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Background

One of the essential steps of performing a finite element analysis is the discretisation of the 

geometric domain into an analysis-suitable mesh. In case of complex geometries this pro-

cess may become a severe bottleneck in the complete analysis pipeline. Studies show that 

the time required for creating an analysis-suitable geometry and its computational mesh 

accounts for about 80% of the overall analysis time [1].

In recent years, efforts to fill the gap between geometry and simulation brought forth 

many promising approaches, most of them related to the isogeometric analysis [1]. �e 

idea of IGA is to use exactly the same shape functions for approximating the solution 

that are used for the geometry description. �is way, the calculation can be performed 

on the geometric model directly, without any explicit mesh generation.

Other approaches—meshless methods, for example—aim to approximate the solution 

entirely in terms of nodal values [2]. Further approaches to avoid expensive mesh gen-

eration of complex geometries include the immersed boundary and fictitious domain 

methods [3, 4]. �ese techniques extend domains of complex shapes to a larger embed-

ding domain, the geometry of which is simpler and can thus be meshed easily with a 

structured grid.

�e Finite Cell Method (FCM) [5, 6] combines the basic idea of immersed bound-

ary methods with higher order finite elements (p-FEM) [7, 8]. �e physical domain is 

extended by the fictitious domain, such that their union results in a simple geometry 
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that can be meshed easily. �e influence of the fictitious domain is marginalized by scal-

ing down its material parameters by a small factor α. Due to this scaling factor the ficti-

tious material is numerically extremely soft. �erefore, the strain energy of the solution 

in the original domain of interest and in the extended domain remains the same. For 

smooth problems, the method shows the same exponential convergence characteristics 

in the energy norm known from p-FEM [9], and allows accurate numerical computa-

tions without having to mesh complex geometries.

�e FCM has been proven to work well in a number of contexts, such as shell analy-

sis [10], large deformation analysis [11], voxel-based analysis on geometric models from 

CT-scans  [12, 13] and for wave propagation problems  [14]. �e biggest advantage of 

FCM lies in high convergence rates with almost no meshing costs. An overview of the 

method together with a summary of recent developments can be found in [15].

One major difficulty of the FCM (as well as other fictitious domain methods) is posed 

by the introduction of a discontinuity in the cells that are intersected by the geometric 

boundary of the physical domain. �roughout this paper, these cells are referred to as 

cut cells. A direct Gaussian quadrature is inappropriate for discontinuous integrands, 

therefore the cut cells require special integration formulae (see, for example, [16]), or 

the application of composed integration schemes. �e standard approach in the con-

text of FCM is to use composed Gaussian quadrature in combination with a recursive 

spacetree-based refinement.

Although the spacetree-based approach is easy to implement and works robustly on 

any geometry, it has some disadvantages. Because the spacetree decomposition yields a 

low order approximation of the boundary, exponential convergence can only be achieved 

up to the point where the error of integration starts to dominate over the discretiza-

tion error of the field variables. In order to reduce the integration error, more levels of 

spacetree subdivision have to be introduced. However, the number of integration points 

increases exponentially with every new level, thus making the analysis computationally 

expensive. Although this extra effort is bearable in linear computations, it may become 

prohibitively large if the amount of work per quadrature point is higher—as in nonlin-

ear calculations, for example. �ese drawbacks indicate the need of another approach 

toward the quadrature point distribution to ensure a better geometric description of the 

boundary.

Finding the right quadrature rules for integrating through discontinuities is not an 

unknown question in the finite element community. In the context of the extended finite 

element methods (XFEM) [17], numerous approaches have been proposed to deal with 

this problem. One possibility is to fix the location of the quadrature points a priori and 

compute the relevant weights by solving the moment-fitting equations, as described 

in  [18] or [19].

