
 Open access Journal Article DOI:10.1145/1806907.1806912

Efficient and accurate nearest neighbor and closest pair search in high-dimensional
space — Source link

Yufei Tao, Ke Yi, Cheng Sheng, Panos Kalnis

Institutions: The Chinese University of Hong Kong, Hong Kong University of Science and Technology,
King Abdullah University of Science and Technology

Published on: 30 Jul 2010 - ACM Transactions on Database Systems (ACM)

Topics: Nearest neighbor search, Locality-sensitive hashing, Closest pair of points problem, iDistance and
Search engine indexing

Related papers:

 Locality-sensitive hashing scheme based on p-stable distributions

 Similarity Search in High Dimensions via Hashing

 Approximate nearest neighbors: towards removing the curse of dimensionality

 Multi-probe LSH: efficient indexing for high-dimensional similarity search

 Locality-sensitive hashing scheme based on dynamic collision counting

Share this paper:

View more about this paper here: https://typeset.io/papers/efficient-and-accurate-nearest-neighbor-and-closest-pair-
2tyu7y5dbm

https://typeset.io/
https://www.doi.org/10.1145/1806907.1806912
https://typeset.io/papers/efficient-and-accurate-nearest-neighbor-and-closest-pair-2tyu7y5dbm
https://typeset.io/authors/yufei-tao-qn8ceevu25
https://typeset.io/authors/ke-yi-3t2otnjq6h
https://typeset.io/authors/cheng-sheng-2n6rg0ajbv
https://typeset.io/authors/panos-kalnis-4uv67ie2io
https://typeset.io/institutions/the-chinese-university-of-hong-kong-ip453ffv
https://typeset.io/institutions/hong-kong-university-of-science-and-technology-12v0kbw1
https://typeset.io/institutions/king-abdullah-university-of-science-and-technology-2y16vyzb
https://typeset.io/journals/acm-transactions-on-database-systems-4z4payqv
https://typeset.io/topics/nearest-neighbor-search-2abtjlqb
https://typeset.io/topics/locality-sensitive-hashing-3sgz8t0y
https://typeset.io/topics/closest-pair-of-points-problem-2pcl8dx7
https://typeset.io/topics/idistance-2zoenbcm
https://typeset.io/topics/search-engine-indexing-mr1kox2j
https://typeset.io/papers/locality-sensitive-hashing-scheme-based-on-p-stable-4wdnkpkjck
https://typeset.io/papers/similarity-search-in-high-dimensions-via-hashing-27z92j627a
https://typeset.io/papers/approximate-nearest-neighbors-towards-removing-the-curse-of-27lmlz5prr
https://typeset.io/papers/multi-probe-lsh-efficient-indexing-for-high-dimensional-12607gn8mw
https://typeset.io/papers/locality-sensitive-hashing-scheme-based-on-dynamic-collision-2e28vadr8r
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/efficient-and-accurate-nearest-neighbor-and-closest-pair-2tyu7y5dbm
https://twitter.com/intent/tweet?text=Efficient%20and%20accurate%20nearest%20neighbor%20and%20closest%20pair%20search%20in%20high-dimensional%20space&url=https://typeset.io/papers/efficient-and-accurate-nearest-neighbor-and-closest-pair-2tyu7y5dbm
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/efficient-and-accurate-nearest-neighbor-and-closest-pair-2tyu7y5dbm
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/efficient-and-accurate-nearest-neighbor-and-closest-pair-2tyu7y5dbm
https://typeset.io/papers/efficient-and-accurate-nearest-neighbor-and-closest-pair-2tyu7y5dbm

Efficient and Accurate Nearest Neighbor and

Closest Pair Search in High Dimensional Space

YUFEI TAO (Chinese University of Hong Kong)

KE YI (Hong Kong University of Science and Technology)

CHENG SHENG (Chinese University of Hong Kong)

PANOS KALNIS (King Abdullah University of Science and Technology)

Nearest neighbor (NN) search in high dimensional space is an important problem in many appli-
cations. From the database perspective, a good solution needs to have two properties: (i) it can

be easily incorporated in a relational database, and (ii) its query cost should increase sub-linearly
with the dataset size, regardless of the data and query distributions. Locality sensitive hashing
(LSH) is a well-known methodology fulfilling both requirements, but its current implementations

either incur expensive space and query cost, or abandon its theoretical guarantee on the quality
of query results.

Motivated by this, we improve LSH by proposing an access method called the locality sensitive
B-tree (LSB-tree) to enable fast, accurate, high-dimensional NN search in relational databases.

The combination of several LSB-trees forms a LSB-forest that has strong quality guarantees,
but improves dramatically the efficiency of the previous LSH implementation having the same
guarantees. In practice, the LSB-tree itself is also an effective index, which consumes linear space,
supports efficient updates, and provides accurate query results. In our experiments, the LSB-tree

was faster than (i) iDistance (a famous technique for exact NN search) by two orders of magnitude,
and (ii) MedRank (a recent approximate method with non-trivial quality guarantees) by one order
of magnitude, and meanwhile returned much better results.

As a second step, we extend our LSB technique to solve another classic problem, called closest
pair (CP) search, in high dimensional space. The long-term challenge for this problem has been to
achieve sub-quadratic running time at very high dimensionalities, which fails most of the existing
solutions. We show that, using a LSB-forest, CP search can be accomplished in (worst-case) time
significantly lower than the quadratic complexity, yet still ensuring very good quality. In practice,
accurate answers can be found using just two LSB-trees, thus giving a substantial reduction in the
space and running time. In our experiments, our technique was faster (i) than distance browsing
(a well-known method for solving the problem exactly) by several orders of magnitude, and (ii)

than D-shift (an approximate approach with theoretical guarantees in low-dimensional space) by
one order of magnitude, and at the same time, outputs better results.

Categories and Subject Descriptors: H2.2 [Database Management]: Access Methods; H3.3
[Information Storage and Retrieval]: Information Search and Retrieval

Author’s address: Y. Tao (taoyf@cse.cuhk.edu.hk), Department of Computer Science and Engi-

neering, Chinese University of Hong Kong, Sha Tin, Hong Kong. K. Yi (yike@cse.ust.hk), Depart-
ment of Computer Science and Engineering, Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong. C. Sheng (csheng@cse.cuhk.edu.hk), Department of Computer

Science and Engineering, Chinese University of Hong Kong, Sha Tin, Hong Kong. P. Kalnis
(panos.kalnis@kaust.edu.sa), Division of Mathematical and Computer Sciences and Engineering,
King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 ·
General Terms: Theory, Algorithms, Experimentation

Additional Key Words and Phrases: Locality Sensitive Hashing, Nearest Neighbor Search, Closest

Pair Search

1. INTRODUCTION

Nearest neighbor (NN) search is a classic problem with tremendous impacts on
artificial intelligence, pattern recognition, information retrieval, and so on. Let D
be a set of points in d-dimensional space. Given a query point q, its NN is the
point o∗ ∈ D closest to q. Formally, there is no other point o ∈ D satisfying
‖o, q‖ < ‖o∗, q‖, where ‖, ‖ denotes the distance of two points.

In this paper, we consider high-dimensional NN search. Some studies [Beyer
et al. 1999] argue that high-dimensional NN queries may not be meaningful. On
the other hand, there is also evidence [Bennett et al. 1999] that such an argument
is based on restrictive assumptions. Intuitively, a meaningful query is one where
the query point q is much closer to its NN than to most data points. This is true in
many applications involving high-dimensional data, as supported by a large body
of recent works [Andoni and Indyk 2006; Athitsos et al. 2008; Ciaccia and Patella
2000; Datar et al. 2004; Fagin et al. 2003; Ferhatosmanoglu et al. 2001; Gionis et al.
1999; Goldstein and Ramakrishnan 2000; Har-Peled 2001; Houle and Sakuma 2005;
Indyk and Motwani 1998; Li et al. 2002; Lv et al. 2007; Panigrahy 2006].

Sequential scan trivially solves a NN query by examining the entire dataset D,
but its cost grows linearly with the cardinality of D. From the database perspective,
a good solution should satisfy two requirements: (i) it can be easily implemented
in a relational database, and (ii) its query cost should increase sub-linearly with the
cardinality for all data and query distributions. Despite the bulk of NN literature
(see Section 8), with a single exception to be explained shortly, we are not aware
of any existing solution that is able to fulfill both requirements at the same time.
Specifically, a majority of them (e.g., those based on new indexes [Arya et al.
1998; Goldstein and Ramakrishnan 2000; Har-Peled 2001; Houle and Sakuma 2005;
Lin et al. 1994]) demand non-relational features, and thus cannot be incorporated
in a commercial system. There also exist relational solutions (such as iDistance

[Jagadish et al. 2005] and MedRank [Fagin et al. 2003]), which are experimentally
shown to perform well for some datasets and queries. Their drawback is that they
may incur expensive query cost on other datasets.

Locality sensitive hashing (LSH) is the only known solution that satisfies both
requirements (i) and (ii). It supports c-approximate NN search. Formally, a point
o is a c-approximate NN of q if its distance to q is at most c times the distance from
q to its exact NN o∗, namely, ‖o, q‖ ≤ c‖o∗, q‖, where c ≥ 1 is the approximation

ratio. It is widely recognized that approximate NNs already fulfill the needs of many
applications [Andoni and Indyk 2006; Arya et al. 1998; Athitsos et al. 2008; Datar
et al. 2004; Ferhatosmanoglu et al. 2001; Gionis et al. 1999; Har-Peled 2001; Houle
and Sakuma 2005; Indyk and Motwani 1998; Krauthgamer and Lee 2004; Li et al.
2002; Lv et al. 2007; Panigrahy 2006]. LSH was originally proposed as a theoretical
method [Indyk and Motwani 1998] with attractive asymptotical space and query

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 3

performance. As elaborated in Section 3, its practical implementation can be either
rigorous or adhoc. Specifically, rigorous-LSH ensures good quality of query results
(i.e., small approximation ratio c), but requires expensive space and query cost.
Although adhoc-LSH is more efficient, it abandons quality control, i.e., the neighbor
it outputs can be arbitrarily bad. In other words, no LSH implementation is able
to ensure both quality and efficiency simultaneously, which is a serious problem
severely limiting the applicability of LSH.

Motivated by this, we propose an access method called locality sensitive B-tree

(LSB-tree) that enables fast high-dimensional NN search with excellent quality.
The combination of several LSB-trees leads to a structure called the LSB-forest

that combines the advantages of both rigorous- and adhoc-LSH, without sharing
their shortcomings. Specifically, the LSB-forest has the following features. First, its
space consumption is the same as adhoc-LSH, and significantly lower than rigorous-

LSH, typically by a factor over an order of magnitude. Second, it retains the
approximation guarantee of rigorous-LSH (recall that adhoc-LSH has no such guar-
antee). Third, its query cost is substantially lower than adhoc-LSH, and as an
immediate corollary, sub-linear to the dataset size. Finally, the LSB-forest adopts
purely relational technology, and hence, can be easily incorporated in a commercial
system.

All LSH implementations require replicating the database multiple times, and
therefore, entail large space consumption and update overhead. Many applications
prefer an index that consumes only linear space, and supports insertions/deletions
efficiently. The LSB-tree itself meets all these requirements, by storing every data
point once in a conventional B-tree. Based on real datasets, we experimentally
compared the LSB-tree to iDistance [Jagadish et al. 2005], which is a famous tech-
nique for exact NN search, and to MedRank [Fagin et al. 2003], which is a recent
approximate method with non-trivial quality guarantees. The LSB-tree outper-
formed iDistance by two orders of magnitude, well confirming the advantage of
approximate retrieval. Compared to MedRank, our technique was consistently su-
perior in both query efficiency and result quality. Specifically, the LSB-tree was
faster by one order of magnitude, and at the same time, returned neighbors with
much better quality.

As a second step, we tackle another classic problem, called closest pair (CP)
search, in high-dimensional space. Here, given a set D of points, the goal is to
find two points whose distance is the smallest among all pairs of points in D. This
problem has abundant applications in geographic information systems, clustering,
and numerous matching problems (such as stable marriage [Wong et al. 2007]), and
has been very well solved in low dimensional space [Corral et al. 2000; Hjaltason
and Samet 1998; Lenhof and Smid 1992]. When the dimensionality increases, the
challenge has been to achieve sub-quadratic running time, namely, faster than the
naive approach that simply examines each pair of points in D. Algorithms that work
well in low-dimensional space generally see their computation cost quickly climb to
quadratic even at a moderate dimensionality. The c-approximate version of the CP
problem is to return a pair of points with distance at most c times the distance
of the closest pair. The dimensionality curse haunts this approximate version, too.
For example, when the dimensionality can be viewed as a constant, Lopez and Liao

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 ·
[Lopez and Liao 2000] propose an algorithm, which we call D-shift, with a constant
approximation ratio (i.e., c = O(1)). As the dimensionality grows, however, their
approximation ratio increases super-linearly, and thus, becomes unattractive very
soon.
We conquer the above challenge in this paper by giving an algorithm that runs in

time significantly lower than the quadratic complexity and meanwhile, gives a very
good worst-case guarantee on the quality of results (approximation ratio around
2), regardless of the dimensionality. As in the NN context, although such nice the-
oretical performance demands a full LSB-forest, in practice only 2 LSB-trees are
already sufficient to return accurate results, thus substantially reducing the space
and query cost. In the experiments, we compared the proposed algorithms against
distance browsing [Corral et al. 2000], which is a well-cited exact solution, and the
D-shift algorithm mentioned earlier. Our technique was faster than distance brows-

ing by several orders of magnitude, and than D-shift by one order of magnitude.
Moreover, our solutions returned much more accurate answers than D-shift.
The rest of the paper is organized as follows. Section 2 presents the problem

settings and our objectives. Section 3 points out the defects of the existing LSH
implementations. Section 4 explains the construction and NN search algorithms
of the LSB-tree, and Section 5 establishes its performance guarantees. Section 6
extends the LSB-tree to provide additional tradeoffs between space/query cost and
the quality of query results. Section 7 explains how to use LSB-trees for closest
pair search. Section 8 reviews the previous work directly related to ours. Section 9
contains an extensive experimental evaluation. Finally, Section 10 concludes the
paper with a summary of our findings.

