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Efficient and accurate time adaptive multigrid simulations of
droplet spreading

P. H. Gaskell'*, P. K. Jimack?, M. Sellier! and H. M. Thompson!

1 Engineering Fluid Mechanics Research Group, School of Mechanical Engineering,
2 School of Computing,
The University of Leeds, Leeds LS2 9JT, UK.

SUMMARY

An efficient Full Approximation Storage (FAS) Multigrid algorithm is used to solve a range of droplet
spreading flows modelled as a coupled set of nonlinear lubrication equations. The algorithm is fully
implicit and has embedded within it an adaptive time-stepping scheme that enables the same to be
optimised in a controlled manner subject to a specific error tolerance. The method is first validated
against a range of analytical and existing numerical predictions commensurate with droplet spreading
and then used to simulate a series of new, three-dimensional flows consisting of droplet motion on
substrates containing topographic and wetting heterogeneities. The latter are of particular interest
and reveal how droplets can be made to spread preferentially on substrates owing to an interplay
between different topographic and surface wetting characteristics. Copyright © 2000 John Wiley &
Sons, Ltd.

KEY WORDS: droplets; spreading; multigrid; adaptive time-stepping; lubrication approximation; fully
implicit.

1. INTRODUCTION

The focus of this paper is the efficient numerical solution of flows involving droplet spreading
through the use of a fully-implicit, time-adaptive Multigrid algorithm. Such flows are of
enormous significance in many branches of science and commerce, industrial applications
including, for example, the deposition of coatings and inks, direct patterning of functional
layers during microship production, spreading of pesticides and the flow of oil in heat
exchangers [1, 2]. The same also arise in other diverse areas of science ranging from biology,
where they form membranes on mammalian lungs and tear films in the eye, to geology where
they feature in lava flows [3].

Problems are modelled using a long wave, or lubrication, approximation with the advantage
that proceeding in this way reduces the dimensionality by one and yields more tractable
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fourth-order partial differential equations (p.d.e.s) than encountered in a full Navier-Stokes
formulation. Despite this simplification, significant obstacles remain to be overcome, principally
due to the stiffness introduced by surface tension and the need to resolve short length scales
close to wetting lines. Similarly, explicit time stepping numerical schemes are of limited value
since they suffer an impractical restriction apropos the time step, At, which must be at most
O(A*%), where A is the spatial resolution, to avoid numerical instability [4].

Several authors have solved the time-dependent lubrication equations successfully in
a wide variety of physical contexts. Prominent among these have been the studies of
Schwartz and co-workers who have eased the severe restriction on time step noted above by
employing alternating-direction implicit (ADI) algorithms which, for three-dimensional flows,
use alternating sweeps in each direction so that only a banded system of equations need
be solved at each time step [5]. These schemes, often referred to as time-splitting, [6], have
been used to analyse a range of problems including, for example, those due to the effects
of substrate curvature and surface tension gradients on the thinning of coatings [7], droplet
motions on heterogeneous substrates with materials having widely different equilibrium contact
angles [8, 9] and gravity- and surface shear stress-driven thin coating flows [10]. In all of these
studies, spreading motion is facilitated by specifying a thin energetically stable wetting layer,
or precursor film, of thickness h* over the surface of the substrate, an approach that has
significant computational advantages over alternative, slip models [11, 12].

In contrast to time-splitting, Multigrid methods are fast solvers, originally developed for the
solution of elliptic p.d.e.s. Their essence is to use a simple iterative technique as a smoother, not
as a solver, on a sequence of computational grids to reduce high frequency error components on
a particular grid [13]. They have been applied to increasingly difficult systems of p.d.e.s and are
now commonly used to solve the discrete analogues arising from a wide variety of flow problems
for which major improvements in efficiency and robustness are being achieved [14, 15, 16, 17].
The Full Approximation Storage (FAS) variant of the Multigrid method for nonlinear equations
[18] is implemented to solve a suitable finite difference approximation to the time-dependent
lubrication equations for the flow of droplets over substrates either with or without wetting
and/or the presence of topographic heterogeneities. Embedded within the algorithm is an
efficient, adaptive time-stepping scheme, based on Heun’s second-order predictor-corrector
method [19], which automatically adjusts the time step subject to a specified error tolerance
enabling At to be optimised in a controlled manner.

A compact derivation of the governing equations to be solved is presented for completeness,
followed by details of the underpinning numerical method(s) adopted for their solution. The
Multigrid solver is first validated against a range of analytical and previously-published
numerical predictions for droplet spreading phenomena and then extended to simulate a
variety of spreading flows on substrate with different wettability characteristics and containing
topographic features.

2. MATHEMATICAL MODEL

Figure 1 is a schematic snap-shot of the flow of a droplet, H(X,Y,T), over a topographic
feature, S(X,Y), of amplitude So and lengths Ly and Wr with respect to the reference
coordinate (X,Y) on a substrate inclined at an angle o to the horizontal. Its aspect ratio
A = Ly /Wr. The fluid is Newtonian and incompressible, of density p and viscosity u, and

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1-6
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TIME ADAPTIVE MULTIGRID SIMULATIONS OF DROPLET SPREADING 3

Figure 1. Schematic snap-shot of the flow of a droplet, H(X,Y,T), over a topography, S(X,Y’), on a
substrate inclined at an angle « to the horizontal, showing a section through the droplet for the sake
of clarity, in the X — Z plane and the parameters defining the topography.