Another possibility in the context of XFEM is based on the idea of replacing the dis-

continuous integrand by an equivalent polynomial that is defined such that the evalu-

ated stiffness matrix is exact. �e original function and its polynomial substitute are 

equivalent in the integral sense, which is why the integral can be computed by standard 

quadrature rules without having to perform any subdivision. Examples of the method of 

equivalent polynomials can be found in [20] and [21].
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Another technique to resolve the discontinuous integrand is to decompose the cut 

cells into Lagrangian elements in such a way that the edges of the resulting subcells align 

with the interface [22]. �e use of triangular NURBS-Enhanced Finite Elements [23] in 

different XFEM settings has also been investigated in [24], based on an approach that is 

extended in this contribution.

�e possibility of using the exact geometrical description of the boundary directly for 

the cut cell integration in the context of IGA and FCM is still an open question. �ere-

fore, it shall be addressed in this paper—according to the following structure: “�eo-

retical background” briefly introduces the main concept of the Finite Cell Method and 

addresses the challenge of integration in the context of cut cells. “High order subcell 

integration” introduces a novel algorithmic approach aiming to overcome the integra-

tion problems in a robust, yet accurate way. In “Decomposition examples”, some 2D 

example problems serve to demonstrate the proposed algorithm. �e convergence 

properties of the approach in the context of FCM are discussed in “Finite Cell Method 

examples” along with an example of a wave propagation problem on a complex domain. 

�e conclusions and an outlook on possibilities of further development are presented in 

“Conclusion and outlook”.

Theoretical background

In the following, the essential ideas of the Finite Cell Method for steady linear elastic prob-

lems are discussed. For further details, see [5, 6, 11].

The essential ideas of the Finite Cell Method

As mentioned in the introduction, the FCM circumvents the task of mesh generation by 

extending the boundaries of the physical domain of interest �phy by a fictitious part �fic. 

�eir union �phy ∪ �fic forms a simply shaped embedding domain �∪ that can be meshed 

easily. �e concept is depicted in Figure 1.

�e derivation of FCM is based on the principle of virtual work [25]:

where σ , b , u , δu and ∇sym denote the Cauchy stress tensor, the body forces, the dis-

placement vector, the test function and the symmetric part of the gradient, respectively. 

(1)
δW (u, δu) =

∫

�

σ : (∇symδu)dV −

∫

�phy

δu · bdV −

∫

ŴN

δu · tdA = 0,

Ωphy

t
t = 0 on ∂Ω∪

ΓN

ΓD

Ωfic

Ω∪=Ωphy ∪ Ωfic
α = 1.0

α = 0.0

Figure 1 The core concept of the fictitious domain approach: the physical domain �phy is extended by the 

fictitious domain �fic such that their union forms the embedding domain �∪. This allows the creation of a 

structured grid. To extinguish the influence of the fictitious domain, the material parameters of �fic are penal-

ized by α [11].
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On ŴN of the physical domain, the traction vector t specifies the Neumann boundary 

conditions.

Stresses and strains are related through the constitutive tensor C:

where α is an indicator function defined as:

Neumann boundary conditions of zero traction on the boundary of the physical 

domain are automatically satisfed. Inhomogeneous Neumann boundary conditions 

can be applied by simply integrating over the boundary ŴN , regardless of whether 

the cell boundaries coincide with the geometric boundaries or not. Essential bound-

ary conditions are generally imposed in the weak sense using variational techniques, 

such as the penalty method [26, 27], the Lagrange multiplier method [27], or Nitsche’s 

method [28].

�e unknown quantities δu and u are discretized by a linear combination of Ni shape 

functions with unknown coefficients ui:

So far, different types of shapes functions have been used in the context of FCM, such as 

integrated Legendre polynomials [7], B-Splines [11] and NURBS [28].

Substituting (4) and (5) into (1) yields the discrete finite cell representation:

�e stiffness matrix K  results from a proper assembly of the element stiffness matrices 

k
e calculated as:

where L is the standard strain-displacement operator, N  is the matrix of shape functions, 

C is the constitutive matrix, and ‖J‖ is the Jacobian determinant of the mapping Q(ξ , η) 

that maps the local coordinates (ξ , η) of the cell to the global coordinate system (x, y) [25, 

29, 30].

