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I. INTRODUCTION 

  Abstract—In nanometer CMOS technologies, worst-case 
design methods and response-surface-based yield 
optimization methods face challenges in accuracy. Monte-
Carlo (MC) simulation is general and accurate for yield 
estimation, but its efficiency is not high enough to make MC-
based analog yield optimization, which requires many yield 
estimations, practical. In this paper, techniques inspired by 
computational intelligence are used to speed up yield 
optimization without sacrificing accuracy. A new sampling-
based yield optimization approach, which determines the 
device sizes to optimize yield, is presented, called the Ordinal 
Optimization (OO)-based Random-Scale Differential 
Evolution (ORDE) algorithm. By proposing a two-stage 
estimation flow and introducing the OO technique in the first 
stage, sufficient samples are allocated to promising solutions, 
and repeated MC simulations of non-critical solutions are 
avoided. By the proposed evolutionary algorithm that uses 
Differential Evolution for global search and a random-scale 
mutation operator for fine tunings, the convergence speed of 
the yield optimization can be enhanced significantly. With 
the same accuracy, the resulting ORDE algorithm can 
achieve approximately a tenfold improvement in 
computational effort compared to an improved MC-based 
yield optimization algorithm integrating the infeasible 
sampling and Latin-hypercube sampling techniques. 
Furthermore, ORDE is extended from plain yield 
optimization to process-variation-aware single-objective 
circuit sizing.   

ndustrial analog integrated circuit design not only calls 
for fully optimized nominal design solutions, but also 

requires high robustness and yield in the light of varying 
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supply voltage and temperature conditions, as well as 
inter-die and intra-die process variations [1-3]. Especially 
in nanometer CMOS technologies, random and systematic 
process variations have a large influence on the quality 
and yield of the manufactured analog circuits. As a 
consequence, in the high-performance analog and mixed-
signal design flows, the designer needs guidelines and 
tools to deal with these factors impacting circuit yield and 
performances in an integrated manner in order to avoid 
costly re-design iterations [4].  
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Fig. 1. General flow of yield optimization methods 

 
Yield optimization includes system-level hierarchical 

optimization [5] and building-block-level yield 
optimization [6-7]. At the building block level, there exist 
parametric yield optimization [6-8] and layout-related 
yield optimization [9-11], e.g. critical area yield analysis 
[9]. This paper focuses on parametric yield optimization 
at the building-block level.  

The yield optimization flow is summarized in Fig. 1. In 
the optimization loop, the candidate circuit parameters are 
generated by the optimization engine; the performances 
and yield are analyzed and fed back to the optimization 
engine for the next iteration. Yield analysis is a critical 
point in the yield optimization flow. Among the factors 
that impact yield, statistical inter-die and intra-die process 
variations play a vital role [8]. Previous yield optimization 
methods include device model corner-based methods 
[3,12], performance-specific worst-case design (PSWCD) 
methods [6,7], response-surface-based methods [2,15] and 
Monte-Carlo (MC)-based methods.  
 Device model corner-based methods [3,12] use the 

same slow/fast parameter sets to decide the worst-case 
parameters for all circuits for a given technology. They 

I 
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are efficient due to the limited number of simulations 
needed. But their drawback is that the worst‐case 
performance values are pessimistic as the corners 
correspond to the tails of the joint probability density 
function of the parameters, resulting in considerable 
over-design. Also, the slow/fast values obtained for a 
single performance, e.g. delay, and the worst-case 
process parameters for other performances may be 
different. Secondly, the actual yield may be low if the 
intra-die variations are ignored. If the intra-die 
variations were considered, the number of simulations 
would be extremely large. The limitations of device 
model corner-based methods for robust analog sizing 
are discussed in [1,13].  

 The PSWCD methods [6-7,13-14] represent an 
important progress in robust sizing of analog ICs. 
Instead of using the same slow/fast parameter sets for 
all the circuits, the PSWCD methods decide on the 
worst-case parameters for specific performances of 
each circuit and nominal design. Determining the 
performance-specific worst-case parameters is critical 
for this kind of method. Although the search for the 
WC point typically uses some nonlinear optimization 
formulation, most PSWCD methods [13] linearize the 
performances at the worst-case point, which can 
introduce inherent errors. Some PSWCD methods 
build a response surface between the inter-die 
parameters and the performances [14] (RSM 
PSWCD). The inter-die parameters are independent of 
the design parameters, but intra-die variations have 
correlations to the design parameters. Hence, intra-die 
variations cannot be considered in these methods. If 
considering intra-variations, the total number of the 
process variation variables increases significantly with 
the number of the devices. While some PSWCD 
methods calculate an approximate estimation of the 
yield, others do not calculate yield. Instead, they 
calculate a range of the process parameters for a given 
yield, in which the specifications are met. In this case, 
the estimated yield is not available explicitly and the 
method has to be run repeatedly with different target 
values (e.g. yield>95%-99%) to know the best yield 
that can be achieved.  

 In response-surface-based methods, first macro-models 
over the yield and the designable and process 
parameters are established through regression methods 
and these are subsequently used to estimate the yield in 
the sizing process. Macro-models can be classified into 
white-box models and black-box models. A white-box 
model analytically expresses the yield as a function of 
the design and process parameters. Some additional 
parameters are used for regression purposes. Black-
box models, on the other hand, do not consider 
analytical expressions of the yield, but construct a 
regression model according to the input (i.e. design 

points, process parameters) and the output (i.e. yield) 
data. Accurate yield-aware performance macro-models 
can make a sizing tool explore design alternatives with 
little computational cost. However, response-surface-
based methods suffer from the trade-off between the 
accuracy and the complexity of the model, as well as 
the accuracy and the number of samples (CPU time) to 
create the model. 

 MC-based methods have the advantages of generality 
and high accuracy [16], so they are the most reliable 
and commonly used technique for yield estimation. 
Nevertheless, a large number of simulations are 
needed for MC analysis, therefore preventing its use 
within an iterative yield optimization loop (Fig. 1). 
Some speed enhancement techniques for MC 
simulations based on Design of Experiments (DOE) 
techniques have been proposed, such as the Latin 
Hypercube Sampling (LHS) method [17,18] or the 
Quasi-Monte-Carlo (QMC) method [19,20], to replace 
Primitive Monte-Carlo (PMC) simulation. These speed 
improvements are very significant, but our experiments 
show that the computational load is still too large for 
yield optimization if only using DOE methods in real 
practice (see section IV).  