Marangoni effects are ignored so that the surface tension, o, is also constant. The motion of
the droplet is governed by the time-dependent Navier-Stokes equations, viz

p (g—% + Q.VQ) )
VU = 0, (2)

—VP +uV°U +pg, (1

where U = (U,V,W) and P are the fluid velocity and pressure respectively and g =
g(sina, 0, — cosa), where g = 9.81ms~2 is the acceleration due to gravity. Taking Hy as the
characteristic droplet thickness and Ly as the lateral extent of its footprint on the substrate,
it is assumed that € = %Ol is small so that the Navier-Stokes equations can be simplified using
the long-wave, or lubrication, approximation. All analyses are performed and results presented
in terms of corresponding non-dimensional (lower case) variables, the key ones being:

H(X,Y,T S(X,Y X,Y Z
h(w,y,t) = ( HO )7 S(may) = (HO )7 ('Z-)y) = ( LO )7 z = FOJ (3)
LoP w To T Lo
= — — = —_— = — Ty = —
b . ) (U, v, € ) (U7 V7 W) LO ’ t TO ) 0 g3 J

where the time scale T is that derived by Orchard [20] for the levelling of surface disturbances.
Note that since the substrate surface is given by the topography function s(x,y) so that the
droplet lies between 2 = s and z = h + s. Under the above non-dimensionalisation, neglecting
terms of O(€?) or higher, the Navier-Stokes reduce to:

0%u Op Bo

— = — — —sina 4
022 Or ¢ ’ “)
v _ 0Op 5)
022 Oy’

op

— = —Bocosa 6

62 b ( )
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2
where Bo = ”gaﬁ is the Bond number measuring the relative importance of gravitational to
surface tension forces. These equations are solved subject to the condition of no-slip at the
surface of the substrate and zero tangential stress at the free surface of the droplet, namely

Ou Ov

—=—=0 atz=h+s. 7
% — 22 at z +s (7)
Equations (4) and (5) integrated twice with respect to z over the droplet thickness z € [s, h+s]
and, subject to the above boundary conditions, yield

w = (%—%sina) (2—s) (%(z—s)—h), (8)

v = (g—g)(z—s)(%(z—s)—h). )

The time-dependent lubrication equation for the evolution of the droplet thickness is obtained
by conserving mass throughout the flow, viz

Oh
E = —V.Q, (10)

(u,v) =(0,0) atz=s and

where Q = fsh+s (u,v)T dz. Integrating equations (8) and (9) to form @ and substituting into
equation (10) yields the following equation in terms of the pressure field p

Oh O [k (Op Bo o [h® [(Op

— = |= (= ——3i — == 11

ot 8:5[3(63: esma>]+8y[3 By (11)
In common with the work of others [8, 9] a disjoining pressure term is employed to alleviate
the singularity at wetting lines. This model assumes a thin precursor film of thickness h*
ahead of the same and relates the observed contact angle for partially wetting systems to

intermolecular forces that become important for liquids of submicroscopic dimensions [9]. The
disjoining pressure term, II(h), is given [21] by

- S (G)] m

where n and m are the exponents of the interaction potential and ©.(z,y) is the equilibrium
contact angle. Note that the disjoining pressure term is zero for a fully wetting system since
0. =0.

Experimental evidence suggests that, in practice, h* lies in the range 1-100 nm [22] so that
currently it is not feasible to use realistic h* values in computations. This restriction has two
ramifications. The first and most important is due to the fact that accurate representation
of a wetting line and, in particular, avoidance of negative film thicknesses in their vicinity
requires that the spatial resolution should be of the same order of magnitude as h*. This and
related issues are discussed in detail by Bertozzi [4] and have led to the development of new
numerical schemes which ensure that the film thickness remains positive without requiring
excessive mesh refinement near wetting lines, [23]. The second problem relates to the fact that
h* is the principal determinant of spreading rate [9]. However, although inability to use a
sufficiently small A* in computations leads to a systematic over-prediction of spreading rate,
this difficulty can normally be compensated for by using an analytic correction [8].

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1-6
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TIME ADAPTIVE MULTIGRID SIMULATIONS OF DROPLET SPREADING 5

The pressure field throughout the droplet is obtained by integrating equation (6) with respect
to z where the constant of integration (setting the pressure datum to atmospheric) is given by

p=-V23(h+s)—II(h) onz=h+s, (13)

where the V2(h + s) term is the small slope approximation to the surface curvature of the thin
film, leading to

p=—-V%(h+s)—II(h) + Bocosa(h + s — ). (14)

It is important to note that since the lubrication approximation is formally valid only for
flows for which the free surface slope is small, its accuracy could be affected by the steep
slopes of the topographies considered here. However, recent studies [24, 25] and comparison
with experiment [2, 34] show lubrication theory to be remarkably robust in such circumstances
providing the associated Reynolds and Capillary numbers are not too large. Note also that the
form of equation (11) ensures that the z dependence in equation (14) has no influence on the
evolution of the film thickness and it is therefore omitted from subsequent analysis.

Previous workers have simply substituted equation (14) into equation (11) to yield fourth-
order time-dependent lubrication equations purely in terms of the film thickness, h. However
in the present study it is found advantageous to solve the coupled nonlinear equation set for
h and p, equations (11) and (14) respectively, since the second-order differential operators
are simpler to discretise and a substrate wettability function ©.(z,y), for variably wettable
substrates, can be imposed without imposing constraints on its differentiability [8].

Equations (11) and (14) are solved subject to symmetry boundary conditions at the edges
of the computational domain, namely

op _ on
on  on
where n is the normal to the substrate boundary.