The challenge of integration

In conventional finite element approaches, the numerical evaluation of the integral in (7) is 

performed by the Gaussian quadrature [25, 31]:

(2)σ = αC : ε,

(3)α(x) =

{

1 ∀x ∈ �phy

10
−q

∀x ∈ �fict .

(4)u =

n∑

i=1

Niui

(5)δu =

n∑

i=1

Niδui.

(6)Ku = f .

(7)ke =

∫ 1

−1

∫ 1

−1

(LN )TC(LN )�J�dξdη,
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where ξi and ηi are the locations of the quadrature points in local coordinates of the cell, 

wi and wj are their corresponding weights.

Due to the discontinuity that is introduced by penalizing the constitutive matrix C 

(Eq. 3), the Gaussian quadrature loses its accuracy in cut cells  [5, 6, 32]. In order to 

improve the precision of the numerical integration, the FCM uses a composed Gauss-

ian quadrature that is based on a spacetree decomposition of the cells that are cut by 

the domain boundaries. In two dimensions, this means that every cut cell is recursively 

subdivided into 4 equal integration subcells until a predefined depth is reached (Fig-

ure 2). �e quadrature points are distributed in the parameter space of each resulting 

integration cell and then mapped to the parameter space of the finite cell. �en, the 

Jacobian term in (8) is the product of the mappings Q(ξ , η) and Q̃(ξ̃ , η̃), where the terms 

with ∼ denote the local coordinates of the integration cell and the mapping from the 

parameter space of the integration cell to the parameter space of the finite cell. �e con-

cept of the mappings is depicted in Figure 3.

�e advantage of the spacetree-based integration lies in its simplicity. As it merely 

relies on point membership classification, it is easy to implement and works robustly on 

any geometry. �e drawback of this approach is that the number of integration points 

increases exponentially with every new level of spacetree decomposition, rendering the 

analysis computationally expensive. Moreover, the spacetree decomposition yields a low 

(8)ke ≈

nj∑

j

ni∑

i

(LN )TC(LN )�J�|ξi ,ηiwiwj ,

finite cell mesh

k=0 k=1 k=2

k=3 k=4 k=5

with geometric

boundary

Figure 2 The method of quadtree partitioning. Each cut cell is recursively subdivided until a predefined 

subdivision depth is reached [11].

x

y

ξ

η

ξ̃

η̃

Q(ξ, η)

Q̃(ξ̃, η̃)

Figure 3 The concept of mappings for quadtree depth k = 1.
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order approximation of the boundary and leaves the higher order geometric information 

(if available) unexploited.

Investigations in the field of XFEM show that it is beneficial to subdivide elements that 

are cut by the interface into a set of curved geometric entities. In [22], the cut elements 

are approximated by a set of Lagrangian elements with curved sides. �e problem has 

also been addressed in [24], where an algorithmic approach to decompose cut elements 

into a set of curved triangles was presented. �ese triangles, based on NURBS-Enhanced 

Finite Elements recover the boundary in an exact sense.

�e next section introduces an algorithm aiming to combine the robustness of the spa-

cetree approach with the previously mentioned idea of exact geometry representation. 

�e resulting set of triangles and quadrilaterals uses the blending function interpolation 

[33] in order to yield an exact representation of the boundary.

High order subcell integration

�e simplicity of the spacetree decomposition results in robustness. From an algorithmic 

point of view, it is irrelevant how the boundary cuts through the cell: the resulting integra-

tion subcells are always created in the same way. In other words, the spacetree decomposi-

tion is completely insensitive to the topological configuration that the cutting boundary 

creates in a cut cell. In order to be robust, the enhanced decomposition method has to 

inherit this topological insensitivity. �is means that it is beneficial to define a generic way 

of decomposition that can be applied to any kind of cut configuration, regardless of what 

kind of topology a cutting boundary creates inside one cell.

