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Efficient and Accurate Multi-scale Topological
Network for Single Image Dehazing

Qiaosi Yi†, Juncheng Li†, Faming Fang*, Aiwen Jiang, Guixu Zhang

Abstract—Single image dehazing is a challenging ill-posed
problem that has drawn significant attention in the last few
years. Recently, convolutional neural networks have achieved
great success in image dehazing. However, it is still difficult for
these increasingly complex models to recover accurate details
from the hazy image. In this paper, we pay attention to the feature
extraction and utilization of the input image itself. To achieve
this, we propose a Multi-scale Topological Network (MSTN)
to fully explore the features at different scales. Meanwhile,
we design a Multi-scale Feature Fusion Module (MFFM) and
an Adaptive Feature Selection Module (AFSM) to achieve the
selection and fusion of features at different scales, so as to achieve
progressive image dehazing. This topological network provides a
large number of search paths that enable the network to extract
abundant image features as well as strong fault tolerance and
robustness. In addition, ASFM and MFFM can adaptively select
important features and ignore interference information when
fusing different scale representations. Extensive experiments
are conducted to demonstrate the superiority of our method
compared with state-of-the-art methods.

Index Terms—Image dehazing, multi-scale topological net-
work, feature fusion, adaptive feature selection.

I. INTRODUCTION

HAZE is a common atmospheric phenomenon produced
by small floating particles. Particulate matter floating in

the air causes light scattering and attenuation, thereby reducing
the visibility of distant objects. However, hazy images will
cause difficulties with their processing and analysis, which
will seriously affect the performance of downstream tasks such
as image classification, image segmentation, object detection,
crowd counting, and other high-level computer vision tasks.
This is not conducive to the construction of safe and stable
artificial intelligence systems, such as video surveillance sys-
tems and unmanned driving systems. In order to solve this
problem, the task of image dehazing, especially single image
dehazing came into being and has drawn significant attention
in the last few years.

Single image dehazing is an extremely hot topic in computer
vision, which aims to reconstruct a haze-free image from
the hazy one (Fig. 1). However, due to the absorption and
reflection of the haze, the captured scene image will suffer
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Fig. 1. An example of single image dehazing. Obviously, the haze-free image
reconstructed by our MSTN shows better visual effect.

from color distortion, blur, and low contrast, which causes the
quality of the image to deteriorate. Therefore, single image
dehazing still is a challenging task and many methods have
been proposed to try to solve this task.

The atmosphere scattering model provides a theoretical
basis for hazy imaging and is also a basic method for image
dehazing. As shown in Eq. (1), the atmosphere scattering
model can be defined as:

Ii(x) = Ji(x)t(x) +A(1− t(x)), i = 1, 2, 3 (1)

where I(x) is the observed hazy image, J(x) is the clear
image, and A represents the global atmospheric light intensity.
Meanwhile, i denotes R,G,B channels in a RGB image, x
represents the pixel locations, Ii(x) and Ji(x) represents the
value of the i-th channel of the hazy or clear image in location
x. t(·) is the medium transmission function, t(x) = e−βd(x),
β and d(x) represent the atmosphere scattering parameter and
the scene depth, respectively. The atmosphere scattering model
shows that single image dehazing is an ill-posed problem,
which is a challenging task without the priors of A and t(x)

J(x) =
I(x)−A
t(x)

+A. (2)

In the past, in order to better deal with the problem of
single dehazing, many methods have been proposed to learned
different prior knowledge to estimate A and t(x), then obtain
the haze-free image based on the atmosphere scattering model.
For example, dark channel prior [1], color attenuation prior
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[2], and non-local prior [3] are proposed for transmission
function t(·) estimation. Meanwhile, some works focus on
estimating the atmospheric light A, such as [4], [5]. Based on
the estimated t̂(x) and Â, the clear image Ĵ can be recovered
by the following formulation

J(x) =
I(x)− Â · (1− t̂(x))

t̂(x)
=

1

t̂(x)
I(x)− Â

t̂(x)
+ Â. (3)

However, due to the complexity of the real environment,
the prior may be easily violated in practice. Therefore, the
methods based on the atmosphere scattering model may not
be able to accurately estimate the transmission map and the
global atmospheric light intensity, resulting in the inability to
obtain clear haze-free images. This will greatly limit the model
speed, versatility, and performance.

Recently, convolutional neural networks (CNNs) have
achieved remarkable success in many computer vision tasks
and also greatly promoted the development of image dehazing.
With the powerful feature extraction capabilities of CNN,
more and more CNN-based image dehazing methods have
been proposed for A and t(x) estimation or directly learn
the mapping between hazy and clear images. For example,
Cai et al. proposed the first CNN model (Dehazenet [6]) to
directly remove haze from the hazy image. Li et al. proposed
a all-in-one dehazing Network (AODNet [7]), which based
on a re-formulated atmospheric scattering model and directly
generates the clean image through a light-weight CNN. After
that, CNN-based image dehazing models have been bloom-
ing and refreshing the best results, including PFF-Net [8],
DCPDN [9], EPDN [10], PDR-Net [11], GDN [12], and
DFF [13]. Although the aforementioned methods have made a
big breakthrough in image dehazing. However, most existing
image dehazing models have the following shortcomeing:

1) Most existing methods focus on microstructure design,
that is, build the network and achieve image dehazing by
stacking the carefully designed feature extraction mod-
ules. This modular design strategy ignores the connec-
tivity of the model. In addition, this cascaded structural
design greatly reduces the possible topological paths,
which is not conducive to building an effective model.