2. PROBLEM SETTINGS

Without loss of generality, we assume that each dimension has a range [0, t], where
t is an integer. Following the LSH literature [Datar et al. 2004; Gionis et al. 1999;
Indyk and Motwani 1998], in analyzing the quality of query results, we assume that
all coordinates are integers, so that we can put a lower bound of 1 on the distance
between two different points. In fact, this is not a harsh assumption because, with
proper scaling, we can convert the real numbers in most applications to integers.
In any case, this assumption is needed only in theoretical analysis; neither the
proposed structure nor our query algorithms rely on it.
We consider that distances are measured by ℓp norm, which has extensive ap-

plications in machine learning, physics, statistics, finance, and many other disci-
plines. Moreover, as ℓp norm generalizes or approximates several other metrics, our
technique is directly applicable to those metrics as well. For example, in case all
dimensions are binary (i.e., having only 2 distinct values), ℓ1 norm is exactly Ham-
ming distance, which is widely employed in text retrieval, time-series databases,
etc. Hence, our technique can be immediately applied in those applications, too.
The main problem studied is c-approximate NN search, where c is a positive

integer. As mentioned in Section 1, given a point q, such a query returns a point
o in the dataset D, such that the distance ‖o, q‖ between o and q is at most c
times the distance between q and its real NN o∗. We assume that q is not in D.
Otherwise, the NN problem becomes a lookup query, which can be easily solved

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 5

by standard hashing. A direct extension of NN queries is kNN search, which finds
the k points in D closest to q. The c-approximate version of kNN search aims at
returning k points, where the i-th (1 ≤ i ≤ k) one is a c-approximation of the real
i-th nearest neighbor. Formally, let o∗1, ..., o

∗
k be the real k NNs in ascending order

of their distances to q. Then, a set of points o1, ..., ok (also sorted in the same way)
is a c-approximate answer if ‖oi, q‖ ≤ c‖o∗i , q‖ for all i ∈ [1, k].

We consider that the dataset D resides in external memory where each page has
B words. Furthermore, we follow the convention that every integer or real number
is represented with one word. Since a point has d coordinates, the entire D occupies
totally dn/B pages, where n is the cardinality of D. In other words, all algorithms,
which do not have provable sub-linear cost growth with n, incur I/O complexity
Ω(dn/B). Our objective is to design a relational solution beating this complexity.
The second problem solved in this paper is c-approximate CP search. Specifically,

let us define the closest pair in D to be the pair of points (o∗1, o
∗
2) having the

minimum distance among all pairs of points in D. Then the goal of c-approximate
CP search is to return a pair of points (o1, o2) in D whose distance is at most c
times the distance of the closest pair, namely, ‖o1, o2‖ ≤ c‖o∗1, o∗2‖. A naive solution
examines all pairs of points, and thus, has time complexity quadratic to n. Note
that the CP problem has a bichromatic counterpart, which includes two datasets D1

and D2. Here, the exact answer (o
∗
1, o

∗
2) is the one with the smallest distance in the

cartesian product D1×D2, and a c-approximate answer is a pair (o1, o2) ∈ D1×D2

such that ‖o1, o2‖ ≤ c‖o∗1, o∗2‖. These two CP problems can also be extended to
kCP search, whose c-approximate version can be defined in the same fashion as
c-approximate kNN.
We denote by M the amount of available memory, measured in number of words.

Unless specifically stated, M can be as small as 3B for our algorithms to work (i.e.,
there are at least 3 memory pages). This, however, excludes the memory needed
to store the query results. Specifically, a set of kNN or kCP result requires O(kd)
extra words in memory, which we assume can be afforded.
Our theoretical analysis assumes that a point can fit in a constant number of

disk pages (i.e., d = O(B)), which is almost always true in reality. For instance,
we may set the constant to 10, thus comfortably supporting dimensionality up to
10B. Also, to simplify the resulting bounds, we assume that the dimensionality d
is at least log(n/B) (all the logarithms, unless explicitly stated, have base 2). This
is reasonable because, for practical values of n and B, log(n/B) seldom exceeds 20,
whereas d = 20 is barely “high-dimensional”.

3. THE PRELIMINARIES

Our solutions leverage LSH as the building brick. In Sections 3.1 and 3.2, we
discuss the drawbacks of the existing LSH implementations, and further motivate
our methods. In Section 3.3, we present the technical details of LSH that are
necessary for our discussion.

3.1 Rigorous-LSH and ball cover

As a matter of fact, LSH does not solve c-approximate NN queries directly. Instead,
it is designed [Indyk and Motwani 1998] for a different problem called c-approximate

ball cover (BC). Let D be a set of points in d-dimensional space. Denote by B(q, r)

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 ·
a ball that centers at the query point q and has radius r. A c-approximate BC
query returns the following result:

(1) If B(q, r) covers at least one point in D, return a point whose distance to q is
at most cr.

(2) If B(q, cr) covers no point in D, return nothing.

(3) Otherwise, the result is undefined.

Fig. 1. Illustration of ball cover queries

Figure 1 shows an example where D has two points o1 and o2. Consider first
the 2-approximate BC query q1 (the left black point). The two circles centering at
q1 represent balls B(q1, r) and B(q1, 2r) respectively. Since B(q1, r) covers a data
point o1, the query will have to return a point, but it can be either o1 or o2, as
both of them fall in B(q1, 2r). Now, consider the 2-approximate BC query q2. Since
B(q2, 2r) does not cover any data point, the query must return empty.
Interestingly, an approximate NN query can be reduced to a number of approxi-

mate BC queries with different radii r [Har-Peled 2001; Indyk and Motwani 1998].
The rationale is that: if ball B(q, r) is empty but B(q, cr) is not, then any point in

B(q, cr) is a c-approximate NN of q. Consider the query point q in Figure 2. Here,
ball B(q, r) is empty, but B(q, cr) is not. It follows that the NN of q must have a
distance between r and cr to q. Hence, any point in B(q, cr) (i.e., either o1 or o2)
is a c-approximate NN of q.

B q r

B q cr

q

o1

o2

Fig. 2. The rationale of the reduction from nearest neighbor to ball cover queries

Based on this idea, Indyk and Motwani [Indyk and Motwani 1998] propose a
structure that supports c-approximate BC queries at r = 1, c, c2, c3, ..., x re-
spectively, where x is the smallest power of c that is larger than or equal to td
(recall that t is the greatest coordinate on each dimension). They give an algo-
rithm [Indyk and Motwani 1998] to guarantee an approximation ratio of c2 for

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 7

NN search (in other words, we need a structure for
√
c-approximate BC queries

to support c-approximate NN retrieval). Their method, which we call rigorous-
LSH, consumes O((logc t + logc d) · (dn/B)1+1/c) space, and answers a query in
O((logc t+ logc d) · (dn/B)1/c) I/Os. Note that t can be a large value, thus making
the space and query cost potentially very expensive. Our LSB-tree will eliminate
the factor logc t+ logc d completely.
Finally, it is worth mentioning that there exist complicated NN-to-BC reductions

[Har-Peled 2001; Indyk and Motwani 1998] with better complexities. However,
those reductions are highly theoretical, and are difficult to implement in relational
databases.

3.2 Adhoc-LSH

Although rigorous-LSH is theoretically sound, its space and query cost is pro-
hibitively expensive in practice. The root of the problem is that it must support
BC queries at too many (i.e., logc t+ logc d) radii. Gionis et al. [Gionis et al. 1999]
remedy this drawback with a heuristic approach, which we refer to as adhoc-LSH.
Given a NN query q, they return directly the output of the BC query that is at
location q and has radius rm, where rm is a “magic” radius pre-determined by the
system. Since only one radius needs to be supported, adhoc-LSH improves rigorous-
LSH by requiring only O((dn/B)1+1/c) space and O((dn/B)1/c) query time.

Unfortunately, the cost saving of adhoc-LSH trades away the quality control on
query results. To illustrate, consider Figure 3a, where the dataset D has 7 points
o1, o2, ..., o7, and the black point is a NN query q. Suppose that adhoc-LSH

is set to support 2-approximate BC queries at radius rm. Thus, it answers the
NN query q by finding a data point that satisfies the 2-approximate BC query
located at q with radius rm. The two circles in Figure 3a represent B(q, rm) and
B(q, 2rm) respectively. As B(q, rm) covers some data of D, (by the definition stated
in the previous subsection) the BC query q may return any of the 7 data points in
B(q, 2rm). It is clear that no bounded approximation ratio can be ensured, as the
real NN o1 of q can be arbitrarily close to q.

(a) rm too large (b) rm too small

Fig. 3. Drawbacks of adhoc-LSH

The above problem is caused by an excessively large rm. Conversely, if rm is too
small, adhoc-LSH may not return any result at all. To see this, consider Figure 3b.
Again, the white points constitute the dataset D, and the two circles are B(q, rm)

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 ·
and B(q, 2rm). As B(q, 2rm) is empty, the 2-approximate BC query q must not
return anything. As a result, adhoc-LSH reports nothing too, and is said to have
missed the query [Gionis et al. 1999].
Adhoc-LSH performs well if rm is roughly equivalent to the distance between q

and its exact NN, which is why adhoc-LSH can be effective when given the right rm.
Unfortunately, finding such an rm is non-trivial. Even worse, such rm may not exist
at all because an rm good for some queries may be bad for others. Figure 4 presents
a dataset with two clusters whose densities are drastically different. Apparently, if
a NN query q falls in cluster 1, the distance from q to its NN is significantly smaller
than if q falls in cluster 2. Hence, it is impossible to choose an rm that closely
captures the NN distances of all queries. Note that clusters with different densities
are common in real datasets [Breunig et al. 2000].

Fig. 4. No good rm exists if clusters have different densities

Recently, [Lv et al. 2007] present a variation of adhoc-LSH with less space con-
sumption. This variation, however, suffers from the same drawback (i.e., no quality
control) as adhoc-LSH, and entails higher query cost than adhoc-LSH.
In summary, currently a practitioner, who wants to apply LSH, faces a dilemma

between space/query efficiency and approximation guarantee. If the quality of the
retrieved neighbor is crucial (as in security systems such as finger-print verification),
a huge amount of space is needed, and large query cost must be paid. On the other
hand, to meet a tight space budget or stringent query time requirement, one would
have to sacrifice the quality guarantee of LSH, which somewhat ironically is exactly
the main strength of LSH.

3.3 Details of hash functions

Let h(o) be a hash function that maps a d-dimensional point o to a one-dimensional
value. It is locality sensitive if the chance of mapping two points o1, o2 to the same
value grows as their distance ‖o1, o2‖ decreases. Formally:

Definition 1 (LSH). Given a distance r, approximation ratio c, probability
values p1 and p2 such that p1 > p2, a hash function h(.) is (r, cr, p1, p2) locality

sensitive if it satisfies both conditions below:

1. If ‖o1, o2‖ ≤ r, then Pr[h(o1) = h(o2)] ≥ p1;

2. If ‖o1, o2‖ > cr, then Pr[h(o1) = h(o2)] ≤ p2.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 9

LSH functions are known for many distance metrics. For ℓp norm, a popular LSH
function is defined as follows [Datar et al. 2004]:

h(o) =

⌊

~a · ~o+ b

w

⌋

. (1)

Here, ~o represents the d-dimensional vector representation of a point o; ~a is another
d-dimensional vector where each component is drawn independently from a so-called
p-stable distribution [Datar et al. 2004]; ~a · ~o denotes the dot product of these two
vectors. w is a sufficiently large constant, and finally, b is uniformly drawn from
[0, w).
Equation 1 has a simple geometric interpretation. To illustrate, let us consider

p = 2, i.e., ℓp is Euclidean distance. In this case, a 2-stable distribution can be
just a normal distribution (mean 0, variance 1), and it suffices to set w = 4 [Datar
et al. 2004]. Assuming dimensionality d = 2, Figure 5 shows the line that crosses
the origin, and its slope coincides with the direction of ~a. For convenience, assume
that ~a has a unit norm, so that the dot product ~a · ~o is the projection of point o
onto line ~a, namely, point A in the figure. The effect of ~a · ~o+ b is to shift A by a
distance b (along the line) to a point B. Finally, imagine we partition the line into
intervals with length w; then, the hash value h(o) is the ID of the interval covering
B.

Fig. 5. Geometric interpretation of LSH

The intuition behind such a hash function is that, if two points are close to each
other, then with high probability their shifted projections (on line ~a) will fall in
the same interval. On the other hand, two faraway points are very likely to be
projected into different intervals. The following is proved in [Datar et al. 2004]:

Lemma 1 (Proved in [Datar et al. 2004]). Equation 1 is (1, c, p1, p2) local-

ity sensitive, where p1 and p2 are two constants satisfying ln 1/p1

ln 1/p2

≤ 1
c .

4. LSB-TREE

This section includes everything that a practitioner needs to know to apply LSB-
trees. Specifically, Section 4.1 explains how to build a LSB-tree, and Section 4.2
gives its NN algorithm. We will leave all the theoretical analysis to Section 5,

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 ·
including its space, query performance, and quality guarantee. For simplicity, we
will assume ℓ2 norm but the extension to arbitrary ℓp norms is straightforward.

4.1 Building a LSB-tree

The construction of a LSB-tree is very simple. Given a d-dimensional dataset D,
we first convert each point o ∈ D to an m-dimensional point G(o), and then, obtain
the Z-order value z(o) of G(o). Note that z(o) is just a simple number. Hence, we
can index all the resulting Z-order values with a conventional B-tree, which is the
LSB-tree. The coordinates of o are stored along with its leaf entry. Next, we clarify
the details of each step.

From o to G(o). We set the dimensionality m of G(o) as

m = log1/p2
(dn/B) (2)

where p2 is the constant given in Lemma 1 under c = 2, n is the size of dataset D,
and B is the page size. As explained in Section 5, this choice of m makes it rather
unlikely that the G(o1) and G(o2) of two far-away points o1, o2 are similar on all
m dimensions. Note that, the choice of c = 2 is not compulsory, and our technique
can be adapted to any integer c ≥ 2, as discussed in Section 6.
The derivation of G(o) is based on a family of hash functions:

H(o) = ~a · ~o+ b∗. (3)

Here, ~a is a d-dimensional vector where each component is drawn independently
from the normal distribution (mean 0 and variance 1). Value b∗ is uniformly dis-
tributed in [0, 2fw), where w is any constant at least 4, and

f = ⌈log d+ log t⌉. (4)

Recall that t is the largest coordinate on each dimension. Note that while ~a and
w are the same as in Equation 1, b∗ is different, which is an important design
underlying the efficiency of the LSB-tree (as elaborated in Section 5 with Lemma 2).
We randomly select m functions H1(.), ..., Hm(.) independently from the family

described by Equation 3. Then, G(o) is the m-dimensional vector:

G(o) = 〈H1(o), H2(o), ..., Hm(o)〉. (5)

From G(o) to z(o). Let U be the axis length of the m-dimensional space G(o)
falls in. As explained shortly, we will choose a value of U such that U/w is a power
of 2. Computation of a Z-order curve requires a hyper-grid partitioning the space.
We impose a grid where each cell is a hyper-square with side length w; therefore,
there are U/w cells per dimension, and totally (U/w)m cells in the whole grid.
Given the grid, calculating the Z-order value z(o) of G(o) is a standard process
well-known in the literature [Gaede and Gunther 1998]. Let u = log(U/w). Each
z(o) is thus a binary string with um bits.