Currently, PSWCD methods and response-surface-
based methods are the most popular approaches in the 
repeated iterations within yield optimization loops, while 
some form of Monte-Carlo yield estimation is most 
popular in design verification.  
    Therefore, in this paper we address the efficiency of 
MC-based yield optimization by proposing a different (but 
complementary) approach exploiting techniques from 
computational intelligence: while keeping high accuracy, 
we dramatically increase the efficiency of yield 
optimization by (1) optimally allocating the computing 
budget to candidate solutions in order to avoid non-critical 
MC simulations; and (2) enhancing the convergence speed 
of the search strategy by means of a random-scale (RS) 
mutation operator in combination with the differential 
evolution (DE) algorithm to decrease the amount of 
expensive MC simulations.   

Based on the above ideas, we then present the Ordinal 
Optimization (OO)-based Random-Scale Differential 
Evolution (ORDE) algorithm for analog yield 
optimization. The method aims to:  

• be general enough to be applied to any analog circuit 
in any technology process and for any distribution of 
the process parameters; 

• simultaneously handle inter-die and intra-die variations 
in nanometer technologies; 

• provide highly accurate results comparable to Monte-
Carlo analysis;  

• use an order of magnitude less computational effort 
compared with the improved MC-based method 
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integrating the infeasible pruning and Latin Hypercube 
sampling techniques (Section III (A)) and as such 
making the computational time of accurate yield 
optimization practical. 

The remainder of the paper is organized as follows. 
Section II reviews basic concepts of yield optimization. 
Section III introduces the components and the general 
framework of ORDE. Section IV tests ORDE on practical 
examples. Comparisons with response-surface-based 
methods are also performed. In Section V, the ORDE 
algorithm is extended from plain yield optimization to 
process-variation-aware single-objective analog sizing, 
which optimizes a target design objective (e.g. power) 
subject to a minimum yield requirement. The concluding 
remarks are presented in Section VI. 

 
II. BASICS OF YIELD OPTIMIZATION 

The aim of yield optimization is to find a circuit design 
point *d  that has a maximum yield, considering the 
manufacturing and environmental variations [8]. In the 
following, we will elaborate the design space D, process 
parameter space S with distribution pdf(s), environmental 
parameter space Θ  and specifications P.    

The design space D is the search space of the circuit 
design points, d, which can be transistor widths and 
lengths, resistances, capacitances and bias voltages and 
currents. Each one has an upper and lower bound, which 
is determined by the technological process or the user’s 
setup. The process parameter space S is the space of 
statistical parameters reflecting the process fluctuations, 
e.g. oxide thickness oxT  and threshold voltage thV . Process 
parameter variations can be inter-die or intra-die. For an 
accurate model, both types should be considered. The 
environmental variables Θ  include temperature and 
power supply voltage. The specifications P are the 
requirements set by the designer, which can be classified 
into performance constraints (e.g. DC gain > 70dB) and 
functional constraints (e.g. transistors must work in the 
saturation region).  

The yield optimization problem can be formulated as to 
find a design point *d that maximizes yield (in the case of 
plain yield optimization) [13]: 

 
* { } arg max ( )     

d D

d Y d
∈

=                                           (1.1) 

or that minimizes some function f (e.g. power, area) 
subject to a minimum yield requirement y (in the case of 
yield-aware sizing) [17]: 

 
*

 arg min{ ( , , )} ,   

. . ( )  
d D

d f d s s S

s t Y d y

θ θ
∈

= ∈ ∈Θ

≥
                (1.2)   

                                  

Yield is defined as the percentage of manufactured 
circuits that meet all the specifications considering 
process and environmental variations. Hence, yield can be 
formulated as: 
 

( ) { ( , , ) | ( )}Y d E YS d s pdf sθ=                                  (2) 
 

where E is the expected value. ( , , )YS d s θ  is equal to 1 if 
the performance of d meets all the specifications 
considering s (process fluctuation) and θ  (environmental 
variation); otherwise, ( , , )YS d s θ  is equal to 0. In most 
analog circuits, circuit performances change 
monotonically with the environmental variables  θ . Then, 
the impact of environmental variations can be handled by 
simulations at the extreme values of the environmental 
variables. For instance, if the power supply may 
experience some variations, e.g, 10%, the largest 
degradation is obtained by simulating at the extreme 
values: (1 10%)± × nominal value. Process variations, on 
the other hand, are much more complex: directly 
simulating the extreme values (classical worst-case 
analysis [1]) may cause serious over-design. This work 
therefore focuses on the impact of statistical process 
variations (space S) in yield optimization. 
 

III. THE ORDE ALGORITHM 
A. The Use of Infeasible Pruning and DOE in ORDE 
    To satisfy the first three goals (be general enough, able 
to handle both inter-die and intra-die variations, high 
accuracy) from Section I, MC analysis is selected. The 
speed enhancement technique, DOE, for MC-based yield 
estimation is used. The DOE method implemented in 
ORDE is LHS. However, the key contributions of ORDE 
are not related to a particular sampling mechanism, 
therefore, other speed acceleration methods like the 
recently proposed QMC [19,20] can be integrated. In the 
yield optimization process, some candidate solutions will 
appear that cannot satisfy the specifications even for 
nominal values of process parameters. Their yield values 
will be too low to become a useful candidate solution. 
Hence, there is not much sense in applying the MC-based 
yield estimation to these solutions. In ORDE, we call them 
infeasible solutions and assign them a zero yield value. 
Their violation of constraints is calculated, and the 
constrained optimization algorithm will minimize the 
constraint violations and move the search space to feasible 
solutions (i.e. design points that satisfy the specifications 
for nominal process parameters). This technique is named 
“infeasible pruning” in this paper. The selected feasible 
solutions are handled by ordinal optimization, which is 
described below.  
 