2) Most existing methods ignore the morphological dif-
ference of hazy images at different scales. Therefore,
these models do not pay attention to the extraction,
propagation, fusion, and utilization of the multi-scale
image features.

3) The structure of these models is getting bigger, deeper,
and more complex, which is not conducive to building
an efficient and real-time dehazing model.

According to [14], the lower-level features have higher reso-
lution and more texture details but lower semantic information,
and the higher-level features have more semantic information
but fewer texture details. Therefore, the core of this work is
to build an effective network that can fully extract and utilize
image features at different stages. Specifically, we propose
a Multi-scale Topological Network (MSTN) to progressive
remove the haze in the hazy image. MSTN is a topological
network that can promote the transmission and utilization

of image feature flows. Meanwhile, these topological sub-
nets enable the network to detect rich image features while
increasing the fault tolerance of the model. Considering the
effectiveness of multi-scale image features, we also introduce
the multi-scale strategy into the model. Therefore, MSTN can
be considered as a multi-branch network and each branch is
used to extract images features at different scales. However,
if these branches are independent of each other, they cannot
form a topological network, which will greatly reduce the
model performance. In order to solve this problem, we take
the output of the lower-resolution branch as the input of the
previous branch. In addition, we design an Adaptive Feature
Selection Module (AFSM) and a Multi-scale Feature Fusion
Module (MFFM) to realize automatic selection and fusion of
multi-scale image features, which helps to make full use of
the features of the image itself.

In summary, the main contributions of this work include:

• We reveal the importance of topology for deep network
design and proposed a Multi-scale Topological Network
(MSTN) for image dehazing, which shows stronger ro-
bustness and versatility. Compared with existing models,
MSTN achieves better results with less execution time.

• We design a Multi-scale Feature Fusion Module (MFFM),
which can promote the interaction and fusion between
different scale features, thereby improving the utilization
of multi-scale features.

• We propose an Adaptive Feature Selection Module
(AFSM) to automatically select image features at differ-
ent scales. Compared with directly adding all different
scales features together, this module can effectively re-
move redundant features to achieve better feature extrac-
tion and utilization.

The remaining parts of this paper are organized as follows.
Section II reviews related works including prior-based and
learning-based image dehazing methods, topological network,
multi-scale feature extraction, and Attention Mechanism. A
detailed explanation of the proposed MSTN is given in Sec-
tion III. The experimental results and ablation analysis are
presented in Section IV and V, respectively. Finally, we draw
a conclusion in Section VI.

II. RELATED WORK

A. Single Image Dehazing

1) Prior-based Methods: The prior-based methods use the
characteristics of the image to estimate A or t(x) and recover
the clear haze-free image according to the atmospheric scat-
tering model. For example, Fattle [15] added a surface shadow
factor to the atmospheric scattering model to estimate the
transmission map; He et al. [1] proposed a dehazing algorithm
based on dark channels prior (DCP), which estimates the
transmission map by the DCP; Fattle [16] proposed a color-line
prior dehazing method based on the observation that the color
of a small image patch exhibits a one-dimensional distribution
in the RGB color space; Although these prior-based methods
have achieved varying degrees of success, their performance
depends on the accuracy and validity of the proposed priors.
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Fig. 2. The architecture of our proposed Multi-scale Topological Network (MSTN), which is a multi-branch network that contains five rows and five columns.

2) Learning-based Methods: With the rise of CNN,
learning-based methods have become the mainstream method
and have achieved tremendous development. These methods
usually use CNN to estimate A and t(x) or directly recover
the clear haze-free image by an efficient CNN. For example,
Cai et al. [6] adopt a three-layer convolutional neural net-
work (Dehazenet) to estimate the transmission map; Zhang
et al. [9] proposed a density dehazing network (DCPDN)
that can simultaneously estimate the transmission map and
atmospheric light intensity; Liu et al. [12] proposed a grid
network (GDN) to directly reconstruct clear images; Dong et
al. [13] proposed multi-scale based deep network which works
on strengthen-operate-subtract-boosting strategy for image de-
hazing (DFF). Although these learning-based methods have
made great progress, they did not fully extract the features of
the hazy image itself, resulting in sub-optimal reconstruction
results.

3) Topological Network: Topology is a discipline that stud-
ies the properties of geometric figures or spaces that can
remain unchanged after continuously changing shapes. It only
considers the positional relationship between objects without
considering their shape and size. The biggest characteristic
of the topological architecture is its invariance under local
deformation, which can simplify the network design. For
example, Attara et al. [17] proposed a method that based
on supervised machine learning algorithms and utilizes the
topological similarities of networks for the classification task.
Li et al. [18] proposed a recursive fractal network that can
construct an infinite variety of topological structures through
a simple basic component. At the same time, this structure has
been proven to be more fault-tolerant, stable, and robust. Thus,
the topological structure will be the focus of our research.

4) Multi-scale Feature Extraction and Utilization: Plenty
of researches have pointed out that the image will exhibit
different characteristics at different scales. Therefore, making

full use of the features of the input image itself can further
improve model performance. In recent years, many works
have been proposed for multi-scale features extraction and
utilization, which can be roughly divided into two categories:
(i) The most widely used method is to obtain images with
different resolutions after multiple downsampling operations,
and then extract the features separately. This type of method
is commonly used in image segmentation and object detection
tasks, such as FPN [14], FPT [19], and PyConvResNet [20].
(ii) Another method is to extract image features by different
convolutional kernels. This type of method adjusts the size
of the receptive field through different convolutional kernels,
so as to achieve multi-scale feature extraction. The most
famous methods includs VGG [21], MSRN [22], MSIN [23],
MSFFRN [24], and MDCN [25]. In this work, we aim to
introduce the multi-scale strategy into the topological network
to better mine and utilize multi-scale image features.