Example. To illustrate the conversion, assume that the dataset D consists of
4 two-dimensional points o1, o2, ..., o4 as shown in Figure 6a. Suppose that we
select m = 2 hash functions H1(.) and H2(.). Let ~a1 (~a2) be the “~a-vector” in
function H1(.) (H2(.)). For simplicity, assume that both ~a1 and ~a2 have norm 1.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 11

o1

A

a1

a2

o2

o3

o4

deciding H1 o1

b1*

H1 o3

H1 o2

H1 o4

H2 o1
b2*

B

H2 o2

H2 o3

H2 o4

q

(a) Computing hash values (b) Computing Z-order values

Fig. 6. Illustration of data conversion

In Figure 6a, we slightly abuse notations by also using ~a1 (~a2) to denote the line
that passes the origin, and coincides with the direction of vector ~a1 (~a2).

Let us take o1 as an example. The first step of our conversion is to obtain G(o1),
which is a 2-dimensional vector with components H1(o1) and H2(o2). The value of
H1(o1) can be understood in the same way as explained in Figure 5. Specifically,
first project o1 onto line ~a1, and then move the projected point A (along the line)
by a distance b∗1 to a point B. H1(o1) is the distance from B to the origin1. H2(o2)
is computed similarly on line ~a2 (note that the shifting distance is b∗2).
Treating H1(o1) and H2(o2) as coordinates, in the second step, we regard G(o1)

as a point in a data space as shown in Figure 6b, and derive z(o1) as the Z-order
value of point G(o1) in this space. In Figure 6b, the Z-order calculation is based
on a 8 × 8 grid. As G(o1) falls in a cell whose (binary) horizontal and vertical
labels are 010 and 110 respectively, z(o1) equals 011100 (in general, a Z-order value
interleaves the bits of the two labels, starting from the most significant bits [Gaede
and Gunther 1998]).

Choice of U . In practice, U can be any value making U/w a sufficiently large
power of 2. For theoretical reasoning, next we provide a specific choice for U .
Besides U/w being a power of 2, our choice fulfills another two conditions: (i)
U/w ≥ 2f , and (ii) |Hi(o)| is confined to at most U/2 for any i ∈ [1,m].

In the form of Equation 3, for each i ∈ [1,m], write Hi(o) = ~ai · ~o + b∗i . Denote
by ‖~ai‖1 the ℓ1 norm2 of ~ai. Remember that o distributes in space [0, t]d, where t
is the largest coordinate on each dimension. Hence, |Hi(.)| is bounded by

Hmax =
m

max
i=1

(‖~ai‖1 · t+ b∗i). (6)

We thus determine U by setting U/w to the smallest power of 2 that bounds both

1Precisely speaking, it is |H1(o1)| that is equal to the distance. H1(o1) itself can be either positive
or negative, depending on which side of the origin B lies on.
2Given a d-dimensional vector ~a = 〈a[1], a[2], ..., a[d]〉, ‖~a‖1 =

∑d
i=1 |a[i]|.

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 ·
2f and 2Hmax/w from above.

4.2 Nearest neighbor algorithm

In practice, a single LSB-tree already produces query results with very good quality,
as demonstrated in our experiments. To elevate the quality to a theoretical level,
we may independently build a number l of trees. We choose

l =
√

dn/B. (7)

which, as analyzed in Section 5, ensures a high chance for nearby points o1, o2 to
have close Z-order values in at least one tree.
Denote the l trees as T1, T2, ..., Tl respectively, and call them collectively a LSB-

forest. Use zj(o) to represent the Z-order value of o in tree Tj (1 ≤ j ≤ l). Without
ambiguity, we also let zj(o) refer to the leaf entry of o in Tj . Remember that the
coordinates of o are stored in the leaf entry.
Given a NN query q, we first get its Z-order value zj(q) in each tree Tj (1 ≤ j ≤ l).

As with the Z-order values of data points, zj(q) is a binary string with um bits.
We denote by LLCP (zj(o), zj(q)) the length of the longest common prefix (LLCP)
of zj(o) and zj(q). For example, suppose zj(o) = 100101 and zj(q) = 100001;
then LLCP (zj(o), zj(q)) = 3. When q is clear from the context, we may refer to
LLCP (zj(o), zj(q)) simply as the LLCP of zj(o).
Figure 7 presents our nearest neighbor algorithm at a high level. The main idea

is to visit the leaf entries of all l trees in descending order of their LLCPs, until
either enough points have been seen, or we have found a point that is close enough.
Next, we explain the details of lines 2 and 3.

Algorithm NN1

1. repeat
2. pick, from all the trees T1, ..., Tl, the leaf entry with the next greatest LLCP
3. until condition E1 or E2 holds (the two conditions will be clarified later)

4. return the nearest point found so far

Fig. 7. The NN algorithm

Finding the next greatest LLCP. This can be done by a synchronous bi-
directional expansion at the leaf levels of all trees. Specifically, recall that we have
obtained the Z-order value zj(q) in each tree Tj (1 ≤ j ≤ l). Search Tj to locate
the leaf entry ej⊢ with the lowest Z-order value at least zj(q). Let ej⊣ be the leaf
entry immediately preceding ej⊢. To illustrate, Figure 8 gives an example where
each Z-order value has um = 6 bits, and l = 3 LSB-trees are used. The values of
z1(q), z2(q), and z3(q) are given next to the corresponding trees. In T1, for instance,
z1(o1) = 011100 is the lowest among all the Z-order values at least z1(q) = 001110.
Hence, e1⊢ is z1(o1), and e1⊣ is the entry z1(o3) = 001100 preceding z1(o1).

The leaf entry with the greatest LLCP must be in the set S = {e1⊢, e1⊣, ..., el⊢,
el⊣}. Let e ∈ S be this entry. To determine the leaf entry with the next greatest
LLCP, we move e away from q by one position in the corresponding tree, and then
repeat the process. For example, in Figure 8, the leaf entry with the maximum
LLCP is e2⊣ (whose LLCP is 5, as it shares the same first 5 bits with z2(q)). Thus,

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 13

T1 z1 q

e1e1

011100 110010001100000100

T2 z2 q

e2e2

110001 110100011110010001

T3 z3 q

e3e3

101100 101110100111011110

z2(o3)= z2(o2)=z2(o4)=z2(o1)=

z3(o4)= z3(o1)=z3(o3)=z3(o2)=

z1(o1)= z1(o4)=z1(o3)=z1(o2)=

Fig. 8. Bi-directional expansion (um = 6, l = 3)

we shift e2⊣ to its left, i.e., to z2(o1) = 010001. The entry with the next largest
LLCP can be found again in {e1⊢, e1⊣, ..., e3⊢, e3⊣}.

Terminating condition. Algorithm NN1 terminates when one of two events E1

and E2 happens. The first event is:

E1: the total number of leaf entries accessed from all l LSB-trees has reached
4Bl/d.

Event E2 is based on the LLCP of the leaf entry just retrieved from line 2. Denote
the LLCP by v, which bounds from above the LLCP of all the leaf entries that have
not been processed.

E2: the nearest point found so far (from all the leaf entries already inspected) has
distance to q at most 2u−⌊v/m⌋+1.

Let us use again Figure 8 to illustrate algorithm NN1. Assume that the dataset
consists of points o1, o2, ..., o4 in Figure 6a, and the query is the black point q. No-
tice that the Z-order values in tree T1 are obtained according to the transformation
in Figure 6b with u = 3 and m = 2. Suppose that ‖o3, q‖ = 3 and ‖o4, q‖ = 5.
As explained earlier, entry z2(o4) in Figure 8 has the largest LLCP v = 5, and

thus, is processed first. NN1 obtains the object o4 associated with z2(o4), and
calculates its distance to q. Since ‖o4, q‖ = 5 > 2u−⌊v/m⌋+1 = 4, condition E2

does not hold. Assuming E1 is also violated (i.e., let 4Bl/d > 1), the algorithm
processes the entry with the next largest LLCP, which is z1(o3) in Figure 8 whose
LLCP v = 4. In this entry, NN1 finds o3 which replaces o4 as the nearest point
so far. As now ‖o3, q‖ = 3 ≤ 2u−⌊v/m⌋+1 = 4, E2 holds, and NN1 terminates by
returning o3.

Retrieving k neighbors. Algorithm NN1 can be easily adapted to answer kNN
queries. Specifically, it suffices to modify E1 to “the total number of leaf entries

accessed from all l LSB-trees has reached (4Bl/d)+(k−1)l”, and E2 to “q is within

distance 2u−⌊v/m⌋+1 to the k nearest points found so far”. Also, apparently line
4 should return the k nearest points. Finally, the value of l in Equation 7 needs
to be increased by O(log(n)) times. All these changes are to ensure strong quality
guarantees in theory for any k (as will be analyzed in the next Section). In practice,
as long as k is small, only the change to E2 is needed, and E1 and l can remain as
they are for k = 1.

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 ·
kNN search with a single tree. Maintaining a forest of l LSB-trees incurs large
space consumption and update overhead. In practice, we may prefer an index that
has linear space and supports fast data insertions/deletions. In this case, we can
build only one LSB-tree, and use it to process kNN queries. Accordingly, we slightly
modify the algorithm NN1 by simply ignoring eventE1 in the terminating condition
(as this event is designed specifically for querying l trees). ConditionE2, however, is
retained. As a tradeoff for efficiency, querying only a single tree loses the theoretical
guarantees of the LSB-forest (as established in the next section). Nevertheless, this
approach is expected to return neighbors with high quality, because the converted
Z-order values adequately preserve the proximity of the data points in the original
data space.

5. THEORETICAL ANALYSIS

We now proceed to study the theoretical characteristics of the LSB-tree. Denote
by D the original d-dimensional space of the dataset D. Namely, D = [0, t]d, where
t is the maximum coordinate on each axis. Recall that, to construct a LSB-tree, we
convert each point o ∈ D to an m-dimensional point G(o) as in Equation 5. Denote
by G the space where G(o) is distributed. By the way we select U in Section 4.1,
G = [−U/2, U/2]m.

5.1 Quality guarantee

We begin with an observation on the basic LSH in Equation 1:

Observation 1. Given any integer x ≥ 1, define hash function

h′(o) =

⌊

~a · ~o+ bx

w

⌋

(8)

where ~a, b, and w are the same as in Equation 1. h′(.) is (1, c, p1, p2) locality

sensitive, and ln 1/p1

ln 1/p2

≤ 1/c.

Proof. We first point out a useful fact. Imagine a line that has been partitioned
into consecutive intervals of length w. Let A, B be two points on this line with
distance y ≤ w. Shift both points towards right by a distance uniformly drawn
from [0, wλ), where λ is any integer. After this, A and B fall in the same interval
with probability 1− y/w, which is irrelevant to λ.
Consider the hash function h(o) in Equation 1. Use ~a to denote also the line

passing the origin containing vector ~a. As explained in Section 3.3, ~a · ~o decides
a point in Line ~a, and ~a · ~o + b shifts the point away from the origin by distance
b along the line. Call it the shifted projection of o. Let us partition line ~a with
intervals of length w. By Equation 1, two objects o1, o2 have the same hash value
if and only if their shifted projections fall in the same interval.
Now assume that we change the shifting distance from b to bx. Since b is uniformly

distributed in [0, w), bx is uniformly distributed in [0, wx). Hence, the change does
not alter the probability for the shifted projections of o1 and o2 to fall in the same
interval. This means that Equation 8 is also (1, c, p1, p2) locality sensitive with the
same p1 and p2 as Equation 1.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 15

For any s ∈ [0, f] with f given in Equation 4, define:

H∗(o, s) =

⌊

~a · ~o+ b∗

2sw

⌋

(9)

where ~a, b∗ and w follow those in Equation 3. We have:

Lemma 2. H∗(o, s) is (2s, 2s+1, p1, p2) locality sensitive, where p1 and p2 satisfy
ln 1/p1

ln 1/p2

≤ 1/2.

Proof. Create another space D
′ by dividing all coordinates of D by 2s. It is

easy to see that the distance of two points in D is 2s times the distance of their
converted points in D

′. Consider

h′′(o′) =

⌊

~a · ~o′ + (b∗/2fw)(2f−sw)

w

⌋

(10)

where o′ is a point in D
′. As b∗/(2fw) is uniformly distributed in [0, w), by Obser-

vation 1, h′′(.) is (1, 2, p1, p2) locality sensitive in D
′ with (ln 1/p1)/(ln 1/p2) ≤ 1/2.

Let o be the corresponding point of o′ in D. Clearly, ~a · ~o′ = (~a · ~o)/2s. Hence,
h′′(o′) = H∗(o, s). The lemma thus holds.

As shown in Equation 5, G(o) is composed of hash values H1(o), ..., Hm(o). In
the way we obtain H∗(o, s) (Equation 9) from H(o) (Equation 3), let H∗

i (o, s) be
the hash function corresponding to Hi(o) (1 ≤ i ≤ m). Also remember that z(o) is
the Z-order value of G(o) in space G, and function LLCP (., .) returns the length
of the longest common prefix of two Z-order values. Now we prove a crucial lemma
that is the key to the design of the LSB-tree.

Lemma 3. Let o1, o2 be two arbitrary points in space D. A value s satisfies s ≥
u− ⌊LLCP (z(o1), z(o2))/m⌋ if and only if H∗

i (o1, s) = H∗
i (o2, s) for all i ∈ [1,m].

Proof. Recall that, for Z-order value calculation, we impose on G a grid with
2u cells (each with side length w) per dimension. Refer to the entire G as a level-u
tile. In general, a level-s (2 ≤ s ≤ u) tile defines 2m level-(s − 1) tiles, by cutting
the level-s tile in half on every dimension. Thus, each cell in the grid partitioning
G is a level-0 tile.
As a property of the Z-order curve, G(o1) and G(o2) belong to a level-s tile, if

and only if their Z-order values share at least m(u− s) most significant bits [Gaede
and Gunther 1998], namely, LLCP (z(o1), z(o2)) ≥ m(u − s). On the other hand,
note that a level-s tile is a hyper-square with side length 2sw. This means that
G(o1) and G(o2) belong to a level-s tile, if and only if H∗

i (o1, s) = H∗
i (o2, s) for all

i ∈ [1,m]. Thus, the lemma follows.

Lemmas 2 and 3 allow us to rephrase the probabilistic guarantees of LSH using
LLCP.

Corollary 1. Let r be any power of 2 at most 2f . Given a query point q and
a data point o, we have:

1. If ‖q, o‖ ≤ r, then LLCP (z(q), z(o)) ≥ m(u− log r) with probability at least pm1 .

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 ·
2. If ‖q, o‖ > 2r, then LLCP (z(q), z(o)) ≥ m(u − log r) with probability at most
pm2 .

Furthermore, ln 1/p1

ln 1/p2

≤ 1/2.

The above result holds for any LSB-tree. Recall that, for NN search, we need a
forest of l trees T1, ..., Tl built independently. Next, we will explain an imperative
property guaranteed by these trees. Let q be the query point, and r be any power
of 2 up to 2f such that there is a point o∗ in the ball B(q, r). Consider events P1

and P2:

P1: LLCP (zj(q), zj(o
∗)) ≥ m(u− log r) in at least one tree Tj (1 ≤ j ≤ ℓ).