B.  Basics of ORDE 
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    Many recent analog circuit sizing and yield 
optimization methodologies are based on evolutionary 
computation (EC), which relies on the evolution of a set 
of candidate solutions, commonly called population, along 
a set of iterations, commonly called generations [19]. The 
computational effort at each iteration and the necessary 
number of iterations are two key factors that affect the 
speed of the yield optimization. We solve these two 
problems by optimally allocating the computing budget to 
each candidate in the population (reducing the 
computational effort at each iteration) and by improving 
the search mechanism (decreasing the necessary number 
of iterations, and, hence, decreasing the number of 
expensive MC simulations). Therefore, the total 
computational effort can be reduced considerably. In this 
paper, we use two computational intelligence techniques 
to implement these two key ideas.   
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Solution 
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of infeasible 
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Reduce number of 
MC simulations of 

non-critical solutions

                                       Latin Hypercube Sampling
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Fig. 2. Two-stage yield estimation flow 
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    Our yield estimation flow is depicted in Fig. 2. In order 
to optimally allocate the computing budget at each 
iteration, instead of assigning the same number of MC 
simulations to feasible solutions, the yield estimation 
process is divided into two stages. In the first stage, the 
fitness ranking of the candidate solutions and a reasonably 
accurate yield estimation result for good (critical) 
solutions are important. For medium or bad (non-critical) 
candidate solutions, their ranking is important, but 
accurate yield estimation is not. The reason is that the 
function of the yield estimation for non-critical candidates 
is to guide the selection operator in the EC algorithm, but 
the candidates themselves are likely not to be selected as 
the final result or even not enter the second stage of the 
yield optimization flow. Hence, the computational efforts 
spent on feasible but non-optimal candidate solutions can 
be strongly reduced. On the other hand, the estimations 
for these non-critical candidates cannot be too inaccurate 
either. After all, correct selection of candidate solutions in 

the yield optimization algorithm is necessary. In the first 
stage, the yield optimization problem is therefore 
formulated as an ordinal optimization problem, aimed at 
identifying critical candidate solutions by allocating a 
sufficient number of samples to the MC simulation of 
these solutions, while reasonably few samples are 
allocated to non-critical solutions [22]. Notice that this 
approach is intended to assign a different number of MC 
simulations to the yield estimations of the different 
candidates. This is different, and compatible, with the 
efficient sampling addressed with any DOE technique. In 
the second stage of the ORDE method, an accurate result 
is highly important, so the number of simulations within 
each yield estimation is increased in the second stage to 
obtain an accurate yield value.  

Another key technique of ORDE is to decrease the 
necessary number of iterations of the optimization flow 
shown in Fig. 3.  Instead of using conventional EC 
algorithms, we design a selection-based random-scale 
differential evolution (DE) algorithm (RSDE), which is a 
combination of three different techniques. Each technique 
plays a significant role in each phase. The first phase 
emphasizes a selection-based method to focus the search 
into the feasible solution space, defined by the nominal 
values of the process parameters. We use the DE 
framework [23] (a powerful and fast global optimization 
algorithm) for global search (emphasized in the second 
phase) and a random-scale operator for fine tunings 
(emphasized in the third phase).  

In the following, the basic components of ORDE will 
be introduced first, and the general framework will then 
be presented. 
 
C. Introducing Ordinal Optimization into Yield 
Optimization  
    Ordinal optimization (OO) has emerged as an efficient 
technique for simulation and optimization, especially for 
problems where the computation of the simulation models 
is time consuming [22]. OO is based on two basic tenets: 
(a) Obtaining the “order” of a set of candidates is easier 
than estimating an accurate “value” of each candidate. 
The convergence rate of ordinal optimization is 
exponential. This means that the probability that the 
observed best solution is among the true best solutions 

grows as ( )nO e α−
 where α  is a positive real number and 

n is the number of simulations [22]. In contrast, the 
convergence rate of methods aimed at estimating the right 
value instead of the order, e.g. the direct Monte Carlo 

method, is at most 1( )nO  [24]. (b) An accurate 
estimation is very costly but a satisfactory value can be 
obtained much easier. 
    Therefore, OO fits the objectives of the first stage of 
yield estimation of ORDE (see Fig. 2) quite well. In the 
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first stage, a bunch of good designs are selected through 
evolution and sent to the second stage. The requirement is 
a correct selection with a reasonably accurate yield 
estimation and with the smallest computational effort. 
According to OO, a large portion of the simulations 
should be conducted with those critical solutions in order 
to reduce the estimator variance. On the other hand, 
limited computational effort should be spent on non-
critical solutions that have little effect on identifying the 
good solutions, even if they have large variances. This 
leads to the core problem in ordinal optimization: 
allocating the computing budget, which can be formulated 
as follows. Given a pre-defined computing budget, how 
should it be distributed among the candidate designs? 
    Consider the yield evaluation function. For a single 
simulation (e.g. a sample of process parameters), we 
define ( , )YS d s =1 if all the circuit specifications are met, 
and ( , )YS d s =0 otherwise. Because the MC simulation 
determines the yield as the ratio of the number of 
functional chips to all fabricated chips, the mean value of 

( , )YS d s , corresponds to the yield value, ( )Y d . Let us 
consider a total computing budget equal to T simulations. 
In ORDE, T is determined by the number of feasible 
solutions (i.e. solutions that meet the performance 
constraints for nominal values of the process parameters) 
at each generation. Here, we set T = 1

ave
sim M× , where 

1M  is the number of feasible solutions and 
ave

sim  is the 
average budget for each candidate set by the user. The 
budget allocation problem consists in determining the 
number of simulations 

1 2 1, ,, Mn n n  of the M1 candidate 

solutions such that 
2 11 Mn n n T+ + = . For this problem, 

several algorithms have been reported in the specialized 
literature [25,26]. An asymptotic solution to this optimal 
computing budget allocation problem is proposed in [25]: 

 
1 2 2 1 / 2

1,
( / )

M

b b i ii i b
n nσ σ

= ≠
= ∑                                              (3) 

, 2

,

/
/ ( ) , , {1, 2, , 1},

/
i b i

i j
j b j

n n i j M i j b
σ δ

σ δ
= ∈ ≠ ≠     

        
where b is the best design of the M1 candidate solutions 
(represented by the highest estimated yield value based on 
the available samples for each candidate). For each 
candidate solution, some samples are allocated. For each 
sample, the corresponding ( , )YS d s  can be computed (0 or 
1). By these ( , )YS d s , we can calculate their mean 

(estimated yield, ( )Y d ) and 2 2 2

1 2 1
, , ,

M
σ σ σ , which are the 

finite variances of the M1 solutions, respectively. They 
measure the accuracy of the estimation. Parameter 

, ( ) ( )b i b iY d Y dδ = −  represents the deviations of the 

estimated yield value of each design solution with respect 
to that of the best design. The interpretation of (3) is quite 
intuitive. If ,b iδ  is large, the estimated yield value of 

design i is bad, and according to 2,

,

/
/ ( )

/
i b i

i j

j b j

n n
σ δ

σ δ
= , in  

becomes small, i.e., we should not allocate many 
simulations to this design. However if iσ  is large, it 
means that the accuracy of the yield estimation is low, and 
we should allocate more simulations to this design to 
obtain a better yield estimate. Therefore, the quotient 

,/i b iσ δ  represents a trade-off between the yield value of 
design i and the accuracy of its estimation. Therefore, an 
OO-based yield analysis algorithm can be designed as 
follows: 
 

Algorithm 1. Ordinal optimization for analog yield analysis 

Step 0: Let k =0, and perform 0n  simulations for each 

feasible design, i.e. 
0
, 1, 2, ..., 1.k

in n i M= =  

Step 1: If 1

1

M k

ii
n T

=
≥∑ , stop the OO for yield analysis. 

