
RESEARCH ARTICLE Open Access

Efficient and biologically relevant
consensus strategy for Parkinson’s disease
gene prioritization
Maykel Cruz-Monteagudo1,2* , Fernanda Borges1*, Cesar Paz-y-Miño2, M. Natália D. S. Cordeiro3, Irene Rebelo4,

Yunierkis Perez-Castillo5,6, Aliuska Morales Helguera6, Aminael Sánchez-Rodríguez7* and Eduardo Tejera2

Abstract

Background: The systemic information enclosed in microarray data encodes relevant clues to overcome the poorly

understood combination of genetic and environmental factors in Parkinson’s disease (PD), which represents the

major obstacle to understand its pathogenesis and to develop disease-modifying therapeutics. While several gene

prioritization approaches have been proposed, none dominate over the rest. Instead, hybrid approaches seem to

outperform individual approaches.

Methods: A consensus strategy is proposed for PD related gene prioritization from mRNA microarray data based

on the combination of three independent prioritization approaches: Limma, machine learning, and weighted gene

co-expression networks.

Results: The consensus strategy outperformed the individual approaches in terms of statistical significance, overall

enrichment and early recognition ability. In addition to a significant biological relevance, the set of 50 genes

prioritized exhibited an excellent early recognition ability (6 of the top 10 genes are directly associated with PD).

40 % of the prioritized genes were previously associated with PD including well-known PD related genes such as

SLC18A2, TH or DRD2. Eight genes (CCNH, DLK1, PCDH8, SLIT1, DLD, PBX1, INSM1, and BMI1) were found to be

significantly associated to biological process affected in PD, representing potentially novel PD biomarkers or

therapeutic targets. Additionally, several metrics of standard use in chemoinformatics are proposed to evaluate the

early recognition ability of gene prioritization tools.

Conclusions: The proposed consensus strategy represents an efficient and biologically relevant approach for gene

prioritization tasks providing a valuable decision-making tool for the study of PD pathogenesis and the

development of disease-modifying PD therapeutics.
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Background

Parkinson’s disease (PD) is the second most common

neurodegenerative disorder (ND). The present annual

cost of health care for patients with PD is estimated to

exceed $ 5.6 billion just in the US. With the rapid

increase in worldwide life expectancy, the prevalence of

PD is expected to double by 2030 [1–3].

Dopamine replacement drugs remains the principal and

most effective treatment for PD [4]. However, as the dis-

ease progresses, their efficacy diminishes and fails to ad-

dress the degeneration observed in other brain areas [5–7].

Ultimately, disease-modifying treatments are needed that

address both the motor and nonmotor symptoms of PD.

Currently the most important diagnostic marker of PD

is limited to the presence of motor disturbances. Unfortu-

nately, due to overlap of symptoms with other neurode-

generative disorders, misdiagnosis is common. Moreover,
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motor deficits allowing clinical diagnosis generally appear

when 50–60 % of dopaminergic neurons in the substantia

nigra (SN) are already lost, limiting the effectiveness of

potential neuroprotective therapies [8].

In addition to motor symptoms, non-motor symptoms

including autonomic dysfunction, depression, olfactory

deficit, cognitive disturbances and sleep abnormalities

have been related to PD [9]. This mixture of apparently

unrelated symptoms and physiological disorders high-

light that PD is a multi-causal disorder. Thus, to identify

new targets and biomarkers for PD becomes critical for

the early diagnosis of this medical condition and for the

development of disease-modifying therapies.

In this sense, the systemic picture of gene expression

information enclosed in mRNA microarrays experiments

encodes relevant clues on the pathogenesis, biomarkers

or therapeutics targets for a disease state, but requires of

approaches able to unravel it through the accurate

prioritization of those disease relevant genes [10]. Sev-

eral bioinformatics approaches have been reported for

this task including those based on differential gene ex-

pression [11], gene co-expression networks [12] or ma-

chine learning (ML) approaches [13].

Each approach has particular theoretical foundations de-

termining relative advantages and limitations. It is well

known that the consensus use of multiple and independent

pieces of information increases the reliability of a decision-

making process [14]. So, the hybridization of conceptually

different approaches can provide prioritization tools with

enhanced efficiency [15]. Specifically, such novel hybrid ap-

proaches have not been applied yet to PD relevant genes

prioritization nor even to neurodegenerative disorders [12].

In this work we propose a consensus strategy for PD rele-

vant genes prioritization based on the integration of several

approaches including linear models for microarray data

(Limma), machine learning, and co-expression networks.

Since only a few candidates can usually be considered for

further validation experiments, particular emphasis is made

in the early recognition ability prioritization tools.

One problem benchmarking the early recognition

ability of prioritization approaches in bioinformatics is

the lack of statistically sound metrics for this task

[16]. Other related areas such as chemoinformatics

have standardized procedures to evaluate an analo-

gous problem to gene prioritization, the virtual

screening [17]. Here we propose for the first time the

use of such early recognition metrics to evaluate the

performance of gene prioritization approaches. Hence,

besides to identify an enriched set of PD related

genes we propose a consensus strategy for gene

prioritization with proved enrichment efficiency and

biological relevance, as well as a statistically founded

approach to evaluate the early recognition ability of

gene prioritization tools.

Methods
Microarrays data

Experimental microarray data comparing healthy control

(HC) and Parkinson’s disease (PD) samples were obtained

analyzing the Gene Expression Omnibus (GEO) [18].

Table 1 shows the GEO data sources, references, and sam-

ple distribution used in the study. Only studies on sub-

stantia nigra were considered. So, eight samples collected

from frontal gyrus were removed from GSE8397.

It is important to highlight that the substantia nigra is

the region of the brain that shows the greatest loss of

dopaminergic neurons in human PD patients. This in-

duce a serious bias that we will term the “dopamine

bias”. This bias induce a serious risk of overestimation

of the enrichment ability of a prioritization strategy

based on samples coming from the substantia nigra. At

the same time, it is also true that dopamine-related

process are intrinsically implicated in the pathogenesis

of PD. So, we need to check not only which prioritized

gene is “dopamine-related”, but also whether such gene

is associated or not with PD. This critical issue will be

considered along all the analysis conducted and properly

discussed in the following sections of the manuscript.

Each microarray was processed as follows: public data

was extracted and processed using GEOquery package in

Bioconductor [19]. After individual microarrays analysis,

the first step in cross-platform microarray analysis is to

combine the different probes. For this task the entrez

gene was used as identifier in order to obtain the com-

mon space across all platforms [20–22]. We mapped the

arrays probes of each independent studies to the respect-

ive entrez gene ID through manual observation and also

using the updated manufacturers annotation information

(using R-packages: hgu133a.db, hgu133plus2.db and

hgfocus.db [23–25]) for all platforms.

Only genes common to all platforms (8477 genes)

were used in the subsequent analysis. Genes with more

than one probe in individual microarray/studies were

combined using the row with the highest mean intensity

value applying the collapseRows and intersect functions

implemented in the WGCNA package [26, 27]. A second

normalization was performed in order to re-scale the

intensity and remove cross-platform batch effects using

the Combat function of the SVA package [28]. From the

Table 1 Microarray data details

Code Platform Sample Ref.