5) Attention Mechanism: Recent years, the attention mech-
anism [26]–[31] has been shown significant advantages in a
range of tasks, from neural machine translation in natural
language processing to image captioning in image understand-
ing. The important information is highlighted by the attention
mechiam and the less useful information is suppressed. At-
tention has been widely used in recent applications such as
person Re-ID, image recovery, and segmentation. To boost
the performance of image classification, SENet [26] brings an
effective, lightweight gating mechanism to self-recalibrate the
feature map via channel-wise importances. Beyond channel,
CBAM [27] introduce spatial attention in a similar way.
Furthermore, SKNet [28] focus on the adaptive receptive field
size of neurons by introducing the attention mechanisms.
Different them, the core of our method, which takes different
scales features as input for learning and output the selected
and fused features, is to automatically respond and select
features from different scale inputs. In the image dehazing
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task, the GDN [12] learn a coefficient for adding different scale
feature as the attention mechanism. Moreover, the coefficient
is learned by global learning and do not depend on the different
scale feature. But, our method utilize the attention mechanism
to learn the relationship between the different scale feature
and highlight the most informative feature expressions in the
different scale feature.

III. MULTI-SCALE TOPOLOGICAL NETWORK (MSTN)

In this paper, we propose a Multi-scale Topological Network
(MSTN) for single image dehazing. As shown in Fig. 2, MSTN
is essentially a multi-branch network, which contains i rows
and j columns. Among them, i denotes the depth of the
network and j represents the scale of the model, respectively.
Meanwhile, we can clearly observe that at each branch the
model contains one Residual Block (RB [32]) and several
Multi-scale Feature Fusion Module (MFFM). It is worth noting
that all these branches are used to extract image features
at different scales and the input of each branch is obtained
from the output of the previous branch through downsample
operation. In addition, RBs are used for feature extraction
and MFFMs are the core module of MSTN, which are used
for multi-scale feature selection and fusion. However, if these
branches are independent of each other, multi-scale features
cannot interact together, which will greatly reduce the model
performance. In order to solve this problem, we introduce skip
connection between the adjacent branches. In other words, the
outputs of the current branch are sent to the previous branch.
Therefore, image features at different scales can be transferred,
interacted, and merged via the MFFM.

Define Ihazy and Iclear as the input hazy image and the
reconstructed haze-free image, the model can be defined as

Iclear = FMSTN (Ihazy), (4)

where FMSTN (·) represents the proposed MSTN. As men-
tioned above, MSTN is a multi-branch network that contains
i rows and j columns, each row denotes the depth of the
network and each column denotes the different scales of the
model. We define the first row and first column as i = 0 and
j = 0, respectively. Therefore, the outputs (Ri,j) of each RB
or MFFM can be defined as

Ri,j =


Fi,j(Ihazy) when i = 0, j = 0

Fi,j(R
′
i,j−1) when i = 0, j > 0

Mi,j(Ri−1,j , Ri−1,j+1) when i > 0

(5)

where Fi,j(·) and Mi,j(·) denote the operation of RB and
MFFM in the i-th row and j-th column, respectively. Mean-
while, R

′
is the result obtained by the dowsample operation

R
′
= R ↓2 . (6)

It is worth noting that the downsampling operation is realized
using a convolutional layer instead of traditional methods
such as bilinear or bicubic interpolation. This is because
bilinear and bicubic will cause a lot of information to be lost,
which is not conducive to image reconstruction, so we use

convolutional layer to let the model automatically learn the
redundant features that need to be removed.

During training, MSTN is optimized with L1 loss function.

Therefore, given a training dataset
{
Inhazy, I

n
clear

}N
n

, we solve

θ̂ = arg min
θ

1

N

N∑
n=1

∥∥Fθ(Inhazy)− Inclear∥∥1 , (7)

where θ denotes the parameter set of our model and F (·)
represents the proposed MSTN. Each module of the network
will be described in the following sections.

A. Multi-scale Topological Architecture

In this paper, we propose a multi-scale topological archi-
tecture as the backbone of MSTN. Similar to the Feature
Pyramid Network [14], MSTN also adopts the pyramid-like
structure to obtained multi-scale image features. In other
words, we gradually downsample the resolution of the image
and extract image features at different scales. After that, we
progressive restore the resolution of the image and use the
extracted multi-scale features to reconstruct the final haze-
free image. This strategy can fully mine the potential features
of the input image itself, improve the model performance,
and reduce the memory consumed during runtime. However,
most of the previous works are simply add all the features
extracted from each scale branch, which is not conducive to
the interaction between different scales features. In order to
solve this problem, we introduce skip connection between the
adjacent branches. Therefore, image features with different
scales can be interacted and merged through MFFM. It is
worth noting that the intermediate results of each branch are
sent to the corresponding position of the previous branch
for feature selection and fusion rather than just the final
output. This allows the hierarchical features to be fully uti-
lized, which can further improve the quality of reconstructed
images. Meanwhile, these skip connections make the model
constitute a topological network, which provide a large number
of search paths that enable the network to extract abundant
image features to reconstruct high-quality haze-free images.
In Fig. 2, the color data flows represent some examples of
the path of the model. Among them, the gray one represents
the complete pathway, the dark gray represents the path of the
model without multi-scale strategy. In addition, the blue and
orange lines represent two intermediate paths. This topological
architecture makes the network contains multiple sub-networks
and all these sub-networks complement each other, greatly
improving the stability and fault tolerance of the model.

