Efficient and Accurate Discovery of Patterns in
Sequence Datasets

Avrilia Floratou #!, Sandeep Tata *?, Jignesh M. Patel #!

# Computer Sciences Department, University of Wisconsin-Madison, WI, USA.
{floratou, jignesh}@cs.wisc.edu

*IBM Almaden Research Center, CA, USA.

2stata@us.ibm.com

Abstract— Existing sequence mining algorithms mostly focus
on mining for subsequences. However, a large class of applica-
tions, such as biological DNA and protein motif mining, require
efficient mining of “approximate” patterns that are contiguous.
The few existing algorithms that can be applied to find such
contiguous approximate pattern mining have drawbacks like poor
scalability, lack of guarantees in finding the pattern, and difficulty
in adapting to other applications. In this paper, we present a
new algorithm called FLAME (FLexible and Accurate Motif
DEtector). FLAME is a flexible suffix tree based algorithm that
can be used to find frequent patterns with a variety of definitions
of motif (pattern) models. It is also accurate, as it always find
the pattern if it exists. Using both real and synthetic datasets,
we demonstrate that FLAME is fast, scalable, and outperforms
existing algorithms on a variety of performance metrics. Using
FLAME, it is now possible to mine datasets that would have been
prohibitively difficult with existing tools.

I. INTRODUCTION

In a number of sequential data mining applications, the goal
is to discover frequently occurring patterns. To illustrate the
characteristics of such an operation, consider Figure 1. This
figure shows the percentage change in the stock price for a
company over the previous minute’s average price, for several
minutes in a day. An interesting mining question on this
dataset is: “Are there any frequently recurring patterns in this
time series dataset?” Finding such patterns in stock price data
can provide valuable insights that inform trading strategies. In
Figure 1, the bold segments highlight a pattern that occurs four
times in the dataset. Note that the recurring subsequences are
similar, but not identical. The challenge in discovering such
patterns is to allow for some noise in the matching process. At
the heart of such a method is the definition of a pattern, and the
definition of similarity between two patterns. This definition of
similarity can vary from one application to another. A simple
approach in the case of data such as in Figure 1 is to define
a tolerance value, €, and consider two sequences to be similar
if the corresponding numerical values in the sequences are
within € of each other.

This approximate subsequence mining problem is of partic-
ular importance in computational biology, where the challenge
is to detect short sequences, usually of length 6-15, that
occur frequently in a given set of DNA or protein sequences.
These short sequences can provide clues regarding the loca-
tions of so called “regulatory regions”, which are important

Fig. 1. Stock Data: A frequent approximate pattern is highlighted in bold.

repeated patterns along the biological sequence. The repeated
occurrences of these short sequences are not always identical,
and some copies of these sequences may differ from others
in a few positions. The similarity metric that is used here
could be complex — for example, when comparing proteins, a
similarity matrix like PAM [1] or BLOSUM [2], may be used
for comparing the “distance” between each symbol (protein)
pair. These frequently occurring patterns are called motifs in
computational biology. In the rest of this paper, we use this
term to describe frequently occurring approximate sequences.

Clearly, different applications require different similarity
models to suit the kind of noise that they deal with. It is
desirable for a motif mining algorithm to be able to deal with
a variety of notions of similarity. In this paper, we present
a powerful new model for approximate motif mining that
fits several applications with varying notions of approximate
similarity, including the examples described above. We also
present FLAME (FLexible and Accurate Motif DEtector) — a
novel motif mining algorithm which can efficiently find motifs
that satisfy our model.

We note that the problem of motif mining is related to
the problem of mining for frequent itemsets [3], and fre-
quent subsequences [4]. The problem of finding frequently
occurring (non-contiguous) subsequences in large sequence
databases has been extensively studied in previous works [4]—
[8]. Traditionally, B is called a subsequence of A, if B can
be constructed by projecting out some of the elements of
sequence A. For instance, if A is the sequence “a,b,a,c,b,a,c”,
the sequence “a,b,b,c” is a subsequence constructed by choos-
ing the 15,274 5" and 7" elements from the original



sequence and omitting the rest. While mining for frequent
non-contiguous subsequences has many uses, it is not ap-
propriate for many applications such as DNA and protein
motif mining. A subsequence constructed by gluing together
distant parts of the original sequence is not meaningful in
these applications. In mining for motifs, we are interested
in contiguous subsequences. Furthermore, previous work on
non-contiguous subsequence models cannot easily incorporate
noise tolerance in the way that contiguous motif models can.
In short, subsequence mining and motif mining are different
data mining operations, and there are distinct applications of
each of these. This paper focuses on the contiguous subse-
quence (motif) mining problem. Readers closely familiar with
traditional (non-contiguous) subsequence mining algorithms
may note that some of these methods can be adapted to mine
for contiguous subsequences (e.g. [6], [7], [9], [10]). In the
extended version of this paper [11], we compare our method
with some of these methods, and show that FLAME is faster
by an order of magnitude.

Motivated by the problem of finding frequent patterns
in DNA sequences, which has profound importance in life
sciences, the computational biology community has devel-
oped numerous algorithms for detecting frequent motifs us-
ing the Hamming distance notion of similarity. YMF [12],
Weeder [13], MITRA [14], and Random Projections [15] are
examples of algorithms in this category. Compared to this class
of algorithms, we show that FLAME is more flexible, and
can use more powerful match models. We also demonstrate
through empirical evaluation that FLAME is more scalable
than these existing methods and can be an order of magnitude
faster for mining large databases.

There are several applications of motif mining in addition to
those mentioned above. It is often the first step in discovering
association rules in sequence data (“basic shapes” in [16] and
“frequent patterns” in [17]). It can also be used to find good
seeds for clustering sequence datasets [18]. Records of medical
signals, like ECG or respiratory data [19] from patients can
also be mined to find signals that can indicate a potentially
critical condition.

We make the following contributions in this paper:

1) We present a powerful new model that is very gen-
eral and applicable in many emerging applications. We
demonstrate the power and flexibility of this model by
applying it to datasets from several real applications.

2) We describe a novel motif mining algorithm called
FLAME (FLexible and Accurate Motif DEtector) that
uses a concurrent traversal of two suffix trees to effi-
ciently explore the space of all motifs.

3) We present a comparison of FLAME with several ex-
isting algorithms (YMF [12], Weeder [13], and Ran-
dom Projections [15], [20]). FLAME never misses any
matches (as opposed to some of these methods that
apply heuristics). In fact, we show that FLAME is able
to identify many true biological motifs that existing
algorithms miss.

4) We show that our algorithm is scalable, accurate, and

often faster than existing methods by more than an order
of magnitude!

The remainder of the paper is organized as follows: Sec-
tion II presents related work, and Section III describes our
model for motifs. In Section IV, we present the FLAME
algorithm. Section VI contains our experimental results, and
Section VII contains our conclusions.

II. RELATED WORK

There is a vast amount of literature on mining databases
for frequent patterns [21]-[23]. Early work focused on mining
association rules [3]. The problem of mining for subsequences
was introduced in [4]. Subsequence mining has several ap-
plications, and many algorithms like SPADE [5], BIDE [6],
CloSpan [7] (and several others) have been proposed as im-
provements over [4]. Yang et al. [8] use a statistical sampling
based method with a compatibility matrix to find patterns
in the presence of noise. However, they primarily focus on
subsequence mining, while we focus on contiguous patterns.