GSE20292a GPL96 11(PD); 18(HC) [45, 53]

GSE7621 GPL570 16(PD); 9(HC) [46]

GSE20333 GPL201 6(PD); 6(HC) [97]

GSE8397b GPL96 31(PD); 16(HC) [47]

aThree samples with outlier nature removed after cross-platform normalization
bEight samples collected from frontal gyrus removed
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initial set of 29 samples in GSE20292 three samples

with outlier nature were removed after cross-platform

normalization. Finally a subset of 102 samples (59 PD

and 43 HC) remained for further analysis.

Differential gene expression analysis

The identification of genes with statistically different ex-

pression between HC and PD groups was performed

using lmFit from Limma R-Package [29]. The basic stat-

istic used for significance analysis was the moderated t-

statistic after adjustment with the Benjamini and Hoch-

berg’s method to control the false discovery rate (“fdr”

adjusted p-values) [30].

Machine learning analysis

The ML analysis was conducted over a cross-platform

normalized microarray data including 8477 common

genes for 102 samples. The full data was split up into

training and test sets, as part of the validation scheme

[31]. Approximately 25 % of the samples were randomly

assigned to the “Test Set” by using the Create a Subset/

Random (Stratified) Sampling option implemented in

STATISTICA 8.0 [32]. Details on the final distribution

of the 102 samples can be assessed on Additional file 1:

Table S1. Normalized expression values of the 8477

common genes for each of the 102 samples, sample and

study identifiers, disease factor (PD or HC), as well as

the distribution of training and test samples are provided

as supplementary information Additional file 2.

The full vector of 8477 normalized gene expression

values was reduced to 500 genes with maximal relevance

for the disease factor by means of the minimal redundancy

maximal relevance (mRMR) software [33]. Details of the

reduced gene set by using the mRMR software are pro-

vided in the supplementary information. Then, the re-

duced vector was subject to an independent process of

feature selection relying on eleven different ranking fea-

ture selection algorithms implemented on WEKA 3.7.11

[34]. See the full list of attribute evaluators in the supple-

mentary information. Additionally, the reduced vector

was subject to a wrapper subset selection using as attri-

bute evaluators only those ML classifiers including a sub-

set feature selection stage implemented on WEKA 3.7.11.

Weighted gene co-expression network construction and

analysis

The full set of 8477 common genes was used for

weighted genes co-expression network (WGCN) con-

struction in each group using the WGCNA package [27].

In this study, we set the β parameter variation to 6, fol-

lowing the scale-free topology criterion proposed by

Zhang and Horvath using the pickSoftThreshold function

in WGCNA [35]. Once defined the adjacency matrix for

each group (HC and PD), the corresponding co-

expression matrices (CoHC and CoPD) were obtained.

Modular analysis

The modules were detected using the Dynamic Tree Cut

algorithm [36] by using the cutreeDynamic function im-

plemented in the WGCNA package. Here, the deep split

was set to 3, the cutting height to the 99th percentile

and the joining heights on the dendograms were set to

the maximum. The node connectivity (k) and the node

intramodular connectivity (kintra) were calculated for

each module as described in [37].

Statistical significance

The gene ontology (GO) and diseases enrichment ana-

lysis were performed using DAVID bioinformatics re-

source v6.7 [38], exploiting the well know Gene

Ontology Annotation (GOA) [39] and Genetic Associ-

ation (GAD) [40] databases. The ToppCluster tool for

the combined enrichment analysis [41] was used to pro-

vide network representations of individual and common

terms. The statistical significance of the respective en-

richment analyses was accessed by using FDR criteria

with p-value < 0.05 as cut-off.

The statistical significance of each genes set prioritized

as relevant for PD was assessed as proposed by Chen et

al. [42, 43]. Detailed information on the application of

this test is provided in the supplementary information.

Additionally, a bootstrap random sampling experiment

was implemented in R as proposed by [42, 43] and per-

formed to test the probability of randomly selecting the

same number of known PD related genes in the priori-

tized genes sets. The Wilcoxon signed rank test was

used as significance test.

Enrichment and early recognition

Several enrichment metrics have been proposed in the

chemoinformatics literature to measure the enrichment

ability of a VS protocol [17]. However, despite being bio-

informatic’s gene prioritization and chemoinformatic’s

virtual screening essentially the same problem, this type

of enrichment analysis has not been applied in bioinfor-

matics. In this work, we use some of the most extended

metrics to estimate the enrichment ability of the gene

prioritization strategies proposed. The overall enrich-

ment metrics used here include the area under the accu-

mulation curve (AUAC); the area under the ROC curve

(ROC); and the enrichment factor (EF) evaluated at the

top 1 %/5 %/10 %/20 % of the ranked list. At the same

time, the early recognition metrics used were the robust

initial enhancement (RIE) and the Boltzmann-enhanced

discrimination of ROC (BEDROC) evaluated at the

top 1 %/5 %/10 %/20 % of the ranked list [17]. The

calculation of both classic and early recognition
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enrichment metrics was conducted by using the perl

script Cresset_VS [44].

Results and discussion
Limma based gene prioritization

First, the background of 8477 genes provided by the 102

samples of HC and PD patients was processed with

Limma. The goal here is to identify those single genes

significantly differentiated between HC and PD samples

and so, potentially associated with PD. This procedure

identified a set of 134 genes with an “fdr” adjusted p-

values < 0.05, each of which was considered to be signifi-

cantly differentiated on PD patients. Details on this set

of genes are reported as supplementary information. The

results of the disease enrichment analysis are shown in

Table 2. The number of genes associated with PD and

included in GAD provides evidence of a statistically sig-

nificant association of the selected set of genes with PD

(p-value = 0.0271).

It is important to note that the GAD database only

covers 29 % of the top 134 genes prioritized using an

FDR corrected p-value < 0.05 as significance cutoff. Simi-

larly, the OMIM database have only a coverage of just

25 %. Accordingly, the ranking provided by the disease

enrichment analysis must be used as reference instead of

a exact criterion of the degree of association of the pri-

oritized genes set with the disease. Consequently, the in-

formation in Table 2 can be only used to support the

statistically significant association between the top 134

genes prioritized by Limma and PD.

However, if we use an uncorrected p-value < 0.5 as a

significance cutoff instead of the FDR corrected p-value,

the set of prioritized genes increases notably to 1016

genes with a non statistically significant association with

PD (data not shown). Such a radical change supports the

choice in this work to use FDR corrected instead of un-

corrected p-values. It could be explained by the well-

knwon ability of the FDR correction to minimize the

number of false negatives [30] which minimize the lost

of PD related genes and consequently, increasing the en-

richment of the gene set selected by using this criterion.

The full list of the top 1016 genes prioritized are pro-

vided as a suplementary information (see Additional file

5). In this list we can find several genes reported in pre-

vious transcriptome analysis based on similar samples

[45–51], some using the same micrarray data used in

our work. Even so, it is hard to know the real degree of

overlapping between our genes and those reported in

these works because not every paper reports the full list

of significantly differentiated genes. Moreover, in these

works several dissimilar processing strategies were ap-

plied which impose and additional degree of difficulty

on the comparison across these and our study.