=0, (15)

3. NUMERICAL METHOD

3.1. Spatial Discretisation

All problems are solved on a square computational domain with (z,y) € Q = (0,1) x (0,1)
using a Multigrid approach. The finest grid level (i.e the actual grid on which the solution is
desired) has (2¥7 + 1) nodes in each direction so that the spatial co-ordinates of its grid points
are given by x; = (;;) and y; = (’22—;) in terms of the fine grid density parameter k¢. In
the present study k; € [6,10] corresponding to grids at the finest level with between 65 and
1025 nodes in each direction. Equations (11) and (14) are approximated spatially using central
differences [5, 26] leading to the following second-order accurate spatial discretisations

Ohi; 1 [h3 h?

ot A2 §|i+%,j (Pit1,5 — Pij) — ?lz’f%,j (Pi,j — pi-1,5) +

h3 h3

3 ligry Pigr1 = pig) = 3 lij-y (Pig —Pij-1) | =

Bo . o [ hitr;—hia, 2

T sin Oéhi’j T + O(A ), (].6)
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1
Pijt A3 [(hi+1,j +8it1,5) + (himrj + 8io15) + (higjpr + sig1) +

(n—=1)(m —1)(1 — cos O)
h*(n —m)e? x

(hij-1 + 8ij—1) — 4(hi,j + Si,j)] +

hi hi,j

for each (i,j) in the computational domain, where A is the spatial increment (A = 27
for the finest grid level) and the %hil,j, %ﬂui% terms are the pre-factors associated with

2
the discretisation. Here results are obtained using Zhornitskaya and Bertozzi’s [23] Positivity

Preserving Scheme for which the pre-factors in equation (16) can be shown to be given by

3 2 32
h_|, L= 2 hijhivi; (18)
32T 3Ry +hiy
. . . B3 h® h3
with similar expressions for the “-|;_1 ;, %[; j11 and 5[; ;_1 terms.

3.2. Temporal Discretisation

Ideally, time-stepping schemes for the numerical solution of transient flows should be both
efficient and accurate. The former ensures that small time steps are avoided when the solution
varies slowly while the latter should enable the error to be controlled throughout the solution
process. Most previous numerical studies of lubrication-type flows have focussed on increasing
the efficiency of the solution and, in particular, overcoming the stability requirement for explicit
schemes that the time step At should be O(A*) - an impractical restriction when even moderate
spatial resolution is employed. Several studies have achieved this using alternating-direction
implicit (ADI) algorithms employing alternate sweeps in each direction so that only a banded
system of equations need be solved at each time step [5]. These time-splitting algorithms enable
time steps several orders of magnitude larger than O(A*) to be used successfully.

Few studies have reported attempts to control the accuracy of time-stepping schemes and it
is only very recently that an estimate of the local truncation error has been used when solving
equations of the form (11) and (14) to test whether they are being solved to a specified error
tolerance [26]. The latter’s scheme, however, does not optimise the time step for a given error
tolerance. The present work addresses this issue by using time-stepping based on local error
estimates from an implicit, second-order method which reduces to Heun’s method [19] in the
case of a fixed time step. This uses an estimate of the local truncation error, obtained from
the difference between this solution and an explicit predictor, to increase the time step in a
controlled manner whilst at the same time minimising the computational expense associated
with repeated time step failure.

The approach requires equation (16) to be rewritten as a system of differential-algebraic
equations in the form

O s
ﬁ = F(hij,Dij» hit1,5, Pit1,5, Pij+1,Pij+1) » (19)

for each (7, ) in the computational domain. The predictor stage is fully explicit, second-order

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1-6
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accurate in time and proceeds by solving

M e = B2+ (1= B%) By + AU+ B)YF (R, 75, it s Pien g e PR )
(20)
where 8 = Aft: " and the superscript n denotes data at the nth time step. It can be shown,
via a Taylor series expansion of equation (20), that the local truncation error (LTE) for the
predictor stage is given by

2
(At"+1) At"(1+ B) 63hi’j
6 a5 =t

where the third derivative term is evaluated at a time t, € (¢, tpy1)-
The solution stage is implicit and is also second-order accurate in time, given by

Atn+1
2
Atn—i-l
2

(LTEPredict)i,j = (21)

n+1 n+1 n+1 n+1 n+1 n+1 n+1 _
hij™ = F(hiy iy ik g Pis o hi g1 Pijn) =

he; +

F(h?;j:pz]‘? h?:tl,jap?:l:l,ja h?,jibpgjil) (22)

for which the LTE is

0°hi,j
ot?

As described in [19], the assumption that the third-order derivative term varies only a small

amount over the time step enables the LT E to be estimated by

— ; n+1 _ pn+l
(LTE)i,' - 142 <%) (hi,j h'iajPredict) ' (24)

Following [27], this expression is used to obtain an estimate of the overall truncation error by
finding its Euclidean norm, ||LT E||, which is then used to specify the next time step throughout
the domain, At"*2, via

—1
(LTE), ; = E(Atn+1)3

iyj |t=t¢ ] tc S (tn7tn+1) - (23)

TOL )s (25)

At"T2 = 0.9A¢H <7
|ILTE||

if ||LTE| < TOL, whereas if |LTE|| > TOL the iteration is restarted with half the current
time step.

The implicit system of algebraic equations (17) and (22) are solved at each time step using
the FAS multigrid method described below.