Some subsequence mining algorithms allow certain con-
straints. Constraints which limit the maximum gap between
two items in the subsequence make it possible to use these
algorithms to mine for contiguous patterns. Algorithms like
EXMOTIF [24] and RISO [25] are designed to efficiently
find multi-motifs, i.e. simple motif patterns separated by
variable length spaces. FLAME does not target the multi-motif
problem, but can be be used as a building block for multi-
motif mining. Algorithms such as ¢cSPADE [9], CloSpan [7],
Pei et al. [10], [26] can be adapted to mine for exact contigu-
ous motifs. An obvious reason why these are unsuitable for
approximate frequent pattern mining is that these algorithms
do not include a notion of noise or an approximate match.
Furthermore, they tend to be inefficient even when used
for exact substring mining. FLAME, on the other hand is
extremely efficient even for approximate substrings.

The vast body of work in bioinformatics for finding patterns
in long noisy DNA sequences [27], can be divided into two
classes — pattern based and statistical. The patterns based
algorithms typically search through the space of potential
patterns and find a motif that satisfies the minimum support.
Marsan and Sagot [28] proposed a suffix trie based algorithm
to find structured motifs tolerating a few mismatches as noise.
This method is primarily focused at finding pairs (or sets) of
motifs that co-occur in the dataset within a short distance of
each other. This method only considers a simple mismatch
based definition of noise, and does not consider other more
complex motif models such as a substitution matrix or a
compatibility matrix as in [8]. Furthermore, Marsan and Sagot
do not have optimizations, such as the ones we describe in
Section V. These optimizations make FLAME faster by an
order of magnitude. Zhu et al. [29] proposed an algorithm for
mining approximate substrings but it only accomodates the
Hamming distance model.

Several other algorithms such as the Yeast Motif Finder [12]
(YMF), Weeder [13], MITRA [14] have been used for finding
motifs. YMF is a simple algorithm that computes the statistical



significance of each motif. YMF scales very poorly with
increasing complexity of motifs, and thus cannot be easily
adapted to other applications. Weeder is a suffix tree based
algorithm that makes certain assumptions about the way the
mismatches in an instance of the motif are distributed. This
makes Weeder extremely fast, but it is not guaranteed to
always find the motif. Weeder too, cannot be adapted for other
motif models. MITRA is a mismatch tree based algorithm
which uses clever heuristics to prune the large space of
possible motifs. MITRA is very resource intensive and requires
large amounts of memory.

Statistical approaches use techniques such as Expectation
Maximization [30], Sampling [31], Random Projections [15],
etc. to search for frequent patterns in the data. All of these
heuristic approaches run the risk of finishing at a local opti-
mum, and may not be able to find the right motif. Furthermore,
these methods are specifically tailored for the problem of
simple mismatch based motifs, and cannot easily be adapted
for more complicated models.

The comprehensive study by Tompa et al. [32] com-
pared several different statistical and pattern based algorithms
on a variety of real and synthetic datasets, and identified
Weeder [13] and YMF [12] as the most effective methods.
In our evaluations, we compare with these two methods.

A host of techniques have been developed to find sequences
in a time series database that are similar to a given query
sequence [33]-[36]. However, there is little published work in
finding motifs in time series databases. Time series data such
as stock prices, economic indexes, time varying measurements
from sensors and medical signals like ECG’s can be mined for
motifs, and all have compelling applications. Patel et al. [18]
show that time series data can be discretized and converted
into a sequence over a fixed alphabet and mined using existing
motif mining algorithms. Another algorithm that finds frequent
trends in time series data was proposed by Udechukwu,
Barker, and Alhajj in [37]. However, these algorithms mine
for exact frequent patterns, and are difficult to employ in
the case of noisy datasets. Chiu et al. describe an algorithm
in [20] (based on the Random Projections algorithm [15])
which accounts for noise in the data. However, this algorithm
is also limited to a simple mismatch based noise model. In
addition, this is a probabilistic algorithm, and is not always
guaranteed to find all existing patterns. FLAME, on the other
hand provides the option of a variety of models, and is
guaranteed to find the motif (i.e. it is an accurate algorithm
and not a heuristic method).

III. THE MODEL

A critical aspect of the motif mining problem is defining
the model under which two or more sequences are considered
to match (approximately). Developing such models poses an
interesting challenge: On the one hand, we want a model that
is robust enough to detect the occurrence of a pattern even in
the presence of noise, and on the other hand, we do not want it
to be so general that it matches unrelated subsequences. Since
different applications may have different criteria for how to

strike this balance, a natural approach is to develop a flexible
model with a few intuitive parameters that can be set by the
user based on the application characteristics. In this section,
we present a powerful new model for motifs that can be used
for pattern mining in many different domains.

Throughout this section, we will assume that the input
sequence is composed of symbols from a discrete alphabet
set. However, our methods can also be applied to continuous
time series datasets by converting such datasets into a symbolic
sequence dataset by simply discretizing the numeric data. In
fact such a transformation is frequently carried out for mining
continuous time series datasets [18], [20].

We call our motif model the (L, M, s, k) model after the
four parameters that determine it. L is the length of the motif,
M is a distance matrix that is used to compute the similarity
between two strings, s is the maximum distance threshold
within which two strings are considered similar, and finally, &
is the minimum support required for a pattern to qualify as a
motif.

The (L, M,s,k) model is a very intuitive and powerful
model, and permits the user a lot of flexibility in making
the right tradeoff between specificity and noise tolerance of
a model. As we describe below, much of this power comes
from the ability to use any matrix M as the distance matrix.
This property makes it useful for a variety of complex motif
mining tasks. The matrix M allows us to define a distance
penalty when a symbol X in the model matches a symbol
Y in the data sequence. The penalty is specified by M(X,Y),
an entry in the matrix. The total distance between the two
strings is computed by summing the distance penalties of
the corresponding symbols. That is, if A = ajaqas...a, and
B = b1bobs...b, are two strings, then the distance between A
and B under this model is d(A, B) = X7 M(a;, b;).

Formally speaking, a string S is an (L, M, s, k) motif if
there exist at least k strings 77, ..., T} in the database such
that each of them is of length L, and d(S,T;) < s, where
d(A,B) = X% {M(a;,b;) is the distance function. Every
string S that satisfies the above is an (L, M, s, k) motif. Note
that the string S need not actually appear in the database for
it to qualify as a motif. Only the instances 7; need to be in
the database.

Protein motif mining is an example of a domain which
requires a matrix based measure of similarity. Finding regions
in protein sequences that appear frequently in different proteins
is useful in inferring the functional sites in proteins. As in
the case of DNA, the patterns in protein sequences do not
repeat exactly. The instances of the pattern usually differ from
the model in a few positions. To complicate things further,
not all mismatches are equally bad. Some amino acids are
very similar to each other, while some are very different. For
instance Alanine and Valine are both hydrophobic amino acids,
while Glycine and Serine are both hydrophilic. The matrix can
be used to award a small penalty for M(X,Y) when X and Y
are similar (Alanine and Valine, for instance) and a larger
penalty otherwise (say, Alanine and Glycine) [2]. Popular
substitution matrices such as PAM [1] and BLOSUM [2] can



easily be used in our model.

Next, we demonstrate how this model can also be applied
to the stock price example of Section I. Suppose that we had
normalized the data for firm ABC. Assume that the normalized
stock price values are between 0-10. If we discretized them
to integers, we could use letters A — K to represent 0 — 10.
Suppose further that we wanted to find sequences of length
10 that appeared (approximately) in the database at least 20
times. If we wanted to use the sum of squared differences
as the distance metric to check for similarity, we can simply
use a matrix where M(X,Y) is set to (v(X) - v(Y))? where
v(X) is the numerical value corresponding to the symbol X.
Using this matrix, we can specify that an instance matches
the model if the Euclidean distance between them is within
a given threshold. We model this problem as a (10, M, s, 20)
motif finding problem, where s is an appropriately chosen
similarity threshold.