P2: There are less than 4Bl/d leaf entries zj(o) from all trees Tj (1 ≤ j ≤ l) such
that (i) LLCP (zj(q), zj(o)) ≥ m(u− log r), and (ii) o is outside B(q, 2r).

The property guaranteed by the l trees is:

Lemma 4. P1 and P2 hold at the same time with at least constant probability.

Proof. Equipped with Corollary 1, this proof is analogous to the standard proof
[Gionis et al. 1999] of the correctness of LSH.

Now we establish an approximation ratio of 4 for algorithm NN1. In the next
section, we will extend the LSB-tree to achieve better approximation ratios.

Theorem 1. Algorithm NN1 returns a 4-approximate NN with at least constant
probability.

Proof. Let o∗ be the NN of query q, and r∗ = ‖o∗, q‖. Let r be the smallest
power of 2 bounding r∗ from above. Obviously r < 2r∗ and r ≤ 2f (notice that r∗

is at most td ≤ 2f under any ℓp norm). If when NN1 finishes, it has already found
o∗ in any tree, apparently it will return o∗ which is optimal. Next, we assume NN1
has not seen o∗ at termination.
We will show that when both P1 and P2 are true, the output of NN1 is definitely

4-approximate. Denote by j∗ the j stated in P1. Recall that NN1 may terminate
due to the occurrence of either event E1 or E2. If it is due to E2, and given the fact
that NN1 visits leaf entries in descending order of their LLCP, the LLCP v of the
last fetched leaf entry is at least LLCP (zj∗(q), zj∗(o

∗)) ≥ m(u − log r). It follows
that ⌊v/m⌋ ≥ u− log r. E2 ensures that we return a point o with ‖o, q‖ ≤ 2r < 4r∗.
In case the termination is due to E1, by P2, we know that NN1 has seen at

least one point o inside B(q, 2r). Hence, the point returned has distance to q at
most 2r < 4r∗. Finally, Lemma 4 indicates that P1 and P2 are true with at least
constant probability, thus completing the proof.

Also, the proof of Theorem 1 actually shows:

Corollary 2. Let r∗ be the distance from q to its real NN. With at least
constant probability, NN1 returns a point within distance 2r to q, where r is the
lowest power of 2 bounding r∗ from above.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 17

Remark 1. When defining the problem in Section 2, we restricted point coordi-
nates to integers. In fact, the above analysis holds also for real coordinates as well,
as long as the minimum distance between two points in D is at least 1.

Remark 2. As a standard trick in probabilistic algorithms, by repeating our
solution O(log(1/p)) times, we boost the success probability of algorithm NN1 from
constant to at least 1−p, for any arbitrarily low p > 0. In other words, by repeating
O(log n) times (namely, increasing l to O(log n

√

dn/B)), the failure probability of
NN1 can be lowered to at most 1/n. Using the Union Bound inequality (also called
the Boole’s inequality), it is easy to show that the kNN algorithm described in
Section 4.2 gives a 4-approximate answer with at least constant probability.

5.2 Space and query time

Theorem 2. We can build a forest of l LSB-trees that consume totally
O((dn/B)1.5) space. Given these trees, algorithm NN1 answers a 4-approximate
NN query in O(E

√

dn/B) I/Os, where E is the height of a LSB-tree.

Proof. Each leaf entry of a LSB-tree stores a Z-order value z(o) and the
coordinates of o. z(o) has um bits where u = O(f) = O(log d + log t) and
m = O(log(dn/B)). As log d+ log t bits fit in 2 words, z(o) occupies O(log(dn/B))
words. It takes d words to store the coordinates of o. Hence, overall a leaf entry is
O(d) words long. Hence, a LSB-tree consumes O((dn/B)) pages, and l =

√

dn/B
of them require totally O((dn/B)1.5) space.

Algorithm NN1 (i) first accesses a single path in each LSB-tree, and then (ii)
fetches at most 4Bl/d leaf entries. The cost of (i) is bounded by O(lE). As a leaf
entry consumes O(d) words, 4Bl/d of them occupy at most O(l) pages.

By implementing each LSB-tree as a string B-tree [Ferragina and Grossi 1999], the
height E is bounded by O(logB n), resulting in query complexity O(

√

dn/B logB n).

5.3 Comparison with rigorous-LSH

As discussed in Section 3, for 4-approximate NN search, rigorous-LSH consumes
O((log d+ log t)(dn/B)1.5) space, and answers a query in O((log d+ log t)

√

dn/B)
I/Os. Comparing these complexities with those in Theorem 2, it is clear that the
LSB-forest improves rigorous-LSH significantly in the following ways.
First, the performance of the LSB-forest is not sensitive to t, the greatest coor-

dinate of a dimension. This is a crucial improvement because t can be very large in
practice. As a result, rigorous-LSH is suitable only when data are confined to a rel-
atively small space. The LSB-forest enjoys much higher applicability by retaining
the same efficiency regardless of the size of the data space.
Second, the space consumption of a LSB-forest is lower than that of rigorous-

LSH by a factor of log d + log t. For practical values of d and t (e.g., d = 50 and
t = 10000), the space of a LSB-forest is lower than that of rigorous-LSH by more
than an order of magnitude. Furthermore, note that the LSB-forest is as space
efficient as adhoc-LSH, even though the latter does not guarantee the quality of
query results at all.
Third, the LSB-forest promises higher query efficiency than rigorous-LSH. As

mentioned earlier, the height E can be strictly confined to O(logB n) by resorting

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 ·

Algorithm NN2 (r)

1. o = the output of algorithm NN1 on F
2. o′ = the output of algorithm NN1 on F ′

3. return the point between o and o′ closer to q

Fig. 9. The 3-approximate algorithm

to the string B-tree. Even if we simply implement a LSB-tree as a normal B-tree,
the height E never grows beyond 6 in our experiments. This is expected to be
much smaller than log d + log t, rendering the query complexity of the LSB-forest
considerably lower than that of rigorous-LSH.

In summary, the LSB-forest outperforms rigorous-LSH significantly in applica-
bility, space and query efficiency. It therefore eliminates the reason for resorting
to the theoretically vulnerable approach of adhoc-LSH. Finally, remember that the
LSB-tree achieves all of its nice characteristics by leveraging purely relational tech-
niques.

6. EXTENSIONS

This section presents several interesting extensions to the LSB-tree, which are easy
to implement in a relational database, and extend the functionality of the LSB-tree
significantly.

Supporting ball cover. A LSB-forest, which is a collection of l LSB-trees as
defined in Section 4.2, is able to support 2-approximate BC queries whose radius
r is any power of 2. Specifically, given such a query q, we run algorithm NN1

(Figure 7) using the query point. Let o by the output of NN1. If ‖o, q‖ ≤ 2r,
we return o as the result of the BC query q. Otherwise, we return nothing. By
an argument similar to the proof of Theorem 1, it is easy to prove that the above
strategy succeeds with high probability.

(2 + ǫ)-approximate nearest neighbors. A LSB-forest ensures an approxima-
tion ratio of 4 (Theorem 1). Next we will improve the ratio to 3 with only 2 LSB-
forests. As shown earlier, a LSB-forest can answer 2-approximate BC queries with
any r = 1, 2, 22, ..., 2f where f is given in Equation 4. We build another LSB-forest
to handle 2-approximate BC queries with any r = 1.5, 1.5× 2, 1.5× 22, ..., 1.5× 2f .
For this purpose, we can create another dataset D′ from D, by dividing all coor-
dinates in D by 1.5. Then, a LSB-forest on D′ is exactly what we need, noticing
that the distance of two points in D′ is 1.5 times smaller than that of their original
points in D. The only issue is that the distance of two points in D′ may drop below
1, while our technique requires a lower bound of 1 (see Remark 1 in Section 5.1).
This can be easily fixed by scaling up D first by a factor of 2 (i.e., doubling all the
coordinates). Any two points in the new D have distance at least 2, so any two
points in D′ now have distance at least 2/1.5 > 1.
Denote by F and F ′ the LSB-forest on D and D′ respectively. Given a NN query

q, we answer it using simple the algorithm NN2 in Figure 9.

Theorem 3. Algorithm NN2 returns a 3-approximate NN with at least constant
probability.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 19

Proof. Let D be the d-dimensional space of dataset D, and D
′ the space of D′.

Denote by r∗ the distance between q and its real NN o∗. Apparently, r∗ must fall in
either (2x, 1.5×2x] or (1.5×2x, 2x+1] for some x ∈ [0, f]. Refer to these possibilities
as Case 1 and 2, respectively.
For Case 1, the distance r∗′ between q and o∗ in space D′ is between (2x/1.5, 2x].

Hence, by Corollary 2, with at least constant probability the distance between o′

and q in D
′ is at most 2x+1, where o′ is the point output at line 2 of NN2. It thus

follows that o′ is within distance 1.5 × 2x+1 ≤ 3r∗ in D. Similarly, for Case 2, we
can show that o (output at line 1) is a 3-approximate NN with at least constant
probability.

The above idea can be easily extended to (2+ ǫ)-approximate NN search for any
0 < ǫ < 2. Specifically, we can maintain 1+⌊1/ log(1+ǫ/2)⌋ LSB-forests, such that
the i-th forest (1 ≤ i ≤ 1+⌊1/ log(1+ ǫ/2)⌋) supports 2-approximate BC queries at
r = α, 2α, 22α, ..., 2fα, where α = (1 + ǫ/2)i−1. Given a query q, we run algorithm
NN1 on all the forests, and return the nearest point found. By an argument similar
to proving Theorem 3, we have:

Theorem 4. For any 0 < ǫ < 2, we can build O
(

1
log(1+ǫ)

)

LSB-forests that

consume totally O
(

(dn/B)1.5 1
log(1+ǫ)

)

space, and answer a (2 + ǫ)-approximate

NN query in O
(

E
√

dn/B 1
log(1+ǫ)

)

I/Os, where E is the height of a LSB-tree.

(c + ǫ)-approximate nearest neighbors. In practice, an application may be
able tolerate an approximation ratio higher than that of the basic LSB-forest. In
this case, it is possible to further reduce the space and query cost. In the sequel,
we generalize the LSB-tree to offer any approximation ratio arbitrarily close to c,
for any integer c ≥ 3.
We make several changes in building a LSB-tree:

—Recall that m equals log1/p2
(dn/B) in Section 4.1. For c ≥ 3, the expression for

m remains identical, but p2 is the constant as given in the Lemma 1 for the value
of c we are considering.

—In Equation 3, b∗ will be uniformly drawn from [0, cfw), where f , instead of
following Equation 4, is set to ⌈logc d+ logc t⌉.

—We will decide U (i.e., the axis length of the m-dimensional space of G(o)) by
setting U/w to the smallest power of c that bounds both cf and 2Hmax/w from
above, where Hmax is given in Equation 5.

The last change lies in the way a Z-order value z(o) is calculated from G(o). Let
us denote by G the m-dimensional space where G(o) is distributed. Impose a hyper-
grid over G where each cell is a hyper-square with side length w. As mentioned
earlier, U/w is a power of c; therefore, the grid has totally xcm cells, for some
integer x. Figure 10 shows an example where G has m = 2 dimensions, c = 3, and
G is partitioned by a 32 × 32 grid.
We utilize the grid to compute z(o) as follows. Recall that the grid partitions

each dimension of G into cx intervals. Number these intervals consecutively using

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 ·
3-ary numbers

00 01 02 10 11 12 20 21 22

00

01

02

10

11

12

20

21

22

0120

Fig. 10. Computing Z-order values for the order-3 LSB-tree

c-ary values. For instance, in Figure 10, each dimension of G is cut into 32 = 9
intervals, which are numbered from 00 to 22. Then, the Z-order value of each cell in
the grid is obtained by interleaving its c-ary digits on all dimensions. For example,
the grey cell in Figure 10 is numbered 02 and 10 on the horizontal and vertical
dimensions, respectively. Hence, its Z-order value is 0120, taking the first digits
of 02 and 10, then followed by their second digits. z(o) equals the Z-order value
of the cell that G(o) falls in. By the Z-order values thus calculated, we impose an
ordering of the cells as depicted by the zigzag line in the figure.
We call the adapted LSB-tree an order-c LSB-tree, and build a forest of l =

(dn/B)1/c such trees independently. Call it an order-c LSB-forest. The query
algorithm NN1 in Section 4.2 can be deployed directly on the forest, except that
the number 2u−⌊v/m⌋+1 in event E2 should be replaced by cu−⌊v/m⌋+1. By an
argument similar to the one in Section 5, we can show:

Theorem 5. We can build a set of order-c LSB-trees that consume totally
O((dn/B)1+1/c) space. Given a query, NN1 returns a c2-approximate NN in
O(E(dn/B)1/c) I/Os, where E is the height of an order-c LSB-tree.

Notice that the order-c LSB-forest captures the basic LSB-forest as a special
case with c = 2. Recall that a basic LSB-forest is able to answer 2-approximate BC
queries with r being powers of 2. Likewise, an order-c LSB-forest is able to answer
c-approximate BC queries with r = 1, c, c2, To lower the approximation ratio
to c + ǫ, we can build 1 + ⌊ c

log(1+ǫ/c)⌋ order-c LSB-forests. Specifically, the i-th

(1 ≤ i ≤ 1 + ⌊ c
log(1+ǫ/c)⌋) forest is responsible for c-approximate BC queries with

radius r = α, cα, c2α, ..., where α = (1 + ǫ/c)i−1. Following the way of establishing
Theorem 4, we can prove:

Theorem 6. For any 0 < ǫ < c2 − c, we can build O
(

c
log(1+ǫ/c)

)

order-c LSB-

trees that consume totally O
(

(dn/B)1+1/c c
log(1+ǫ/c)

)

space, and answer a (c+ ǫ)-

approximate NN query in O
(

E(dn/B)1/c c
log(1+ǫ/c)

)

I/Os, where E is the height

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 21

of an order-c LSB-tree.

Note that, for c ≥ 3, the complexities in the above theorem are strictly smaller
than those in Theorem 4 because the polynomials in Theorem 6 have lower expo-
nents.

7. CLOSEST PAIR SEARCH

In this section we will extend the LSB technique to solve the CP problem. There is
a straightforward solution. Specifically, assume that a LSB-forest has been built on
dataset D. First, for every point o ∈ D, run algorithm NN1 (Figure 7) to find its
NN o′. Then, among all such pairs (o, o′), report the one with the smallest distance.
This will give us a 4-approximate answer with high probability.

In main memory, the solution is quite efficient, requiring only O(n1.5 log(n)) time
[Datar et al. 2004]. In external memory where an access unit is a page of B words,
the running time becomes O(n

√

dn/B logB n), which can be even worse than the
trivial bound O((dn/B)2). Next, we will propose a different approach that requires
only O((dn/B)1.5) I/Os. As will be clear shortly, the analysis of this approach’s
running time is drastically different from that in [Datar et al. 2004].

7.1 Ball pair search

As explained in Section 3.1, LSH approaches NN search with ball cover. Similarly,
we attack the CP problem with another problem we call ball pair (BP) search, which
can be regarded as the counterpart of ball cover in the CP context. Formally, given
a radius r, a c-approximate BP query on D returns the following:

(1) If there is a pair of points in D with distance at most r, return a pair of points
in D with distance at most cr.