Step 2: Consider ∆  additional simulations (refer to [22] 
for the selection of the ∆  and 0n  values) and 
compute the new budget allocation 

1 , 1, 2, ..., 1k

i i Mn + =  by eqn. (3). If 1
max

k
in n+ ≥ , then 

1
max

k
in n+ = . 

Step 3: Perform additional 1max{0, }k k

i in n+ −  simulations 

for design id , 1, 2, ..., 1i M= . Let 1k k= +  and go 
to step 1.  

 

Parameter 0n  is the initial number of simulations for each 
candidate solution, selected to provide a very rough idea 
of the yield. More simulations are allocated according to 
the quality of the candidate later on. Parameter maxn  is the 
upper limit of the number of simulations for any 
candidate. The value of maxn  must call for a balance 
between the accuracy and the efficiency.  

 

Fig. 4. The function of OO in a typical population 
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A typical population from example 2, described in 
section IV later on, is selected to show the benefits of OO 
(see Fig. 4): candidates with a yield value larger than 70% 
correspond to 31% of the population, and are assigned 
56% of the simulations. Candidates with a yield value 
smaller than 40% correspond to 33% of the population, 
and are only assigned 12% of the simulations. The total 
number of simulations is 10.2% of those of the infeasible 
pruning (IP)+LHS method applied to the same candidate 
designs, because repeated MC simulations of non-critical 
solutions are avoided. 

The above technique is used until the yield converges 
close to the desired value. For example, if the desired 
target yield is 99%, the threshold value between the first 
and the second stage can be 97%. Candidates with an 
estimated yield larger than the threshold value enter the 
second stage. In this stage, all the candidates are assigned 
the specified maximum number ( maxn ) of samples to 
guarantee the accuracy of the final result, while other 
candidates in the population still remain in the first stage 
and still use the estimation method described previously. 
Note that the two stages are therefore not separated in 
time, but rather use different yield estimation methods.  

The threshold value must be properly selected. A too 
low threshold value may cause low efficiency, as OO 
would stop when the yield values of the selected points 
are not promising enough (e.g. a 50% yield threshold for a 
requirement of 90% yield) and shifts the yield estimation 
and selection tasks to the second stage, which is more 
CPU expensive. A too high threshold value (e.g. a 
threshold equal to the yield requirement) may cause low 
accuracy. The reason is that in most cases the points 
selected by OO are promising (it can compare the 
candidates and do the selection correctly) but the 
estimated yield values are not sufficiently accurate for the 
final result. Assigning the threshold to be two percentage 
points below the required target yield represents an 
appropriate trade-off between efficiency and accuracy. 

 
D. Brief Introduction to the DE Algorithm 

In addition to introducing OO to decrease the 
computational effort at each iteration, decreasing the 
necessary number of iterations is another key objective. 
The DE algorithm [23] is selected as the global search 
engine. The DE algorithm outperforms many EC 
algorithms in terms of solution quality and convergence 
speed [23]. DE uses a simple differential operator to 
create new candidate solutions and a one-to-one 
competition scheme to greedily select new candidates.  

The i-th candidate solution in the Q-dimensional search 
space at generation t can be represented as 

 ,1 ,2 ,( ) [ , , , ]i i i Qi t d d dd =                                             (4) 

At each generation t, the mutation and crossover operators 
are applied to the candidate solutions, and a new 
population arises. Then, selection takes place, and the 
corresponding candidate solutions from both populations 
compete to comprise the next generation. The operators 
are now explained in detail. 

For each target candidate solution, according to the 
mutation operator, a mutant vector is built:              

,1( 1) [ ( 1), ,iiV t v t+ = +   , ( 1)]i Qv t +                             (5) 
It is generated by adding the weighted difference between 
a given number of candidate solutions randomly selected 
from the previous population to another candidate 
solution. In ORDE, the latter one is selected to be the best 
individual in the current population. The mutation 
operation is therefore described by the following equation: 

 

      1 2( 1) ( ) ( ( ) ( ))best r riV t d t F d t d t+ = + −                         (6) 
 

where indices 1r  and 2r ( 1 2, {1, 2, , }r r M∈  ) are randomly 
chosen and mutually different, and also different from the 
current index i. Parameter (0, 2]F ∈  is a constant called 
the scaling factor, which controls the amplification of the 
differential variation 1 2( ) ( )r rd t d t− . The population size 
M must be at least 4, so that the mutation can be applied. 
The base vector to be perturbed, ( )best td , is the best 
member of the current population, so that the best 
information can be shared among the population.  

After the mutation phase, the crossover operator is 
applied to increase the diversity of the population. Thus, 
for each target candidate solution, a trial vector is 
generated as follows: 

 ,1 ,( 1) 1[ ( 1), , ( )]i i i QU t tu t u+ = ++                         (7)  
 

,
,

,

( 1), ( ( , ) )  ( ),
( 1)                                                         

( ), ,                                       (8) 

i j
i j

i j

v t if rand i j CR or j randn i
u t

d t otherwise

+ ≤ =
+ =





 

where 1, 2, ,   j Q=   and ( , )rand i j  is an independent 
random number uniformly distributed in the range [0,1]. 
Parameter randn(i) is a randomly chosen index from the 
set {1, 2, , }Q . Parameter [0,1]CR∈  is a constant 
called the crossover parameter, which controls the 
diversity of the population. 

Following the crossover operation, the selection 
operation decides whether the trial vector ( 1)iU t +  will 
be a member of the population of the next generation t+1 
or not. For a minimization problem, ( 1)iU t +  is compared 

to the initial target candidate solution ( )id t  by the 
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following one-to-one-based greedy selection criterion: 
 

( 1),  ( ( 1)) ( ( )),
( 1)

( ),
i i i

i
i

U t if f U t f d t
d t

d t otherwise

+ + <
+ =





    (9) 

 
where the function f is the objective function, i.e. the 
function to be minimized or maximized. In this paper,  the 
objective function is the yield in the case of standard yield 
optimization and some circuit performance in the case of 
yield-aware sizing. The candidate solution, ( 1)i td + , 
becomes the candidate solution of the new population. 
Then, the next iteration begins.  