The matrix can be adapted to allow other kinds of models.
In fact, the matrix approach lets us simulate any L,-norm
(Manbhattan distance, Euclidean distance, etc.). If we wanted to
match two sequences only if the corresponding values (in the
two sequences) were within 2 units of each other, (the e-error
tolerance model from Section I), we would just set M(X,Y) =
0 where |[v(X) - v(Y)| < 2, and oo everywhere else. In general,
any measure that can be computed in an incremental fashion
by comparing the symbols in the corresponding positions can
be simulated by constructing an appropriate distance penalty
matrix.

We now discuss two special cases of the (L, M, s, k) model
that are commonly used in computational biology and other
domains - the (L, d, k) and (L, f,d, k) models.

A. Special Case: The (L, d, k) Model

The (L, d, k) model is a mismatch based model commonly
used in computational biology for finding DNA motifs. The
distance measure between two strings is the Hamming dis-
tance, or merely the number of mismatches. The (L,d, k)
model is parameterized by the length of the string that we
want to find (L), the maximum Hamming distance (d), and
the support (k). The parameter d controls the amount of noise
we wish to tolerate.

The (L,d, k) model is a special case of the (L, M, s, k)
model. It can easily be simulated by a matrix by setting
MX)Y)=1if X #Y and M(X,Y) =0if X =Y.
This way, the distance function simply counts the number of
mismatches. We set s to d and use the k from (L, d, k) as our
minimum support.

One of the applications of this model is in the field of
computational biology. The (L,d, k) model and its deriva-
tives have been considered a good fit for DNA regulatory
motifs [32]. Briefly, the related problem of using this model
to find regulatory motifs in DNA is as follows: Biologists
today are interested in understanding how different genes in
the genome are regulated and the way they interact with each
other. To this end, biologists often study genes that exhibit
similar expression patterns to extract clues about the proteins

051

0 20 40 60 80 100

Fig. 2. Potential use of the (L, d, k) model — the lower segment is identical
to the upper segment except for the single spike. The (L, d, k) model can
match these.

that control their expression. It is believed that genes that
are co-regulated by the same protein (called a transcription
factor) share some signal that allows the transcription factor to
recognize the gene and turn it on. This signal is usually present
in the region upstream of a gene (within a few thousand base
pairs) called the promoter region. The signature is usually a
short string of DNA 6-15 bases long. As is often the case
in biology, these signatures are seldom identical, and differ
in a few positions from one gene promoter region to another.
Finding this noisy signature that is common across all the
genes is a very important step towards locating the binding
site for the transcription factor. Modeling the set of promoter
regions as our database, and the signature binding site as an
(L, d, k) pattern, we can simply apply the FLAME algorithm
to solve this problem. We show in Section VI, that this is
indeed an effective approach.

In most practical situations we don’t know the exact value
of L, and therefore, we might have to try several values. In the
case of DNA regulatory patterns, we know that the signature
is usually between 6 to 15 bases long, and therefore we can
try these lengths with varying number of mismatches.

The (L, d, k) model can also be used in other applications
to tolerate an occasional burst of noise. If two sequences were
identical except for the addition of a noise spike in one of
them, they will match under a 1-mismatch model. Consider
the two sequences shown in Figure 2. The two bold segments
are identical except for the single spike in the lower sequence.
Such spikes may occur due to measurement error or other
reasons, and an (L, d, k) model will be able to tolerate this
noise and correctly match the two sequences.

We show in Section VI that FLAME is faster than several
existing algorithms that can only find (L, d, k) motifs.

B. Special Case: The (L, f, d, k) Model

The (L, f,d, k) builds on the (L,d, k) model to include
positional constraints on the mismatches. We introduce this
model using an example: Consider the three sequences
{aBCD, ACCD, ABCA}. If ABCD is the model sequence,
the other two sequences are within one mismatch of the
motif, so these sequences would constitute a (4,1,3) motif



in the (L, d, k) model. Now consider the sequences {ABCD,
ACCD, ADCD}. This set also forms a (4,1,3) motif, but the
mismatches, whenever they occur, are always in position two
(AcCD, AACD). The (L, f,d, k) model allows us to specify
the number of fixed — position mismatches (f) along with
just the number of free mismatches (d). This allows us to
screen out patterns of the latter kind. In other words, instead
of allowing a mismatch anywhere in the substring, we look
for all model strings whose instances always differ from it (if
they differ at all) in the same positions.

The (L, f,d,k) model is also a special case of the
(L, M, s, k) model. In order to model the fixed position mis-
matches, we simply augment the alphabet A with a wildcard
symbol, say “?”. For symbols in A, the distance matrix M
is as in the (L,d, k) model, with M(X,Y) =1if X #Y
and zero everywhere else. The wildcard symbol is allowed to
match any symbol with no penalty, so we set M (?, X) = 0 for
all X. FLAME considers all model strings of length L over the
augmented alphabet such that there are at most f occurrences
of the wildcard symbol. This way, the (L, M, s, k) model can
simulate the (L, f, d, k) model.

In general, this model is useful in applications where the
noise has a positional bias as it allows us to be more specific
in finding the right patterns while ignoring extraneous matches.
Some DNA motif finding applications [32] use models that
are somewhat similar to the (L, f,d, k) model.

We illustrate the advantage of being able to use positionally
biased scoring with an example. Consider a DNA dataset
consisting of 5 sequences,ecach of length 500. Assume that
each sequence has in it the motif GTGAACAC, and each
instance of the motif has a mismatch at the fifth position.
In other words, the dataset contains an (8,1,0,5) motif. Note
that an (8,1,0,5) motif is also an (8,1,5) motif in the (L, d, k)
model since a free mismatch can capture a fixed mismatch. If
we use the (L, d, k) model to retrieve this pattern, we will end
up with many extraneous hits that might not be meaningful.
When we search for an (8,1,0,5) pattern, FLAME (correctly)
returns the result GTGA?CAC. On the other hand,if we search
for (8,1,5), FLAME returns several additional hits that satisfy
(8,1,5) but not (8,1,0,5). A post-processing step is needed to
check if these are actually fixed position mismatch motifs. An
(L, d, k) model can be used to simulate an (L, f, p, k) model
if f 4 p = d with some post processing. However, as we will
explain in Section V-B , using an (L, f, d, k) model produces
a huge cost saving when compared to (L, d + f, k) with post-
processing.

IV. THE FLAME ALGORITHM

In this section, we describe the FLAME algorithm, which
can be used to find (L, M, s, k) motifs. For ease of exposition,
we explain the algorithm using an (L, d, k) model, and then
describe how we extend it to the full-fledged (L, M, s, k)
model.

Recall that an (L, d, k) motif is a string of length L that
occurs k times in the dataset, with each occurrence being
within a Hamming distance of d from the model string. Given,

String = ABBCACCB

Fig. 3. A count suffix tree on the string ABBCACCB. The counts are
indicated inside the node.

L, d, and k, a naive algorithm is to consider all possible
strings of length L over the alphabet (the space of all models),
and compute the support for each of them by scanning the
dataset. This algorithm is exponential and becomes infeasible
with large L and d values. One might be tempted to improve
this method by considering only those strings of length L that
actually occur in the dataset. However, this approach might
miss motifs as the model string might not actually occur in
the dataset even once. To illustrate this point, suppose that the
string ABCDEF is the true motif. Assume that we are looking
for a (6,2,3) pattern, and that the instances of this pattern
in the dataset are FFCDEF, ABFFEF, and ABCDAA. Each
instance is at a distance of 2 from the model ABCDEF, but the
distance between any two instances is 4. If we consider only
instances from the dataset (which need not contain ABCDEF),
then we will not find the motif.