3.8. The Multigrid Solver

There is much in the literature surrounding Multigrid methods (e.g. [13, 14, 15, 16, 17, 18]),
suffice it to say that they are fast solvers, the essence of which is to use a simple iterative
technique as a smoother, not as a solver, to reduce high frequency errors on the computational
grid while lower frequency errors are smoothed out on a succession of coarser computational
grids. A hierarchy of grids is defined, G°, G1,...,G" say, where the grid spacing halves from one

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1-6
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8 P. H. GASKELL, P. K. JIMACK, M. SELLIER, H. M. THOMPSON

grid to the next and where G denotes the coarsest grid and G the finest. Note that, for all
solutions presented later the coarsest grid level G° is a 17x17 one so that the finest grid level
GT | i.e. the one on which the solution is actually sought, has 24 +1 nodes in either direction
or, in terms of the fine grid parameter introduced above, ky = L + 4. Multigrid solutions are
reported where the finest grid level ranges from G? with 65x65 nodes to G® with 1025x1025
nodes. For example, if a Multigrid solution is desired on a 129x129 grid then this corresponds to
grid G? with intermediate solutions obtained on grids G° (17x17), G* (33x33) and G? (65x65)
before the final solution on G? is actually obtained. Note that the grid spacing associated with
each grid level G* is uniform and equal in both directions and is simply AF = L.

The nonlinear discretised equations (17) and (22) are solved using a combination of the Full
Approximation Storage (FAS) method and Full Multigrid technique [13, 14, 15, 16, 17, 18].
Figure 2 illustrates the structure of the solution process over the four grid levels that are used
when a solution on, say, grid level G2, i.e. 129x129, is obtained. An important advantage of this

o3 G30 g3 1 G2 G33
°
3 ;
\ /
G2 . °
\\ // \\ l/
\ ) \ ,
\ ) \ ,
\ : \ h
Gl o o o o
\\ II \\ II \\ II
L L L
L ) )
GO ® ® O
Ncyce

® : smoothing
@ : exact solution
// : Full Multigrid interpolation

Figure 2. Description of the Full Multigrid technique when solutions are obtained on grid G* with 129
nodes in either direction. G*° represents the initial solution on G® at the previous time step, G>' the
solution after the first fine grid V-cycle, G>? the solution after two V-cycles, etc.

technique is that an initial guess to the solution at a given level is provided by interpolation
of the solution on the next coarsest level. At all but the coarsest grid level a fixed number
of V-cycles is applied, the same number of V-cycles, N.y., being applied at all intermediate
grid levels G* for which 0 < k < L. At the coarsest level an exact nonlinear solver may be
applied or a large number of smoothing iterations performed: in this work the former approach
is adopted, based upon Newton’s method. At the very beginning of the full Multigrid cycle
the solution from the previous time step is used to provide an initial residual and as a starting
point for the Multigrid procedure.

In order to explain clearly the steps taken during a single V-cycle, the governing equations
(17) and (22), at the particular grid level k, may be rewritten in the following way:

g (mtmt) = 0. (26)
h 1 1 h
ch (mptt o) = st (Be) (27)
Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1-6
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TIME ADAPTIVE MULTIGRID SIMULATIONS OF DROPLET SPREADING 9

where the film thicknesses and pressure at the nt” time step ¢, are known and are given by
hi = {h}} and p} = {p}}, }, and fI corresponds to the right-hand side of equation (22).

Given hg k+1 and @Z“ as an initial guess to the solution of equations (26) and (27), the

computed values after completion of the V-cycle are: ﬁ;‘“ and p; Z“. Each V-cycle within
the solution process may be defined in a recursive manner using precisely the same pseudo-
code formalism as in Trottenberg [28]: In functional notation this V-cycle from level k may be
written as

(my+t, puptt) = FASCYC (K, hof ™, pon ™, £ fF ipresnpost ) -
The function FASCYC may be broken down into three distinct stages:
1. Presmoothing stage:
e Apply n,.. times a Red-Black Gauss-Seidel scheme [29] to a linearised form of
equations (26) and (27) so that, in functional notation:
(E:Jr ,pNOZH) — RELAX™Pre (h n+1,poz+1,f;?,f1€) ‘
2. Coarse grid correction stage:

e Compute the defects:
—ntl S
=fe =L (@’“ ’pOZH) » dip = i = L4 (@k ,pOZH) ‘

(Note that in our case, from equation (26), ff = 0, however this is not the case in
general for k < L, as shown below.)

o Restrict the defect to the next coarse grid level using a half-weighting restriction
operator, Ry ! [13]:

di_y =Ry (dg)  df_y = By (d) -
e Restrict h~_0:+1 and @ZH in the same way:
fopy = B (hoy ) poptt = RET (p) -
e Compute the right-hand side at the next coarser level:
fa=dpy o+ ey (Roy 8oyt L s = dy + £ (R et
e Compute an approximate solution @y, @} _, of the coarse grid equation on G*1:

‘Ck 1 (wk 17wk 1) = f/?—u (28)
qc)—l (w;cl—hwk—l) = flf—r (29)

If k=1: find the exact solution using the coarse grid solver.

n+1

If k>1: solve eqs. (28) and (29) by performing the FAS cycle using h(] ho,_, and po,

as an initial approximation:

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1-6
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10 P. H. GASKELL, P. K. JIMACK, M. SELLIER, H. M. THOMPSON

~ N —~n+l _ 1
(wk_l , w:;:_l) =FASCYC (k - 1,@,6,1;@:1—1,&1_1; f]I;_pnpre;npost) .
e Compute the corrections:

~h  _ ~h —ntl 5y ~ n+1
Vg = W1 — @k—l sy U1 — W1 — @k—l .

e Interpolate the corrections using the bilinear interpolation operator, IF | [13]:
~h _ 1k ~h ~p _ 1k P
U =14 (Qk—l) o =Ty () -

e Compute the corrected approximation on G*:

+ ~ntl ~ntl o~
hoz t= he, +_v2,poz 1—170: 1+U£
3. Postsmoothing stage:

o Apply npost times the relaxation scheme:
(h_lz-i—l , &Z-}-l) — RELAanost <@Z+17@Z+17fl}cl’flf)'

The associated relaxation scheme consists of a single Newton iteration solved with a fixed
number of sweeps (1, OF 1p0st) Of Red-Black Gauss-Seidel. The linearised form of equations
(26) and (27) is obtained by computing the local Jacobian only, so that each relaxation sweep
(in the pre-smooth stage for example) proceeds by solving:

oLk oL} W ph (ol nl
o " g T A (o o) (30)
6££ 8[:2 P 4 n+1 n+1

—~ n+1
for Ah and Ap. Hence a new approximation to the solution is given by: hOi,j: =

hgz.fjlk + Ah, ;662}2“ = pgz.fjlk + Ap. The Neumann boundary conditions are treated by

introducing ghost nodes outside the computational domain and by imposing the values of

droplet thicknesses and pressure at these points to be the same values as those at the boundary.
At the coarsest level (G°), the discretised equations are solved using a Newton iteration

scheme. The iteration is defined in terms of the Jacobian matrices:

aLrk ork oLk oLt

B = C=—F—, D=———. 32
aB(r]H—l’ = 6h0n+1’ = 82614-1’ = 8@3—}-1 ( )

A=

Given wl, wh as first approximation to the coarse grid equations (28) and (29), then increments
to wl, wh, Awl and Aw? respectively, are obtained by solving the linearised Newton iteration
equations:

p h _ ¢p P (,h D
éA_o ‘f‘éA_o = fo - £0 (wo,wo) s (33)
h h h h
CAwf + D Awg = fo — Lg (wg,wp) - (34)
Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1-6
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TIME ADAPTIVE MULTIGRID SIMULATIONS OF DROPLET SPREADING 11

Solution of these equations is obtained as follows. Setting MS = 0 in (33), an initial
approximation to Aw} is: Aw} = A" (f¥ — £F (wh,w})), while the equation for Awh is

obtained by eliminating Aw}, from equations (33) and (34), viz.
(D~ CA™'B)Awg = fg — L5 (wf,wf) — CAwg . (35)

Equation (35) is solved to yield Awf and w%, wh are updated according to wh — wf + Awp

and wh — wh + Awl — A~ BAw}, respectively. The iteration proceeds until the norm

B — 28 (wh,wh) 12 + £ — b (wh,wh) |
n

where n is the number of unknowns in one direction, is sufficiently small. In this work we found
that a relative reduction in the residual of just 10~3 (compared to the initial residual from the
solution at the previous time step) to be sufficient, however much greater accuracies are easily
obtainable if required.

4. RESULTS

The efficiency and accuracy of the Multigrid method is first demonstrated by comparison with
a series of analytical and previously-reported numerical results for droplet spreading flows.
New results are then presented which show how the method can be readily applied to simulate
droplet motion on substrates with topographic and/or wettability inhomogeneities.

4.1. Accuracy of the Local Error Estimate

The accuracy of the estimate of LTE, equation (24), is demonstrated by comparing it with the
true local error for the ordinary differential equation

%+%g=o, hte) = ho . (36)
This equation is chosen since its analytical solution
t0 2
oy =no (%), (37)

is of exactly the same form as Tanner’s [30] closed form solution for film thickness at the centre
of an axisymmetrically spreading droplet over a homogeneous substrate — see later. If h,, is
the numerical solution of equation (36) obtained at time ¢, using the temporal discretisation
scheme described above, then the true local error is the difference between h,,41, the numerical
solution obtained at time ¢,1, and the corresponding analytical solution for the same initial
condition h(t,) = hp, namely hy(t,/tn+1)%2.

Figure 4.1 shows how the ratio of the estimated local truncation error, ELTE, (24) to the
true local error, TLE, varies with time and prescribed error tolerance, TOL. It demonstrates
that the estimate consistently over predicts the true error and that decreasing the tolerance
increases the accuracy of the estimate to the extent that for TOL < 10~* the estimated local
error is within 30% of its true value.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1-6
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Figure 3. Ratio of ELTE to TLE for equation (36) as a function of time, t, and TOL.

4.2. Efficiency of the Numerical Method

The efficiency of the Multigrid and time-stepping procedures are demonstrated by considering
the problem of droplet spreading on a horizontal substrate for a partially wetting system where
the equilibrium contact angle (0, > 0) and the effects of gravity are neglected (Bo = 0). For
the particular case of a spreading axisymmetric droplet, centred initially at (z,y) = (0.5, 0.5),
the film thickness at the droplet centre, ho(t), is given [30] by

K
ho(t) = B for t > 0, (38)

where K and 3 (= 0.2) are spreading constants, a result verified by Lelah and Marmur’s [31]
experiments which found 0.16 < g8 < 0.32. The axisymmetric lubrication equations for this
problem were subsequently solved numerically by Schwartz and Eley [8] who investigated the
influence of the precursor film thickness h* on the spreading rate parameters K and £ in
equation (38). Here, this flow is studied by solving the lubrication equations (11) and (14) for
the particular case of € = 0.005, (n,m) = (3,2), the initial droplet profile is given by

h(r) = max (5 (1 - %a«?) ,0) , (39)

where r is the radius of the footprint of the droplet on the surface of the substrate. An
equilibrium contact angle of 1.53° was chosen so that ho(t) — 1 at large times. Note that,
apart from the initial profile no axisymmetry is imposed in the numerical solutions.