E. Random-Scale Operator for Combined Global and 
Local Search 

    Although DE is a very powerful and fast global 
optimization algorithm, it is not so efficient in local tuning 
to reach the exact optimal solution (other global 
optimization algorithms, e.g. genetic algorithms, also have 
the same problem). But local tuning is emphasized in the 
fine-tuning phase (phase 3 in Fig. 3). Usually, in this 
phase, there are many candidates which are assigned the 
maximum number of simulations ( maxn ) to estimate the 
yield, which is expensive, but otherwise the accuracy 
would degrade very significantly. Moreover, the global 
optimization mechanism must be maintained even in this 
phase, because otherwise the yield optimization has a high 
risk to be stuck at a premature solution. We therefore 
propose a combined global and local search mechanism, 
whose purpose is to enhance the convergence speed while 
at the same time maintaining the accuracy.   

In the EC field, enhancing the local search ability is 
often achieved by memetic algorithms [27]. In addition to 
the global optimization engine, memetic algorithms use a 
population-based strategy coupled with individual search 
heuristics capable of performing local refinements. Local 
search methods can be classified into derivative-based 
methods (e.g. Quasi-Newton method [28]) and derivative-
free methods (e.g. Hill Climbing method [29]). In 
derivative-based methods, calculating the required 
derivatives, e.g. Hessian matrix, often consumes numerous 
function evaluations when the number of design variables 
is large, especially when the derivatives cannot be 
expressed analytically. Normally, for medium-scale 
problems (10-20 design variables), derivative-free 
methods also need more than 20-30 iterations for each 
candidate, and each iteration needs maxn  simulations. As 
this number has to be multiplied by the size of the 
population, this procedure becomes very expensive. 
Hence, for yield optimization, a cheaper method is 
necessary.  

Instead of performing a separate global and local 

search, our proposed approach is to combine global search 
and local search into a unified procedure. In eqn. (6), the 
scaling factor F is a constant for all the candidate 
solutions. If F is small, the whole evolution process will 
be slow; if F is large, it is difficult to perform effective 
local fine-tunings. To solve the problem, a natural idea is 
to randomize F in eqn. (6) to each differential variation. 
By randomizing F, the differences of vectors can be 
amplified stochastically, and the diversity of the 
population is retained. This introduces two advantages: 
(1) The algorithm has a lower probability of providing 
premature solutions because of the reasonable diversity; 
(2) The vicinity of the mutant vector that the standard DE 
can explore, is investigated by the randomized 
amplification of the differential variation 1 2( ) ( )r rd t d t− . 
In a standard DE search process, the candidates may get 
stuck in a region and make the evolution quite slow when 
the global optimization point is nearly reached (but the 
diversity is also maintained). This is called “stagnation” 
[30]. Fig. 5 shows the effect of randomizing F. It can be 
seen that a cloud of potential points centered around the 
mutant vector with constant scaling factor F1 have the 
potential to be investigated.   
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Fig. 5. Mutant vectors obtained by the random-scale operator 

 

In our method, as scaling factor we use a vector F̂  
composed of Gaussian-distributed random variables with 
mean value µ  and variance σ : ,

ˆ ( , ),i jF norm µ σ=   
,1, 2, Mi =   1, 2,j Q=  . A Gaussian distribution is 

selected based on the following two considerations: (1) As 
the purpose of the random scaling factor is to search the 
vicinity of the mutant vectors by the constant F, it should 
not be far from it. By using a Gaussian distribution, 68% 
of the generated samples in F̂  are within 1 σ . (2) It 
should have the ability to escape from the “stagnation”. A 
Gaussian distribution can also provide 5% of F̂  values 
out of 2 σ . We have also tried uniform and Cauchy 
distributions for the scaling factor using benchmark 
problems in the EC field and found that the Gaussian-
distributed F̂  results in the best average objective 
function value. For each variable in the search space, the 
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scaling factor ,î jF  of each differential variation 

1 2( ) ( )r rd t d t−  is different. Eqn. (6) is therefore changed 
to: 

1 2
ˆ( 1) ( ) ( ( ) ( ))best r ri iV t d t F d t d t+ = + −                        (10) 

 
By the proposed combined global and local search 

mechanism, the necessary number of iterations of the yield 
optimization algorithm decreases significantly (see 
example 2 in Section IV). 

 
F. Other Components                                       

Besides the two key ideas described above, we use the 
selection method in [31] to handle the optimization 
constraints. They include both circuit performance 
constraints (e.g. gain larger than 80dB) and functional 
constraints (e.g. transistors must work in the saturation 
region). The advantages of this selection method and its 
combination with the DE algorithm for analog sizing have 
been shown in [32].  

G. The General Framework of ORDE 

Based on the above components, the overall ORDE 
algorithm for analog yield optimization can now be 
constructed. The detailed flow diagram is shown in Fig. 6.  
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Fig. 6. Flow diagram of ORDE 

 
The ORDE algorithm consists of the following steps. 
 

Algorithm 2. The ORDE algorithm for analog yield optimization 

Step 0: Initialize parameters 0n , T, ∆ , maxn  and the DE 
algorithm parameters (e.g. the population size M, the 
crossover rate CR). Initialize the population by randomly 
selecting values of the design variables d within the 
allowed ranges. 
Step 1: Update the current best candidate. If no candidate 

meets the specifications for nominal process parameters, 
the best candidate is the one with the smallest constraint 
violation. Otherwise, the best candidate is the feasible 
candidate with the largest estimated yield. 
Step 2: Perform the mutation operation according to eqn. 
(10) to obtain each candidate solution’s mutant 
counterpart. 
Step 3: Perform the crossover operation between each 
candidate solution and its corresponding mutant 
counterpart according to eqn. (8) to obtain each 
individual’s trial individual. 
Step 4: Check the feasibility of the trial individual. For 
feasible solutions, go to step 5.1; for infeasible solutions, 
go to step 5.2.  
Step 5.1: Set constraint violations equal to 0, and use the 
OO technique described in Algorithm 1 to calculate the 
yield. If the estimated yield is higher than the threshold 
value, add additional samples to perform the full MC 
simulation. Go to step 6.  
Step 5.2: Set yield equal to 0, and calculate the constraint 
violations. No yield is estimated in this step. Go to step 6. 
Step 6: Perform selection between each candidate solution 
and its corresponding trial counterpart according to the 
rules in [31]: if both of them are not feasible, select the 
one with smaller constraint violation; if one is feasible and 
the other is infeasible, select the feasible one; if both are 
feasible, select the one with higher yield. 
Step 8: If the stopping criterion is met (e.g. a convergence 
criterion or a maximum number of generations), then 
output bestd  and its objective function value; otherwise go 
to Step 1. 