The approach we take in FLAME explores the space of
all possible models. In order to carry out this exploration in
an efficient way, we first construct two suffix trees: a count
suffix tree on the actual dataset (called the data suffix tree),
and a suffix tree on the set of all possible model strings (called
the model suffix tree). This second set is typically the set
of all strings of length L over the alphabet. As we describe
below, the model suffix tree helps guide the exploration of
the model space in a way that avoids redundant work. The
data suffix tree helps us quickly compute the support of a
model string. Recall that a count suffix tree is merely a suffix
tree in which every node contains the number of leaves in
the subtree rooted at that node. In other words, every node
contains the number of occurrences of the string corresponding
to that node. Essentially, the data suffix tree combines the work
common to finding the support for models like ABCDE and
ABCDF (having a common prefix) and perform it only once.

Since the second suffix tree (built on all possible model
strings) can be extremely large, FLAME does not actually
construct this suffix tree. Rather, it algorithmically generates
portions of this tree as and when needed. FLAME then
explores the model space by traversing this (conceptual) model
suffix tree. Using the suffix tree on the dataset, FLAME com-
putes support at various nodes in the model space and prunes
away large portions of the model space that are guaranteed not
to produce any results under the model. This careful pruning
(described in more detail below), ensures that FLAME does



TABLE I
THE LIST OF MATCHES FOR THE MODEL A

Node | Number of mismatches | Count
A 0 100

B 1 50

C 1 45

D 1 120

E 1 15
Support - 330

not waste any time exploring models that do not have enough
support. The FLAME algorithm simply stops when it has
finished traversing the model suffix tree and outputs the model
strings that had sufficient support.

To understand our strategy of pruning the model suffix
tree, consider the following example: Assume that the dataset
consists of sequences over the alphabet {A,B,C,D,E}. The
dataset and the values of L, d, and k are specified as input.
All the strings of length L starting with the symbol A form a
subset of the model space. We call this the A partition. This
partition corresponds to all the nodes in the model suffix tree
under the subtree corresponding to node A. This partition is
further divided into sub-partitions with prefix AA, AB, AC, AD,
and AE. These partitions continue on for L levels, and at the
last level, we have only one model string for each partition.

Suppose that we start by considering the models in partition
A. Assuming no mismatches are allowed, if the support for
A is less than k, then, clearly any model that starts with A
cannot qualify as a valid motif since there will be fewer than
k instances of it, and it will not have the minimum support.
Consequently, we can safely toss away the entire space of
models starting with the symbol A. This step essentially prunes
away the subtree corresponding to A in the model suffix tree.
After pruning A, we proceed to consider the B partition. An
important step here is to compute the support for models
starting with A. This value is simply the number of times A
occurs in the dataset, and this value can be quickly looked up
from the count suffix tree on the dataset.

When mismatches are allowed, computing the support of a
(partial) model string is more complicated. Suppose that d =
1. When considering matches for models starting with A, we
cannot rule out strings that start with B (or any other symbol),
since a string starting with B could match a model starting with
A by only differing in the first position. Now assume that the
data suffix tree nodes at depth 1 labeled A, B, C, D, and
E have counts of 100, 50, 45, 120, and 15 respectively. The
possible number of strings starting with B that could match a
model starting with A is simply the count of node B, namely
50. In a similar fashion, the count value from other nodes at
most d mismatches away is read, and a list of potential matches
for A is constructed as shown in Table 1. The list contains
the node in the data suffix tree, the number of mismatches
corresponding to this node, and the count from that node. For
instance, node A in the data suffix tree has a count of 100
and perfectly matches the model string (&) - we store this

FLAME (modelTree, dataTree, 1, d, k)

1. model = modelTree.FirstNode()

2. While (model # modelTree.LastModel())

3. Evaluate_Support(model,dataTree)

4. If ( isValid(model) ) Print “Found Model: ”, model
5. Else If(model.support() < k)

6. modelTree.PruneAt(model)

7. model = NextNode(model,modelTree)

8. End While

9.End

Sub Evaluate_Support (model, dataTree)
. newsymbol = last symbol of model.String
. oldmatches = model.Parent().Matches()
. newmatches = EmptyMatches()
. If (model.Parent() == root)

newmatches = Expand_Matches(root,newsymbol,dataTree)
Else

ForEach match x in oldmatches

newmatches = newmatches U
Expand-Matches(x,newsymbol,dataTree)

9. End ForEach
10.model.SetMatches(newmatches)
11.Return

0N LR LN =

Sub Expand_Matches (x, newsymbol, dataTree)

1. Let Y = Set of all single character expansions of x.String
in dataTree

2. ForEach element b in Y

3 If b’s last symbol # newsymbol

4, b.mismatches ++

5. If b.mismatches > max_mismatches

6 Remove b from Y

7 End ForEach

8. Return Y

Fig. 4. The FLAME Algorithm

information in the list as (2, 0, 100). The total support for the
partial model is now computed by summing up the individual
counts. In the example for Table I, this sum is 330. Those
nodes where the number of mismatches with the model being
considered is greater than d are pruned away and not included
in the list of matches. The algorithm then proceeds to consider
the next partial model — AA.

Observe that the list of matches for any partial model can
be constructed incrementally using the list of matches for that
model’s longest prefix. For instance, the list of matches for AC
can be constructed using the list for A(Table I). We take each
string from the list, and extend it by one symbol. The first
string A, for instance can be extended by one symbol to A2,
AB, ., AE. The string AC has 0 mismatches to itself, the
remaining strings have 1 mismatch each. The support for each
of these string can be quickly looked up in the count suffix
tree. We locate the model suffix tree node corresponding to A
(stored in the list of matches). This node points to its children:
AA, AB, ., AE. The support for each of them is read
from the suffix tree, and a new list of matches is constructed
for AC to compute its support. Similarly, when B is extended
to length 2, all strings except BC have more than one mismatch



with the model string AC. Therefore only BC is included in the
match list. The remaining nodes (C, D, and E) are expanded
similarly.

We take advantage of this method for incrementally com-
puting the support by traversing the model suffix tree in the
depth first order. If . = 3, the partitions will be considered
in the order A, AA, AAA, AAB, AAC, etc. At each node,
the match list and the support for the parent node has already
been computed, and can be used to compute the support of
the current node.

Observe that if we want to distinguish between multiple
matches within a single sequence or matches within different
sequences, we can simply replace the count in each node of
the count suffix tree with the count of sequence separator node
in its subtree. That is, while building the count suffix tree,
we simply store the number of distinct sequences the patterns
occurs in instead of the total count. This allows FLAME to
easily support both models.

The pseudocode for FLAME is given in Figure 4. The
algorithm simply puts together the ideas described above.
FLAME uses a suffix tree on the model space and a count
suffix tree on the dataset. It starts by traversing the nodes of
the model space in depth first order. At each node in the model
suffix tree, the subroutine Evaluate_Support is called to
compute the list of matches and the new support. This routine
uses the match list from the parent node to speed up the
computation. The routine Expand Matches ensures that the
number of mismatches to the model string does not exceed d.
At any node, if FLAME discovers that the support is lower
than k, it prunes away that subtree in the model suffix tree,
and continues its traversal. If it finds a model of length L with
the required support, it simply outputs the result.

The algorithm described in Figure 4 works with (L, d, k)
models. For the (L, M, s, k) model, the Expand Matches
function becomes more sophisticated (Figure 5). Instead of
merely keeping track of the number of mismatches, they keep
track of the substitution distance score. That is, for each node,
the match list stores X1 M (x;,y;) where x; is the symbol
from the prefix of the partition, and y; is the symbol it is being
matched to in the data set. If this distance score exceeds the
preset threshold (s), we prune the model suffix tree at that
point, and continue the depth first traversal just as in the case
of the simpler (L, d, k) model.

For the (L, f,d, k) model, we use the augmented alphabet
to generate model strings that contain at most f wildcard
characters and use the scoring matrix described in Section III.

V. PRACTICAL ISSUES

When applying FLAME to a practical problem, there are
opportunities for optimization one might exploit. Next, we
describe a few techniques that can be used to great benefit.