The following sequence of figures elucidate the effect of the Multigrid parameters on the
convergence of solutions by plotting the relative residuals at the finest grid level, which are
defined as the ratio of residual at the finest grid level after a given number of fine grid V-cycles
compared to the initial residual at the beginning of the time step.

The effect of the number of V-cycles (N,y.) at intermediate grid levels (0 < k < L) on the
relative residuals, where the finest grid level is 129x129 (i.e. L = 3) and the fixed (for this
comparison) time step is 107, is shown in Figure 4(a). It clearly demonstrates the benefit of

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1-6
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grid level, G3, is 129x129.

Figure 4. (a), (b), (c): effect of multigrid parameters on the convergence history of solutions. (d):

dependence of CPU time for a typical time step as a function of the total number of unknowns. Flow

conditions: evolution of a partially wetting droplet with Bo = 0, € = 0.005, ©. = 1.53°, h* = 0.04 and
(n,m) = (3,2)
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using at least one V-cycle at the intermediate level as the relative residuals are reduced by
almost two orders of magnitude compared to the case where no intermediate V-cycle is used.
Although more than one V-cycle does not improve noticeably the convergence of the solution
at the finest level but using a higher order interpolation scheme such as bicubic interpolation
for the Full Multigrid interpolation instead of bilinear interpolation may increase the benefit
of using more intermediate V-cycles. The initial increase in relative residuals is due to the
fact that at the begining of the solution process the initial guess, which corresponds to the
solution at the previous time step, satisfies (26) exactly since its right-hand side does not
change. Thus, after a first cycle, despite a reduction of the residuals for equation (27), the
residuals of equation (26) can only increase. The magnitude of this initial increase in relative
residuals is critical to the success of the solution procedure and therefore, a larger number of
presmoothing sweeps is performed for the first V-Cycle (ny.. = 4) while two presmoothing
sweeps only are found to be sufficient for the following V-cycles: np,4¢ is set to 2 regardless of
the cycle number.

The effect of the grid size at the finest level is explored next for a fixed number of intermediate
V-cycles (Neye = 3) and At™+ = 107°. Figure 4(b) shows that for all grids, with L ranging
from 3 (129x129) to 5 (513x513), the ratio of the residuals after the completion of the V-cycle
is effectively independent of the finest grid level. Closer analysis of the data reveals that this
ratio takes a value of approximately 1/20. Figure 4(c) shows that (fixed) time step size has
little effect on the convergence history until a threshold value At = 5 x 1078 is reached.
The initial increase in relative residuals becomes steeper and above this threshold value the
solution procedure fails. This limiting value of the time step depends on both the mesh size
and how advanced the solution is: as finer and finer grids are used, At,,,, decreases and at
later times, At,,., increases. Note that the calculations are for very early times where the
spreading motion is most active and the demands on the multigrid solver are most severe. An
additional advantage therefore of the adaptive time-stepping scheme described previously is
that the time-step selected is always smaller than this limiting time step as no restart of the
solution procedure is ever necessary.

In light of the above, all subsequent results were obtained using 5 V-cycles at each level.
Although clearly over-cautious, this has only a small additional computational cost since most
of the computational time is spent performing cycles at the finest level.

Figure 4(d) shows how the CPU time for a typical time step depends on grid density and
demonstrates that one of the most important potential advantages of Multigrid methods,
namely that CPU time varies linearly (i.e. the slope of the line in Figure 4(d) = 1) with
the total number of unknowns, is achieved by the solver. As noted above, when allied to
ever-increasing computational power, this feature of the solver is particularly important when
small-scale phenomena need to be simulated efficiently and accurately.

Figure 5(a) illustrates how the time step varies as a function of h*, showing that after the
solution has settled down the time-stepping scheme enables substantial efficiency gains to be
realised at later times and that the value of A* has only a marginal influence in the sense that
larger h* values permit larger time steps to be used near the equilibrium state.

The accuracy of the solutions is considered next. Figure 5(b) investigates the effect of grid
size on the droplet thickness ho(t) for simulations where h* = 0.04 and TOL = 1 x 10~
It shows that the solution converges with respect to the spatial discretisation as the grid
is progressively refined and that the solutions on the three finest grid levels differ by only
approximately 1%. The influence of the value of the precursor film thickness h* is shown
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Figure 5. Simulation parameters for (a), (b), (c):
L
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Table I. The effect of precursor film thickness h* on spreadin§ rate parameters: finest grid level is
257x257, with TOL = 10~ ".

h* K B8 Rescaled K
0.05 | 0.353 | 0.196 0.615
0.04 | 0.362 | 0.194 0.627
0.02 | 0.385 | 0.191 0.661
0.01 | 0.407 | 0.187 0.691
0.005 | 0.41 | 0.187 0.696

in Figure 5(c), for solutions obtained with a finest grid level of 257x257, TOL = 10~* and
adaptive time stepping. It illustrates that after an initial phase the droplet thickness hg(t)
obeys the expected power law relationship ho(t) = K/t%, where the coefficients K and 8 are
in Table 1. Note that, owing to the time scaling employed in the present study, in order to
compare these results with those of Schwartz and Eley [8] the K values must be multiplied by
the factor 0.059~°. The f values are found to be close to the expected value of 0.2, [30], and
the values of K also compare well with the values K = 0.61 (h* = 0.05) and 0.68 (h* = 0.005)
obtained by [8].