 
IV. EXPERIMENTAL RESULTS AND COMPARISONS 

    In this section, the ORDE algorithm is demonstrated by 
two practical analog circuits in 0.35 mµ  and 90nm CMOS 
technologies, respectively. To highlight the effects of the 
two key contributions of ORDE, it will be compared with 
a reference method that combines the DE optimization 
engine, the selection-based constraint handling 
mechanism, infeasible pruning and LHS techniques. In the 
DE search engine, the population size is 50 and the 
crossover rate is 0.8. Except for ORDE, the DE scaling 
factor F in the other experiments is 0.8, which is a 
common setting [23]. In the random-scale search operator, 
we choose a Gaussian distribution with µ =0.75 and 
σ =0.25. The optimization process stops when the 
reported yield reaches 99%, or when the yield does not 
increase for 20 consecutive generations. If parameter 0n  is 
set to a too low value, the yield estimates are too 
inaccurate, even for the application of eqn. (3). If it is too 
high, the advantages of OO are lost. A value between 5 
and 20 is recommended in [22]. We use 0n =15 in ORDE. 
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Parameter 
ave

sim  is set to 35 in all experiments. It may 
seem that 35 simulations are too few to get an acceptable 
accuracy. However, there are 3 considerations that must 
be taken into account. (1) LHS sampling is used. It has 
been reported that LHS gets a comparable accuracy to 
primitive Monte-Carlo simulation (PMC) in circuit yield 
analysis with just 20%-25% the number of samples of 
PMC [34]. (2) Parameter 

ave
sim  is just an average number 

of simulations of different candidates. By using OO, the 
MC simulations are optimally allocated according to the 
solution qualities, so promising candidate solutions are 
assigned much more than 35 simulations. According to 
experiments, some promising candidates are assigned 
more than 160 LHS simulations. (3) We do not need a 
very accurate result in the first stage, as the purpose of this 
stage is correct selection and getting a reasonably accurate 
yield estimation for promising points. The examples have 
been run on a PC with 4GB RAM and Linux operating 
system, in the MATLAB environment. Synopsys HSPICE 
electrical simulator is used as the circuit performance 
evaluator. The key techniques in this paper, i.e. the OO 
for yield optimization and the random-scale operator, are 
analyzed by statistical results here. The abilities of the DE 
optimization kernel for analog sizing compared with some 
other EC algorithms have been reported in [32], and will 
not be compared here. 

A. Experimental Method 
There are several aspects that have to be considered 

when designing the experiments. Firstly, the number of 
MC simulations for each feasible candidate should be 
decided. There is not much sense in comparing the 
efficiency without a good accuracy. The number of MC 
simulations in the second stage is the main factor that 
influences the accuracy of the final result. The accuracy of 
the yield estimates is related to the number of samples 
according to [1]:  

    
2

2

(1 )
MC

Y Y k
n

Y
γ−

≈
∆

                                                    (11) 

where Y is the yield value and Y∆  is the confidence 
interval, e.g. if the yield estimate is 90%, and Y∆ =1%, 
then the confidence interval is 89%-91%. Parameter kγ  

reflects the confidence level, e.g. 1.645kγ = ±  denotes a 
90% confidence level. From eqn. (11), the necessary 
number of MC simulations can be calculated. However, 
this corresponds to the primitive MC simulation. 
According to [34,35], LHS sampling requires 20%-25% 
the number of samples compared with PMC to get a 
comparable accuracy.  Fig. 7 shows the estimated number 
of LHS simulations needed for a confidence level of 90%, 
95%, and 99% respectively when Y∆ =1%. The number 

of LHS simulations is estimated as 20% of the necessary 
number of PMC samples. It can be seen that even for a 
99% confidence level, for a yield larger than 96%, 500 
LHS points are sufficient. For a 90% confidence level, 
500 LHS points are even sufficient for a yield larger than 
90%. In all the experiments, the threshold to use 500 LHS 
simulations is 97%, so 500 LHS samples are enough for 
the required accuracy.   

 

Fig. 7. Necessary numbers of LHS simulations 

    Secondly, the estimated yield result is influenced by the 
number of samples. Two experiments using 50 and 500 
MC simulations for each feasible candidate can report a 
solution with “100% yield”, but the true yield value can be 
quite different. To reflect the real accuracy, we calculate 
the yield estimated by 50,000 LHS MC simulations at the 
same design point. From eqn. (11), we can calculate that 
with 99% confidence level and Y∆ =0.1%, the 
corresponding yield value of 50,000 LHS simulations is 
96%. The results we test are all higher than 96%. Hence, 
an estimation result from 50,000 LHS simulations is a 
very reliable approximation of the real yield value for use 
as a reference result.  

    Thirdly, the method to measure the efficiency should be 
decided. The performance of evolutionary algorithms 
(EA) is affected by the random numbers used in the 
evolution operators. The CPU times and the yield results 
have differences between different runs. To address the 
stochasticity of the results of the evolution process, all 
experiments are therefore executed 10 times with different 
random numbers and the results are analyzed and 
compared statistically showing typical, best and worst 
performance. In this way, the comparison in terms of 
accuracy and efficiency is reliable. 

B. Test Example 1 
The ORDE algorithm is first tested on a fully 

differential folded-cascode amplifier, shown in Fig. 8, 
implemented in a 0.35 mµ  CMOS process with 3.3V 

power supply. The specifications are gain 0A 70dB≥ , 
gain-bandwidt GBW 40MHz≥ , phase margin 
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PM 60≥  , output swing OS 4.6V≥  and  1power mW≤ . 
There are 13 design variables. The transistor width has a 
range of 1 mµ to 600 mµ ; the transistor length has a range 
of 0.35 mµ  to 5 mµ ; the biasing current has a range of 
10 Aµ  to 200 Aµ . The total number of the process 
variation variables is 80, including 15 transistors× 4 intra-
die variables / transistor = 60 intra-die variables 
(mismatch) and 20 inter-die variables.  Statistical 
information of the process variables has been extracted 
from the technology information provided by the foundry. 