(2) If no two points in D have distance at most cr, return nothing.

(3) Otherwise, the result is undefined.

o1

o2

o4

o3

Fig. 11. Illustration of the ball pair problem

For example, consider Figure 11 where D has 4 points. Let r be the distance
between o1 and o2. Then, a 2-approximate BP query must return a pair of points
within distance 2r. In our example, there are two such pairs: (o1, o2), (o1, o3),
either of which is a correct result. On the other hand, for any r < 1

2‖o1, o2‖, a
2-approximate BP query must not return anything at all.
Our discussion will focus on radius r that is a power of 2 between 1 and 2f , where

f is given in Equation 4. In the sequel, let λ = log r. We will first target an approx-
imation ratio of c = 2, and then extend to other ratios later. For c = 2, we need

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 ·
a LSB-forest with l trees built in exactly the way described in Section 4.1. Next,
we will first clarify the algorithm for BP search, and then analyze its theoretical
properties.

Algorithm. Let us first concentrate on a single LSB-tree T . Remember that
each leaf entry carries a Z-order value. Two points o1, o2 are said to be in the
same bucket if they share the first m(u − λ) bits in their Z-order values, namely,
LLCP (z(o1), z(o2)) ≥ m(u − λ) — see the definitions of m, u, and LLCP (.) in
Section 4. Intuitively, a bucket is essentially a hyper-square with 2λm cells in the
grid partitioning the space G (that is used to define Z-values). For example, (same
as Figure 6b) Figure 12a shows a space G with m = 2 dimensions, the coordinates
of which are encoded with u = 3 bits. For λ = 1, there are 16 buckets, each with
2λm = 4 cells that share same first m(u − λ) = 4 bits in their Z-order values.
Figure 12b demonstrates the case of λ = 2, where there are 4 buckets each with
16 cells. Note that a bucket of λ = 2 encloses 4 buckets of λ = 1. This is true
in general: every time λ grows by 1 (i.e., r doubles), a new bucket covers 2m old
buckets. Also notice that, in any case, the cells of a bucket always have continuous
Z-order values.

000 001 010 011100 101 110 111

000

001

010

011

100

101

111

110

000 001 010 011100 101 110 111

000

001

010

011

100

101

111

110

(a) 16 buckets when λ = 1 (b) 4 buckets when λ = 2

Fig. 12. Coverage of buckets in space G (m = 2, u = 3)

Let us divide the leaf entries of tree T based on the buckets they belong to.
Apparently, points of the same bucket must come together in adjacent leaf nodes,
as illustrated in Figure 13. Note that a bucket may span multiple leaf nodes, but
may also be so small that several buckets can fit in a single leaf. In any case, the
important fact is that by scanning the leaf level from the leftmost node rightwards,
we can easily determine the bucket boundaries, by comparing the Z-order values of
consecutive leaf entries.
Now, let us take back the entire forest of l trees, since we are ready to elaborate

the algorithm for BP search, which is fairly simple as presented in Figure 14. For
each tree, we scan its leaf level from left to right, starting from the leftmost leaf.
For every bucket I encountered during the scan, evaluate the distances of all the
pairs of points in I bruteforcely in O(⌈d|I|/B⌉2) I/Os. Meanwhile, we keep track

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 23

leaf node

...

pointer between leaves

bucket 1 bucket 2 bucket 3

bucket 4

bucket 5

Fig. 13. Buckets at the leaf level of a LSB-tree

of the total number of pairs evaluated (from all trees) so far, namely, the count
increases by |I|(|I| − 1) after processing a bucket I. The algorithm terminates as
soon as the count reaches 2Bnl/d (where n is the size of D) — this includes even
the duplicate pairs discovered from different trees. At termination, we return the
closest pair (among all the pairs evaluated) if its distance is at most 2r. Otherwise,
we return nothing.

Algorithm BP(r)
/* assume that the LSB-forest has trees T1, ..., Tl */
1. for i = 1 to l
2. scan from the leaf nodes of Ti rightwards, starting from the leftmost one

3. for each bucket I encountered
4. evaluate the O(|I|2) pairs of points in I
5. break, as soon as 2Bnl/d pairs have been evaluated (from all trees)
6. if the closest pair found so far has distance at most 2r then return it

7. else return nothing

Fig. 14. The BP algorithm

Analysis. Next we will first establish the quality guarantee of our algorithm BP,
and then analyze its running time.

Lemma 5. BP returns a 2-approximate answer with at least constant probability.

Proof. The proof is an adaptation of the standard LSH analytical framework
for NN search; we will focus on the differences in the CP context. Given two points
in a bucket of a tree, we say that they form a bad pair if their distance is larger than
2r. In the sequel, we will assume the existence of a pair (o∗1, o

∗
2) within distance at

most r (the proof is similar if such a pair does not exist). Observe that BP finds a
2-approximate answer if both of the following hold:

P
′

1
: There are less than 2Bnl/d bad pairs in all the l trees in the LSB-forest.

P
′

2
: (o∗1, o

∗
2) appear in at least one bucket of a LSB-tree.

The rest of the proof will show that they hold at the same time with at least
constant probability.
Recall that two points o1, o2 fall in the same bucket of some LSB-tree Tj (1 ≤ j ≤

l) if and only if LLCP (z(o1), z(o2)) ≥ m(u − λ). By Corollary 1, if ‖o1, o2‖ > 2r,
they form a bad pair in Tj with probability at most pm2 . Hence, in all l trees, the
expected number of bad pairs is at most l ·n(n−1)pm2 , which is smaller than Bnl/d
with the choice of m in Equation 2. By Markov Inequality, the probability for the

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 ·
total number of bad pairs in all l trees to be at least 2Bnl/d is at most 1/2, that
is, P ′

1
fails with probability at most 1/2.

By the same reasoning in the standard LSH framework, with the choice of l in
Equation 7, P ′

2
fails with probability at most 1/e. Hence, the probability that at

least one of P ′

1
and P

′

2
fails is bounded by 1/2 + 1/e = 0.87 from above, implying

that they hold with probability at least 0.13.

Although the proof of quality generally follows the LSH framework, the running
time analysis is substantially different.

Lemma 6. BP performs O((dn/B)1.5) I/Os.

Proof. We consider only buckets with more than B/d points. Each bucket with
at most B/d points fits in at most 2 pages; so examining all pairs of points in each
of these buckets takes linear I/Os, namely O((dn/B)1.5) I/Os.

Without loss of generality, assume that at the time BP finishes, it has encountered
J buckets in this order: I1, I2, ..., IJ (they may come from different trees). Note
that, except the last one IJ , all the other buckets have been fully processed. Namely,
if we denote by xi (1 ≤ i ≤ J − 1) the size of bucket Ii, Ii contributed xi(xi − 1)
pairs to the count BP is maintaining. As for the last bucket IJ , assume that BP

scanned xJ points in it. Hence, IJ contributed at least (xJ − 1)(xJ − 2) to the
count. It suffices to consider xJ ≥ 3 + B/d (otherwise, we can ignore IJ but add
only O(1) I/Os to the overall cost). As totally BP evaluates no more than 2Bnl/d
pairs, we have:

(xJ − 1)(xJ − 2) +

J−1
∑

i=1

xi(xi − 1) ≤ 2Bnl/d. (11)

Since xi ≥ 1 +B/d (1 ≤ i ≤ J − 1) and xJ ≥ 3 +B/d, Inequality 11 implies

J
∑

i=1

(xi ·B/d) < (xJ − 1)(xJ − 2) +

J−1
∑

i=1

xi(xi − 1) ≤ 2Bnl/d.

Hence,

J
∑

i=1

xi ≤
2Bnl/d

B/d
= O(nl). (12)

From Inequalities 11 and 12, we have:

J
∑

i=1

x2
i ≤ 2Bnl/d+ 3

J
∑

i=1

xi = O(Bnl/d) (13)

where the last equality is due to d = O(B). Furthermore, J satisfies

J ≤
∑J

i=1 xi

B/d
= O(dnl/B). (14)

A bucket Ii (1 ≤ i ≤ J − 1) with size xi occupies at most O(⌈dxi/B⌉) pages.
Hence, bruteforce examination of all pairs of points in Ii requires O(⌈dxi/B⌉2)
ACM Journal Name, Vol. V, No. N, Month 20YY.

· 25

I/Os. Likewise, examining the last bucket IJ takes O(⌈dxJ/B⌉2) I/Os. Thus, the
total cost on all buckets is bounded by

O

(

J
∑

i=1

⌈dxi/B⌉2
)

= O

(

J
∑

i=1

(dxi/B + 1)2

)

= O

(

J +
d2

B2

J
∑

i=1

x2
i +

d

B

J
∑

i=1

xi

)

which, by Inequalities 12-14, is bounded by O(dnl/B) = O((dn/B)1.5).

7.2 Solving the closest pair problem

The closest pair problem can be reduced to BP search. A simple approach is to
invoke algorithm BP (Figure 14) with doubling radius r = 1, 2, 4, and so on,
until it returns a pair of points whose distance is at most twice the current r.
This procedure, referred to as algorithm CP1, is formally presented in Figure 15,
which can be easily shown to return a 4-approximate answer with at least constant
probability.

Algorithm CP1

1. r = 1
2. repeat

3. call BP(r)
4. if the above returns a pair of points (o1, o2) and ‖o1, o2‖ ≤ 2r then return (o1, o2)
5. else r = 2r

Fig. 15. The first CP algorithm

The drawback of CP1 is that its running time may be O((log d+log t)(dn/B)1.5)
in the worst case, where t is the maximum coordinate of a dimension. In the
sequel, we give an alternative algorithm that requires only O((dn/B)1.5) time, i.e.,
eliminating the log d+ log t factor.

An improved algorithm. We refer to our new algorithm as CP2. Unlike CP1 that
performs multiple BP search, CP2 first picks an appropriate value of r, denoted
as rgood, and then, performs at most two BP search at r = rgood/2 and rgood,
respectively. As shown later, rgood can be found in O((dn/B)1.5) I/Os, which is
the same cost of one BP search, thus making the overall cost O((dn/B)1.5) as well.
CP2 is presented in Figure 16. Next we will focus on explaining Line 1.
Recall that, given a particular r, algorithm BP examines a number of point pairs

in D. Let us denote the number as C(r). Obviously, C(r) is always bounded from
above by 2Bnl/d, as it is the largest number of pairs evaluated by BP. It is fairly
simple to obtain the exact C(r) by reading (from left to right) the leaf levels of
all LSB-trees once as follows. First, set C(r) to 0, and start reading the first tree.
At any time, we keep a count x of how many points have been seen in the current
bucket being scanned. When the boundary of the bucket is reached, we add x(x−1)
to C(r), and then, reset x to 0 for the next bucket. At the time all trees have been

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 ·

Algorithm CP2

1. find an appropriate radius rgood
2. call BP(rgood/2)
3. if the above returns a pair of points with distance greater than rgood
4. call BP(rgood)

5. return the closest of all pairs of points examined

Fig. 16. An improved CP algorithm

scanned, C(r) becomes final. Since every leaf node of each tree is read once, the
total cost is O((dn/B)1.5) I/Os.
A nice feature of the above strategy is that it needs to store only two values in

memory at any time: C(r) and x. There are, however, merely f = ⌈log d + log t⌉
different values of r. Hence, we can compute the C(r) of all possible r in a single

pass. The memory size required is only one memory page (as the reading buffer)
plus 2f integers! Then, rgood is decided as

rgood = min{r | C(r) ≥ 2Bnl/d} (15)

namely, rgood is the lowest r such that C(r) ≥ 2Bnl/d.

Theorem 7. Algorithm CP2 returns a 4-approximate answer with at least con-
stant probability.

Proof. We will make a claim X: every pair whose distance is evaluated by CP1

is also evaluated by CP2. Under the claim, CP2 never returns a worse answer than
CP1, which will establish the theorem.
Assume that when CP1 finishes, the value of r is r′. Clearly, r′ ≤ rgood because

algorithm BP never evaluates more than 2Bnl/d pairs. If r′ = rgood, it means that
the best pair CP1 returns is found by the last BP search, namely, BP (r′). Then, X
is true because CP2 also needs to perform the same BP search BP (rgood) (notice
that Line 4 of CP2 will definitely be executed, i.e., the if-condition at Line 3 will
fail).
Now consider r′ < rgood. The crucial fact is that, for any r1 < r2 < rgood where r1

and r2 are powers of 2, the set of point pairs BP(r1) evaluates is always a subset of
the set BP(r2) evaluates, due to the selection of rgood. Hence, whatever is evaluated
by BP (r′) is also evaluated by BP (rgood/2). Hence, X also holds.

Thus, we arrive at:

Theorem 8. Given a LSB-forest, we can perform 4-approximate closest pair
search in O((dn/B)1.5) I/Os as long as the memory size M is at least max{3B,B+
2f} words.

Note that the value of f is smaller than B in practice. As a reference, let d = 1000
and t = 1010; in this case, f < 44, which means 2f integers can easily fit in a page
of B = 1024 words. Thus, the memory size needed to run CP2 is only 3 pages. In
case the LSB-forest does not exist in advance, then the total time increases by a
factor of logM/B(dn), because building all the leaf levels with external sort takes

O((dn/B)1.5 logM/B(dn)) I/Os (the non-leaf levels are unnecessary).

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 27

Extensions. In theory, kCP search can also be supported in a way similar to
how kNN is handled. First, we need to increase l to O(

√

dn/B log n). Second,
the limit on how many point pairs are evaluated by algorithm BP should be raised
to 2Bnl/d + (k − 1)l. In practice when k is small, no change is required, and we
can simply output the k closest pairs among all the pairs CP2 evaluates during its
execution.
So far we have been targeting an approximation ratio of 4, but the ratio can be

improved to arbitrarily close to 2 with only a constant blowup in the computation
cost. Conversely, one may also opt for a higher ratio as a tradeoff for lower run-
ning time. Using the methods explained in Section 6, for any integer c ≥ 2 and
arbitrary ǫ satisfying 0 < ǫ < c2 − c, we can find a (c + ǫ)-approximate answer in

O
(

(dn/B)1+1/c c
log(1+ǫ/c)

)

I/Os. If the LSB-forests need to be built on the fly, the

cost is O(logM/B(dn)) times higher.
All the results can be extended to bichromatic CP search as well. In particular,

for k = 1, a 4-approximate closest pair between D1 and D2 can be found with at
least constant probability in

O

(

√

d
√
n1n2/B ·

(

(dn1/B) logM/B(dn1) + (dn2/B) logM/B(dn2)
)

)

I/Os, where n1 and n2 are the cardinalities of the participating datasets D1 and
D2, respectively. Note that when n1 = n2 = n, this complexity degenerates into
the one obtained earlier for a single dataset.