If we look for example to the works reported in

[47, 48, 51, 52], the degree of overlaping between the

genes lists reported is extremely low. Actually, no

common genes were found between the four studies

and the maximal overlapping between two studies

were two common genes (LRRFIP1 and MDH1) be-

tween [5] and [6]. Such a minimal degree of overlap-

ping could be atributed to the diversity of tissues,

samples or methodological approaches applied on

each independent study. However, when the unique

set of 243 genes extracted from the combination of

the genes sets reported in [47, 48, 51, 52] is com-

pared with our genes prioritized with Limma, a sig-

nificantly higher degree of overlaping is found.

Specifically, a 4.92 % of overlapping (50 common

genes) is found considering the top 1016 genes (using

the uncorrected p-value < 0.05 as a significance cut-

off ); 8.21 % of overlapping (11 common genes)

considering the top 134 genes (using FDR corrected

p-value < 0.05); and 6.49 % of overlapping (39 com-

mon genes) considering the top 608 genes (using

FDR corrected p-value < 0.25). The last top fraction of

608 genes using a cutoff of 0.25 for FDR corrected p-values

was also included in the comparison since such a cutoff is

widely used in this type of prioritizations [47–50, 53]. One

should expect a higher degree of overlapping for larger

gene sets. However, as described, the higher degree of over-

lapping was found in the top 134 genes prioritized by using

FDR corrected p-values. Again, the ability of the FDR

Table 2 Disease enrichment analysis on the Genetic Association

Database of a set of 134 genes prioritized for PD by using Limma

GAD Term p-
Value

Hits
Sample

Total
Sample

Hits
Background

Total
Background

bipolar disorder 0.0030 7 39 96 2459

schizophrenia 0.0034 11 39 249 2459

alcohol abuse 0.0227 4 39 40 2459

Parkinson’s disease 0.0271 6 39 112 2459

delinquent
behavior violent
behavior

0.0307 2 39 2 2459

schizophrenia;
opium abuse

0.0307 2 39 2 2459

alcoholism 0.0346 4 39 47 2459

nicotine
dependence
smoking behavior

0.0457 2 39 3 2459

impulsivity 0.0457 2 39 3 2459

bipolar affective
disorder; unipolar
affective disorder

0.0457 2 39 3 2459

personality traits 0.0480 3 39 23 2459

Hits Sample: Number of genes selected by Limma that are asociated with the

disease condition; Total Sample: Number of genes selected by Limma; Hits

Background: Number of genes in the background that are asociated with the

disease condition; Total Background: Number of genes in the background
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correction to minimize the number of false negatives can

be the explanation to this unexpected observation.

Other genes known to be associated with PD such as

TH, SLC18A2, NR4A2, DDC and SLC6A3 can be found

in our Limma prioritization. Interestingly, compared

with these genes, SNCA exhibited a lower significance.

An statistically significant differenced expression of

SNCA is considered mandatory for clinical diagnosis of

classical PD [8, 48]. In this prioritization we noted this

differencial expression (see supplementary information),

but just using as a cutoff an adjusted p-value < 0.25, in

agreement with previous studies [47–50, 53]. On the

other hand, a reduction in dopamine markers as well as

the the presence of α-synuclein–positive Lewy bodies in

substantia nigra are not exclusive of PD [8, 54]. There-

fore it is not surprising that the consensus approach pri-

oritized other genes before SNCA.

A different scenario emerges from the GO enrichment

analysis of biological proceses. From this analysis, the

overall information extracted is that although the set of

genes prioritized by Limma do not fully match with

known genes associated with PD, the biological processes

involving these genes are well known to be implicated in

the pathogenia of PD. The GO terms, description, and the

FDR corrrected p-values corresponding to the top 11 sta-

tistically significant biological process identified from the

set of 134 genes are provided in Table 3. Details on the full

list of biological process associated to this gene set can be

accessed in the suplementary information (see Additional

file 5).

The information provided in Table 3 clearly reveals an

enrichment in dopamine and neurotransmition process. Al-

though the key role of dopamine metabolism in PD is well

known [6], the reduction of dopamine synthesis or simply

changes in the metabolism of the dopamine are not exclu-

sive of PD. Such effect in other neurodegenerative disorders

or even aging has been recently discussed [51]. Addition-

ally, we can not rule out that the enrichment observed in

dopamine process could be a possible consequence of a

particular degradation in the substantia nigra or even a

combined factor for neuronal loss in this particularly sens-

ible tissue [48, 50]. Obviously, is not possible to isolate

these effects without aditional experimental data. We also

found (although with FDR corrected p-values < 0.05) other

biological process well stablished in PD such as oxidative

fosforilation and energetic metabolism [46–49, 53] (see de-

tails in the supplementary information). The lack of statis-

tical significance of these process is obviously a direct

consequence of the reduction of the gene set comming

from the use FDR corrrected p-values as cutoff. Actually,

when the entire set of 1016 genes (using uncorrected

p-values) is subject to the same GO enrichment ana-

lysis, these processes become significantly more

enriched than dopaminergic processes. The details on

the GO enrichment analysis are provided as supple-

mentary information (see Additional file 5). This also

indicates that even when a bias toward dopamine me-

tabolism exist, additional information relevant to PD

is enclosed in the microarray data used. As discussed

later, the consensus strategy actually favor the inclu-

sion of such non dopamine related process.

Finally, another important finding to mention is that

the transcriptional coactivator PPARGC1A (PGC-1α)

was not found to be significantly differenciated in our

study, even when it is a master regulator of mitochon-

drial biogenesis and oxidative metabolism [48, 50]. In

this sense, it is important to note that these studies ap-

plied different methodologies so to find this gene as not

significantly differentiated is a perfectly possible sce-

nario. The fact that only one of the four studies used in

this work reported this gene as diferentially expressed

support this observation. Finally, even when PPARGC1A

was not found in our study, several genes were found to

be direct interactors, and biological process directly re-

lated with this gene are clearly present in our prioritized

genes. It is elaborated further based on the results shown

by the functional interaction network of the set of 50

genes finally prioritized.

Machine learning based gene prioritization

For the ML based gene prioritization process, the full

vector of 8477 normalized gene expression values was

first reduced to 500 genes with maximal relevance for

the disease factor (see the full list in the Additional file

3). This set of 500 genes comprises the 91 % of the 134

genes prioritized by Limma. This indicates that this ini-

tial gene set used as input for feature selection and fur-

ther ML modeling conserves almost the same information

Table 3 GO terms, description, and the FDR corrrected p-values

corresponding to the statistically significant biological process

identified from 134 genes prioritized by Limma

GO terms Description p-value
(FDR)

GO:0006576 biogenic amine metabolic process 3,3E-04

GO:0042401 biogenic amine biosynthetic process 3,7E-04

GO:0034311 diol metabolic process 8,2E-04

GO:0009712 catechol metabolic process 8,2E-04

GO:0006584 catecholamine metabolic process 8,2E-04

GO:0018958 phenol metabolic process 9,8E-04

GO:0042423 catecholamine biosynthetic process 3,2E-03

GO:0042398 cellular amino acid derivative biosynthetic
process

1,4E-02

GO:0042416 dopamine biosynthetic process 2,3E-02

GO:0006575 cellular amino acid derivative metabolic
process

2,9E-02

GO:0042417 dopamine metabolic process 4,4E-02
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prioritized by Limma. Then, the reduced vector was subject

to an independent process of feature selection as previously

depicted in Methods section. Once ranked the 500 relevant

genes by the respective attribute selection method, each

gene is scored according to their mean rank position across

the eleven attribute evaluators by applying a desirability

function [55]. The corresponding gene relevance score

d(Ranki) is defined as:

d Rank ið Þ ¼
Rank i−1

1−Rankmax
0 ≤ d Rank ið Þ ≤1 ð1Þ

Here Ranki denotes the rank position assigned to the

gene i by the attribute evaluator while Rankmax is deter-

mined by the number of genes to rank and corresponds to

the worst possible rank position (500th). Finally, the overall

relevance score for a gene i deduced from the consensus

ranking analysis D(Ranki) is computed as the arithmetic

mean of the d(Ranki) values across all the attribute evalua-

tors applied.