�e standard method to identify in what way rectangular domains are cut is based on 

the method of marching squares, known from computer graphics  [34]. Although this 

method works well to determine contours of scalar fields, it is a method designed for 

boundary recovery instead of domain decomposition. Moreover, instead of one generic 

procedure, it requires different treatment for different intersection patterns. To main-

tain robustness, the algorithm in this paper follows a different approach, that does not 

require the identification of such intersection cases.

Triangulated cut cell approach

Our algorithm follows the idea described in [22]. In this work, the authors state that a cut 

cell can always be decomposed into a set of quadrilaterals and triangles if the cell is cut in 

two triangles by a diagonal line.

�e idea of the proposed algorithm is the following: if the diagonal line is drawn 

appropriately, the boundary always cuts the resulting two triangles into a triangle and a 

quadrilateral, regardless of how the boundary cuts through the cell. �is idea is depicted 

in Figure 4. To identify how the diagonal line has to be created, the algorithm performs 

an inside-outside test on the four corner vertices of the cell. If two opposite vertices have 

opposite states, the diagonal line is created between them. After the line is created, the 

intersection points between the boundary and the diagonal line as well as the cell edges 

are computed. �e boundary is then trimmed at these points of intersection. Details of 

implementation of the algorithm can be found in [35].
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Mapping of curved regions

�e resulting trimmed curves are used as the boundaries of the curved triangles and quad-

rilaterals. �e proposed approach employs the blending function method introduced 

in [33]. �is method uses the parametric description of the boundary to define a mapping 

between the standard bi-unit square and the curved triangle or quadrilateral representa-

tion. �e definition of the blended mapping for a generic curved quadrilateral reads [7]:

where Ei, N i, X i denote the parametric equations of the bounding curves, the stand-

ard bi-linear shape functions and the corners of the quadrilateral, respectively. Figure 5 

shows the example of a quadrilateral with one high order boundary. �e blended map-

ping can be extended to triangles with curved parametric boundaries by collapsing one 

of its edges into one point, as explained e.g. in [25].

Special cases

�ere are cases in which the previously outlined method is not able to provide an exact 

decomposition of the cut cell. �e following points focus on these special cases and on the 

ways they can be treated.

(9)

Q(ξ , η) =
1

2

(

(1 − η)E1(ξ) + (1 + ξ)E2(η) + (1 + η)E3(ξ) + (1 − ξ)E4(η)

)

−

4
∑

i=1

N i(ξ , η)X i,

Figure 4 The general flow of the proposed algorithm. Every cut cell is subdivided into two triangles along a 

diagonal line. The triangles are further cut by the boundary into a triangle and a quadrilateral.

(−1,−1) (1,−1)

(1, 1)(−1, 1)

η

ξ

Q(ξ, η)

Q−1(ξ, η)
X1

X2

X3X4

E2(t)

x

y

Figure 5 Blended quadrilateral with one curved side.
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Degenerate cuts

If a non-convex boundary cuts the cell, there can be several intersection points between 

this boundary and the diagonal line (Figure 6). �erefore, no triangular decomposition can 

be made. Likewise, if the boundary has no intersection with the diagonal line, there is no 

straightforward decomposition that matches the procedure described before (Figure  7). 

�is second kind of special configuration is detected by evaluating the inside-outside state 

of dedicated seed points on the domain of the cell. �us, the special case in Figure 7 may 

be missed if the resolution of these seed points is not fine enough. If a special configura-

tion is detected, the algorithm performs a quadtree subdivision and runs the triangulated 

decomposition on the leaf cells of the tree. �is is done recursively, until the generic 

case of  Figure  4 can be constructed. �is quadtree based fallback option is depicted in 

Figures 6 and 7.

Kinks and corners

In many cases, the boundary of the domain is not composed of one continous curve, but is 

a set of connected curve segments. �ese points usually represent discontinous jumps in 

the curve derivatives and have to be taken into account by the decomposition algorithm in 

order to maintain the precision of the integration.