Using a single LSB-tree. As mentioned in Section 4.2, a practical application
may choose to maintain only a single LSB-tree, because this consumes only linear
space and allows logarithmic update time. Before finishing this section, we give an
algorithm, referred to as CP3, which performs approximate kCP search using only
such a tree.
The rationale behind CP3 is that a LSB-tree generally captures the proximity

of the points in the original space. Namely, if points o1 and o2 are close, they
tend to have similar Z-values Z(o1) and Z(o2). Hence, for each leaf entry, we will
evaluate its distances only to its nearby leaf entries. More specifically, at any time,
we pinpoint a leaf node N in memory. After computing the distances of all pairs of
points in N , we use another memory page N ′ to scan forward the subsequent leaf
pages one by one. Every point in N ′ has its distances to all points in N computed.
This continues until the Z-order value of an entry in N ′ is “sufficiently faraway” (to
be elaborated shortly) from that of the rightmost entry in N (see Figure 17). When
this happens, we move N to the leaf node on its right, and repeat the process. The
first N pinpointed is the leftmost leaf node.
It remains to clarify what we mean by “two entries Z(o1) and Z(o2) are faraway”.

We adopt a heuristic similar to the one used in Section 4.2 for kNN search. Specif-
ically, let dist be the distance of the k-th closest pair of points CP3 has discovered
so far. We rule that Z(o1) and Z(o2) are faraway if

dist ≤ 2u−⌊LLCP (Z(o1),Z(o2))/m⌋+1

where u, m, and LLCP (., .) are as defined in Section 4. The algorithm CP3 is
formally presented in Figure 18.

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 ·
pinpointed in memory

... ...

scan forward

...

until these two entries’ Z-values are sufficiently different

Fig. 17. CP search with only one LSB-tree

Algorithm CP3

1. N = the leftmost leaf node
2. repeat

3. compute the distances of all pairs of points in N
4. N ′ = the leaf node to the right of N
5. repeat

6. compute the distance of each point in N ′ to each point in N

7. if an entry in N ′ is sufficiently faraway from the rightmost entry of N
8. break

9. else N ′ = the leaf node to the right of N ′

10. until N ′ = ∅
11. N = the leaf node to the right of N
12. until N = ∅
13. return the k closest pairs found so far

Fig. 18. A CP algorithm using only a single LSB-tree

8. RELATED WORK

NN search is well understood in low dimensional space [Hjaltason and Samet 1999;
Roussopoulos et al. 1995]. This problem, however, becomes much more difficult in
high dimensional space. Many algorithms (e.g., those based on data or space parti-
tioning indexes [Gaede and Gunther 1998]) that perform nicely on low dimensional
data, deteriorate rapidly as the dimensionality increases [Bohm 2000; Weber et al.
1998], and are eventually outperformed even by sequential scan.

Research on high-dimensional NN search can be divided into exact and approxi-

mate retrieval. In the exact category, Lin et al. [Lin et al. 1994] propose the TV-tree
which improves conventional R-trees [Beckmann et al. 1990; Guttman 1984] by cre-
ating MBRs only in selected subspaces. Weber et al. [Weber et al. 1998] design the
VA-file, which compresses the dataset to minimize the cost of sequential scan. Also
based on the idea of compression, Berchtold et al. [Berchtold et al. 2000] develop
the IQ-tree, combining features of the R-tree and VA-file. Chaudhuri and Gra-
vano [Chaudhuri and Gravano 1999] perform NN search by converting it to range
queries. In [Berchtold et al. 2000] Berchtold et al. provide a solution leveraging
high-dimensional Voronoi diagrams, whereas Korn et al. [Korn et al. 2001] tackle
the problem by utilizing the fractal dimensionality of the dataset. Koudas et al.
[Koudas et al. 2004] give a bitmap-based approach. The state of the art is due to
Jagadish et al. [Jagadish et al. 2005]. They develop the iDistance technique that
converts high-dimensional points to 1D values, which are indexed using a B-tree
for NN processing. We will compare our solution to iDistance experimentally.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 29

In exact search, a majority of the query cost is spent on verifying a point as
a real NN [Bennett et al. 1999; Ciaccia and Patella 2000]. Approximate retrieval
improves efficiency by relaxing the precision of verification. Goldstein and Ramakr-
ishnan [Goldstein and Ramakrishnan 2000] assume that the query distribution is
known, and leverage the knowledge to balance the efficiency and result quality.
Ferhatosmanoglu et al. [Ferhatosmanoglu et al. 2001] find NNs by examining only
the interesting subspaces. Chen and Lin [Chen and Ling 2002] combine sampling
with a reduction [Chaudhuri and Gravano 1999] to range search. Li et al. [Li et al.
2002] first partition the dataset into clusters, and then prunes the irrelevant clus-
ters according to their radii. Houle and Sakuma [Houle and Sakuma 2005] develop
SASH which is designed for memory-resident data, but is not suitable for disk-
oriented data due to severe I/O thrashing. Fagin et al. [Fagin et al. 2003] develop
the MedRank technique that converts the dataset to several sorted lists by project-
ing the data onto different vectors. To answer a query, MedRank traverses these
lists in a way similar to the threshold algorithm [Fagin et al. 2001] for top-k search.
We will also evaluate MedRank in the experiments.

None of the aforementioned solutions ensures sub-linear growth of query cost in
the worst case. How to achieve this has been carefully studied in the theory com-
munity (see, for example, [Har-Peled 2001; Krauthgamer and Lee 2004] and the
references therein). Almost all the results there, however, are excessively complex
for practical implementation, except LSH. This technique is invented by Indyk and
Motwani [Indyk and Motwani 1998] for in-memory data. Gionis et al. [Gionis et al.
1999] adapt it to external memory, but as discussed in Section 3.2, their method
loses the guarantee on the approximation ratio. The locality-sensitive hash func-
tions for lp norms are discovered by Datar et al. [Datar et al. 2004]. Bawa et al.
[Bawa et al. 2005] propose a method to tune the parameters of LSH automatically.
Their method, however, no longer ensures the same query performance as LSH un-
less the adopted hash function has a so-called “(ǫ, f(ǫ)) property” [Bawa et al. 2005].
Unfortunately, no existing hash function for ℓp norms is known to possess this prop-
erty. Charikar [Charikar 2002] investigate LSH for several distance metrics different
from ℓp norms. LSH has also received other theoretical improvements [Andoni and
Indyk 2006; Panigrahy 2006] which cannot be implemented in relational databases.
Furthermore, several heuristic variations of LSH have also been suggested. For ex-
ample, Lv et al. [Lv et al. 2007] reduce space consumption by probing more data in
answering a query, while recently Athitsos et al. [Athitsos et al. 2008] introduce the
notion of distance-based hashing. The solutions of [Athitsos et al. 2008; Lv et al.
2007] guarantee neither sub-linear cost nor good approximation ratios.

CP search is also one of the oldest problems studied in computational geome-
try. In two-dimensional space, Shamos and Hoey [Shamos and Hoey 1975] give
an optimal algorithm that runs in O(n log n) time. Interestingly, for any fixed di-
mensionality d, the problem can also be settled optimally in O(n log n) time, as
discovered by Lenhof and Smid [Lenhof and Smid 1992]. The optimality of the
above algorithms, however, assumes that d is a constant; when it is not, their run-
ning time increases exponentially with d. Avoiding such exponential growth turns
out to be a hard problem. Recently, by resorting to matrix multiplication, Indyk
et al. [Indyk et al. 2004] give several algorithms with non-trivial bounds that are

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 ·
applicable to L1 and L∞ norms, but not to the other Lp norms. The methods men-
tioned earlier are rather theoretical. On the practical side, Hjaltason and Samet
[Hjaltason and Samet 1998] give a solution, called distance browsing, that utilizes
R-trees to report point pairs in ascending order of their distances. Following the
same idea, Corral et al. [Corral et al. 2000] propose an enhanced algorithm with
smaller cost, which will be evaluated in the experiments.
The above solutions aim at solving the CP problem exactly. There have been

attempts to address the approximate version, but most of those algorithms require
running time that is quadratic to the cardinality n (albeit faster than dn2); see for
example [Kleinberg 1997]. Based on the LSH technique, Datar et al. [Datar et al.
2004] propose an algorithm with sub-quadratic time, but their analysis targets
internal memory only. Our discussion in Section 7.1 can in fact also be applied
to LSH, and shows that the case of external memory requires a more elaborate
reasoning approach. Furthermore, our result in Section 7.2 is actually better (by
a logarithmic factor) than the obvious bound adapted from [Datar et al. 2004]
(which corresponds to the performance of algorithm CP1 in Figure 15). Another
algorithm worth mentioning is due to Lopez and Liao [Lopez and Liao 2000]. When
d is regarded as a constant, their algorithm, which we call D-shift, guarantees an
answer with constant approximation ratio. Their algorithm can be incorporated in
relational databases, and will be compared to our solutions in the experiments.
Finally, it is worth pointing out that this paper substantially extends its prelim-

inary version [Tao et al. 2009] in the following ways. First, in Section 6, we have
shown how to modify our NN techniques to achieve approximation c + ǫ for any
integer c ≥ 3 (only c = 2 is discussed in [Tao et al. 2009]), thus giving a stronger
tradeoff between the result quality and the query/space efficiency. Second, while
the preliminary work concentrates on NN search, the current version contains a
full set of results on the CP problem (Section 7), together with the corresponding
experiment in the next section.

9. EXPERIMENTS

Next we experimentally evaluate the performance of LSB-trees, using the existing
methods as benchmarks. Section 9.1 describes the datasets and queries. Sections 9.2
and 9.3 list the techniques to be examined for NN and CP search, respectively.
Section 9.4 explains the computing environments as well as the assessment metrics.
Section 9.5 demonstrates the superiority of the LSB-forest over alternative LSH
implementations. Then, Section 9.6 (9.7) shows that our techniques significantly
outperform the previous methods, in both exact and approximate NN (CP) search.

9.1 Data and queries

We experimented with both synthetic and real datasets. Synthetic data were gener-
ated according to a varden distribution to be clarified shortly. As for real data, we
deployed datasets color and mnist, which were also used in the papers [Fagin et al.
2003; Jagadish et al. 2005] where iDistance and MedRank are invented respectively
(both methods were included in our experiments). For all datasets, the universe
was normalized to have domain [0, 10000] on each dimension.

The distance metric employed was Euclidean distance. Each NN workload con-
tained 50 query points that followed the same distribution as the underlying dataset.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 31

CP search takes no query point; it simply finds the k closest pairs in a dataset.
The details of varden, color, and mnist are as follows.

Varden. This distribution contains two clusters with drastically different densities.
The sparse cluster has 10 points, whereas all the other points belong to the dense
cluster. Furthermore, the dense cluster has the shape of a ring, whose radius is
comparable to the average mutual distance of the points in the sparse cluster. The
two clusters are well separated. Figure 19 illustrates the idea with a 2D example.
We varied the cardinality of a varden dataset from 10k to 100k, and its dimension-
ality from 25 to 100. In the sequel, we will denote a d-dimensional varden dataset
with cardinality n by varden-nd. The corresponding workload of a varden dataset
had 10 and 40 query points that fell in the areas of the sparse and dense clusters,
respectively. No query point coincided with any data point.

Fig. 19. The varden distribution

Color. This is a 32-dimensional dataset3 with 67,967 points, where each point
describes the color histogram of an image in the Corel collection [Jagadish et al.
2005]. We randomly removed 50 points to form a query set. As a result, our color
dataset has cardinality 67,917.

Mnist. The original mnist dataset4 is a set of 60,000 points. Each point is 784-
dimensional, capturing the pixel values of a 28 × 28 image. Since, however, most
pixels are insignificant, we reduced dimensionality by taking the 50 dimensions with
the largest variances. After this, we got two identical points so one of them was
removed, rendering the final cardinality to be 59,999. The mnist collection also
contains a test set of 10,000 points [Fagin et al. 2003], among which we randomly
picked 50 to form our workload. Obviously, each query point was also projected
onto the same 50 dimensions output by the dimensionality reduction.

9.2 Competitors for nearest neighbor search

Sequential scan (SeqScan). The bruteforce approach is included because it is
known to be a strong competitor in high dimensional NN retrieval. Furthermore,
the relative performance with respect to SeqScan serves as a reliable way to compare
against methods that are reported elsewhere but not in our experiments.

3http://kdd.ics.uci.edu/databases/CorelFeatures/.
4http://yann.lecun.com/exdb/mnist.

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 ·
LSB-forest. As discussed in Section 4.2, this method takes l LSB-trees (l given
by Equation 7), and applies algorithm NN1 (Figure 7) for query processing. For
kNN queries with k > 1, LSB-forest still uses the same l (i.e., no increase in the
number of trees) and query algorithm, except that the terminating condition E2 is
modified in the way explained in Section 4.2.

LSB-noE2. Same as LSB-forest except that it disables condition E2 in algorithm
NN1. In other words, LSB-noE2 terminates on condition E1 only. LSB-noE2 is
applied only for k = 1.

LSB-tree. This method deploys a single LSB-tree (as opposed to l in LSB-forest),
and hence, requires only linear space and can be updated efficiently. As mentioned
at the end of Section 4.2, it disables condition E1, and terminates on E2 only
(again, E2 needs to be modified for k > 1).

Rigorous- [Indyk and Motwani 1998] and adhoc-LSH [Gionis et al. 1999].
They are the existing LSH-implementations as reviewed in Sections 3.1 and 3.2,
respectively. Recall that both methods are designed for c-approximate BC search.
We set c to 2 to match the guarantee of the LSB-forest (see Section 6). Adhoc-LSH
requires a set of l hash tables, which is used to perform BC queries at a magic
radius (to be tuned experimentally later), where l is the same as in Equation 7.
Rigorous-LSH can be regarded as combining multiple versions of adhoc-LSH, one
for every radius supported.

iDistance [Jagadish et al. 2005]. A famous approach for exact NN search. As
mentioned in Section 8, it indexes a dataset using a single B-tree after converting
all points to 1D values. As with LSB-tree, it consumes linear space and supports
data insertions and deletions efficiently.

MedRank [Fagin et al. 2003]. A recently proposed method for approximate
NN search with a non-trivial quality guarantee. Given a dataset, MedRank creates
several sorted lists, such that every data point has an entry in each list. More
specifically, an entry has the form (id, key), where id uniquely identifies a point,
and key is its sorting key (a point has various keys in different lists). Each list is
indexed by a B-tree on the keys. Point coordinates are stored in a separate hash
table to facilitate probing by id. The number of lists equals log n (following Theorem
4 in [Fagin et al. 2003]), where n is the dataset cardinality. It should be noted
that MedRank is not friendly to updates, because a single point insertion/deletion
requires updating all the log n lists.

9.3 Competitors for closest pair search

Quadratic. The naive approach that examines all pairs of points. It serves as a
benchmark for comparison with other solutions to the CP problem not included in
our experiments.

LSB-forest. This method uses l LSB-trees, where l is given by Equation 7, and
applies algorithm CP2 (Figure 16). The same l and algorithm are also used for
kCP search with k > 1, except that CP2 needs to report the k best pairs (instead

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 33

of 1).

