa-

rize worldwide human population structure. For study

samples which do not include a novel population, an effi-

cient way of estimating individual ancestry is to “project”

the new samples on to the population structure learned

from the reference panels. This is intuitively similar to the

projection operation used in principal components anal-

ysis, though the mathematical details differ. We extended

the ADMIXTURE code to allow loading of trained mod-

els (the .P files with cluster allele frequencies). For two

datasets with the same set of SNPs, clusters can be learned

using the unsupervised mode of ADMIXTURE on the

first dataset and ancestry proportions can be inferred for

the second dataset using these learned clusters. The same

approach can be used to infer ancestry on a set of related

individuals. First, we infer the largest set of unrelated

individuals in the dataset using pedigree information or

methods such as PLINK [6], KING [7] or PRIMUS [8].

Then, ADMIXTURE is run on this set in unsupervised

mode and the remaining individuals are projected on the

resulting population structure.

Mathematically, this requires solving the likelihood

maximization problem of Eq. 1 with respect to Q for a

fixed P. This problem can be solved efficiently using the

optimization described by Alexander et al. [1].

Analyzing haploid sex-chromosomes

Admixture between populations is often sex-biased, i.e.,

different proportions of males and females from the

source populations contribute to the admixed popula-

tions. In human populations, sex-biased admixture has

been observed in African-Americans and Latinos, often

using evidence from Y-chromosome or mitochondrial

DNA [9–11]. An alternative way to study sex-biased

admixture is to examine individual ancestry estimates on

the autosomes vs the sex chromsomes [5, 12]. Therefore,

we are interested in inferring individual ancestry using

ADMIXTURE on the sex chromosomes, in particular on

the haploid X-chromosome in males.

For a haploid sex-chromosome SNP, we assume

that hemizygous genotypes are coded as homozy-

gotes for the observed allele. Then, using the same

notation as before, genotypes can be sampled as
nij
2 ∼ Binomial (1,

∑K
k=1 qikpkj). The corresponding log-

likelihood for a haploid sex-chromosome SNP in an indi-

vidual is half of that for a homozygous autosomal diploid

SNP in Eq. 1, as described in Eq. 2. We account for this

in ADMIXTURE by keeping track of the sex of each indi-

vidual and the chromosome each SNP belongs to and

adjusting the log-likelihood accordingly.

Lhaploid(Q,P) =
∑

i,j

{

nij

2
log

(

K
∑

k=1

qikpkj

)

+
(

2 − nij
)

2
log

(

1 −
K

∑

k=1

qikpkj

)}

(2)

To enable correct handling of haploid sex-chromosomes

in multiple species, we implemented the --haploid

option, which takes a single colon-separated argument

describing the haploid sexes and the haploid chromo-

somes. For instance, for human data, sex-chromsomes

can be supplied as an argument for ADMIXTURE as

--haploid=“male:23,24” with 23 and 24 represent-

ing the X and Y chromosomes respectively.

Results
We demonstrate the utility of the newly implemented

options using experiments on human genomic datasets.

Using reference panels for inferring ancestry proportions

with projection

We duplicated data from Phase 1 of the 1000 Genomes

Project to create a dataset with 10,920 individuals. The

data was filtered to include only SNPs with minor allele

frequency (MAF) ≥ 5 % and thinned for linkage disequi-

librium (LD) to have pairwise r2 ≤ 0.1 in 50 kb windows.

We compared the running time and accuracy of two anal-

yses, with the number of clusters (K) ranging from 2

to 10:

• Unsupervised: Unsupervised ADMIXTURE was run

on the entire dataset of 10,920 individuals.
• Projection: Unsupervised ADMIXTURE was first

run on the original 1092 individuals from the 1000

Genomes Project and the remaining 9828 individuals

were projected on to the learned population structure.

Each analysis was performed with 5 random starts, with

running time limited to 72 h. All experiments were run on

a single core of a server with Xeon E5-2660 processors,

using 3.7 GB memory.