B. Multi-scale Feature Fusion Module (MFFM)

MFFM is the core module of MSTN, which is designed for
multi-scale image feature selection, interaction, and fusion.
As shown in Fig. 3, MFFM takes Ri−1,j and Ri−1,j+1 as
inputs and output the fused image features Ri,j . According to
the figure, we can clearly observe that the module contains
a adaptive feature selection module (AFSM), a convolutional
layer, a deconvolutional layer, a residual block (RB), and
a residual skip connection. Firstly, we apply downsampling
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Fig. 3. The complete architecture of MFFM.

operation on Ri−1,j to obtain R′i−1,j . Then, R′i−1,j and the
extracted features from the next branch Ri−1,j+1 are send to
the AFSM for feature selection. This is a crucially important
step that used to automatically select useful features and
remove redundant features. After that, a convolutional layer, a
deconvolutional layer, and a residual block are applied to the
selected multi-scale image features to obtain new representa-
tions. Finally, we introduce local residual learning strategy to
further improve the information flow. The introduced residual
learning strategy make the module only needs to learn the
different areas between the input and output features, which
can greatly accelerate the learning process. Meanwhile, this
allows the ASFM to selectively select the missing features
from different scale branches. With the help of MFFM, the
model has enough flexibility for selecting important features
from different scale representations and can expand the repre-
sentation capabilities of CNN.

C. Adaptive Feature Selection Module (AFSM)

According to Lin et al. [14], we know that image features
with different scales have different semantic information.
Making full use of multi-scale image features can effectively
improve the quality of reconstructed images. However, most
existing methods directly cascade or add all multi-scale image
features for image reconstruction, it will bring a lot of redun-
dant features that not conducive to building a efficient and
accurate model. In 2019, Li et al. [28] proposed a Selective
Kernel Networks (SKNet), which can adaptively adjust its
receptive field size based on multiple scales of input informa-
tion. Inspired by this, we introduce the attention mechanism to
the model and propose an Adaptive Feature Selection Module
(AFSM) for different image feature selection and fusion. As
shown in Fig. 4, AFSM takes different scales features R

′

i−1,j
and Ri−1,j+1 as inputs for learning, and output the selected
and fused R

′′

i,j . Specifically, we first fuse the results from
different branches via an element-wise summation:

R
′
i,j = R

′
i−1,j +Ri−1,j+1. (8)

Then we generate channel-wise statistics s ∈ RC by using
global average pooling. The c-th element of s is calculated by
shrinking R

′

i,j through spatial dimensions H ×W :

sc = fg(R
′c
i,j) =

1

H ×W

H∑
x=1

W∑
y=1

R
′c
i,j(x, y) (9)

Fig. 4. The complete architecture of AFSM.

After that, we applied a fully connected layer to generate
compressed features z ∈ Rd×1 for precise and adaptive
selection

z = fc(s) (10)

Finally, a soft attention across channels is used to adaptively
select important information from different branches.

a =
eAz

eAz + eBz
, b =

eBz

eAz + eBz
, (11)

where A,B ∈ RC×d, and a, b denote the attention vector of
R

′

i−1,j and Ri−1,j+1, respectively. Specifically, the softmax
function is used on a and b, so a+ b = 1. After getting a and
b, the output R

′′

i,j can be calculated as follow:

R
′′
i,j = a ·R

′
i−1,j + b ·Ri−1,j+1. (12)

With the help of this module, our MSTN can efficiently
and automatically select and fuse multi-scale image features.
This provides a new solution for image restoration task which
based on multi-scale architecture.

IV. EXPERIMENTS

A. Dataset

In this paper, we use RESIDE [33], Middlebury [36], and
NH-HAZE [37] to prove the effectiveness of our proposed
MSTN on image dehazing task. Moreover, we also adopt the
derain dataset (DID-MDN [38]) further verify the effectiveness
of the proposed network on other image restoration tasks,
thereby verifying the scalability and versatility of MSTN.

1) RESIDE: RESIDE [33] is a large-scale image dehazing
dataset, which includes synthetic hazy images of indoor and
outdoor and real-world hazy images. In RESIDE, the atmo-
spheric scattering model is adopted to generate the synthetic
hazy images. In this work, we use Indoor Training Set (ITS)
and Outdoor Training Set (OTS) as the training dataset and
select Synthetic Objective Testing Set (SOTS) and Hybrid
Subjective Testing Set (HSTS) as the test dataset, respectively.
Among them, ITS contains 1,399 clear images and 13,990
hazy images with the size of 620×460. Each clear image gen-
erates 10 hazy images with β ∈ [0.6, 1.8] and A ∈ [0.7, 1.0],
and the depth map d(x) comes from the NYU Depth V2 [39]
and Middlebury Stereo datasets [40]. Similar to ITS, OTS also
contains a large number of images, but the depth map d(x)
of OTS is estimated by using the algorithm developed in [41]
and β ∈ [0.04, 0.2], A ∈ [0.8, 1.0]. The SOTS contains 500
indoor hazy images and 500 outdoor hazy images, and their
generation methods are the same as ITS and OTS, respectively.
In addition, both synthetic hazy images and real-world hazy
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TABLE I
QUANTITATIVE (PSNR/SSIM) COMPARISONS WITH SOTA IMAGE DEHAZING METHODS ON RESIDE-SOTS [33] (INDOOR AND OUTDOOR) AND

RESIDE-HSTS [33] (SYNTHETIC). THE BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED WITH RED AND BLUE FONTS, RESPECTIVELY.