A. Combining Computation for range of lengths

Very often in a real application, the exact length of the
motif is not known apriori. One often merely has a rough idea
of the range in which it may lie. For instance, in regulatory

Sub Expand_Matches_IMsk (x, newsymbol, dataTree)

1. Let Y = Set of all single character expansions of x.String
in dataTree

2. ForEach element b in Y

3. b.distance += Distance_Matrix(b.lastsymbol,newsymbol)

4 If b.distance > max_distance

5. Remove b from Y

6 End ForEach

7. Return Y

Fig. 5. Functions for (L,M,s,k)
DNA motif finding, scientists believe that motifs are typically
6 to 15 bases long. One often ends up trying several (L, d, k)
values such as (6 — 15, 1,20), (6 —15,2,20) , (6 —16,1,15),
(6—15,2,15), etc. Given the way in which FLAME computes
the support for various candidate models, the algorithm can
easily combine the computation for many different lengths if
the number of mismatches is common across all lengths.
Recall that the suffix tree of all models is traversed in a
depth first fashion. We build the suffix tree on all strings of
length L,,4.. At any node, if the length of the model happens
to be in the range of lengths considered, and the support is
greater than the minimum support, we output that model, and
continue the traversal. When we were considering only one
length at a time, a valid model would only be found at a leaf
node of the suffix tree since it consisted of strings only of
length L. However, by allowing lengths in the range of L.,
to L;q: We can output valid models at depth starting at L, ;,,.
This optimization can be applied in much the same way
to the (L, f,d,k) model and the (L,M,s, k) model. We
demonstrate the impact of this optimization in Section VI.

B. Optimizing opportunity with (L,f,d,k)

When mining a database for an (L, f, d, k) pattern, a special
opportunity for speedier execution exists if d = 0. When
d = 0, it means that the pattern must have all the mismatches
in fixed positions and have no free mismatches. Therefore,
instead of considering all string of length L with at most
f wildcard characters (?) over the alphabet AU{?}, we can
consider a smaller modelspace. We only consider those strings
of length L that occur in the dataset with at most f of the
characters replaced with a wildcard character. The absence
of free mismatches guarantees that the model string actually
occurs in the database, so we don’t need to consider all
possible strings over the alphabet.

This reduced modelspace can be constructed by enhancing
the suffix tree on the data sequence by adding a node with
its edge labeled “?” as a child node for every existing node.
The algorithm proceeds as previously described with this new
model tree. Before a (partial) model is evaluated, the algorithm
checks to make sure that the number of “?”’s is no greater that
f
As a result of this much smaller modelspace to consider,
(L, f,d, k) searches can be orders of magnitude faster when
d = 0. In the interest of space, we don’t present these
experimental results here.



VI. EVALUATION

In this section, we present results from various experiments
that were designed to test the effectiveness and performance
of FLAME. We also compare FLAME with pattern mining
algorithms from different application domains. Most existing
algorithms can only work with (L,d, k) motifs and do not
support the more general (L, M, s, k) model. Therefore, we
carry out the comparison between FLAME and these existing
methods using only the (L,d, k) model. Since we do not
have a competing algorithm to compare the performance of
FLAME on (L, M, s, k), we present a detailed analysis of the
performance of FLAME as different parameters in (L, M, s, k)
are varied.

We use a variety of datasets for our experiments:

Snake: This is a snake protein dataset from [38] that was
considered for subsequence mining in [6]. It consists of 352
different snake venom protein sequences of varying lengths.
The size of the dataset is about 28,000 symbols. The alphabet
of amino acids (that make up the proteins) is of size 20.
Such protein datasets are often analyzed in bioinformatics to
find common patterns that might provide insights into their
function.

Washington: The Washington dataset is actually a collection
of 52 different datasets. It includes DNA sequences taken
from several genes in Yeast, Mouse, Fruit Fly, and Humans,
and also includes a few synthetic sequences. For a complete
description, see [32]. The total size of this collection is 1.3
Million symbols.

IBM: This dataset contains second by second average price of
IBM stock for all the trading days in December 1999 [39]. To
reduce the noise in the detailed dataset, we preprocess the data
using the following standard data processing techniques that
are designed to deal with short term volatility in stock price
information [40]: First, the data is converted into a minute
wise average price using a sliding window. And next, the price
values are transformed into a percentage change with respect
to the price in the previous minute. This technique is routinely
used to compare movement data across different stocks that
have a different face value. The resulting dataset contained 21
sequences from 21 days, each of length approximately 400
numbers, totaling 8,400 numbers.

Synthetic: In order to fully explore the space of data sizes
and alphabet sizes, we use a synthetic data generation method
that has been extensively used in several previous efforts [13]—
[15], [41]. The data is generated as follows: Given the alphabet
size, the number of sequences, and the size of each sequences,
we generate random sequences by uniformly drawing symbols
from the alphabet. We then randomly choose & sequences and
implant a pattern of length L with d mismatches at random
positions in each of the £ sequences. This results in a dataset
containing an (L, d, k) motif. The sizes of datasets we generate
are comparable to those used in previous related papers [13]—
[15], [41].

All the experiments in this section were performed on a 2.8
GHz Intel Pentium 4 processor with 2 GB of main memory.

The operating system was Fedora Core 4 Linux, kernel version
2.6.11. The YMF implementation was obtained from [42],
Weeder from [43], and Random Projections (RP) from [44].
RP is a widely used technique for motif mining (and has been
applied in various domains like time-series mining and DNA
motif mining), and YMF and Weeder are the leading popular
DNA motif mining methods [32].

As discussed in Section I, FLAME solves a different prob-
lem compared to traditional sequence mining methods like
c¢SPADE [45] and CloSpan [7]. Nevertheless, for completion,
we modified CloSpan to mine for contiguous subsequences
(which improved its performance by 3 orders of magnitude)
and adapted cSPADE to mine contiguous motifs. The compar-
ison is presented in the extended version of this paper [11].
The results show that FLAME outperforms these methods by
an order of magnitude or more and scales significantly better.

All suffix trees were constructed using the TDD suffix
tree construction algorithm [46]. By using TDD we were
able to build a suffix tree for a database size of 1.3 million
symbols, which is the largest dataset used in the experiments,
in approximately 3 seconds.

A. Comparison with Random Projections

The Random Projections (RP) algorithm of Bulher and
Tompa [15] has recently been applied to time series data
for motif mining [20]. RP is an approximate motif finding
technique based on the idea of “locally sensitive hashing”
from [47] that works only for the special case of (L,d, k)
patterns. This algorithm has also been applied to finding
DNA motifs and is considered faster [15] than several popular
algorithms such as MITRA [14] and WINNOWER [41].

Given L, d, and k, the algorithm chooses a p-position mask
as a hash function. Then, the algorithm hashes all the I-
mers in the database. If a sufficient number of [-mers hash
to the same bucket, it is likely that there is a motif that is
similar to the [-mers in the bucket. Once a candidate bucket
is identified, any local search algorithm can be used to search
in the vicinity of the [-mers in the bucket for the (L,d, k)
motif. In particular, RP uses an expectation maximization
based algorithm like MEME [48] to search in the vicinity of
“enriched” buckets. The main contribution in [15] is that they
describe how to compute p, and the number of iterations for
which the algorithm needs to be repeated for a certain level
of confidence.