Figure 1 shows the comparison of running times for

ADMIXTURE on the 10,920 individuals using the two

approaches. The projection approach is much faster than

unsupervised ADMIXTURE, with speed gains increasing

with K, the number of clusters. We find that the ancestry

proportions inferred using both approaches are identical.

Comparisonwith iAdmix

The projection step we describe has been recently

independently implemented by Bansal et al. [13] in the
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Fig. 1 Running time comparison. Running times for ADMIXTURE on a dataset of 10,920 individuals constructed from the 1000 Genomes project

software iAdmix, using a different optimization algo-

rithm.We compared our ADMIXTURE projection imple-

mentation to the iAdmix projection implementation by

running unsupervised ADMIXTURE on the first 1092

individuals from the previous analysis and using the

learned allele frequencies to infer ancestry for the remain-

ing 9828 (copied) individuals by projection using either

ADMIXTURE or iAdmix. Figure 2 shows that projection

using ADMIXTURE is approximately 4 times faster than

using iAdmix1.

Ancestry estimation for related individuals using projection

ADMIXTURE infers individual ancestry proportion

and ancestral population allele frequencies simultane-

ously in an alternating optimization [1]. Inferring allele

frequencies (AF) from related individuals without suit-

able correction for relatedness can lead to high variance in

estimates [14].We demonstrate that relatedness can affect

the inferred population clusters when ADMIXTURE is

run on related individuals using the CEPH (Utah residents

with ancestry from northern and western Europe, CEU)

and Yoruba in Ibadan, Nigeria (YRI) individuals from

HapMap Phase 3. We also show how projection can be

used to obtain more accurate AF estimates.

We used 165 CEU individuals (112 unrelated and 53

related) and 113 unrelated YRI indviduals to construct a

dataset with 278 individuals. After filtering for LD (r2 <

0.2) and MAF > 0.05, the dataset had 180,591 SNPs. The

dataset then was then analyzed using ADMIXTURE with

K = 2 population clusters in two ways:

• All individuals: ADMIXTURE was run on the entire

dataset.
• Unrelated individuals: The dataset was divided into

two sets - one containing only the 225 unrelated CEU

and YRI individuals and another containing the 53

related CEU individuals. ADMIXTURE was run on

the unrelated set. The related individuals were then

projected on the allele frequencies inferred from the

unrelated set.

Fig. 2 Running time comparison with iAdmix. Running times for the projection step using ADMIXTURE and iAdmix on a dataset of 10,920 individuals

constructed from the 1000 Genomes project. Allele frequencies were inferred from the first 1092 individuals using ADMIXTURE
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For both analyses, we then compared the inferred allele

freqencies for the European components to AF estimates

from the Exome Aggregation Consortium (ExAC [15])

data at a common set of 939 SNPs (with frequency

between 5 and 95 % in ExaAC). We find that European

component AF estimates are closer to ExAC allele fre-

quencies for the unrelated analysis (root mean square

error = 0.040) than for the analysis using all individu-

als (root mean square error = 0.041), with p = 0.005

for a one-tailed paired t-test when the squared errors

are compared for each SNP. However, this error includes

(1) the variance of the estimate due to the sample size

from which the AF is estimated and (2) the variance

of the estimate due to the relatedness of the samples.

Assuming the Exac AF f to be the true underlying fre-

quency, a normal approximation for the sample AF fn
estimated from n unrelated diploid samples is given by

fn ∼ Normal
(

f ,
f (1−f )
2n

)

[16]. Therefore, we can con-

struct a z-score that accounts for sampling variance as

z =
√
2n(fn−f )√
f (1−f )

. Comparing z-scores, we find that the z-

score for the analysis using only unrelated individuals

(mean |z| = −0.19) is smaller than the z-score for the

analysis using all individuals (mean |z| = −0.25), with

p < 2.2e–16 for a one-tailed paired t-test. The z-score

using only unrelated individuals also has a smaller vari-

ance (var(z) = 1.80) than that for the z-score using all

individuals (var(z) = 2.74). This suggests that the allele

frequency estimates from the analysis using unrelated

individuals are more accurate than those using all individ-

uals. An alternative way of evaluating the accuracy of esti-

mated allele frequencies is discussed in Additional file 1:

Section S1.