Method DCP [1] CAP [2] DehazeNet [6] MSCNN [34] NLD [3] AODNet [7] DCPDN [9] GFN [35] GDN [12] DFF [13] MSTN (Ours)

SOTS (Indoor)
PSNR↑ 16.61 19.05 21.14 17.12 17.29 19.06 15.85 22.30 32.16 33.75 35.37
SSIM↑ 0.855 0.836 0.847 0.796 0.778 0.850 0.818 0.880 0.984 0.985 0.987

SOTS (Outdoor)
PSNR↑ 19.13 18.12 22.46 19.48 17.97 20.29 19.93 21.55 30.86 32.21 32.61
SSIM↑ 0.815 0.758 0.851 0.839 0.821 0.877 0.845 0.844 0.982 0.979 0.981

HSTS (Synthetic)
PSNR↑ 14.48 21.57 24.48 18.64 18.92 20.55 22.94 22.06 32.75 32.72 35.48
SSIM↑ 0.761 0.873 0.915 0.817 0.741 0.897 0.874 0.847 0.983 0.9781 0.987

TABLE II
QUANTITATIVE (PSNR/SSIM) COMPARISONS WITH SOTA IMAGE

DEHAZING METHODS ON MIDDLEBURY [36] AND NH-HAZE [37]. THE
BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED WITH RED AND

BLUE FONTS, RESPECTIVELY

Method DCP AODNet DCPDN GFN GDN DFF MSTN (Ours)

MiddleBury
PSNR↑ 11.94 13.94 12.23 14.01 14.21 15.82 17.50

SSIM↑ 0.762 0.764 0.725 0.754 0.778 0.868 0.863

NH-HAZE
PSNR↑ 10.57 15.41 17.42 15.17 15.23 16.21 18.42

SSIM↑ 0.52 0.57 0.61 0.52 0.56 0.58 0.63

images are included in the HSTS. It is worth noting that the
real real-world hazy images in these datasets can be used to
verify the dehazing ability of MSTN in real scenes.

2) Middlebury Stereo Dataset: Middlebury [36] is a high-
resolution stereo indoor dataset with subpixel-accurate ground
truth. Similar to ITS, the atmospheric scattering model is
adopted to generate synthetic hazy images. Considering its
high-resolution characteristics, we adopt Middlebury as an
assistant testing dataset to demonstrate the robustness of our
proposed MSTN. In the experiment, we use the model pre-
trained on ITS and directly applied the model to the Middle-
bury dataset to show the model performance.

3) NH-HAZE: NH-HAZE dataset [37] was proposed in the
NTIRE2020 Image Dehazing Challenge [42], which is a non-
homogeneous realistic dataset that contains 55 outdoor scenes.
In NH-HAZE, the haze was be introduced in the scene by
using a professional haze generator, which can simulates the
real conditions of hazy scenes. Moreover, the hazy and haze-
free corresponding scenes contain the same visual content
captured under the same illumination parameters. Following
the challenge setting, we use images 1 ∼ 50 as the training
dataset and images 51 ∼ 55 as the testing dataset.

4) DID-MDN: DID-MDN [38] is a derain dataset, which
includes three different rain-density images, that is light,
medium, and heavy rain-density, respectively. In DID-MDN,
the training dataset includes 12,000 images and the test dataset
includes 12,00 images.

B. Implementation Details

Model setting: In the final version of MSTN, the value of i
and j are set as 5, which means that MSTN has 5 branches and
the maximum depth of the first branch is 5. This also means
that the model contains 5 branches with different scales.

TABLE III
QUANTITATIVE (SSEQ/BLIINDS-II) COMPARISONS ON

RESIDE-HSTS [33]. THE BEST AND SECOND BEST RESULTS ARE
HIGHLIGHTED WITH RED AND BLUE FONTS, RESPECTIVELY

Method
HSTS

Synthetic Real
SSEQ↓ BLIINDS-II↓ SSEQ↓ BLIINDS-II↓

DCP [1] 86.15 90.70 68.65 69.35
CAP [2] 85.32 85.75 67.67 63.55

DehazeNet [6] 86.01 87.15 68.34 60.35
MSCNN [34] 85.56 88.70 68.44 60.35

NLD [3] 86.28 85.30 67.96 70.80
AODNet [7] 86.75 87.50 70.05 74.75
DCPDN [9] 33.36 31.89 43.18 49.30
GDN [12] 29.59 22.89 - -
DFF [13] 31.24 25.67 37.27 34.25

MSTN (Ours) 28.76 21.56 35.74 32.55

Training setting: During training, we use RGB image
as input and augment the image with random rotation(90◦,
180◦, 270◦), horizontal flip, and vertical flip. In addition,
we randomly crop 240 × 240 image patch on the image as
the input and set batch-size as 16. The initial learning rate
is 1 × 10−4 and cosine annealing strategy [43] is applied
to adjust the learning rate. We implement our model with
the PyTorch framework and update it with Adam optimizer
(5 × 107 iterations). All our experiments are performed on
GTX TitanXP GPUs.