4.8. Large Bond Number Spreading of an Azxisymmetric Droplet

Comparison is made between numerical predictions and corresponding analytical solutions for
the case of axisymmetric spreading flow of a completely wetting droplet, centred initially at
(z,y) = (0.5,0.5), over a horizontal substrate when gravitational effects dominate over surface
tension ones so that the Bond number, Bo, is large. In this case the lubrication equations for
the droplet thickness h can be reduced to the following second-order p.d.e. for axisymmetric
flow
000 [0, o
ot 3r or or
in terms of r, the radial distance from the centre of the substrate.
The idealised case where the initial droplet profile is in the form of a Dirac delta function,
given by

h(r,t =0) = 0 forr >0 and 27r/ rhdr =V, (41)
0

where V is the dimensionless volume of the droplet, has been analysed previously in [32]. The
latter study showed that equation (40) could be solved analytically by defining the similarity

1
variable £ =1 (gs;) *, to yield

1
4

h(€) = 0.753 (%) (0.799 — £%)° . (42)

ol

Figure 6(a) compares numerical predictions of the droplet thickness at its centre, ho(t), as a
function of time with the similarity solution (42) for the case Bo = 1066 and V = 0.261. The
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Figure 6. Simulation parameters for (a), (b), (c): Bo = 1066, V = 0.261, finest grid level equals
129x129 and TOL = 2.5 x 1073
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former are obtained with a finest grid level of 129x129 and TOL = 2.5 x 10~3. The simulation
uses the initial profile (39) since it is both sharply peaked and mimics, to some extent, the
initial conditions in the analytical solution whilst at the same time guaranteeing that ho(t)
changes substantially before the droplet flows out of the computational domain (0 <7 < ‘/Ti ).

As expected, the agreement between the simulation and similarity solution is initially poor
(for t < 3x1077), due to the differences between the initial conditions in the two solutions, but
improves at later times and eventually becomes very good beyond this initial phase where the
maximum film thickness ho(t) decreases in proportion to =% at later times. Similar agreement
is also seen in Figure 6(b), which shows the development of the thickness profile across the
droplet, where the agreement at later times is very good everywhere except near the contact
line. The latter discrepancies are caused by the small, but non-zero, suface tension in the
simulations which acts to reduce curvature in its vicinity.

4.4. New Results for Droplet Spreading Over Topographies

The remaining results concern examples of the flow of droplets over topographic features.
Consider first the previous problem of axisymmetric flow of a completely wetting droplet at
high Bond number extended to the case of a completely enveloped circular topography. It can
be shown that the similarity solution (42) for the flow in the absence of a topography is only
slightly modified by its presence since the governing equation (40) simply becomes
Oh _Bod [ s0(h+s)
ot 3r Or or ’
where s = s(r) is the topographic profile. Since s(r) does not vary with time it is easy to show
that the similarity solution with a topography is given by

(43)

% ;
h(€) = 0.753 (%) (0.799 — £)® — s(r), (44)
where, once again, £ =r (ﬁ)é.
The topography s(r) is given by
T(r) - T(P) A
- 5
str) = 5 (T o) (45)

where sy is its height and, following [33], T'(r) is an arctangent function

T(r) = tan™ (% (1_%)) (46)

where the parameter 7 controls the steepness of the topography and r, = % is its radius.

Figure 6(c) shows a comparison between numerical predictions of the dro(i)let thickness (h)
profile across the film and the similarity solution (44) for the particular case of a topography
with sg = 0.2, v = 0.2 and 7, = 0.1, the former having been obtained with a finest grid level
of 129x129 and TOL = 2.5 x 103, As in the related case without a topography, results are
obtained for Bo = 1066 and V' = 0.261, while the droplet thickness profile (39) is modified so
that the initial free surface profile is the same in both cases, i.e.

h+ s = maz (5 (1 _ %7«2) ,s(r)) . (47)
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The figure shows similar behaviour to that reported in Figure 6(b) for the case without a
topography.

Next droplet spreading over substrate containing three-dimensional, rectangular
topographies is explored. The extent of the topography is specified with respect to the reference
point (z1,y1) = (X1,Y1)/Lo as indicated in Figure 1. Following [2] the topography s(z,y) is
defined in terms of transformed co-ordinates, (z*,y*) say, with origin at the centre of the
topography and given by

*

=2z — 21 —05l; v =y — y1 —0.5uw,. (48)

x
The topography s(z,y) is taken as

s@y) = 2 (tan—t (T2 02Y 4 gyt (22 W2)Y
bo Ywy ywy
(tan_l (711 — lt/2> +tan~! (7—31 — lt/2)> , (49)
YW YWt

where 7y controls its steepness and

bo = 4tan"! (%) tan~! (%) : (50)

In all of the results which follow the initial droplet profiles are of the same form as equation
(39) modified to take account of the presence of the topography, namely

h+s =mazx (5 (1 — %72) ,s(:c,y)) , (51)

where r is the radial distance from the centre of the substrate.

Figures 7 and 8 show the evolution of the free surface (h+s) profiles and associated contours
for the flow of a completely wetting droplet, centred initially at (z,y) = (0.5,0.5), over a
topographic peak (so = 0.5) and trench (s = —0.5) respectively with I; = 0.2, A = 1,
(z1,y1) = (0.3,0.3) and v = 0.01. In the former case, the droplet spreads axisymmetrically
until it meets the edge of the topography when it experiences an additional pressure gradient
that causes it to spread preferentially from the topography to the substrate in a direction
normal to the edge of the topography. Since the droplet meets the bottom left hand corner of
the topography last of all, liquid in this region is the last to experience the additional pressure
gradient, causing a small cusp in the contact line in this region. In the case of the spreading
over a trench, Figure 8, the edge of the topography presents an adverse pressure gradient
which reduces the speed of contact line advancement across its edges and, since liquid near
the bottom left hand corner is again the last to experience this adverse pressure gradient, the
droplet swells slightly in its bottom left hand region.