�erefore, if more than one curve is detected in a cell, the diagonal line is replaced by 

two linear segments. �e point in which these segments are connected is the location of 

the kink in the cell. �is case is depicted in Figure 8.

Piecewise de�nition of the boundary

As Eq. 9 suggests, the nature of the parametric description of the bounding curves has 

a strong influence on the mapping Q̃(ξ̃ , η̃) and thus on the Jacobian determinant of the 

Non-convex boundary
cuts the cell

The cell is subdivided
into four subcells

General case is constructed
in the subcells

Figure 6 Non-convex boundary cuts the cell.

Boundary has two inter-
sections with a cell edge

The cell is subdivided
into four subcells

General case is constructed
in the subcells

Figure 7 A boundary intersects a cell edge twice.
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integration cell. If any of the bounding curves of the integration cell is defined piecewise, 

the Jacobian determinant in the integrand of the element stiffness matrix (Eq. 7) becomes 

non-smooth as well. Because the Gaussian quadrature is able to cope with polynomials 

but not with functions that are defined piecewise, this has to be taken into account by the 

decomposition algorithm. Having piecewise defined curves as boundary description is 

a very frequent case, as many geometries in engineering computations use B-Splines or 

NURBS. �e parameter space of these curves is divided into a set of subintervals and the 

parametric equation of the curve changes at the breakpoint between neighboring subin-

tervals. In the context of B-Splines or NURBS, these breakpoints are often referred to as 

knots.

In 1D, integrating piecewise polynomials numerically is performed by employing com-

posed integration, based on the sum of the integrals on the separate intervals the curve 

is defined on. In order to perform exact numerical integration, this concept has to be 

applied to 2D: instead of integrating subintervals, the integration has to be carried out 

on subregions, where the boundaries of the regions are defined by the locations of the 

breakpoints. As an example, consider a blended integration cell with eb(η) being a piece-

wise-defined, curved boundary (Figure 9) that has one breakpoint at η = −0.5.

Because the definition of eb(η) changes at η = −0.5, the Jacobian determinant of the 

blended mapping changes too. �us, the integration cell has to be further subdivided 

along the η = −0.5 isoparametric line. Integration then takes place on these subcells 

separately, and the complete integral is computed by the sum of the integrals on the 

subcells. In general, the triangulated subdivision algorithm is followed by an additional 

Figure 8 Resolution strategy for kinks: the diagonal line is replaced by two connected segments.

eb(η)

X1

X2

X3X4

η =
−0.5

η

ξ
Q1

Q2

Figure 9 Example of breakpoint subdivision.
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decomposition: all cells that are bounded by piecewise defined curves are further subdi-

vided along the breakpoints of the curves.

As it will be pointed out later, this breakpoint-wise subdivision is a necessary step in 

order to be able to compute highly accurate integrals of subcells bounded by piecewise 

curves.

Decomposition examples

�is section demonstrates the proposed decomposition algorithm on a few examples.

Moving circle in rectangular domain

We define a square-shaped domain with a circular hole inside, the center of which moves 

on a circular path (Figure 10). �e boundary of the circular hole is composed of four arcs. 

In every time step, a different geometrical setting has to be partitioned. �is way, it can be 

assessed, how the algorithm copes with non-regular configurations. As Figure 11 depicts, 

every cut cell is decomposed into two pairs of quadrilaterals and triangles. In cells where 

neighboring arcs join, the diagonal cutting line is drawn according to the meeting point 

of the curves. It is worth observing how the degenerate case is resolved by the quadtree 

decomposition in Figure 11c.

Integration test

�e precision of the entire subdivision algorithm is assessed on a geometric setup that 

contains all the special cases of “Special cases”.