C. Comparison with SOTA Image Dehazing Methods

We compare MSTN with 10 SOTA image dehazing
methods, including DCP [1], CAP [2], DehazeNet [6],
MSCNN [34], NLD [3], AODNet [7], DCPDN [9], GFN [35],
GDN [12], and DFF [13]. In addition, we use PSNR, SSIM,
SSEQ [44], and BLIINDS-II [45] to evaluate the quality of
dehazed images. Among them, the larger the PSNR and SSIM
value, the better the result. Contrary, the smaller the SSEQ
and BLIINDS-II value, the better the result. It worth noting
that SSEQ and BLIINDS-II are no-reference image quality
assessment methods, which can effectively reflect the visual
effect of the reconstructed images.

1) Quantitative Comparison on Synthesis Images: In this
work, we trained two different versions of the model for indoor
and outdoor scenarios. These two models were trained on
ITS and OTS datastes, respectively. In TABLE I, we provide
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Fig. 5. Visual comparison with SOTA image dehazing methods on the RESIDE-SOTS [33] (Indoor) dataset. Please zoom in to view details.

Fig. 6. Visual comparison with the SOTA image dehazing methods on the MiddleBury [36] dataset. Please zoom in to view details.

the PSNR/SSIM comparisons with SOTA image dehaizng
methods on SOTS [33] (Indoor and Outdoor). Obviously,
our MSTN achieves the best results whether in the indoor
or outdoor scenes. Among these methods, GDN [12] and
DFF [13] are the latest methods and achieved the SOTA
results at the time. Despite this, compared with them, our
MSTN still achieved better results with a great advantage.
Specifically, compared to the second-best model, the average
PSNR results of MSTN in Indoor and Outdoor scenarios
has increased 1.62dB and 0.40dB, respectively. This is a
significant improvement and provide a new SOTA results on
the image dehazing task. This is because the proposed multi-

scale topological architecture can extract rich features from
the input image, so that the model can reconstruct high-
quality haze-free images. Meanwhile, in order to verify the
generalization ability of the model, we directly use the pre-
trained MSTN on OTS and ITS to reconstruct haze-free images
on HSTS [33] (Synthetic) and MiddleBury [36], respectively.
According to TABLES I and II, we can observe that our MSTN
still achieves the best results on all of these two datasets. It is
worth mentioning that compared to the second-best model, the
results of MSTN on these two datasets are improved by 1.68dB
and 2.73dB, respectively. Moreover, we provide the SSEQ
and BLINDS-II comparison of these methods on HSTS [33]
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Fig. 7. Visual comparison with SOTA image dehazing methods on the RESIDE-SOTS [33] (Outdoor) dataset. Please zoom in to view details.

(Synthetic) in TABLE III. Obviously, our MSTN still achieves
the best results. This further verified the effectiveness and
powerful generalization capabilities of MSTN.

2) Visual Comparison on Synthesis Images: In Figs. 5, 6,
and 7, we show the visual comparison with other image dehaz-
ing on SOTS [33] (Indoor and Outdoor) and MiddleBury [36]
datasets. Among them, the images in the SOTS (Indoor) and
MiddleBury datasets contain relatively low haze density while
the images in the SOTS (Outdoor) dataset contain high haze
concentrations. According to Figs. 5 and 6, we can clearly
observe that the image reconstructed by AODNet, Dehazenet,
and DCPDN still contains a lot of haze. Compared with these
methods, GDN and DFF can reconstruct more clear haze-
free images. However, carefully observing these reconstructed
images, we find that these images contain a lot of artifacts
and false edges, especially on walls, doors and flat areas. This
greatly limits the promotion and application of these models.
On the contrary, our MSTN can reconstruct high-quality haze-
free images without artifacts. In Fig. 7, we show the dehazing
effect of the model in the outdoor scenes. Obviously, outdoor
scenes have higher concentrations of haze and the distribution
of these haze is uneven. Therefore, it is more challenging to
recover haze-free images from these images. According to
the figure, we can found that all of the compared methods
are failed to restoration high-quality images. Compared with
these methods, our MSTN can reconstruct more clear images.

Although the image reconstructed by our MSTN also contains
some haze, the performance of MSTN has been greatly
improved compared with the previous methods. This fully
demonstrates the effectiveness of MSTN.

3) Results on Real-World Images: The concentration and
distribution of haze in natural scenes are more diverse and
complex than the simulated images. Therefore, the task of
real image dehazing is more difficult. In this part, real hazy
image datasets (RESIDE-HSTS [33] (Real-world) and NH-
HAZE [37]) are used to further assess the practicality of
our MSTN. For HSTS (Real-world), following the setup in
RESIDE, we use the model pre-trained on the OTS to recon-
struct haze-free images. For NH-HAZE, we follow the setup of
the NTIRE 2020 Challenge on Image Dehazing to train and
test our model. The qualitative results of these two datasets
are presented in TABLE III (right) and II (bottom), respec-
tively. According to the results, we can clearly observe that
MSTN achieves the best results in all evaluation indicators.
In addition, we provide some dehazing results on real-world
images in Fig. 8. According to the figure, we can found that
(i). The haze-free images reconstructed by other methods still
contains varying degrees of haze; (ii). The haze-free images
reconstructed by DCPDN are over-exposed, causing the color
of the reconstructed image to deviate; 3) The haze-free images
reconstructed by GDN contains a lot of artifacts and the
distribution of haze is uneven. All of these phenomena expose
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Fig. 8. Visual comparison with SOTA image dehazing methods on real-world hazy images. Please zoom in to view details.

the flaws of these models. In contrast, MSTN can reconstruct
more clear and realistic haze-free images, which further proves
the effectiveness of MSTN in practical applications.