Inference of sex bias from autosomal and X-chromosome

ancestry

To demonstrate the utility of ancestry inference on hap-

loid sex chromosomes, we examine sex-biased admixture

in the African-American population in the southwestern

United States (ASW). We used 1092 individuals from

Phase 1 of the 1000 Genomes project including the

ASW with populations from Europe, Africa, Asia and the

Americas. We removed 5 ASW individuals (ids NA19921,

NA19625, NA20414, NA20299, NA20314) who had very

high (greater than 5 %) Native American ancestry based

on results reported by the 1000 Genomes Project [3].

SNPs were filtered to include only those with MAF ≥ 5 %

and then thinned for LD to have pairwise r2 ≤ 0.1 in 50 kb

windows.

Sex bias was analyzed by running ADMIXTURE on the

1087 individuals with K = 3 clusters on the autosomes

and X-chromosome separately and comparing ancestry

proportions for each individual on the two chromosome

subsets. If there was no sex-bias during admixture, then

the ancestry proportions on the two chromosome sets

should be (nearly) equal.

We compared two ways of analyzing sex bias:

• Females only: Since ADMIXTURE (without the new

--haploid option) requires diploid data, we subset

the dataset to 562 females and ran ADMIXTURE on

the autosomes and X-chromosome separately.
• Males and Females: Using the --haploid option

(the X chromosome was denoted haploid in males

with --haploid=“male:23”), we ran

ADMIXTURE separately on the autosomes and

X-chromosome on the entire set of 1087 individuals.

Table 1 shows the results of the analysis. From both

analyses, we can see that autosomes have an excess of

European ancestry and X-chromsomes have an excess

of African and Native American ancestry. Since the

ancestry proportions for each component (European/

African/Native American) are not normally distributed,

a t-test is not suitable for assessing statistical signifi-

cance. Therefore we used a Wilcoxon signed-rank test to

compare the paired X-chromosome and autosomal ances-

try proportions (see Additional file 1: Section S2 for the

behavior of the test under the null hypothesis).We see that

the analysis using both males and females can reject the

null hypothesis of identical mean ranks (no sex bias) at the

0.05 significance level, while the females-only analysis fails

to reject the null hypothesis. From previous work, there is

evidence for sex-biased admixture in African-Americans

[9, 12, 17]. Thus, including male samples in the analysis

of X-chromosome ancestry with the --haploid option

improves power to detect sex bias in admixture.

Discussion
We have described two extensions to the ADMIXTURE

program. The projection extension allows ADMIXTURE

to estimate ancestry for a new set of individuals using pre-

defined ancestral population frequencies (usually from

an earlier ADMIXTURE run). This functionality is sim-

ilar to that implemented in iAdmix [13], which uses

Table 1 Comparing ancestry proportions for African-Americans

on the autosomes and the X-chromosome: Differences in

individual autosomal and X-chromosome ancestry proportions

are represented by the mean of the difference over all individuals

Ancestry component Females only Males and Females
(n = 36) (n = 60)

European 0.016 (0.345) 0.039 (0.032)

African –0.009 (0.460) –0.024 (0.141)

Native American/Asian –0.006 (0.119) –0.015 (0.020)

In parentheses are the raw p-values calculated using a Wilcoxon signed rank test

comparing the autosomal and X-chromosome ancestry proportions. P-values <

0.05 are shown in bold
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a different optimization method, and that implemented

by Sikora et al. [18] for ancestry inference for ancient

individuals using an expectation-maximization algorithm.