We introduce an “integration patch test” with the following idea: the value of the 

scaling factor is chosen to be α = 1 both on �phy (with a possibly complex geometry) 

and �fict. Because the scaling factor is the same in both domains, there is no disconti-

nuity in the cells anymore and the numerical problem simplifies to a 2D finite element 

2

2

Ωphy

Ωfic

1

2

3

8

β

Figure 10 Setting of the moving circle example.
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computation on a rectangular domain with a quadrilateral mesh. If this domain is sub-

jected to constant strains, the linear shape functions spanned on the quadrilateral mesh 

have to be able to represent the solution exactly, because the completeness condition is 

satisfied [25, 29]. Note that the integrands of the element stiffness matrices (Eq. 7) are 

still computed on the subcells resulting from the decomposition algorithm. �erefore, 

any possible difference between the numerical and the analytical solution is a sign that 

there is an error in the integration. To quantify these differences in a global sense, the 

numerical and analytical strain energy are compared using the following error measure:

where uex and unum are the exact and numerical values of the strain energy, respectively.

(10)e =

√

|uex − unum|

uex
,

a β = 0
◦

b β = 45
◦

  c β = 202.5◦
d β = 270

◦

Figure 11 Decomposition example: moving circle.
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As an example, consider the geometric setting depicted in Figure 12. �e boundaries 

of �phy represent the cover plate of a violin, including the f-holes (Figure 13). �e bound-

ary of the violin—including the f-holes—are represented by B-Spline curves of 3rd order. 

On this domain, the Laplace equation

is solved with Dirichlet boundary conditions applied on the top and bottom of the mesh 

grid, such that the field value � = 0 on ŴD1
 and � = h on ŴD2

, where h is the height of 

�fic. As a result, the gradient of the field value ∂�

∂x
 is equal to one throughout the whole 

domain. �e boundaries denoted by ŴN are defined as free Neumann boundaries. 

Because the solution is linear, the polynomial order of the shape functions is chosen to 

be p = 1.

Figure  13a illustrates the results of the decomposition without applying breakpoint-

wise subdivision. �e resulting integration mesh with breakpoint subdivision is depicted 

in Figure 13b. Figure 14 shows how the algorithm copes with the small geometric fea-

tures of the domain. 

�e analytical value of the strain energy is

where w denotes the width of the domain (Figure 12). Figure 15 shows the error in the 

strain energy depending on the number of quadrature points distributed per parametric 

(11)�� = 0

(12)uex =

1

2

∫

�

(

∂�

∂x

)2

d� =

1

2
wh,

w = 80

h = 120

Ωfic

Ωfic

Ωphy

ΓNΓN

ΓD1

ΓD2

Figure 12 Geometry setup for the violin partitioning example.
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direction in each cell. If the breakpoints are not taken into account as explained in 

“Piecewise definition of the boundary”, the error remains higher regardless of how many 

integration points are distributed in the cells. However, if the integration cells are subdi-

vided along the breakpoints of the bounding curves, the error in the energy norm con-

verges to machine precision.

Here, it is worth noting that the total number of integration points is influenced by the 

parametric definition of the curves to a great extent. �is means that if there are many 

breakpoints present in the boundary curves, there will also be a lot of breakpoint-wise 

a Without breakpoint subdivision

b With breakpoint subdivision

Figure 13 Decomposition examples on the violin domain.
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subdivision performed. �erefore a high number of quadrature points is generated 

which results in high overall runtime.

In order to determine whether a cell is cut, both the blended and the quadtree based 

approaches require the evaluation of the inside-outside state of dedicated seed points. 

However, due to its recursive nature, the quadtree based technique has to evaluate the 

point membership in every cell of every level of subdivision. �us, for higher subdivi-

sion levels the quadtree based integration mesh generation becomes significantly more 

expensive than the proposed algorithm. �is is also confirmed by the comparison in 

Figure 16.

Finite Cell Method examples

�is section demonstrates the capabilities of the proposed integration method in the con-

text of FCM. First, the accuracy and the performance is compared to the quadtree based 

approach by solving a linear elastic problem. �is is followed by the simulation of a com-

pression wave propagating through a complex domain.