Next, the 500 genes previously identified were also

subject to a wrapper subset selection as described in

Methods section. The relevance of the subset of genes

selected is deduced from the accuracy of the respective

classifier. So, we only considered as relevant those subset

of genes coming from classifiers exhibiting values of ac-

curacy, sensitivity and specificity over 0.6 on training and

validation sets. Table 4 provides details of the predictive

performance of the thirteen ML classifiers. Considering

the classification performance we can assert that based on

the set of genes identified by each ML algorithm it is pos-

sible to classify the disease status of our microarray sam-

ples with a confidence ranging from 75 to 83 % (see

Table 4). The sets of genes selected by the respective clas-

sifiers are provided in Additional file 1: Table S2.

Again, by applying a desirability function is possible to

score the relevance of the respective gene according to

the number of valid classifiers including the gene i and

so, considering it as relevant. The corresponding gene

relevance score based on the consensus classifier analysis

d(Classi) ranges between 0 (only one valid classifier in-

cludes the gene) and 1 (the gene is considered relevant

by all the valid classifiers) and is defined as:

d Classið Þ ¼
Nreli−1

NClass−1
0 ≤ d Classið Þ ≤1 ð2Þ

Here Nreli denotes the number of valid classifiers in-

cluding the gene i while NClass indicates the number of

valid classifiers.

Table 4 Classification performance of the ML classification algorithms used to identify PD relevant sets of genes

ML Classification Algorithm Training set LOO CV 5-Fold CV Test set

Acc. Se. Sp. Acc. Se. Sp. Acc. Se. Sp. Acc. Se. Sp.

functions.SimpleLogistic 1.000 1.000 1.000 0.827 0.860 0.781 0.827 0.814 0.844 0.704 0.750 0.636

rules.MODLEM 1.000 1.000 1.000 0.813 0.837 0.781 0.760 0.767 0.750 0.778 0.750 0.818

rules.PART 0.987 0.977 1.000 0.653 0.674 0.625 0.747 0.721 0.781 0.741 0.750 0.727

trees.ADTree 1.000 1.000 1.000 0.853 0.860 0.844 0.787 0.721 0.875 0.741 0.750 0.727

trees.BFTree 0.973 1.000 0.938 0.853 0.884 0.813 0.747 0.744 0.750 0.741 0.750 0.727

trees.FT 1.000 1.000 1.000 0.800 0.837 0.750 0.867 0.884 0.844 0.741 0.813 0.636

trees.LADTree 1.000 1.000 1.000 0.840 0.884 0.781 0.827 0.814 0.844 0.889 0.875 0.909

trees.LMT 1.000 1.000 1.000 0.813 0.860 0.750 0.773 0.767 0.781 0.741 0.813 0.636

trees.SimpleCart 0.973 1.000 0.938 0.827 0.837 0.813 0.747 0.721 0.781 0.741 0.750 0.727

meta.AdaBoostM1 1.000 1.000 1.000 0.840 0.884 0.781 0.880 0.907 0.844 0.926 1.000 0.818

meta.AttributeSelectedClassifier 0.960 0.977 0.938 0.680 0.721 0.625 0.760 0.767 0.750 0.852 0.875 0.818

meta.ClassificationViaRegression 0.960 0.977 0.938 0.813 0.814 0.813 0.733 0.698 0.781 0.815 0.938 0.636

meta.Decorate 1.000 1.000 1.000 0.893 0.860 0.938 0.867 0.837 0.906 0.963 1.000 0.909

AVERAGE 0.989 0.995 0.981 0.808 0.832 0.777 0.794 0.782 0.810 0.798 0.832 0.748

Acc. = accuracy or overall classification rate; Se. = sensitivity or true positives rate (% of PD samples correctly classified); Sp. = specificity or true negatives rate

(% of HC samples correctly classified)

functions.SimpleLogistic: Classifier for building linear logistic regression models [104]; rules.MODLEM: Class for building and using a MODLEM algorithm to induce

rule set for classification [105]; rules.PART: Class for generating a PART decision list [106]; trees.ADTree: Class for generating an alternating decision tree [107];

trees.BFTree: Class for building a best-first decision tree classifier [108]; trees.FT: Classifier for building ‘Functional trees’, which are classification trees that could have

logistic regression functions at the inner nodes and/or leaves [109]; trees.LADTree: Class for generating a multi-class alternating decision tree using the LogitBoost

strategy [110]; trees.LMT: Classifier for building ‘logistic model trees’, which are classification trees with logistic regression functions at the leaves [104, 111]; trees.

SimpleCart: Class implementing a classification and regression tree with minimal cost-complexity pruning [112];meta.AdaBoostM1: Metaclassifier class for boosting a nominal

class classifier using the Adaboost M1 method [113]; meta.AttributeSelectedClassifier: Metaclassifier class where dimensionality of training and test data is reduced by attribute

selection before being passed on to a classifier http://weka.sourceforge.net/doc.dev/weka/classifiers/meta/AttributeSelectedClassifier.html;meta.ClassificationViaRegression:

Metaclassifier class for doing classification using regression methods [114];meta.Decorate: Meta-learner for building diverse ensembles of classifiers by using specially

constructed artificial training examples [115, 116]
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The final subset of relevant genes proposed by the ML

prioritization strategy is determined by 168 unique genes

forming the union of the subsets of genes identified by

the valid classifiers. Finally, the absolute relevance of

each gene (MLreli) is estimated by considering its re-

spective D(Ranki) and d(Classi) scores and quantified as

the corresponding arithmetic mean. Details on this set

of genes are reported as supplementary information (see

Additional file 4).

The final result is a list of 168 unique genes (see Add-

itional file 5) with proved capability of discriminating PD

from HC samples, and sorted according to their consen-

sus merit (MLreli). This ML set was subject to a disease

enrichment analysis, providing evidence of a statistically

significant association of the selected genes with PD, pla-

cing PD 2nd in the list, with p-value = 0.0367. However,

none of the biological process involved in this set of genes

was statistically significant. It is important to note that

ML methods are focused on maximizing the correct clas-

sification rate. So, contrary to standard prioritization

methods based on gene expression data, the set of genes

identified with ML favor the relevance for the disease state

instead the gene connectivity information or the biological

background. Accordingly, it is unlikely that the final gene

list prioritized by ML methods provide statistically signifi-

cant enrichments of biological processes or pathways.