Figures 9 and 10 show free surface profiles and associated contours for the flow of a droplet,
centred initially at (z,y) = (0.5,0.5), over a topography defined by so = 0.5, Iy = 0.5, A =1,
(z1,91) = (0,0) and v = 0.01, where the wettability on the topography differs from that of
the rest of the substrate. In the former case the liquid fully wets the substrate (0, = 0°)
while only partially wetting the topography (0. = 11.5°). In Figure 9 it is evident that
the droplet recedes from the topography in order to increase its contact angle towards the
equilibrium value of 11.5° whereas it advances on the substrate in order to lower its contact
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Figure 7. Free surface (h + s) profiles (left) and associated contours (right) for a droplet spreading

over a topographic peak with s = 0.5, Iy = 0.2, A = 1, (z1,1) = (0.3,0.3) and v = 0.01. (a)

t=3x10"", (b) t =1x107% (c) t =1 x 1073, The density of the finest mesh is 257x257, h* = 0.02
and TOL = 107*.
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Figure 8. Free surface (h + s) profiles (left) and associated contours (right) for a droplet spreading

over a topographic trench with s = —0.5, I; = 0.2, A = 1, (z1,%1) = (0.3,0.3) and v = 0.01. (a)

t=3x10"7, (b) t=1x107%, (c) t = 1 x 107%. The density ‘of the finest mesh is 257x257, h* = 0.02
and TOL = 10*.
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Figure 9. Free surface (h + s) profiles (left) and associated contours (right) for a droplet spreading
away from a topographic peak with so = 0.5, Iy = 0.5, A = 1, (z1,41) = (0.0,0.0) and vy = 0.01,
with ©, = 11.5° on the topography and @, = 0° on the rest of the substrate. (a) t = 1.2 x 1072, (b)
t =5x107%, (c) t = 5 x 10™*. The density of the finest mesh is 257x257, h* = 0.02 and TOL = 10~*.
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Figure 10. Free surface (h + s) profiles (left) and associated contours (right) for spreading of a droplet
onto a topographic peak with so = 0.5, I; = 0.5, A = 1, (z1,y1) = (0.0,0.0) and v = 0.01, with
©. = 0° on the topography and ©. = 11.5° on the rest of the substrate. (a) t = 1.2 x 107, (b)
t=1x10"% (c) t = 5x 10~ *. The density of the finest mesh is 257x257, h* = 0.02 and TOL = 10~*.
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angle towards the equilibrium value of 0°. Taken together these effects cause the droplet to flow
off the topography, as shown in Figure 9(c). Figure 10 shows the effect of interchanging the
wettabilities of the topography and substrate. In this case the contact line on the topography
advances further across it so as to reduce the contact angle towards the equilibrium value of
0°, while that on the substrate recedes, the net effect of which is to cause the droplet to flow
up (climb) onto the topographic peak, Figure 10(c).

The final figure, Figure 11, considers the flow of a fully wetting droplet, initially centred at
(z,y) = (0.5,0.5), down a plane inclined at 28.6° to the horizontal over a topographic peak
defined by so = 0.5, I; = 0.2, A = 1, (z1,y1) = (0.6,0.4) and v = 0.01. As expected, the
gravitational force causes the droplet to spread over and eventually engulf the topography.
The results also show that the droplet spreads more quickly along the edges of the topography
causing the contact line downstream of it to become heart-shaped, Figure 11(b), indeed similar
free surface profiles has been reported in recent experimental and theoretical invsetigations of
gravity-driven flows over fully-submerged topographies [34, 25]. At later times the branches of
the contact line behind the topography coalesce and form a straight contact line perpendicular
to the direction of spreading, Figure 11(c).

5. CONCLUSIONS

The numerical solution of the time-dependent lubrication equations for the case of droplet
spreading is complicated by the need to overcome, in an efficient way, the severe restrictions
encountered in relation to the use of permissible time increments consequent on two main
factors: stiffness introduced by surface tension and the need to resolve short length scales close
to wetting lines.

The answer here, has been to develop and employ an efficient, fully implicit, multigrid solver
embodying adaptive time-stepping selection, the latter optimising the choice of time step in a
controlled manner subject to a specified temporal error tolerance. A wide variety of previously
reported analytical and numerical results, together with a series of new ones concerning the
motion of droplets on heterogeneous substrates, have been used to validate successfully the
approach.

The technological requirement for the simulation of flows past ever smaller topographic and
wetting heterogeneities, and combinations of the same, makes the efficiency of such a numerical
formulation extremely attractive, particularly where high resolution and hence fine meshes are
essential. Firstly, time-step selection is efficient and enables the relatively small time steps
required, for example, at the beginning of a simulation or when the flow is evolving quickly
to be increased in a controlled and accurate manner when conditions permit. Second, the
benefit of the Multigrid solver is such that its fully implicit nature ensures that the larger time
step estimates given by the adaptive time-stepping selection procedure can actually be used
in practice, while also offering the attractive feature that the CPU time taken to solve the
discretised equation set, at each time step, is simply 0(N) where N is the number of unknowns.
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Figure 11. Free surface (h + s) profiles (left) and associated contours (right) for the motion of a

fully-wetting droplet, down a plane inclined at 28.6° to the horizontal, over a topographic peak with

s0 =0.5,1; =02, A=1, (x1,91) = (0.6,0.4) and v = 0.01. Dotted lines indicate the inclination of

the substrate with respect to the horizontal. (a) t = 1.3 x 107°, (b) t = 1.6 x 10™*, (c) t = 2.6 x 10~ *.
Finest grid density is 257x257 and TOL = 10~
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