Figure 14 A detailed view of the f-hole.

E
rr

o
r

in
e
n
e
rg

y
n
o
rm

With breakpoint subdiv.

Without breakpoint subdiv

No. of quadrature points in one parametric direction

Figure 15 Error in energy norm with and without breakpoint subdivision.
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Perforated plate

�e first example is a plane stress problem that was already analysed in the context of 

FCM [6], with the geometric setting depicted in Figure 17. �e material of the perforated 

plate is steel, with the properties E = 2.069 · 105[MPa], ν = 0.29[−]. �e plate is vertically 

loaded by 100 [MPa]. Symmetry conditions are applied on Ŵ1 and Ŵ4. �e boundaries of 

the hole and Ŵ2 are treated as free boundaries. �e domain is discretized into 2 × 2 finite 

cells. �e polynomial degree of the shape functions is increased from p = 1 to p = 15. 

�e reference strain energy of the problem is U = 0.7021812127, obtained by an “overkill” 

p-FEM solution from [6].
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Figure 16 Comparison of the time required for generating different integration meshes for the violin exam-

ple.
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�e integration is performed on blended integration cells and on quadtree cells with a 

depth of k = 4 and k = 5. For comparison, the same problem is solved by means of linear 

finite elements (h-FEM) with different element sizes. For the quadtree integration cells 

and the linear finite elements the number of quadrature points is chosen to be (p + 1)2. 

To account for the high order boundaries of the blended integration mesh, (p + 4)2 inte-

gration points are distributed in the curved integration cells. Figure 18 depicts the inte-

gration cell meshes and a mesh of linear finite elements. �e error in the strain energy 

(Eq. 12) is plotted in Figure 19a.

Both the quadtree and the blended integration show exponential convergence, simi-

lar to p-FEM. However, the curve representing the quadtree integration levels off at an 

error of approximately 10−2[−]. At this point the integration error dominates over the 

discretization error which renders a further increase of the polynomial degree pointless. 

�e integration error can be reduced by adding more levels of refinement to the space-

tree subdivision—however, the low approximation of the integration does not allow for 

k = 4

Quadtree integration mesh, Blended integration mesh

c

ba

Mesh of 246 linear quadrilaterals

Figure 18 Integration meshes and a finite element mesh for the perforated plate example.
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exponential convergence in the asymptotic range. In comparison, the blended integra-

tion that uses the parametric description of the boundaries shows exponential conver-

gence also in the asymptotic sense.

�e number of quadrature points has a major influence on the overall computational 

cost of a numerical simulation. �erefore, the relationship between the number of 

integration points and the relative error in strain energy is an important aspect when 

it comes to assessing the performance of the different approaches. �is relationship is 

depicted in Figure 6. Apart from the better convergence characteristics, the other advan-

tage of the blended subcell integration lies in the total number of Gauss points distrib-

uted on the domain. For the same error in the strain energy, the blended integration 

cells require approximately one order of magnitude less Gauss points than a quadtree 
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Figure 19 Comparison of the convergence characteristics of different methods.
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integration mesh with a depth of k = 4. If the depth of the quadtree is increased to k = 5

, the point at which the convergence curve levels off is slightly shifted to a lower value. 

However, this gain in precision comes with the cost of high computational overhead. 

As an example, consider a relative error of 10−4 in the energy norm, where the k = 5 

quadtree integration mesh needs approximately 40,000 quadrature points. In contrast, 

the blended mesh needs approximately 2,500 integration points to reach the same error.

A comparison in terms of the time required to compute the stiffness matrix—includ-

ing the generation of the integration mesh—is plotted in Figure 20. �e quadtree based 

computation becomes more expensive than the blended one for two reasons. �e first 

reason is due to the extra inside-outside tests required by the quadtree with high levels 

of k (refer to “Integration test”). Secondly, the high number of quadrature points leads to 

an excessive number of matrix-matrix product evaluations in Eq. 8.