Table 5 Connectivity, differential expression and machine learning data used as criteria for module prioritization

Healthy Control (HC) Modules

Module n <k> <kintra> <logPD-logHC> nML Merit_ML nLimma Merit_Limma nML-Limma Merit_ML-Limma

HC_01 123 12.04 1.38 −0.021 3 1.23 1 0.51 1 1.23

HC_02 349 34.57 7.29 −0.061 6 0.87 13 2.36 4 1.73

HC_03 1057 19.04 8.85 0.011 4 0.19 2 0.12 2 0.29

HC_04 169 17.02 2.59 −0.002 1 0.30 0 0.00 0 0.00

HC_05 347 9.23 2.59 0.165 2 0.29 1 0.18 1 0.44

HC_06 74 8.26 0.73 0.005 0 0.00 0 0.00 0 0.00

HC_07 290 14.81 5.19 0.073 4 0.70 6 1.31 1 0.52

HC_08 251 10.94 2.05 0.030 11 2.21 10 2.52 5 3.02

HC_09 2 1.15 0.00 0.022 0 0.00 0 0.00 0 0.00

HC_10 37 15.32 1.48 0.043 1 1.36 0 0.00 0 0.00

HC_11 91 10.95 1.23 0.048 3 1.66 0 0.00 0 0.00

HC_12 61 23.65 3.85 0.028 2 1.65 0 0.00 0 0.00

HC_13 164 10.23 1.79 0.007 3 0.92 1 0.39 1 0.92

HC_14 71 8.33 0.81 −0.001 0 0.00 0 0.00 0 0.00

HC_15 2120 49.53 36.69 −0.062 82 1.95 97 2.89 40 2.86

HC_16 3271 22.06 14.66 −0.064 46 0.71 3 0.06 1 0.05

Parkinson’s Disease (PD) Modules

PD_01 603 286.30 70.52 0.022 6 0.50 1 0.10 1 0.25

PD_02 1437 262.21 150.85 −0.126 69 2.42 103 4.53 42 4.42

PD_03 133 210.12 13.36 0.035 1 0.38 0 0.00 0 0.00

PD_04 161 284.83 22.96 0.089 4 1.25 3 1.18 2 1.88

PD_05 789 231.70 62.45 −0.025 5 0.32 1 0.08 0 0.00

PD_06 468 238.37 38.64 0.132 3 0.32 0 0.00 0 0.00

PD_07 494 316.82 58.43 0.103 24 2.45 19 2.43 8 2.45

PD_08 213 218.15 28.17 −0.033 4 0.95 2 0.59 1 0.71

PD_09 4179 333.39 247.08 −0.047 52 0.63 5 0.08 2 0.07

n: number of genes in the module; <k>: average node degree; <kintra>: intra-modular average node degree; <logPD-logHC>: module average differential of the log

transformed average expression of a gene i across PD samples and healthy control samples; nML: number of genes identified by ML analysis included in the mod-

ule; nLimma: number of genes identified by Limma analysis included in the module; nML-Limma: number of common genes identified by both ML and Limma analyses

included in the module; Merit_ML = (nML/168)/(N/8477): merit assigned to the module based on nML, the total number of genes identified by ML analysis (168),

N, and the total number of background genes (8477); Merit_Limma = (nLimma/134)/(N/8477): merit assigned to the module based on nLimma, the total number of

genes identified by Limma analysis (134), N, and the total number of background genes (8477); Merit_ML-Limma = (nML-Limma/56)/(N/8477): merit assigned to the

module based on nML-Limma, the total number of common genes identified by both ML and Limma analyses (56), N, and the total number of background genes (8477)
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Gene co-expression network modules prioritization

Using the Dynamic Tree Cut method, 9 and 16 modules

were identified in CoHC and CoPD, respectively. Details

on the connectivity profile of both co-expression net-

works are provided in Table 5.

Based on the connectivity information it should be

possible to identify those modules enriched with hub

genes [56, 57]. In this sense, relatively high values of the

modules average node (gene) degree (<k>) as well as the

average intramodular node degree (<kintra>) can act as

relevant indicators of modules potentially enriched with

hub genes. From the connectivity information four po-

tentially PD relevant modules are identiffied. PD_07,

PD_01, and PD_04 exhibit particularly high values of

<k> while modules PD_02, and PD_01 show significantly

high values of <kintra>. Among these four modules

PD_07 stands out as the module with the highest overall

connectivity but with barely high intramodular connect-

ivity. On the other hand PD_02 exhibits a significant but

inverse profile.

A solid decision can’t be made on the only basis of the

connectivity information. So, additional information

needs to be considered. For this we focused on the dif-

ferential of the log transformed average expression of a

gene i across PD samples and HC samples (logPD-

logHC). The goal here is to identify modules enclosing

Fig. 1 a Box plot of the differential average expression of genes across PD and healthy control samples (logPD-logHC) for genes conforming the

nine PD WGCN modules. b Line plots of logPD-logHC for all the 8477 genes used to construct the global PD WGCN (center), 1437 genes in the

predominantly underexpressed PD WGCN module PD_02 (left), and 494 genes in the predominantly overexpressed PD WGCN module PD_07 (right)
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genes significantly associated with PD and involved in

common biological process that are central in PD [58].

Based on the average logPD-logHC value (see Table 5),

PD_02 stands out as a significantly underexpressed mod-

ule while PD_07 toguether with PD_06 are the most

overexpressed modules. However, only PD_02 and

PD_07 should be selected. From Fig. 1a it is clear that al-

though PD_06 exhibit a slightly higher average logPD-

logHC value, a significant amount of genes with outlier

and extreme behaviour are only present in PD_07. From

Fig. 1b it is possible to visually confirm that most of the

underexpressed genes in the background (center) be-

longs to PD_02 (left) while most of the overexpressed

genes belongs to PD_07 (right).

It is well known that the consensus use of multiple and

independent pieces of information increases the reliability

of a decision-making process [14]. So, based on the en-

richment potential demonstrated by Limma and ML it is

feasible to expect a significant confidence gain by incorp-

orating these two independent approaches. From Table 4

can be confirmed the relevance of PD_02 and PD_07 for

PD from a ML and/or Limma perspective. Here, we use

an intuitive measure of the merit of each module based on

the number of genes in the module identiffied by each ap-

proach. The merit values of ML and/or Limma associated

to PD_02 and PD_07 outperform from 1.3-fold to 3.8-fold

the closest module (PD_04).

Statistical Significance. In order to statistically valid-

ate our module prioritization strategy each WGCN PD

module was subject to a hypergeometric probability test.

Detailed results are provided in Table 6. From this table

it is possible to note that only PD_02 is enriched in PD

related genes significantly beyond what might be ex-

pected by chance (p-value = 0.0034) while PD_07 is in

the limits of the statistical significance (p-value =

0.0512). These results support the strategy followed for

modules prioritization. Regarding to the inclusion of the

module PD_07, as previously mentioned, the GAD data-

base was used just as a common reference framework

for comparison purposes. Therefore, the p-values re-

ported must be used as a decision-making criterion in-

stead of a definitive selection/rejection criterion. On the

other hand, the biological relevance of this module also

grants its inclusion as will be demonstrated in the fol-

lowing section.

Biological Relevance. The space of biological process

covered by the respective PD_02 and PD_07 gene sets was

explored by conducting a joined gene ontology (GO) en-

richment analysis in order identify commonalities and

uniqueness between these two modules. The association

between the corresponding biological process and PD

were contrasted with the current literature evidence. The

full details on the enrichment analysis are provided as

supplementary information (see Additional file 5).