V. ANALYSIS AND DISCUSSION

A. Study of Model Architecture

In this article, we propose a Multi-scale Topological Net-
work (MSTN) for image dehazing. In order to study the
effectiveness of the proposed architecture, we provide a series
of ablation studies in this section. It is worth noting that in
order to quickly verify the effectiveness of each module, the
training settings in this section are as follows: batch size = 8,
patch size = 128× 128, and 1× 106 iterations.

1) Effectiveness of AFSM: AFSM is designed to select
and fuse different image features, which also serves as the
core component of MFFM. In order to verify the effectiveness
of AFSM, we designed two simplified model, named MSTN
(baseline) and MSTN (w/o AFSM). Among them, MSTN

TABLE IV
STUDY OF AFSM AND MFFM ON RESIDE-SOTS [33] (INDOOR).

Methods MSTN (Baseline) MSTN (w/o AFSM) MSTN (w/o MFFM)

PSNR 31.37 31.02 31.03
SSIM 0.975 0.973 0.974

(baseline) was restrained by the new training settings and
MSTN (w/o AFSM) has the same architecture with MSTN
(baseline) but replaces all AFSMs in the model with the
element-wise addition operation. According to TABLE IV and
Fig. 9, we can clearly observe that when the element-wise
addition operation is used to replace the AFSM, the PSNR
result of the model drops by 0.35dB. Meanwhile, the modified
model is unstable during the training, which make the model
difficult to converge.

2) Effectiveness of MFFM: As we mentioned before,
MFFM is the core module of the proposed MSTN, which is de-
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Fig. 9. Study on the effectiveness of AFSM and MFFM.

signed for multi-scale image feature selection, interaction, and
fusion. According to the cross-scale skip connections, MFFM
receives two feature maps with different scales as inputs and
output the selected and fused features. In order to verify the
effectiveness of MFFM, we designed a new model, named
MSTN (w/o MFFM). MSTN (w/o MFFM) is a new model
that remove all skip connections between different scales and
replace all MFFMs in the MSTN (baseline) with residual
blocks (RBs). In TABLE IV and Fig. 9, we provide the PSNR
results and training curves of MSTN (baseline) and MSTN
(w/o MFFM). According to the results, we can find that when
MFFMs are replaced by RBs, the performance of the model
drops by 0.34dB. This greatly illustrates the effectiveness of
MFFM. Meanwhile, this illustrates the importance of multi-
scale features and the rationality of MFFM design.

3) Effectiveness of Multi-scale Architecture: As shown in
Fig. 2, MSTN adopts the pyramid-like structure to obtained
multi-scale image features. In this paper, the final version of
MSTN set i = 5 and j = 5. This means that MSTN can extract
image features with 5 different scales. In order to show the
performance of the model under different scales, we designed
a new set of models, and set i = 2, j = 2, i = 3, j = 3, i =
4, j = 4, i = 6, j = 6, respectively. This setting makes these
models can extract different number of scales image features.
In Fig. 10, we show the performance and parameters changes
of these models. Obviously, the PSNR result increases as the
scale number increases. Meanwhile, we can observe that when
the number of scales continues to increase (such as i = 6
and j = 6), the model performance can be further improved.
This means that the results reported in this paper are not the
best results of MSTN. However, it cannot be ignored that the

2 3 4 5 6
The number of scales

23.0

25.5

28.0

30.5

33.0

PS
NR

Scale=2, parameters=0.23M

Scale=3, parameters=1.10M

Scale=4, parameters=4.65M

Scale=5, parameters=18.91M
Scale=6, parameters=76.05M

Effectiveness of Multi-scale Architecture:

Fig. 10. Study the effectiveness of multi-scale architecture on SOTS (indoor).

TABLE V
STUDY THE EFFECTIVENESS OF MULTI-SCALE ARCHITECTURE ON SOTS

(INDOOR). THE BEST RESULT ARE HIGHLIGHTED.

PSNR SSIM Dark gray Blue Orange Gray

23.05 0.881 X

27.03 0.943 X

29.56 0.951 X

30.45 0.960 X

parameter quantity will increase as the scale number increases.
Therefore, the number of scale can be selected according to
actual demands. We set i = 5, j = 5 in this paper to achieve
a good balance between the model size and performance.

As shown in Fig. 2, we marked 4 roadmaps (Data Flow) on
MSTN with different colors. This represents four simplified
versions of MSTN with different structures. It is worth noting
that, except for the modules marked with ”data flow”, the
modules in these 4 models have been removed. Meanwhile,
these 4 models all have 4 MFFMs. The only difference
between these 4 models is they can extract different types
of multi-scale image features. Specifically, the case 1 model
(dark gray data flow) is a flat model, which can only extract
image features with one scale. The case 4 model (gray data
flow) is a multi-scale model, which can extract rich multi-
scale image features. According to the TABLE V, we can
clearly observe that when the model can extract more different

TABLE VI
INVESTIGATIONS OF THE MODEL SIZE AND EXECUTION TIME.