2LSB-tree. The method uses two LSB-trees; it applies algorithm CP3 (Figure 18)
on each tree separately, and returns the k best pairs after combining the outputs
from both trees. Here we are using one more tree than the LSB-tree method in the
previous subsection, in order to outperform the competitor D-shift (to be introduced
later) in result quality. Note that using 2 trees does not increase the space and
update-time complexities. Namely, 2LSB-tree still occupies linear space and can be
updated in logarithmic time.

Distance browsing (DistBrowsing) [Corral et al. 2000]. An extensively-cited
solution to exact kCP search. Similar to [Hjaltason and Samet 1998], it leverages
an R-tree on the underlying dataset to enumerate point pairs in ascending order of
distances.

Diagonal shift (D-shift) [Lopez and Liao 2000]. An approximate algorithm
with a non-trivial quality guarantee. Given a d-dimensional dataset, it creates d
copies of the dataset, where each copy is obtained by shifting the original dataset
along the direction of the main diagonal by a different offset (hence the name D-

shift). Then, the closest pairs are found by sorting and scanning each list once.

9.4 Computing environments and assessment metrics

The page size was fixed to 4,096 bytes. All the experiments were run on a computer
equipped with a 3GHz CPU. A memory buffer of 50 pages was adopted in all
cases. Under such settings, the running time of all (NN and CP) algorithms was
dominated by their I/O overhead. Therefore, we will report the number of I/Os as
the computation cost.

Quality of NN search. We evaluate the quality of a kNN result by how many
times farther a reported neighbor is than the real NN. Formally, let o1, o2, ..., ok
be the k neighbors that a method retrieves for a query q, in ascending order of
their distances to q. Let o∗1, o

∗
2 ..., o∗k be the actual first, second, ..., k-th NNs of q,

respectively. For any i ∈ [1, k], we define the rank-i (approximation) ratio, denoted
by Ri(q), as

Ri(q) = ‖oi, q‖/‖o∗i , q‖. (16)

The overall (approximation) ratio is the mean of the ratios of all ranks, namely,

(
∑k

i=1 Ri(q))/k. When a query result is exact, all ratios are 1.

Given a workload W , define its average overall ratio as the mean of the overall
ratios of all queries in W . This metric reflects the general quality of all k neighbors,
and was used in most experiments. Sometimes we needed to scrutinize the quality
of neighbors at individual ranks. In that case, we measured the average rank-i ratio
(1 ≤ i ≤ k), which is the mean of the rank-i ratios of all queries in W , namely,
(
∑

∀q∈W Ri(q))/|W |.

Quality of CP search. Also assessed based on rank-i ratio and overall ratio, both
of which are extended from the earlier definitions in a straightforward manner.

ACM Journal Name, Vol. V, No. N, Month 20YY.

34 ·
average overall ratio

∞

1

100

22 62 102 142 182 222
magic radius rm

sparse
average overall ratio

∞

1

100

dense

22 62 102 142 182 222
magic radius rm

(a) Quality vs. rm (b) Quality of sparse and dense queries

Fig. 20. Magic radius tuning for adhoc-LSH (varden-10k50d)

9.5 Behavior of LSH implementations

This section explores the characteristic behavior of LSB-forest, LSB-noE2, rigorous-
LSH, and adhoc-LSH. For this purpose, we focused on k = 1 because the LSH
methodology was originally designed in the context of single NN retrieval. Note
that, when k = 1, the overall ratio of a query is identical to its rank-1 ratio. The
data distribution examined was varden, as it allowed us to adjust the dimensionality
and cardinality. Unless otherwise stated, a varden dataset had a default cardinality
n = 10k and dimensionality d = 50.
Recall that adhoc-LSH answers a NN query by processing instead a BC query

with a magic radius rm. As argued in Section 3.2, there may not exist an rm good for
all NN queries. To demonstrate this, Figure 20a shows the average overall ratio of
adhoc-LSH as rm varied from 22 to 222. For small rm, the ratio is ∞, implying that
adhoc-LSH missed at least one query in the workload, namely, returning nothing
at all. The ratio improved suddenly to 66 when rm reached 214, and stabilized as
rm grew further. It is thus clear that, given any rm, the result of adhoc-LSH was
at least 66 times worse than the real NN on average!
As discussed in Section 3.2, if rm is considerably smaller than the NN-distance of

a query, adhoc-LSH may return an empty result. Conversely, if rm is considerably
larger, adhoc-LSH may output a point much worse than the real NN. We performed
an experiment to verify this. Recall that a workload for varden has queries in both
the sparse and dense clusters. Let us call the former the sparse queries, and the
latter the dense queries. We observed that the average NN distance of a sparse
(dense) query was around 12,000 (15). The phenomenon in Figure 20a occurred
because the values of rm good for sparse queries were bad for dense queries, and

vice versa. To support the claim, Figure 20b plots the average overall ratios of
sparse and dense queries separately. When rm was smaller than or equal to 213 =
8,192, it was much lower than the NN-distances of sparse queries; hence, adhoc-LSH
returned nothing for them, as is why the sparse curve in Figure 20b stays at ∞
for all rm ≤ 213. As rm climbed to 212,adhoc-LSH started to return bad results
for many dense queries. The situation was worse for larger rm, so the dense curve

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 35

d 25 50 75 100

rigorous-LSH 1

adhoc-LSH 43 66.4 87 104.2

LSB-forest 1.02 1.02 1.02 1.01

LSB-noE2 1

(a) Average overall ratio vs. dimensionality d (n = 50k)

n 10k 25k 50k 75k 100k

rigorous-LSH 1

adhoc-LSH 66.4 68.1 70.3 76.5 87.1

LSB-forest 1.02 1.02 1.03 1.02 1.02

LSB-noE2 1

(b) Average overall ratio vs. cardinality n (d = 50)

Table I. Result quality on varden data

rigorous-LSH adhoc-LSH LSB-forest LSB-noE2

I/O cost

0

2

4

6

8

10

12

14

25 50 75 100

dimensionality d

100)(

0

5

10

15

20

25

30

35

10k 25k 50k 75k 100k

cardinality n

I/O cost 100)(

(a) Cost vs. d (n = 50k) (b) Cost vs. n (d = 50)

Fig. 21. Query efficiency on varden data

Figure 20b increases continuously from 212. In all the following experiments, we
fixed rm to the optimal value 214.
The next experiment compares the result quality of rigorous-LSH, adhoc-LSH,

LSB-forest, and LSB-noE2. Table Ia (Ib) shows their average overall ratios un-
der different dimensionalities (cardinalities). Both rigorous-LSH and LSB-noE2

achieved perfect quality, namely, they successfully returned the exact NN for all
queries. LSB-forest incurred slightly higher error because in general it accesses
fewer points than LSB-noE2, and thus, has a lower chance of encountering the real
NN. Adhoc-LSH was by far the worst method, and its effectiveness deteriorated
rapidly as the dimensionality or cardinality increased.
To evaluate the query efficiency of the four methods. Figure 21a (21b) plots their

I/O cost as a function of dimensionality d (cardinality n). LSB-forest considerably
outperformed its competitors in all cases. Notice that while LSB-noE2 was slightly
more costly than adhoc-LSH, LSB-forest entailed only a fraction of the overhead of
adhoc-LSH. This phenomenon reveals the importance of having terminating condi-

ACM Journal Name, Vol. V, No. N, Month 20YY.

36 ·
tion E2 in the NN1 algorithm. Rigorous-LSH was much more expensive than the
other approaches, which is consistent with its vast asymptotical complexity.
Tables IIa and IIb show the space consumption (in mega bytes) of each solution

as a function of d and n, respectively. LSB-noE2 is not included because it differs
from LSB-forest only in the query algorithm, and thus, had the same space cost as
LSB-forest. Furthermore, adhoc-LSH also occupied as much space as LSB-forest,
because a hash table of the former stores the same information as a LSB-tree of
the latter. As predicted by their space complexities, rigorous-LSH required more
space than LSB-forest by a factor of log d + log t, where t (the largest coordinate
on each dimension) was 10,000 in our experiments.

d 25 50 75 100

rigorous-LSH 382 896 1,563 2,436

adhoc-LSH 24 57 101 159

LSB-forest 24 57 101 159

(a) Space vs. dimensionality d (n = 50k)

n 10k 25k 50k 75k 100k

rigorous-LSH 895 3,624 10,323 18,892 29,016

adhoc-LSH 57 231 660 1,208 1,855

LSB-forest 57 231 660 1,208 1,855

(b) Space vs. cardinality n (d = 50)

Table II. Space consumption on varden data in mega bytes

It is evident that LSB-forest is overall the best technique in the above experi-
ments. It retains the query accuracy of rigorous-LSH, consumes the same space as
adhoc-LSH, and incurs significantly smaller query cost than both.

9.6 Comparison of NN solutions

Having verified the correctness of our theoretical analysis, in the sequel we assess
the practical performance of SeqScan, LSB-tree, LSB-forest, adhoc-LSH, MedRank,
and iDistance. Rigorous-LSH and LSB-noE2 are omitted because the former incurs
gigantic space/query cost, and the latter is merely an auxiliary method for demon-
strating the importance of condition E2. Remember that SeqScan and iDistance

return exact NNs, whereas the other methods are approximate.
Only real datasets color and mnist were adopted in the subsequent evaluation.

The workload on color (mnist) had an average NN distance of 833 (11,422). We set
the magic radius of adhoc-LSH to the smallest power of 2 that bounds the average
NN distance from above, namely, 1,024 and 16,384 for color and mnist, respectively.
The number k of retrieved neighbors varied from 1 to 100.
Let us start with query efficiency. Figure 22a (22b) illustrates the average cost

of a kNN query on dataset color (mnist) as a function of k. LSB-tree was by far
the fastest method, and outperformed all the other approaches by a factor of at
least an order of magnitude. In particular, on mnist, LSB-tree even achieved a
speedup of two orders of magnitude over iDistance, justifying the advantages of
approximate retrieval. LSB-forest was also much faster than iDistance, MedRank,
and adhoc-LSH, especially in returning a large number of neighbors.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 37

LSB-forest LSB-tree

iDistance MedRank adhoc-LSH

I/O cost

number k of neighbors
1 20 40 60 80 10010

10
3

10
2

10

1

I/O cost

number k of neighbors
1 20 40 60 80 10010

10
3

1

10

10
4

10
2

Cost of SeqScan = 2189 Cost of SeqScan = 2989

(a) Color (b) mnist

Fig. 22. Efficiency of kNN search

The next experiment inspects the result quality of the approximate techniques.
Focusing on color (mnist), Figure 23a (23b) plots the average overall ratios of
MedRank, LSB-forest, and LSB-tree as a function of k. Since adhoc-LSH may miss

a query (i.e., unable to return k neighbors), we present its results as a table in
Figure 23c, where each cell contains two numbers. The number in the bracket
indicates how many queries were missed (out of 50), and the number outside is
the average overall ratio of the queries that were answered properly. No ratio is
reported if adhoc-LSH missed more than 30 queries.

LSB-forest incurred low error in all cases (maximum ratio below 1.5), owing to its
nice theoretical properties. LSB-tree also had good precision (maximum ratio 2),
indicating that the proposed conversion (from a d-dimensional point to a Z-order
value) adequately preserved the spatial proximity of data points. MedRank, in
contrast, exhibited much worse precision than the proposed solutions. In particular,
observe that MedRank was not effective in the important case of single NN search
(k = 1), for which its average overall ratio was over 4. Finally, adhoc-LSH was
clearly unreliable due to the large number of queries it missed.

The average overall ratio reflects the general quality of all k neighbors reported.
It does not, however, indicate how good the neighbors are at individual ranks.
To find out, we set k to 10, and measured the average rank-i ratios at each i ∈
[1, 10]. Figures 24a and 24b demonstrate the results on color andmnist, respectively
(adhoc-LSH is not included because it missed many queries). Apparently, both
LSB-forest and LSB-tree provided results significantly better than MedRank at all
ranks. Observe that the quality of MedRank deteriorated considerably at high
ranks, whereas our solutions returned fairly good neighbors even at the highest
rank. Note that the results in Figure 24 should not be confused with those of
Figure 23. For example, the average rank-1 ratio (of k = 10) is different from the

ACM Journal Name, Vol. V, No. N, Month 20YY.

38 ·
MedRank LSB-forest LSB-tree

average overall ratio

number k of neighbors

1

2

3

4

5

1 20 40 60 80 10010

average overall ratio

number k of neighbors
1 20 40 60 80 10010

1

2

3

4

5

(a) Color (b) Mnist

k 1 10 20 40 60 80 100

color 1.2 (0) 1.3 (30) - (42) - (46) - (46) - (47) - (48)

mnist 1.2 (0) 1.3 (13) 1.3 (19) 1.4 (28) - (37) - (39) - (41)

(c) Results of adhoc-LSH (in each cell, the number inside the bracket is the number of missed
queries, and the number outside is the average overall ratio of the queries answered properly)

Fig. 23. Average overall ratio vs. k

MedRank LSB-forest LSB-tree

average rank-i ratio

rank i

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

average rank-i ratio

rank i

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10

(a) Color (b) mnist

Fig. 24. Average ratios at individual ranks for 10NN queries

overall average ratio of k = 15.
Table III compares the space consumption of different methods. LSB-tree re-

quired slightly less space than iDistance and MedRank. We, however, ought to
point out that, at least in theory, LSB-tree needs to store more information than

5The average rank-1 ratio is lower because processing a query with k = 10 needs to access more
data than a query with k = 1, and therefore, has a better chance of encountering the nearest

neighbor.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 39

iDistance, so the latter should be more space economical. However, the actual
space consumption may contain some extra overhead depending on the concrete
implementation. The implementation of iDistance we deployed was exactly the one
written by the authors of [Jagadish et al. 2005]. Also note that our implementations
of LSB-tree, LSB-forest, and Adhoc-LSH have been improved compared to those in
the preliminary version [Tao et al. 2009].

iDistance MedRank adhoc-LSH LSB-forest LSB-tree

color 14 17 573 573 13

mnist 18 19 874 874 16

Table III. Space consumption on real data in mega bytes

Recall that LSB-forest utilizes a large number l of LSB-trees, where the number
l was 47 and 55 for color and mnist, respectively. LSB-tree represents the other
extreme that uses only a single tree. Next, we explore the compromise of these two
extremes, by using multiple, but less than l, trees. The query algorithm is the same
as the one adopted by LSB-tree. In general, leveraging x trees increases the query,
space, and update cost by a factor of x. The benefit, however, is that a larger
x also improves the quality of results. To explore this tradeoff, Figure 25 shows
the average overall ratio of 10NN queries on the two real datasets, when x grew
from 1 to the corresponding l of LSB-forest. Interestingly, the precision improved
dramatically with just a small number of trees. In other words, we can obtain much
better results without increasing the space or query overhead considerably, which
is especially appealing for datasets that are not updated frequently.

color

minst

average overall ratio

number of LSB-trees

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1 10 20 30 40 50 55

Fig. 25. Benefits of using multiple LSB-trees (k = 10)

In summary, our experiment results suggest that an exact solution such as iDis-

tance often requires excessively long query response time in practice, confirming the
motivation of study approximate solutions. The most serious drawback of Adhoc-
LSH is that it may fail to report enough neighbors for many queries. In any case,
its query overhead is still too high to provide fast response time. MedRank is even
more expensive than adhoc-LSH; furthermore, its result quality is relatively low

ACM Journal Name, Vol. V, No. N, Month 20YY.