Experiments with the infeasible pruning (IP) +LHS 
method have been performed using 300 and 500 LHS MC 
simulations for each feasible candidate. The results of the 
yield estimate provided by a 50,000 MC simulation 
analysis at the same final design point and the total 
number of simulations are analyzed. The statistical results 
of 10 independent runs are shown in Table 1, Table 2 and 
Fig. 9. 
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Fig. 8. Fully differential folded-cascode amplifier 

Table 1. The yield results (using 50,000 MC simulations) of the 
solutions obtained by different methods (example 1) 

methods best worst average variance 
300 simulations 

(IP + LHS) 
98.5% 96.2% 96.8% 0.008% 

500 simulations 
(IP + LHS) 

98.7% 96.6% 97.5% 0.007% 

ORDE 99.1% 97.3% 98.5% 0.004% 
 

Table 2. Total number of simulations (example 1) 
methods best worst average 

300 simulations 
(IP + LHS) 

181500 986100 464570 

500 simulation 
(IP + LHS) 

357500 3591500 1824520 

ORDE 25376 439984 150540 
 

From the inspection of Table 1, the experiment with 
500 IP +LHS MC simulations is selected as a benchmark 
to compare with ORDE. From Fig.9, we can see that the 
deviations of ORDE from the accurate yield estimate 
obtained by 50,000 LHS samples are much better than the 
other methods and the computational cost is much lower. 
With respect to the number of simulations, shown in Table 
2, ORDE costs only 8.25% of the simulations of the 

infeasible pruning (IP)+LHS method with comparable 
accuracy. Moreover, in many runs of 300 or 500 
simulations with standard DE, the final reported results do 
not reach the yield requirement, 99%, while 90% of the 
reported results of ORDE reach 99%. It can be concluded 
that the random-scale search operator enhances the search 
ability of DE. The average cost of CPU time of ORDE for 
this example is about 3 to 4 minutes. 
 

 
Fig. 9. Comparisons of average yield estimate deviation and number of 
simulations for different methods for example 1: ORDE clearly has 
good accuracy and small number of simulations 
 

In the following, a more complex example will be 
tested and the contribution of OO and the random-scale 
search operator will be investigated separately.   

 
C. Test Example 2 

The ORDE algorithm is now tested on a two-stage fully 
differential folded-cascode amplifier with common-mode 
feedback (CMFB), shown in Fig. 10. The circuit is 
designed in a 90nm CMOS process with 1.2V power 
supply. The specifications are 0A 60dB≥ , 

GBW 45MHz≥ , PM 60≥  , OS 1.9V≥ , 

power 2.5mW≤  and 250 marea µ≤ . There exist 21 
design variables. The transistor width has a range of 
0.12 mµ to 800 mµ ; the transistor length has a range of 
0.1 mµ  to 20 mµ ; the compensation capacitance has a 
range of 0.1pF to 50pF; the biasing current has a range of 
0.05mA to 50mA. All transistors must be in the saturation 
region. The total number of process variation variables for 
this technology is 143, including 24 transistors× 4 intra-
die variables / transistor = 96 intra-die variables and 47 
inter-die variables. Statistical information of the process 
variables was extracted from the technology information 
provided by the foundry.  

Experiments with 300 and 500 simulations for each 
feasible candidate by the reference IP+LHS method have 
been done. We separately study the improvement 
provided by the introduced OO technique and the 
improvement provided by the random-scale operator. The 
results of the yield estimation provided by a 50,000 MC 
simulation analysis at the same final design point and the 
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total number of simulations are analyzed. The statistical 
results of 10 independent runs are shown in Table 3, 
Table 4 and Fig. 11. 
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Fig. 10. Two-stage fully differential folded-cascode amplifier  

Table 3. The yield results (using 50,000 MC simulations) of the 
solutions obtained by different methods (example 2)  

methods best worst average variance 
300 simulations 

(IP + LHS) 
99.0% 97.9% 98.3% 0.002% 

500 simulations 
(IP + LHS) 

99.3% 98.2% 98.9% 0.002% 

OO+IP+LHS 99.7% 98.1% 98.9% 0.003% 
ORDE 99.6% 98.3% 98.9% 0.002% 

 
Table 4. Total number of simulations (example 2) 

methods best worst average 
300 simulations 

(IP + LHS) 
115500 546900 264130 

500 simulations 
(IP + LHS) 

172500 688000 418730 

OO+IP+LHS 39828 140537 90209 
ORDE 16335 100795 47421 

 

 
Fig. 11. Comparisons of average yield estimate deviation and number of 
simulations for different methods for example 2: ORDE clearly has 
good accuracy and small number of simulations 
 

    From the best, worst and average yield values in Table 
3, it can be seen that the accuracy with 300 simulations is 
obviously lower than with 500 simulations. To assess the 
separate contribution of ordinal optimization (OO) and the 
random-scale differential evolution operator, two 

experiments are conducted. The first one only includes 
OO as well as the IP and LHS techniques. The second 
experiment corresponds to the use of ORDE (OO and 
RSDE combined). For statistical characterization, 10 runs 
of each experiment are performed.  

    From Fig.11, we can see that the deviations of ORDE 
from the target value are very close to that of using 500 
simulations and the computational cost is much lower. 
With respect to the number of simulations, shown in Table 
4, ORDE costs only 11.32% of the number of simulations 
of the IP+LHS method with comparable accuracy. These 
results come from the contribution of both the OO and the 
random-scale operator. Without the random-scale 
operator, as can be seen from the result of the 
OO+IP+LHS method, it spends 21.54% of the simulations 
of the IP+LHS method. The average CPU time of ORDE 
for this example is 25 minutes. It can therefore be 
concluded that ORDE improves the CPU time by an order 
of magnitude for the same accuracy compared to the 
improved MC-based method integrating the infeasible 
pruning and Latin Hypercube sampling techniques.  

 
D. Comparisons to RSM Methods 
    The advantages and drawbacks of the PSWCD methods 
have been discussed in Section I. Here, we experimentally 
compare ORDE with response-surface-based methods. 

 
Fig. 12. Result of using NN to approximate yield 

 
In response-surface-based methods, the data obtained 

from expensive MC simulations at a number of design 
points is used to generate a regression model able to 
predict the yield in other design points much cheaper than 
with a MC simulation, be it at the price of a loss of 
accuracy. Hence, there exist two trade-offs. The first one 
is the balance between the accuracy and the complexity of 
the model. In deep-submicron or nanometer technologies, 
a sufficiently accurate white-box model may be very 
complex and makes the regression computationally 
intractable [8]. The second trade-off is the balance 
between the accuracy and the number of samples needed 
to build the model. If sufficient accuracy is required, 
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sufficient and well distributed training data must be 
provided. But the computational cost also increases 
sharply as the density of the samples increases. In the 
following, we will show the trade-off between accuracy 
and computational cost of generating the training data 
using a black-box model.  