We compare FLAME and RP by performing a typical
(L,d, k) motif mining task on synthetic DNA datasets of
varying (following the well established methods that have been
used before for similar comparisons [14], [15]). Each dataset
contains 20 sequences. We vary the length of each sequence
from 200 to 1000 symbols. The datasets are implanted with a
motif of length between 8 and 14 (chosen randomly). The
algorithms do not know the actual length of the motif in
advance (as is the case in any real task [32]). Both algorithms
try to find (L, d, 20) motifs for d = 1, 2 and L varying from
8 to 14. FLAME takes advantage of the technique described
in V-A to combine the computation from different lengths. RP



5 35 o 10000 - O YME
o 1 ]
= 30 8 = FLAME
o 10000 O (8-14,1,20)FLAME 2 D 1000 |
S " (8-14,1,20)RP 8 251 o
D 1000 A (8-14,2,20)FLAME g e 20 -
2 A (8-14,2,20)RP 5 " 'g 100
O 100 < c
8 ...E_ 10 1 E/ 10 -
;= s} i
= 10 3 5 H g 14 I
g < 0 H | | | =
= 1 = = = §&§ =« = N N ™
. — ¢ & g g a4 s ¢ d& d
200 400 600 800 1000 1200 - - - = = = =
Length of Sequence Motif Motif
Fig. 6. RP vs FLAME for varying database sizes Fig. 7. Weeder: Accuracy on real DNA datasets Fig. 8. YMF vs FLAME on synthetic datasets

is run once for each value of L since it does not lend itself to
combining computation.

For the task of finding motifs with L varying from 8 to
14, and d=1 (denoted as (8 — 14, 1,20) in Figure 6), the RP
algorithm works well for small database sizes. However, as the
database size increases, we see that its performance begins
to deteriorate rapidly. A detailed explanation for FLAME’s
performance advantage is presented in [11]. For the (8 —
14,2,20) task, RP takes too long to complete for sequence
lengths beyond 400, and we do not report these times in
Figure 6.

When many buckets need to be explored to find the real
(L,d, k) pattern, RP ends up taking much longer. FLAME,
one the other hand, is relatively less sensitive to increases in
the database size (Figure 6). A larger database will lead to a
model being pruned deeper in the model tree, but FLAME still
manages to avoid a lot of redundant computation by virtue of
using the suffix tree to efficiently prune the model space.

B. Comparison with Weeder and YMF

Many algorithms have been proposed in the field of compu-
tational biology for finding motifs. Most of these algorithms
deal with (L, d, k) type motifs [12], [14], [15], [41]. A recent
study [32] compared several algorithms, and determined that
Weeder [13] and YMF [12] performed among the best. Weeder
scored highest on many performance metrics, and YMF did
nearly as well. In this section, we compare FLAME with these
two algorithms.

1) Comparison with Weeder: Weeder is a very fast heuristic
algorithm that was specifically designed to find motifs in DNA
datasets. The algorithm is limited to the (L, d, k) model and
does not work with the more powerful (L, M, s, k) model.
Weeder is extremely fast because it assumes that the mis-
matches are distributed uniformly across the length of the
motif. As a result of this assumption, Weeder can aggressively
prune the search space very quickly, but it is not guaranteed
to be accurate.

We perform a simple experiment to determine the accuracy
of Weeder. We use the Washington dataset [32] that is based
on the real motifs found in the TRANSFAC [49] database.

We run both algorithms on this dataset using a variety of
models. We present the number of motifs found by Weeder
as a percentage of the total number of motifs present in the
dataset in Figure 7. Since FLAME is an accurate algorithm,
it always finds all the motifs in the dataset, and we do not
show its accuracy (100%) in the graph. As one can readily
observe, Weeder misses a large number of motifs. In fact, for
the case of (12,2) motifs, Weeder finds less than 5% of the
total number found by FLAME. The one point in favor of
Weeder is speed. It takes only one second to find a (10,2,20)
motif while FLAME takes close to 40 seconds. Weeder pays
the price for this speed with a very low accuracy.

The task of predicting regulatory elements is a two step
process. First a pattern finding tool such as Weeder or FLAME
can be used to find all the patterns that frequently occur in the
dataset being considered. The second step is to examine these
patterns and score them on various factors such as strength of
the motif, biological importance, statistical significance, etc.
The second step requires domain knowledge to distinguish
between patterns that are real regulatory sequences versus
random matches to the background “junk DNA”. Biologists
employ many heuristics for the second phase. The first phase
is orthogonal, and any pattern finding tool can be used and
paired with a different scoring/ranking procedure.

Figure 7 shows that while FLAME finds all the candidate
motifs, Weeder might miss a significant fraction. Finding
more results in the first phase of the computation is certainly
beneficial since we will be better informed going into the
second phase of ranking the patterns found, and therefore stand
a better chance of identifying the best motifs.

To demonstrate the effectiveness of FLAME in finding real
biological motifs that are missed by Weeder, we performed
the following experiment: We list all the candidate motifs
found by FLAME in the Washington dataset and rank them
using the same scoring function as Weeder’s. We observed
that FLAME was able to correctly identify several motifs that
Weeder missed. For instance, FLAME reports TCGTAACG
on human dataset Aim08r, CGACGTATGC on hmllg, and
CGTACGAT on hmi6r. Weeder misses these motifs because
of its aggressive pruning strategy. Since Weeder has a very



Qo
4]
[&]
wn
(@)
o
o
()
(2]
E
()
£
=
0 10 20 30 40 50 60
Alphabet Size
Fig. 9. Performance as the alphabet size varies

low accuracy, we do not consider it for experiments in the
remainder of this section.

2) Comparison with YMF: Another algorithm that per-
formed well in the comparison in [32] is YMF (Yeast Motif
Finder). YMF is a simple and accurate algorithm that finds all
patterns that appear more frequently than expected in a set of
DNA sequences. Like Weeder, YMF too cannot be used for
(L, M, s, k) models. It simply has a counter corresponding to
each possible motif in the model space. It scans the database
once using a sliding window and augments the count for each
motif that matches the sliding window. One can easily see
that YMF will scale linearly with the size of the database, but
will scale very poorly with the size of the model space since
it keeps a counter for each possible model. YMF becomes
impractical for longer, complex motifs.

We demonstrate this behavior using a synthetic dataset
containing 20 sequences, each 600 symbols long. We implant
different (L,d,20) motifs in the sequence. We run YMF and
FLAME on a variety of (L,d,k) motifs. The results are
averaged over 50 datasets. The results of this experiment are
presented in Figure 8. For the (8,1) motif, both YMF and
FLAME finish very quickly. However, we can easily see that
YMF does not scale well as the motif complexity increases.
For the (12,3) motif, YMF did not finish in a reasonable
amount of time, and we had to terminate the program after
two hours. FLAME, on the other hand, completes in less than
two minutes. We conducted similar experiments by varying
the sequence length from 200 to 1000. FLAME continues to
be faster than YMF for these settings, and we omit presenting
the results in the interest of space.

We devote the rest of the evaluation section to study the
performance characteristics of FLAME as different parameters
in the problem setting are varied.

C. Performance Characteristics of FLAME

1) Alphabet Size: Our next experiment studies the effect
of alphabet size on execution time. For this task, we again
use the synthetic dataset generator. We vary the alphabet size
from 5 to 50, and at each point evaluate the execution time

for various implanted patterns. Each dataset consisted of 20
sequences, each of length 600, totaling 12,000 symbols. The
execution time for various implanted motifs is summarized in
Figure 9.

As can be seen in the figure, execution times for simpler
motifs such as (6,1),(8,1), and (10, 1) grow slowly with al-
phabet size. Complex motifs, such as (8,2) and (10, 2), which
inherently require the algorithm to search a larger space, grow
faster with alphabet size. Nevertheless, the mining task is often
completed within a few hours even for very large alphabets.
Several real world applications such as DNA sequence mining,
and protein sequence mining typically require an alphabet
of size less than 25, and can be mined very quickly with
FLAME.

2) Mining Time Series Data: We now study the perfor-
mance of FLAME for different parameters of the (L, M, s, k)
motif model. (Since existing algorithms do not support the
(L, M, s, k) model, we do not compare FLAME with any other
algorithms for the rest of this section.)