40 ·

LSB-forest 2LSB-tree
quadratic DistBrowsing D-shift

I/O cost

number k of pairs

10
4

10
5

10
6

10
7

1 10 20 40 60 80 100

59%

74%

I/O cost

number k of pairs

10
4

10
5

10
6

10
7

1 10 20 40 60 80 100

60%

75%

(a) Color (b) Mnist

Fig. 26. Cost of kCP search

(i.e., the answers it returns are quite far from the real k NNs). LSB-forest is the
only (approximate) method that guarantees high result quality and sub-linear query
cost in all cases. However, as with adhoc-LSH and MedRank, it is not friendly to
updates. Overall the best solution is LSB-tree: it demands only linear space, sup-
ports fast updates, returns very accurate results, and is extremely efficient in query
processing.

9.7 Comparison of CP solutions

We now proceed to study the methods for closest pair search, using again the real
datasets color and mnist. The first experiment compares their efficiency of finding
k closest pair from scratch. Namely, we do not assume any pre-computation; if a
method requires an index (e.g., an R-tree or LSB-trees), it must construct it on the
fly, with the construction time added into its total cost.
Figure 26a (26b) shows the I/O cost of each method on dataset color (mnist), as

the number k of pairs retrieved changed from 1 to 100. 2LSB-tree was by far the
most efficient, and outperformed D-shift and LSB-forest by more than an order of
magnitude. As expected, LSB-forest was slower than D-shift because the former’s
time complexity is super-linear with respect to the dataset cardinality n, whereas
the latter’s is linear [Lopez and Liao 2000]. Nevertheless, as shown shortly, the
advantage of LSB-forest is that it returned much more accurate answers than D-

shift. DistBrowsing was as expensive as the naive algorithm quadratic. This is
not surprising because the effectiveness of spatial access methods (particular, R-
trees) deteriorates seriously in high dimensional space such that they hardly offer
any pruning in distance browsing. The deficiency of exact solutions, once again,
confirms the importance of approximate methods. The parameter k, in the tested
range of values, did not affect the efficiency of any method. The percentages on
the curves of 2LSB-tree and LSB-forest indicate how much of the overall cost was
spent on on-the-fly index construction. In other words, if the LSB-trees already
existed before the CP search, the costs of 2LSB-tree and LSB-forest would be 60%

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 41

LSB-forest 2LSB-tree D-shift

number k of pairs
1 10 20 40 60 80 100

1

1.05

1.1

1.15

1.2
overall ratio

number k of pairs
1 10 20 40 60 80 100

overall ratio

1

1.1

1.2

1.3

1.4

1.5

(a) Color (b) Mnist

Fig. 27. Quality of kCP search

rank i
1 20 40 60 80 100

rank-i ratio

1

1.5

2

2.5

3

2LSB-tree

D-shift

Fig. 28. Quality of individual pairs returned (minst, k = 100)

and 75% cheaper. Note that stripping 75% from the cost of LSB-forest would make
it even faster than D-shift.
To assess the quality of results, Figure 27a (27b) compares the overall ratios of

the three approximate methods in the experiment of Figure 26a (26b). Recall that
the overall ratio indicates the average quality of all k pairs returned by a method.
LSB-forest achieved an overall ratio of 1 on both datasets, meaning that it found the
exact 100 k closest pairs in both cases. 2LSB-tree also produced perfectly accurate
answers on color; on mnist, on average the answers it found were worse than the
exact ones by merely 10%. The quality of D-shift was clearly much worse, thus
leaving its expensive computation cost unjustified (see Figure 26).

To zoom into the quality of individual closest pairs, Figure 28 plots the rank-
i ratios for all i ∈ [1, 100], of the results returned by 2LSB-tree and D-shift in
performing 100CP on mnist. Recall that the rank-i ratio measures how much times
worse the i-th pair found by a method is, compared to the exact i-th closest pair.

ACM Journal Name, Vol. V, No. N, Month 20YY.

42 ·

number of trees used

overall ratio

1

1.1

1.2

1.3

1.4

1.5

1 2 3 4 5 6 7 8 9 10

mnist

color

Fig. 29. Benefits of using multiple trees (k = 100)

LSB-forest is omitted because, as mentioned earlier, it produced perfect answers.
Similarly, we also omit the results on color because even 2LSB-tree was able to
achieve perfect accuracy on that dataset. In Figure 28, we can see that all the pairs
found by 2LSB-tree were fairly accurate, whereas the quality of the “high-rank”
pairs returned by D-shift was rather poor.
We have seen in Section 9.2 that, for NN retrieval, there exists a graceful tradeoff

between the result quality and the number of LSB-trees used for query processing.
The last experiment aims at identifying a similar phenomenon for CP search. For
this purpose, we generalized the strategy of 2LSB-tree; namely, given x LSB-trees,
we ran algorithm CP3 on each of them, and then, reported the k best pairs among
the outputs from all trees. Apparently, the result quality should improve as x
increases, but it is most interesting to identify when the quality would improve to
perfection, i.e., an overall ratio of 1! The results on color and mnist are plotted in
Figure 29 for k = 100. Clearly, the growth of x brought dramatic improvements on
the result quality. On mnist, only 7 trees were necessary to attain perfect precision
(the number was 2 for color, as we already knew from Figure 27a).

In summary, our experiments show that an exact solution to CP search such
as DistBrowsing is not suitable in high-dimensional space due to their prohibitive
running time. D-shift has the drawbacks that it (i) still entails expensive overhead,
and (ii) cannot guarantee accurate answers, especially at high ranks. Same as in
NN search, LSB-forest is the only (approximate) method able to guarantee excellent
result quality in any case. Nevertheless, it still cannot escape the trap of costly
execution time. The best approach is to perform CP search using a small (e.g., 2)
number of LSB-trees, which is significantly faster than all the other methods (over
an order of magnitude), and returns close-to-exact answers in most cases.

10. CONCLUSIONS

Nearest neighbor search in high dimensional space finds numerous applications in
a large number of disciplines. This paper develops an access method called the
LSB-tree to enable fast NN search with excellent result quality. Our discovery

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 43

carries both theoretical and practical significance. In theory, by combining sev-
eral LSB-trees, we dramatically improve the (asymptotical and actual) space and
query efficiency of the previous LSH implementations, without compromising the
result quality. In practice, by using a single LSB-tree, we give an effective indexing
scheme that can be easily incorporated in a relational database, consumes linear
space, supports logarithmic-time updates, and can be used to answer NN queries
accurately and efficiently.
As a second step, we have extended our LSB-technique to attack the closest pair

problem in high-dimensional space, which is another classic problem with many
applications. Our contributions on this topic also have important values in both
theory and reality. In particular, we have shown that, in external memory, the
closest pair problem can be solved in time strictly lower than the quadratic com-
plexity, regardless of the dimensionality. In practice, our purely-relational solutions
can be immediately applied in a commercial system. Furthermore, these solutions
can directly leverage the indexing scheme mentioned earlier for NN search. This
is a fairly attractive feature because, with only a single structure, one is able to
adequately tackle two difficult problems at the same time.

Acknowledgements

Yufei Tao and Cheng Sheng were supported by Grants GRF 4161/07, GRF 4173/08,
and GRF 4169/09 from HKRGC, and a direct grant (2050395) from CUHK. Ke Yi
was supported by a Hong Kong Direct Allocation grant (DAG07/08).

REFERENCES

Andoni, A. and Indyk, P. 2006. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In FOCS. 459–468.

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., and Wu, A. Y. 1998. An op-

timal algorithm for approximate nearest neighbor searching fixed dimensions. Journal of the
ACM 45, 6, 891–923.

Athitsos, V., Potamias, M., Papapetrou, P., and Kollios, G. 2008. Nearest neighbor retrieval
using distance-based hashing. In ICDE. 327–336.

Bawa, M., Condie, T., and Ganesan, P. 2005. Lsh forest: self-tuning indexes for similarity
search. In WWW. 651–660.

Beckmann, N., Kriegel, H., Schneider, R., and Seeger, B. 1990. The R*-tree: An efficient
and robust access method for points and rectangles. In SIGMOD. 322–331.

Bennett, K. P., Fayyad, U., and Geiger, D. 1999. Density-based indexing for approximate
nearest-neighbor queries. In SIGKDD. 233–243.

Berchtold, S., Bohm, C., Jagadish, H. V., Kriegel, H.-P., and Sander, J. 2000. Independent

quantization: An index compression technique for high-dimensional data spaces. In ICDE. 577–
588.

Berchtold, S., Keim, D. A., Kriegel, H.-P., and Seidl, T. 2000. Indexing the solution space:
A new technique for nearest neighbor search in high-dimensional space. TKDE 12, 1, 45–57.

Beyer, K. S., Goldstein, J., Ramakrishnan, R., and Shaft, U. 1999. When is “nearest
neighbor” meaningful? In ICDT. 217–235.

Bohm, C. 2000. A cost model for query processing in high dimensional data spaces. TODS 25, 2,

129–178.

Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. 2000. Lof: Identifying density-based
local outliers. In SIGMOD. 93–104.

Charikar, M. 2002. Similarity estimation techniques from rounding algorithms. In STOC.

380–388.

ACM Journal Name, Vol. V, No. N, Month 20YY.

44 ·
Chaudhuri, S. and Gravano, L. 1999. Evaluating top-k selection queries. In VLDB. 397–410.

Chen, C.-M. and Ling, Y. 2002. A sampling-based estimator for top-k query. In ICDE. 617–627.

Ciaccia, P. and Patella, M. 2000. Pac nearest neighbor queries: Approximate and controlled

search in high-dimensional and metric spaces. In ICDE. 244–255.

Corral, A., Manolopoulos, Y., Theodoridis, Y., and Vassilakopoulos, M. 2000. Closest
pair queries in spatial databases. In SIGMOD. 189–200.

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S. 2004. Locality-sensitive hashing
scheme based on p-stable distributions. In SoCG. 253–262.

Fagin, R., Kumar, R., and Sivakumar, D. 2003. Efficient similarity search and classification via

rank aggregation. In SIGMOD. 301–312.

Fagin, R., Lotem, A., and Naor, M. 2001. Optimal aggregation algorithms for middleware. In
PODS. 102–113.

Ferhatosmanoglu, H., Tuncel, E., Agrawal, D., and Abbadi, A. E. 2001. Approximate
nearest neighbor searching in multimedia databases. In ICDE. 503–511.

Ferragina, P. and Grossi, R. 1999. The String B-tree: a new data structure for string search

in external memory and its applications. Journal of the ACM 46, 2, 236–280.

Gaede, V. and Gunther, O. 1998. Multidimensional access methods. ACM Computing Sur-
veys 30, 2, 170–231.

Gionis, A., Indyk, P., and Motwani, R. 1999. Similarity search in high dimensions via hashing.
In VLDB. 518–529.

Goldstein, J. and Ramakrishnan, R. 2000. Contrast plots and p-sphere trees: Space vs. time

in nearest neighbour searches. In VLDB. 429–440.

Guttman, A. 1984. R-trees: a dynamic index structure for spatial searching. In SIGMOD. 47–57.

Har-Peled, S. 2001. A replacement for voronoi diagrams of near linear size. In FOCS. 94–103.

Hjaltason, G. R. and Samet, H. 1998. Incremental distance join algorithms for spatial
databases. In SIGMOD. 237–248.

Hjaltason, G. R. and Samet, H. 1999. Distance browsing in spatial databases. TODS 24, 2,

265–318.

Houle, M. E. and Sakuma, J. 2005. Fast approximate similarity search in extremely high-
dimensional data sets. In ICDE. 619–630.

Indyk, P., Lewenstein, M., Lipsky, O., and Porat, E. 2004. Closest pair problems in very high
dimensions. In International Colloquium on Automata, Languages and Programming (ICALP).

782–792.

Indyk, P. and Motwani, R. 1998. Approximate nearest neighbors: Towards removing the curse
of dimensionality. In STOC. 604–613.

Jagadish, H. V., Ooi, B. C., Tan, K.-L., Yu, C., and Zhang, R. 2005. idistance: An adaptive
b+-tree based indexing method for nearest neighbor search. TODS 30, 2, 364–397.

Kleinberg, J. M. 1997. Two algorithms for nearest-neighbor search in high dimensions. In

STOC. 599–608.

Korn, F., Pagel, B.-U., and Faloutsos, C. 2001. On the ‘dimensionality curse’ and the ‘self-
similarity blessing’. TKDE 13, 1, 96–111.

Koudas, N., Ooi, B. C., Shen, H. T., and Tung, A. K. H. 2004. Ldc: Enabling search by partial
distance in a hyper-dimensional space. In ICDE. 6–17.

Krauthgamer, R. and Lee, J. R. 2004. Navigating nets: simple algorithms for proximity search.

In SODA. 798–807.

Lenhof, H.-P. and Smid, M. 1992. Enumerating the k closest pairs optimally. In FOCS. 380–386.

Li, C., Chang, E. Y., Garcia-Molina, H., and Wiederhold, G. 2002. Clustering for approxi-
mate similarity search in high-dimensional spaces. TKDE 14, 4, 792–808.

Lin, K.-I., Jagadish, H. V., and Faloutsos, C. 1994. The tv-tree: An index structure for
high-dimensional data. The VLDB Journal 3, 4, 517–542.

Lopez, M. A. and Liao, S. 2000. Finding k-closest-pairs efficiently for high dimensional data. In

CCCG. 197–204.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 45

Lv, Q., Josephson, W., Wang, Z., Charikar, M., and Li, K. 2007. Multi-probe lsh: Efficient

indexing for high-dimensional similarity search. In VLDB. 950–961.

Panigrahy, R. 2006. Entropy based nearest neighbor search in high dimensions. In SODA.

1186–1195.

Roussopoulos, N., Kelley, S., and Vincent, F. 1995. Nearest neighbor queries. In SIGMOD.
71–79.

Shamos, M. I. and Hoey, D. 1975. Closest-point problems. In FOCS. 151–162.

Tao, Y., Yi, K., Sheng, C., and Kalnis, P. 2009. Quality and efficiency in high dimensional
nearest neighbor search. In SIGMOD. 563–576.

Weber, R., Schek, H.-J., and Blott, S. 1998. A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In VLDB. 194–205.

Wong, R. C.-W., Tao, Y., Fu, A. W.-C., and Xiao, X. 2007. On efficient spatial matching. In
VLDB. 579–590.

ACM Journal Name, Vol. V, No. N, Month 20YY.