From this analysis four processes well known to be

associated with PD can be highlighted from the 1437

genes included in the module PD_02: oxidative phos-

phorylation; intracellular transport; mitochondrion

organization; and learning or memory. These results re-

flect the well-known mitochondrial complex I deficiency

[59] (specifically, primary defects in mitochondrial oxi-

dative phosphorylation [60]) leading to oxidative stress,

largely associated to PD and their characteristics motor

and cognitive impairments [59–63]. In terms of bio-

logical processes, the information provided by the genes

included in this module and those prioritized by Limma

is highly consistent. Even so, contrary to Limma

prioritization, this module do not enrich mainly dopa-

mine metabolism processes but also energetic process.

This suggest that the dopamine bias could be actually

compensated by combining Limma and co-expression

analysis.

From the 494 genes involved in PD_07 three processes

well known to be associated with PD can be highlighted:

protein folding; response to unfolded protein; and re-

sponse to protein. These processes had being largely re-

ported by other authors [48, 49, 53] and could be

associated with the role of α-Synuclein misfolding and

aggregation in the pathogenesis of PD [64].

A combined enrichment analysis of the biological

process comprised in PD_02 and PD_07 was con-

ducted with aid of the ToppCluster tool [41] (see de-

tails in the Additional file 5). The resultant network

representation of individual and common biological

process for PD_02 and PD_07 is provided in Fig. 2.

As can be noted in this figure, both modules share

common biological processes including the influence

in protein phosphorylation, apoptosis and protein

Table 6 Hypergeometric test results for the WGCN PD modules

based on 319 known PD related genes in GAD and 8477

background genes

Prioritized PD Module n m p-value

PD_01 603 29 0.1014

PD_02 1437 73 0.0034

PD_03 133 6 0.3849

PD_04 161 6 0.5685

PD_05 789 19 0.9897

PD_06 468 15 0.7776

PD_07 494 26 0.0512

PD_08 213 10 0.2813

PD_09 4179 128 0.9997

PD_02 ∪ PD_07 1931 99 0.0003

n: number or genes in the prioritized PD module; m: number of known PD

related genes in GAD found in the prioritized module; p-value: hypergeometric

probability of finding by chance k or more known PD related genes in a set of

n prioritized genes
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metabolism. Some of these processes, such as oxida-

tive phosphorylation and apoptosis has been extensively

reported in PD [46–49, 51, 53], while other process mainly

related with post-translational and post-transcriptional

modifications have been less explored in PD [48, 49].

For example, SNCA is present in PD_02, however,

most of the histones and chaperones are located in

PD_07. Specifically the heat shock protein family B

(small) member 1 (HSPB1) is included in PD_07. This

gene has long been associated with PD [53, 65]. In

addition to protein folding this gene is also involved in

the apoptosis pathway (11) which is common to both

modules. While PD_02 mainly covers energetic and syn-

aptic biological process (oxidative fosforilation, energy

metabolism, synaptic transmision and memory), PD_07

is more focused in processes related with folding and

transcription regulation origins (protein folding; re-

sponse to unfolded protein; and response to protein). By

considering both modules we are covering not only

common biological processes relevant for PD but also

other process equally relevant for PD but uniquely cov-

ered by the respective module. So, PD_07 not only

covers biological process significantly related to PD but

also includes some biological process equally significant

for PD which are not covered by PD_02.

Consensus gene prioritization strategy

The results obtained in WGCN modules prioritization

suggest that the consensus use of several independent

sources of information significantly contribute to identify

genes sets statistically and biologically relevant to PD. In

doing so, all the independent prioritization analyses made

(Limma, ML, and WGCN analyses) were combined in a

consensus gene prioritization strategy. Finding a consen-

sus based on all these tools can provide reliable, statisti-

cally significant and biologically relevant genes sets highly

enriched with already known and potentially novel PD re-

lated genes [14]. The proposed consensus strategy is really

simple, but also highly effective as will be demonstrated:

Only those genes jointly identified by ML and Limma

analysis (common genes) and also present in the

biologically relevant WGCN modules PD_02 or PD_07

can be considered as statistically and biologically

relevant for PD.

This consensus strategy based in the common inter-

ception of three conceptually different prioritization

strategies is actually a highly stringent approach. How-

ever; such stringent criteria should provide a desirable

balance of enrichment and biological significance of the

prioritized gene list.

Our strategy provides a genes list sorted in decreasing

order of probability of association with PD by applying

fusion rules (Min- and Mean-Rank) based on Limma

and ML ranks. That is, genes are first sorted according

to the minimum rank assigned by ML and Limma, and

then by the average of ML and Limma ranks.

Following the proposed consensus strategy was priori-

tized a set of 50 genes sorted in a decreasing order of

Fig. 2 Representative common and unique biological process covered by modules PD_02 and PD_07
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relevance for PD. Details on this genes set are provided

in Additional file 1: Table S3. As can be noted in the

table, 7 out 50 (TP rate = 14 %) genes were found in the

set of 319 known PD related genes in GAD. However,

after an exhaustive literature search for associations be-

tween each of the 50 genes and PD was possible to es-

tablish direct associations for 20 genes in this prioritized

set (TP rate = 40 %).

Statistical Significance. The statistical validity of the

consensus strategy needs to be challenged and compared

with the rest of the alternative gene prioritization op-

tions. For this, the hypergeometric test, and the random

bootstrap sampling were applied to the genes set priori-

tized by the consensus strategy, the ML and Limma ana-

lysis (independently and in combination) as well as to

the genes set corresponding to PD_02 and PD_07 (inde-

pendently and in combination). See details in Table 7.

As deduced from the hypergeometric test, not every

genes set prioritized can be considered as statistically

significant. Although “PD_02 ∪ PD_07” looks like the

better option, its significantly higher number of genes

compared with “Consensus” hinders its potential for

prioritization tasks. Actually, the TP rate of the “Consen-

sus” strategy with only 50 genes is almost three-folds.

Based on the random bootstrap sampling experiment

no genes set seems to be randomly enriched with known

PD related genes. Again, the consensus strategy stands

out for a significantly higher enrichment with known PD

related genes compared with the corresponding random

enrichment determined in the experiment (Fold-Enrich-

ment). The consensus strategy is about four times more

enriched in known PD related genes than might be ex-

pected by chance, which is almost two-fold compared

with “Limma”, the nearest strategy according to Fold-

Enrichment.

Enrichment and Early Recognition Ability. Due to the

high cost associated to the experimental validation of

gene-disease associations and the high number of

candidate genes initially considered (thousands), the

early recognition ability of a gene prioritization tool

should be considered as the ultimate measure of its util-

ity [16]. The estimation of the early recognition ability

by statiscally sound metrics is well established in che-

moinformatics as part of the validation of virtual screen-

ing tools. In this work we propose, for the first time, the

use of such metrics for gene prioritization tasks.

From the accumulation curve we can deduce overall

enrichment from the area under this curve (AUAC)

which is defined as:

AU AC ¼ 1−
1

n

Xn

i¼1
xi ð3Þ

where n is the total number of known disease-related

genes in the total background gene set (N) and xi is the

relative rank of the i-th known disease-related gene in

the ordered list when their corresponding rank ri is

scaled to N, (xi = ri/N). So, AUAC can be interpreted as

the probability that a known disease-related gene, se-

lected from the empirical cumulative distribution func-

tion defined by the rank-ordered list, will be ranked

before a gene randomly selected from a uniform distri-

bution [17].