Method Param. Platform Times (s)

DCP - Matlab 1.532
CAP - matlab 0.808

DehazeNet 0.08M Matlab 1.102
MSCNN 0.08 matlab 2.48

NLD - matlab 9.89
AodNet 0.02M Mat-Caffe 0.402

GFN 0.51M Mat-Caffe 1.373
DCPDN 66.89M Pytorch 0.248

GDN 0.96M Pytorch 0.0150
DFF 31.35M Pytorch 0.0202
Ours 18.91M Pytorch 0.0139
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Fig. 11. Investigations of the model size and execution time.

scales image features, the model can achieve better results.
All these experiments proved the importance of multi-scale
image features and the effectiveness of the designed multi-
scale architecture.

B. Study of Model Model Size and Execution Time

Various large size image dehazing models have been pro-
posed in recent years. These models always accompanied by
numerous parameters, which means that these models require
more storage space, computing resources, and execution time.
In this paper, we aim to explore an efficient and accurate image
dehazing model. Therefore, we need a more efficient network
structure, not just increase the model parameters and depth.
In TABLE VI we show the comparison of model parameters
and execution time. Notice that all repoted models use the
released code and test on the same workstation. The time is
the average time required for recovering 500 images of the size
of 620×460. In Fig. 11, we intuitively display the comparison
of model size, execution time, and performance of each models
in the form of dot chart. According to the figure, we can draw
the following conclusions: (1). Compared with lightweight
models (e.g., DCP, MSCNN, AODNet, DehazeNet, GFN,
GDN), the performance of MSTN is greatly improved; (2).
Compared with large models (e.g., DFF and DCPDN), MSTN
achieves better results with fewer parameters; (3). Compared
with all reported image dehaizng models, MSTN achieves
better results with less execution time. In summary, MSTN
achieves a well balance between model performance, size,
and execution time, which provide new solution for real-time
image dehazing.
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Fig. 12. Quantitative comparisons on DID-MDN [38]. The best and second
best results are highlighted with red and blue fonts, respectively.

C. Exploring on Other Image Restoration Task

In this paper, MSTN is proposed for the task of single
image dehazing. According to our observation, MSTN is an
efficient and accurate multi-scale topological network that can
not only suitable for the image dehazing task. In order to
explore the performance of MSTN on other image restoration
tasks, we transfer MSTN to the task of single image deraining.
Similar to image dehazing, the task of image deraining aims
to reconstruct a clean image from the rain image. Following
previous works, we use DID-MDN [38] to retrain our MSTN
and compare it with 10 image deraining models, including
DSC [46], GMM [47], CNN [48], JORDER [49], DDN [50],
JBO [51], DID-MDN [38], RESCAN [52], PreNet [53], and
MSPFN [54]. PSNR and SSIM results are provide in Fig. 12.
According to the figure, we can clearly observe that MSTN
achieves the best results in both PSNR and SSIM. This further
proves the effectiveness of MSTN. This also means that MSTN
is a highly scalable model that can be applied to other image
restoration tasks. In future works, we will further verify the
versatility and robustness of MSTN on other image restoration
tasks like image desnowing and image denoising.

D. Study on Hazy Images

In Fig. 7, we provide the image reconstructed by MSTN
on the RESIDE-SOTS [33] (Outdoor) dataset. According to
the figure, we can clearly observe that MSTN can reconstruct
more clear images compared to other models. Moreover,
we found that the image reconstructed by our MSTN is
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Fig. 13. Study on hazy images (RESIDE-SOTS [33] (Outdoor)). Obviously, MSTN can reconstruct clear and high-quality haze-free images.

even clearer than the GT (Ground-Truth) image (Fig. 13).
This phenomenon attracted our attention. Therefore, we re-
investigated the RESIDE-SOTS [33] (Outdoor) dataset. This
dataset contains 500 indoor hazy iamges and all these images
are synthetic image. We investigated these images and found
that these images contain different concentrations of haze
itself. Therefore, part of the GT images in this dataset are
hazy. However, there are plenty of clear GT images in the
training dataset, thus the powerful learning ability of MSTN
can learn how to reconstruct haze-free images from the hazy
image. Therefore, our MSTN can reconstruct clearer images
than GT images. This is because the dehazing ability learned
by MSTN can remove the haze from the GT image itself. In
Fig. 8, we provide the reconstruction results of MSTN on real
hazy images. Obviously, MSTN can reconstruct high-quality
haze-free images on real hazy images. This further proves the
effectiveness and practicality of MSTN.

VI. CONCLUSIONS

In this paper, we proposed an efficient and accurate Multi-
scale Topological Network (MSTN) for single image dehaizng,
which achieved competitive results on multiple datasets.
MSTN adopts a new type of multi-scale topological archi-
tecture, which provides a large number of search paths and
topological sub-networks that can fully extract image features
from the input hazy image and improve the model stabil-
ity and robustness. Meanwhile, we proposed a Multi-scale
Feature Fusion Module (MFFM) and an Adaptive Feature
Selection Module (AFSM) to realize the automatic trans-
mission, selection, and fusion of multi-scale image features.
Extensive experiments show that this special structure makes
our model can extract rich image features to reconstruct high-
quality haze-free images with texture details. Additionally, we
achieved promising results by applying the model to other
image restoration tasks such as image deraining. This further
proves the effectiveness and versatility of the model. In future
works, we will further verify the performance of the proposed
model in more image restoration tasks.
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