To assess the loss of accuracy we use the example 1 in 
Section IV.B and consider a response-surface method 
based on neural networks (NN), often considered as a 
powerful regressor [36]. Here, we will use a Backward 
Propagation NN [36] with 20 neurons in the hidden layer 
and the Levenberg-Marquardt algorithm [37-38] for 
training it to approximate the yield. For the source of the 
training data, we use the data generated during a typical 
execution of ORDE. It has to be noticed that using these 
sampling data favors the macro-model as these training 
data are more significant (because of the key techniques in 
ORDE, which make the sampling to be more effective) 
than randomly selected MC simulations, or even those 
selected by applying only IP and DOE techniques. We 
will consider the data generated up to a given iteration of 
ORDE as training data (design parameters as input, and 
yield values as output), and use the data (yield value) of 
subsequent iterations as test data to assess the accuracy of 
the macro-model. At every iteration, we use the data from 
all previous iterations to train the NN and use this to 
predict the yield values of the current iteration. The error 
between the predicted yield values and the real yield 
values obtained by MC simulations is then calculated and 
plotted in Fig. 12. The Y axis shows the root-mean-square 
(RMS) error of the yield predictions. The X axis shows 
the ratio of the computation time to generate the training 
data for the NN (by ORDE) to the total computational 
time of ORDE up to a given iteration. It can be seen that 
in the beginning the error decreases sharply, but then is 
levels off. Even when all the data from ORDE are used to 
train the NN, the RMS error is still 8.06%, while ORDE 
can provide an error less than 1%. Therefore, response-
surface-based methods have difficulties in achieving a 
sufficient accuracy. 

 
V. ENHANCING ORDE FOR SINGLE OBJECTIVE 

VARIATION-AWARE SIZING 
 As can be seen from the previous experiments, the 

ORDE algorithm meets the goals (be general enough, able 
to handle both inter-die and intra-die variations, very high 
accuracy) with significant enhancement on efficiency to 
make the CPU time practical for yield optimization. On 
the other hand, in real practice, if the yield requirement 
can be met, the designers sometimes want to further 
optimize some objective function (e.g. power or area) 
while maintaining the target yield, which is shown in eqn. 
(1.2). To achieve this, we present an extended version of 
ORDE for single-objective variation-aware sizing.  

 

A. ORDE-based single-objective variation-aware sizing 
In single-objective variation-aware sizing, both the 

objective function f (e.g. power) and the constraint (yield 
Y) must be considered simultaneously. Hence, we first 
look at the differences between them. Yield is not a 
stochastic variable, but we have some uncertainties on its 
estimation. If we perform an infinite number of MC 
simulations, yield would have an exact value. The 
objective function, or specification, is different. If we 
perform an infinite number of MC simulations, power 
would still have a probability distribution function, but 
with an accurate mean and an accurate variance caused by 
the process variations. Therefore, for yield, we use its 
expected value to describe it. For the objective function, 
we use the 3σ  value to guarantee the reliability of the 
expected objective function value, where σ  is extracted 
from the samples.  

The main idea of extending ORDE from plain yield 
optimization to single-objective variation-aware sizing is 
to add an outer selection procedure considering the 
objective function value and the yield as constraint. The 
detailed selection rules are now as follows: for each 
candidate solution and its corresponding trial counterpart, 
(1) if none of them are feasible for nominal process 
parameters, select the one with the smaller constraint 
violation;  
(2) if one is feasible and the other is infeasible for nominal 
process parameters, select the feasible one;  
(3) if both are feasible for nominal process parameters, 
    (3.1) if both of them violate the yield constraint, select       

the one with the smaller yield constraint violation; 
    (3.2) if one satisfies the yield constraint and the other 

does not, select the feasible one; 
(3.3) if both of them satisfy the yield constraint, select   
the one with the smaller ( )( ) 3 f df d σ+ (f is the objective 

function to be minimized, f  is the mean value). 
Using the above selection rule to replace the original 

selection rule in ORDE, the extended ORDE for single- 
objective variation-aware sizing can be implemented. We 
can roughly divide the algorithm into two phases: the 
yield satisfaction phase and the objective function 
optimization phase. If we handle the single-objective 
variation-aware sizing problem as a new task, the yield 
satisfaction phase will be run first. However, we already 
have the candidates that satisfy the yield constraint as the 
plain yield optimization is done first to check if the yield 
requirement can be met. In this method, we use the last 
population in the plain yield optimization as the initial 
population of the extended ORDE to prevent the yield 
satisfaction phase from running two times.  

 
B. Example 

Here we use the example 2 from section IV with the 
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specifications of 0A 60dB≥ , GBW 45MHz≥ , 

PM 60≥  , OS 1.9V≥ , power 2.5mW≤ ,  

250 marea µ≤  and settling time 25 sµ≤  with 1% error 
band (this specification needs transient simulation). The 
yield specification is 99% and the power is the target 
design objective to be minimized. Five tests with different 
random seeds are performed. For plain yield optimization 
without optimizing the power consumption, ORDE 
satisfies the yield specification, 99%, at a power of 
2.38mW. We then use the extended ORDE to minimize 
power while maintaining yield larger than 99%. The 
average power value now becomes 1.63mW. The average 
CPU time is 8919s.  

 
VI. CONCLUSIONS 

In this paper, the ORDE algorithm has been proposed 
for efficient yield optimization of analog integrated 
circuits, considering both inter-die and intra-die process 
variations. The method is general. ORDE can provide 
very accurate results with far less computational cost (an 
order of magnitude smaller) than the MC-based method 
using infeasible pruning and Latin Hypercube sampling 
techniques. This improved efficiency makes statistical 
yield optimization useful in practice. This is achieved by 
using techniques from computational intelligence, which 
are as follows: (1) ORDE uses a two-stage yield 
estimation process with ordinal optimization in the first 
stage, which determines the simulation effort for each 
candidate solution “intelligently”; (2) the proposed 
random-scale operator maintains the diversity and 
performs combined global and local search, thus 
enhancing the convergence speed of the search engine; (3) 
the use of Design of Experiment techniques, infeasible 
pruning and the selection-based constraint-handling 
technique also contribute positively to ORDE. 
Furthermore, ORDE is extended from plain yield 
optimization to process-variation-aware single-objective 
analog sizing which has been shown to give good results. 
Therefore, ORDE and its extended version are both 
reliable and efficient methods for analog circuit yield 
optimization, especially for new nanometer technologies 
with large variability. Moreover, ORDE is based on 
evolutionary computation and statistical sampling 
methods, which are very well suited for parallel 
computation. 
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