Both the blended and quadtree methods show better convergence characteristics in 

comparison to the standard h-FEM on the basis of the number of degrees of freedom 

(Figure  19a). Comparing the number of integration points of the different approaches 

reveals that up to approximately 1,000 integration points the error in the strain energy 

of the h-FEM solution is smaller than the error of the blended integration. �is point is 

located where the curve of the h-FEM error intersects the curve of the blended integra-

tion error on Figure 19b. For the quadtree methods, this intersection with the h-FEM 

error curve lies in regions of higher number of Gauss points.

Here, it should be noted that although the h-FEM is at least as precise as the blended 

subcell integration up to this intersection point, it requires considerably more degrees of 

freedom than the FCM approach.

Compression wave on the violin‑shaped domain

Consider the geometric setting with the violin-shaped domain of “Integration test”. We 

assume linear homogenous isotropic material properties on the physical domain �phys, 
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Figure 20 Comparison of the time required for integrating the stiffness matrix for p = 1 . . . 15.
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and simulate a pressure wave advancing through the domain by solving the wave equa-

tion [25, 29]:

(13)
∂�

∂t2
− α

2
∇

2
� = 0.

t = 0.005a b

c d

e f

g h

t = 0.021

t = 0.035 t = 0.049

t = 0.043 t = 0.077

t = 0.091 t = 0.112

Figure 21 Values of � plotted for selected t values.
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Homogenous Dirichlet boundary conditions are specified both on the outer boundary 

and the inner holes of the physical domain. �e system is excited by a Gaussian wavelet 

in the upper region of �phys. �e finite cell mesh is composed of 8 × 14 elements with 

a polynomial order p = 6. �e time interval of the simulation [tmin, tmax] = [0, 0.120] is 

discretized into 120 time steps and the Newmark-beta method is used for time integra-

tion  [25, 29]. It is worth noting here that an integration mesh with blended elements 

including breakpoint subdivision and 7 × 7 quadrature points per integration cell yields 

approximately 3.5 times less integration points in comparison to the quadtree based 

integration with a refinement level of k = 4. Figure 21 shows the results of the simula-

tion over time.

Conclusion and outlook

�is paper presented a novel approach to overcome the integration challenges in the con-

text of the Finite Cell Method. �e standard integration in FCM is performed by a space-

tree based composed Gaussian quadrature, which works robustly on any geometry, but 

lacks the geometric approximation power that balances well with the high order shape 

functions of p-FEM.

�e presented algorithm decomposes the cut finite cells into a set of curved quadrilat-

erals and triangles. Knowing the parametric description of the boundary, these triangles 

and quadrilaterals use blending functions to map the quadrature points.

�e algorithm aims to be generic in such a way that different topological cutting situa-

tions can be handled in a similar manner. �us, similarly to the quadtree decomposition, 

the method is able to cope with complex geometries in a robust way. �e error in inte-

gration with blended integration cells was investigated on a complex geometry by setting 

up a “pseudo-FCM” problem that has an exact solution but is numerically computed on 

the blended integration mesh. It was found that in case of curves that follow a piecewise 

parametric definition (e.g. B-Splines), the integration can be highly accurate only if the 

blended cells are subdivided along the breakpoint locations of the bounding curves.

�e blended subcell integration shows better convergence characteristics in com-

parison to the classical spacetree decomposition with at least one order of magnitude 

less quadrature points for the same error. To demonstrate that the algorithm is capa-

ble of working with complex geometries, a cover plate model of a violin was partitioned 

and the propagation of a compression wave was simulated on its domain. �anks to its 

robustness and high accuracy, the algorithm is a good fit into the design-through-analy-

sis pipeline.

Further research should address an extension of the algorithm to 3D cases. As the 

blending function concept extends to 3D naturally, the prior question would be how to 

find a generic decomposition-approach that is able to handle different cutting situations 

in a robust manner.
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