The (Receiver Operating Characteristic) ROC curve

describes the true positives rate (TP rate) for any pos-

sible change of the number of selected genes as a func-

tion of the false positives rate (FP rate) [66]. The area

under the ROC curve (ROC) can be interpreted as the

probability that a known disease-related gene will be

ranked earlier than a disease-unrelated gene within a

rank-ordered list [17]. The ROC metric is defined as:

ROC ¼
AUAC

Ri
−

Ra

2Ri
ð4Þ

where Ra = n/N, and stands for the ratio of known

disease-related genes in the dataset, whereas Ri =N-n/N,

Table 7 Statistical validation of the different gene prioritization strategies employed in this work (independently and in combination).

Hypergeometric test, random bootstrap sampling experiment and enrichment features of the different gene prioritization strategies

Hypergeometric Test Random Bootstrap Sampling (100 Generations) Enrichment

n m p-value Mean Median Min. Max. Std. Dev. p-value (W) Fold-Enrichment TP Rate

Limma 134 10 0.0295 5.0410 5 0 17 2.1852 <0.0001 1.9837 0.0746

ML 168 11 0.0520 6.3211 6 0 22 2.4421 <0.0001 1.7402 0.0655

ML ∪ Limma 246 14 0.0805 9.2609 9 0 25 2.9426 <0.0001 1.5117 0.0569

PD_02 1437 73 0.0034 55.4259 55 25 87 6.6392 <0.0001 1.3171 0.0508

PD_07 494 26 0.0512 18.5957 18 2 41 4.1038 <0.0001 1.3982 0.0526

PD_02 ∪ PD_07 1931 99 0.0003 72.6709 73 37 112 7.3516 <0.0001 1.3623 0.0513

Concensus 50 7 0.0025 1.8817 2 0 10 1.3407 <0.0001 3.7200 0.1400

n: number or genes in the prioritized PD module; m: number of known PD related genes in GAD found in the prioritized module; p-value: hypergeometric probability of

finding by chance k or more known PD related genes in a set of n prioritized genes; Mean/Median/Min./Max./Std. Dev.: average/median/minimum/maximum/standard

deviation of the number of known PD related genes in GAD included in randomly selected gene sets with the same number of genes as the corresponding set of

prioritized genes; Fold-enrichment: fold difference between m and Mean (Fold-enrichment =m/Mean); TP Rate: ratio of known PD related genes in n (TP Rate =m/n)
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and represents the ratio of disease-unrelated genes in

the total background gene list.

On the other hand, the enrichment factor (EF) takes

into account the improvement of the hit rate by a gene

prioritization protocol compared to a random selection.

This metric has the advantage of answering the question:

how enriched in known disease-related genes, the set of

n genes that I prioritize will be, compared to the situ-

ation where I would just pick the n genes randomly?

EF ¼
m=n
M=n
�

ð5Þ

where n is the number of genes in the filtered fraction

(χ) and m is the number of known disease-related genes

retrieved at this fraction, being χ determined by the quo-

tient between n and N (χ = n/N). The maximum value

that EF can take is 1/χ if χ ≥M/N, N/M if χ <M/N, and

the minimum value is zero [17].

However, the “early recognition” ability of a

prioritization tool is encoded by just a few enrichment

metrics such as the robust initial enhancement (RIE)

and the Boltzmann-enhanced discrimination of ROC

(BEDROC) metrics [17]. The RIE metric describes how

many times the distribution of the ranks for known

disease-related genes caused by a prioritization protocol

is better than a random rank distribution and is defined

as:

RIE ¼

Xn

i¼1
e−αxi

M
N

1−eα

e
α

N −1= Þ

� ð6Þ

The parameter α is used to assign a higher weight

(and so a higher contribution to the RIE metric) to

known disease-related genes ranked at the beginning

than those at the end of the ordered list and can be

interpreted as the fraction of the list where the weight is

important. Specifically, in this work the RIE and also EF

and BEDROC metrics were evaluated at χ = 1 %/5 %/

10 %/20 %, which corresponds to values of α = 160.9/

32.2/16.1/8, respectively.

However, like EF, RIE depends on N, Ra and α, which

hampers its use in datasets of different size and compos-

ition. The other limitation is that unlike ROC, RIE nei-

ther provides a probabilistic interpretation nor a

measurement of the enrichment performance above all

thresholds [66].

In order to derive a new metric overcoming these

limitations Truchon and Bayly proposed the BEDROC

metric [17].

BEDROC ¼
RIE−RIEmin

RIEmax−RIEmin
ð7Þ

RIEmin and RIEmax are obtained when all the known

disease-related genes are at the beginning and at the end

of the ordered list, respectively.

RIEmin ¼
1−eαRa

Ra 1−eαð Þ
ð8Þ

RIEmax ¼
1−e−αRa

Ra 1−e−αð Þ
ð9Þ

The BEDROC metric is a generalization of the ROC

metric that includes a decreasing exponential weighting

function that adapts it for use in early recognition prob-

lems. This metric can be interpreted as the probability

that a known disease-related gene ranked by a

prioritization protocol will be found before a gene that

would come from a hypothetical exponential probability

distribution function with parameter α. Thus, BEDROC

should be understood as a “prioritization usefulness

scale” [17].

From the seven prioritization strategies being com-

pared, in Table 8 we estimate and compare the respect-

ive overall enrichment and early recognition ability of

those four providing a ranked list of genes through all or

part of the initial background of 8477 candidate genes.

The ranking provided through the full list of 8477

genes by each strategy is defined by the respective scor-

ing factor employed in the gene prioritization process.

Since just a subset of genes is prioritized by each

Table 8 Overall enrichment and early recognition metrics of

the four prioritization strategies considered

Limma ML ML-Limma Consensus

Classic Enrichment Metrics

AUAC 0.498 0.502 0.495 0.540

ROC 0.498 0.502 0.495 0.541

EF1% 2.855 2.521 2.847 3.164

EF5% 1.449 1.387 1.007 1.512

EF10% 1.038 1.385 0.913 1.510

EF20% 0.975 1.054 1.054 1.321

Early Recognition Metrics

RIE1% 2.452 2.213 2.403 2.577

RIE5% 1.286 1.438 1.157 1.583

RIE10% 1.089 1.225 1.044 1.400

RIE20% 1.021 1.085 1.008 1.230

BEDROC1% 0.094 0.086 0.094 0.099

BEDROC5% 0.091 0.102 0.083 0.113

BEDROC10% 0.131 0.147 0.125 0.168

BEDROC20% 0.216 0.230 0.214 0.262
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strategy, only this fraction is ranked and the remaining

genes in the full list of 8477 genes are randomized. The

rationale of such a experiment design is to resemble as

much as possible the respective prioritization strategy.

This randomization strategy is prefered over just to

evaluate the respective metrics on the respective priori-

tized genes set in order to avoid the saturation effect

present in small sets with a high ratio of known disease-

related genes [17]. The goal here is to evaluate the ability

of each prioritization strategy to retrieve the highest

fraction possible of those 319 known PD relevant genes

in the earliest possible fraction of the respective ordered

list. The exact composition of the four respective lists

(including ranking and aleatorization rules) is detailed in

the supplementary information.