In this experiment, we use the (L, M, s, k) model to mine
the IBM dataset. We use a 20 bucket histogram that partitions
the dataset into roughly equal sized buckets. We then assigned
a symbol to each bucket, and encoded the numerical series into
a symbolic sequence. The dataset totaled about 8,400 symbols.
The distance penalty matrix is a squared error matrix using
the numerical values corresponding to each symbol. That is,
M(A,B) = |v(A) — v(B)|?, where v(A) is the numerical
value corresponding to the symbol A (the midpoint of the
bucket in the histogram).

We present the time taken by FLAME to find several
(L, M, s, k) motifs. First we set the support to be 21 (equal
to the number of sequences in the dataset). We run FLAME
for L =5, 8, and 11, while varying the distance threshold s.
The results of this experiment are shown in Figure 10. We
observe from the figure that as the threshold is increased the
time taken to execute the search increases. This is because at
higher thresholds, the pattern is more relaxed, and the space of
potential models that needs to be searched is larger. FLAME
is able to find models of length 11 within 16 seconds. We then
repeated the experiment for higher support values of 60 and
120. Increasing the support causes more aggressive pruning
of the search space, and hence, a lower execution time was
observed.

3) Scaling to Large Datasets: Finally, we demonstrate the
scalability of the FLAME algorithm for mining motifs on very
large datasets. Motif mining is a difficult task, and existing
algorithms focus on relatively small datasets (of the order of
10,000 symbols). We show that using FLAME, it is possible
to scale to much larger database sizes. We generate synthetic
datasets, and embed a motif of length chosen randomly be-
tween 8 and 14 in 10% of the sequences. The datasets contain
sequences of length 1000, and the number of sequences is
increased gradually to generate database of increasing sizes.
The total database size is varied from 20,000 symbols to 1
million symbols. We run FLAME on these datasets to find
(8 —14,1) and (8 — 14,2) models with 10% support. The



1000 -

9 —
]
(@]
20 d
1 oL=s = |
1879 0O Lg o 10000+ ° 100
= 161 A - 8 0 (8-14,1,10%) g
S 14 3 1000 | O (8-14,2,10%) o
@124 g c 104
£ 10] = Py
o 8 S 100+
g 6 pt g 14
=, ST = H N A
5| g o © © o © 9
O B & = 1 S SRS WE
0 ‘ F N €85 ¢cgd
0.0002 0.0006 0.001 0 200 400 600 800 1000 T
Distance Threshold (s) Size of Database (K Symbols) Motif
Fig. 10. FLAME: Distance threshold vs time  Fig. 11. Scalability of FLAME with increasing ~ Fig. 12. FLAME: (L,M,s,k) motifs on the Snake
taken on IBM stock price data database size dataset.

results for this experiment are shown in Figure 11.

The execution time increases relatively slowly (Figure 11)
as we increase the database size. In the case of (8—14,1,10%)
motifs, the time increases from 7 seconds to 55 seconds over
the entire range. In the case of (8 — 14,2,10%) motifs, the
time increases from 290 seconds to 5900 seconds. As one
would expect, the time to mine more complex motifs grows a
little faster. The reason for this behavior is that the number of
models considered before pruning begins in the model tree is
exponential in d. The running time is proportional to the total
number of candidate motifs considered, and this number also
grows exponentially with d. For example, when the database
size is 20,000 symbols, in the (8—14,1,10%) case, the number
of models considered before pruning is 13,240 and the number
of candidate motifs is 1,323. In the (8 — 14,2,10%) case, the
number of models explored is 200,620 and the number of
candidate motifs is 20,061. However, even patterns of length
14 in a database this large can be mined in a few hours. To
our knowledge, none of the existing algorithms can accurately
scale to such large database sizes.

D. Protein Motif Mining

Mining for motifs in protein sequences is an application
where the (L, M, s, k) model offers a significant advantage
over using less powerful models such as (L, d, k) by allowing
the use of similarity matrices like PAM30 [1] and BLO-
SUM [2]. These matrices are popular in life sciences applica-
tions and are crucial to capturing the notion of similarity in
this domain.

In this experiment, we look for (L, M, s, k) motifs using
PAM30 as the distance matrix and the Snake dataset. We fix
the support to be 175 (roughly half the number of sequences)
to find patterns that are common to snake venom proteins.
(Protein sequence mining typically uses high thresholds [38].)
We varied (L, s) as (6, 10), (8, 10), (10, 10), (10, 20), (12, 20),
and (12,30). The results are shown in Figure 12. As we
can see from this figure, the computation time increases
with an increase in the distance threshold. A higher distance
threshold indicates a more relaxed pattern — which in turn

means that FLAME has to proceed deeper down the model
tree before it can start eliminating models. As can be observed
from Figure 12, even the longest motifs are found reasonably
quickly.

We note that this experiment also highlights the difference
between FLAME and previous sequence mining methods like
c¢SPADE [9], CloSpan [7], and BIDE [6]. As mentioned in
Section I, FLAME address a different but related problem to
the problem of mining of frequent itemsets. Specifically, none
of these other methods can support a general match matrix
like PAM30 above.

E. Summary

In this section, we evaluated FLAME on a number of real
and synthetic datasets. The results demonstrate that FLAME
is faster, and scales better than other algorithms that have been
used for time series mining, such as Random Projections.
In addition, comparison of FLAME with two of the best
algorithms used in computational biology [32], namely Weeder
and YMF, shows that:

1) Weeder is fast, but misses a significant number of motifs
(more than 90% for complex motifs). On the other hand,
FLAME is guaranteed to find @/l motifs in the dataset.

2) YMF, like FLAME, is 100% accurate, but is very slow.
Compared to YMF, FLAME is faster by more than an
order of magnitude.

We also conducted experiments to test various character-
istics of FLAME. These experiments reveal that FLAME
performs well in a variety of mining situations, and scales
to datasets much larger (1 million symbols) than has been
attempted before.

VII. CONCLUSIONS

In this paper, we presented a powerful new model:
(L, M, s,k) for motif mining in sequence databases. The
(L, M, s, k) model subsumes several existing models and
provides additional flexibility that makes it applicable in a
wider variety of data mining applications. We also presented
FLAME, a flexible and accurate algorithm that can find



(L, M, s, k) motifs. Through a series of experiments on real
and synthetic datasets, we demonstrate that FLAME is a
versatile algorithm that can be used in several real motif
mining tasks. We also show that FLAME outperforms existing
time series mining algorithms (Random Projections) by more
than an order of magnitude. FLAME is also superior to
motif finding algorithms used in computational biology (more
accurate than Weeder, significantly faster than YMF). We also
presented experiments which show that FLAME can scale to
handle motif mining tasks that are much larger than attempted
before.

ACKNOWLEDGEMENTS

This research was supported in part by the National Science
Foundation under grant DBI-0926269.

We thank J. Buhler, G. Mauri, P. Mereghetti, G. Pavesi, G.
Pesole, S. Sinha, M. Tompa, and M. J. Zaki for providing
the source code of the tools that were used in the comparison
with FLAME. We also thank M. Tompa and his colleagues for
making available a framework to evaluate motif finding tools
on real biological datasets.

REFERENCES

[1] M. O. Dayhoff, R. M. Schwartz, and B. Orcutt, “A Model for Evolu-
tionary Changes in Proteins,” Atlas of Protein Sequence and Structure,
vol. 5, pp. 345-352, 1978.

[2] S. Henikoff and J. Henikoff, “Amino Acid Substitution Matrices from
Protein Blocks,” National Academy of Sciences, USA, vol. 89, no. 22,
pp. 10915-9, 1992.

[3] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules,” in VLDB, 1994, pp. 487-499.