This extension enables efficient inference of ancestry on

large genomic datasets using ancestral populations esti-

mated from reference panels like the 1000 Genomes

Project. The allele frequencies inferred by ADMIXTURE

have been used previously to simulate individual geno-

types [19, 20]. The resulting individual genomes have been

used in subsequent ADMIXTURE [19] or other [20] anal-

yses to enable a “supervised” analysis [21]. Our extension

provides an efficient and principled framework for this

approach.

The projection approach is useful when a new dataset

is strongly unbalanced in its distribution of populations,

since an unbalanced dataset can affect the accuracy of

ancestry inference [22]. Another advantage of the projec-

tion approach is that individual ancestry can be inferred

in parallel for each individual. Thus, if a user has access

to multiple computers (or a computing cluster), then

ancestry can be estimated for hundreds of thousands of

individuals in a few hours. Our results on a dataset of

10,920 individuals constructed using the 1000 Genomes

project show how projection improves the efficiency of

ADMIXTURE. The projection approach can also be used

to infer the ancestry of ancient DNA samples, as in Sikora

et al. [18] and other work. A limitation of the projection

approach is that if the projected data contains a novel

population which was not present in the initial (training)

set, the projection results may not be identical to those

obtained from running ADMIXTURE on the combined

dataset. The fit of the projected data to the population

structure in the training set can be evaluated using the

posterior predictive checks (PPCs) of Mimno et al. [23].

This framework uses the inferred model parameters from

ADMIXTURE to generate simulated datasets whose sim-

ilarity to the original dataset is assessed through a set of

population genetics summary statistics such as identity-

by-state, linkage disequilibrium, FST etc. If the projected

individuals belong to a population not present in the train-

ing set, the PPCs will indicate a high discrepancy between

the summary statistics for the projected individuals and

the generated datasets. An alternative way of examining

fit between the projected individuals and the training set

is to examine the cross-validation error of the projec-

tion step using the “-cv” option of ADMIXTURE. A high

cross-validation error would indicate that the projected

individuals belong to a population not present in the

training set.

Through experiments on HapMap CEU and YRI indi-

viduals, we showed that the projection approach is

also useful for accurate ancestry inference on related

individuals. This approach allows us to infer allele fre-

quencies for ancestral populations with reduced error.

A limitation of this approach is that if the number of

founders in a pedigree is small, then the error in allele fre-

quencies estimated from running ADMIXTURE only on

the unrelated individuals may be large due to a larger sam-

pling variance. In such cases, themethodmay not produce

more accurate estimates than those obtained by running

ADMIXTURE on the entire dataset.

The second extension we have developed correctly

models the log-likelihood for haploid chromosomes. This

can be used to estimate ancestry on sex chromosomes

and thus estimate sex bias in ancestry. Our analysis

of sex bias in the ASW African-American population

shows that accurate ancestry inference on the haploid X-

chromosome in males can improve power of tests for sex

bias that use ancestry proportions as a test statistic. While

the test we described based on a difference in ancestry has

a number of limitations (correlated tests, no correction for

multiple testing, etc.), it is only intended to demonstrate

the advantage of ancestry inference on haploid chromo-

somes formore power in tests for sex bias and is applicable

to other tests of sex bias.

Conclusions
ADMIXTURE is widely used for analysis of ancestry

in genomic datasets. The extensions we have described

increase the efficiency of ADMIXTURE and increase its

versatility. The projection operation allows more effi-

cient analysis of large datasets by using available reference

panels. It also allows analysis of ancestry in pedigrees.

Ancestry analysis of haploid sex-chromosomes improves

power to detect sex bias in populations using autoso-

mal and X-chromosome ancestry. We expect that with

the growing number of populations being sequenced and

large amounts of individual-level genotype data being

generated, these extensions will makeADMIXTUREmore

useful to researchers.

Endnote
1We only show results for one replicate since iAdmix

produces 130GB of output files for one replicate of such

a large dataset.
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