[4] ——, “Mining Sequential Patterns,” in /CDE, 1995, pp. 3—14.

[51 M. J. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent
Sequences,” Machine Learning, vol. 42, no. 1/2, pp. 31-60, 2001.

[6] J. Wang and J. Han, “BIDE: Efficient Mining of Frequent Closed
Sequences,” in /CDE, 2004, pp. 79-90.

[7] X. Yan, J. Han, and R. Afshar, “CloSpan: Mining Closed Sequential
Patterns in Large Datasets,” in SDM, 2003.

[8] J. Yang, W. Wang, P. S. Yu, and J. Han, “Mining Long Sequential
Patterns in a Noisy Environment,” in SIGMOD, 2002, pp. 406—417.

[9]1 M. J. Zaki, “Sequence Mining in Categorical Domains: Incorporating

Constrains,” in CIKM, 2000, pp. 442-429.

J. Pei, J. Han, and W. Wang, “Mining Sequential Patterns With Con-

straints in Large Databases,” in CIKM, 2002, pp. 18-25.

A. Floratou, S. Tata, and J. M. Patel, “Finding Hidden Patterns in

Sequences, Tech. Rep. http://www.pages.cs.wisc.edu/~floratou, 2009.

S. Sinha and M. Tompa, “YMEF: A Program for Discovery of Novel

Transcription Factor Binding Sites by Statistical Overrepresentation,”

Nucleic Acids Research, vol. 31, no. 13, 2003.

G. Pavesi, P. Mereghetti, G. Mauri, and G. Pesole, “Weeder Web:

Discovery of Transcription Factor Binding Sites in a Set of Sequences

From Co-Regulated Genes,” Nucleic Acids Research, vol. 32(Web Server

issue), pp. W199-W203, 2004.

E. Eskin and P. A. Pevzner, “Finding Composite Regulatory Patterns in

DNA Sequences,” in ISMB, 2002, pp. S354-63.

J. Buhler and M. Tompa, “Finding Motifs Using Random Projections,”

Journal Computational Biology, vol. 9, no. 2, pp. 225-242, 2002.

G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth, “Rule

Discovery From Time Series,” in KDD, 1998, pp. 16-22.

S. Hoppner, “Discovery of Temporal Patterns — Learning Rules about

the Qualitative Behaviour of Time Series,” in 5¢th European Conference

on Principles and Practice of Knowledge Discovery in Databases, 2001,

pp. 192-203.

P. Patel, E. Keogh, J. Lin, and S. Lonardi, “Mining Motifs in Massive

Time Series Databases,” in /CDM, 2002, pp. 370-377.

(10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[49]

H. Wu, B. Salzberg, G. C. Sharp, S. B. Jiang, H. Shirato, and D. Kaeli,
“Subsequence Matching on Structured Time Series Data,” in SIGMOD,
2005, pp. 682-693.

B. Y.-C. Chiu, E. J. Keogh, and S. Lonardi, “Probabilistic Discovery of
Time Series Motifs,” in KDD, 2003, pp. 493—498.

W. Wang and J. Yang, Mining Sequential Patterns from Large Data Sets.
Springer-Verlag, 2005, vol. 28.

M. Das and H. K. Dai, “A Survey of DNA Motif Finding Algorithms,”
BMC Bioinformatics, vol. 8, 2007.

G. K. Sandve and F. Drables, “A Survey of Motif Discovery Methods
in an Integrated Framework,” Biology Direct, vol. 1, 2006.

Y. Zhang and M. J. Zaki, “ExMOTIF: Efficient Structured Motif
Extraction,” Algorithms for Molecular Biology, vol. 1, no. 21, November
2006.

A. M. Carvalho et al., “An Efficient Algorithm for the Identification of
Structured Motifs in DNA Promoter Sequences,” IEEE/ACM Transac-
tions on computational biology and bioinformatics, vol. 3, 2006.

J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and
M. Hsu, “PrefixSpan: Mining Sequential Patterns by Prefix-Projected
Growth,” in /CDE, 2001, pp. 215-224.

A. Brazma, 1. Jonassen, I. Eidhammer, and D. Gilbert, “Approaches
to the Automatic Discovery of Patterns in Biosequences,” Journal of
Computational Biology, vol. 5, pp. 279-305, 1998.

L. Marsan and M.-F. Sagot, “Algorithms for Extracting Structured Motifs
Using a Suffix Tree with Application to Promoter and Regulatory Site
Consensus Identification,” Journal of Computational Biology, vol. 7, no.
3/4, pp. 345-360, 2000.

F. Zhu, X. Yan, J. Han, and P. S. Yu, “Efficient discovery of frequent
approximate sequential patterns,” in /CDM, 2007.

T. L. Bailey and C. Elkan, “Unsupervised Learning of Multiple Motifs
in Biopolymers using EM,” Machine Learning, vol. 21, no. 1-2, pp.
51-80, 1995.

W. Thompson, E. C. Rouchka, and C. E. Lawrence, “Gibbs Recursive
Sampler: Finding Transcription Factor Binding Sites,” Nucleic Acids
Research, vol. 31, no. 13, pp. 3580-3585, 2003.

M. Tompa et al., “Assessing Computational Tools for the Discovery of
Transcription Factor Binding Sites,” Nature Biotechnology, vol. 23, pp.
137-144, 2005.

A. W.-C. Fu, E. J. Keogh, L. Y. H. Lau, and C. A. Ratanamahatana,
“Scaling and Time Warping in Time Series Querying,” in VLDB, 2005,
pp. 649-660.

M. Vlachos, G. Kollios, and D. Gunopulos, “Discovering Similar
Multidimensional Trajectories,” in ICDE, 2002, pp. 673—684.

L. Chen, M. Tamer Ozsu, and V. Oria, “Robust and Fast Similarity
Search for Moving Object Trajectories,” in SIGMOD, 2005, pp. 491—
502.

Y. Zhu and D. Shasha, “Warping Indexes with Envelope Transforms for
Query by Humming,” in SIGMOD, 2003, pp. 181-192.

A. Udechukwu, K. Barker, and R. Alhajj, “Discovering all frequent
trends in time series,” in Proc. of Winter Int. Sym. on Information and
Comm. Tech., vol. 58, 2004, pp. 1-6.

1. Jonassen, J. F. Collins, and D. G. Higgins, “Finding Flexible Patterns
in Unaligned Protein Sequences,” Protein Science, vol. 4, no. 8, pp.
1587-1595, 1995.

“Data  Sets from Analysis of Financial Time Series,”
http://www.gsb.uchicago.edu/fac/ruey.tsay/teaching/fts/.
R. S. Tsay, Analysis of Financial Time Series, 1st ed. Wiley-

Interscience, October 2001.

P. A. Pevzner and S.-H. Sze, “Combinatorial Approaches to Finding
Subtle Signals in DNA Sequences,” in ISMB, 2000, pp. 269-278.
“YMF Source Code,” http://bio.cs.washington.edu/software.html.
“Weeder Source Code,” http://www.pesolelab.it/Tool/ind.php.

“Random Projections Source Code,” http://www.cse.wustl.edu/ jbuh-
ler/pgt/.

“cSPADE Source Code,” http://www.cs.rpi.edu/ zaki/software/.

S. Tata, R. A. Hankins, and J. M. Patel, “Practical Suffix Tree Construc-
tion,” in VLDB, 2004, pp. 36-47.

A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in High
Dimensions via Hashing,” in VLDB, 1999, pp. 518-529.

T. L. Bailey and C. Elkan, “Fitting a Mixture Model by Expectation
Maximization to Discover Motifs in Biopolymers,” in ISMB, 1994, pp.
28-36.

“TRANSFAC,” http://www.gene-regulation.com/pub/databases.html.