All the values corresponding to AUAC and ROC met-

rics provided in Table 8 are close to 0.5, reflecting that

the overall enrichment ability of the four prioritization

strategies is not better than a random selection. This re-

sult, although expected due to the fact that >90 % of the

candidate genes are randomized must not be interpreted

as a lack of utility of the prioritization strategies. Instead,

the real estimation of their utility must focuse on their

early recognition ability.

The corresponding values of EF at the top frac-

tions studied (1, 5, 10, and 20 %) as well as the early

recognition metrics (RIE, and BEDROC) show that

the Consensus strategy compares favorably over the

rest of strategies considered, but the difference looks

minimal. However, the use of biologically relevant

information from PD_02 and PD_07 highlights the

advantages of using the Consensus strategy. The

comparative overall enrichment and early recognition

performance of the four prioritization strategies can

be visually confirmed on Fig. 3. As can be noted in

Fig. 3b, the enrichment performance of the Consen-

sus strategy clearly outperforms the other three

strategies on the top 20 % fraction of the list of

8477 genes considered. The same trend is confirmed

in the top 1 % fraction (see Fig. 3c), the most rele-

vant fraction to consider for early recognition assess-

ment [16].

Finally, we evaluated whether each of these prioritization

methods ranks a set of known PD genes significantly early

than an alternative method. For this, we applied a Wil-

coxon signed rank test to compare the ranking provided by

the four approaches under study (Limma, ML, ML-Limma

and Consensus) for the 100 % and the top 20 %/10 %/5 %

of the 319 PD genes collected from GAD. From this ana-

lysis is possible to note that although there is not an evident

difference between the early recognition metrics of the four

approaches, the consensus strategy ranks the PD genes sig-

nificantly early than the other three approaches (Limma,

ML and ML- Limma) in all the fractions analyzed [100 %

(319 PD Genes in GAD), top 20 % (top 64 PD genes), top

10 % (top 32 PD genes) and top 5 % (top 16 PD genes)].

Only the ranking provided by the consensus strategy

for the top 16 PD genes (top 5 %) was not signifi-

cantly better than the ranking provided by Limma.

See Table 9 for details.

Biological Relevance. Since the final 50 genes comes

from the intersection of the prioritizations made by

Limma, WGCNA modules, and specially ML, a reduced

statistical significance of their biological processes

should be expected too, similarly to ML. Most of the top

enriched GO terms in the biological process enrichment

analysis are associated with PD: dopamine (DA) metab-

olism [59–63, 67–80]; prepulse inhibition (PPI) [81–86];

Fig. 3 Accumulation curves of the four prioritization strategies considered. Overall enrichment represented by the accumulation curve for the full

set of 8477 background genes for the respective prioritization strategies (a). Zoom of the top 20 %/1 % fraction of the ordered list providing information

on the early recognition ability of the respective prioritization strategies (b/c)
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metal ion transport and pigmentation [87–96]. None of

the biological processes is statistically significant by

using an FDR adjusted p-value < 0.05 as significance cut-

off. See details in the supplementary information. How-

ever, from the top ten GO terms only one is directly

related with dopamine metabolism pointing to a reduced

dopamine bias.

Additionally, an exhaustive literature search was con-

ducted in order to find direct or indirect evidence of the

association with PD of each of the 50 genes prioritized.

As “direct evidence” we considered scientific publica-

tions reporting a relationship (i.e. mutation, expression

or knockout) between the gene and PD. As “indirect evi-

dence” we considered scientific publications reporting a

theoretical (i.e. system biology) or experimental (i.e. mu-

tation, expression, knockout) evidence of the association

of the gene with already known targets or biological pro-

cesses known to be related with PD pathogenesis.

The microarrays used in our study as raw data corres-

pond to references [45–47, 53, 97]. No result coming

from these studies only was used as “evidence”. How-

ever, studies performing system biology analysis which

include also our microarrays were considered because

the strategy for data exploration was different and there-

fore we don’t necessarily have to agree in the establish-

ment of genes-diseases association. However, even those

studies were considered as “indirect evidence”. Any

studies carried on in different microarrays and reporting

a down/up regulation were considered also but as “indir-

ect evidence”.

The literature review conducted evidenced that 20 out of

the 50 candidate genes were directly associated with PD

(SLC18A2; AGTR1; GBE1; PDCD2; ALDH1A1; SLC6A3;

TH; HIST1H2BD; DRD2; EN1; TRIM36; FABP7; PTPRN2;

VWA5A; ITPR1; CACNB3; CHORDC1; NDUFA9; RGS4;

SNRNP70). Additionally, indirect evidence of association

with PD was found for another 8 genes (CCNH; DLK1;

PCDH8; SLIT1; BMI1; DLD; PBX1; INSM), which are po-

tentially new therapeutic targets or biomarkers for PD. De-

tails on the direct or indirect literature evidence supporting

the association with PD of many of the 50 genes prioritized

by our consensus strategy are provided in Table 10.

As previously mentioned, the most relevant feature of

the consensus gene prioritization strategy proposed is the

early recognition ability evidenced [17]. It is significant

that the first 5 genes prioritized (first 10 %) could be con-

firmed with direct literature evidence. Finally, it is worthy

to note that based on the hypergeometric test it is possible

to assert that the identification of 20 or more genes out of

up to 2402 known PD related genes in a set of 50 priori-

tized genes is still significantly distant from being a ran-

dom selection (p-value = 0.049867). That is, considering

that an additional set of genes apart of those currently re-

ported in GAD can be relevant for PD but unreported up

today, the prioritized list of 50 genes is still statistically sig-

nificant even in the case that the actual (unknown) set of

PD relevant genes would be more than 7-fold (2402) those

currently reported in GAD (319).

Considering the above mentioned in addition to the

reduced size of the final set of genes prioritized by the

consensus strategy we conducted an additional analysis.

This analysis was based on the construction of a func-

tional interaction network with the aid of the Search

Tool for the Retrieval of Interacting Genes/Proteins

(STRING) [98, 99] from this final set of 50 genes priori-

tized with the consensus strategy (actually less because

some of these genes don’t have reported interaction in

our space) and 100 additional interacting genes with a

confidence score higher than 0.7. This network was

imported into Cytoscape [100] and each gene node was

Table 9 Results of the Wilcoxon signed rank test conducted to

compare the ranking provided by the four approaches under

study

319 PD Genes in GAD (100 %)

Limma ML ML-Limma Consensus

Limma (−−−) 2.62E-09 2.85E-01 2.79E-62

ML 2.62E-09 (−−−) 1.16E-01 4.36E-47

ML-Limma 2.85E-01 1.16E-01 (−−−) 4.27E-64

Consensus 2.79E-62 4.36E-47 4.27E-64 (−−−)

64 Top Ranked PD Genes in GAD (Top 20 %)

Limma ML ML-Limma Consensus

Limma (−−−) 1.84E-05 6.09E-01 6.81E-09

ML 1.84E-05 (−−−) 1.21E-07 1.69E-06

ML-Limma 6.09E-01 1.21E-07 (−−−) 1.24E-12

Consensus 6.81E-09 1.69E-06 1.24E-12 (−−−)

32 Top Ranked PD Genes in GAD (Top 10 %)

Limma ML ML-Limma Consensus

Limma (−−−) 7.19E-01 5.23E-04 1.19E-02

ML 7.19E-01 (−−−) 7.25E-02 3.11E-02

ML-Limma 5.23E-04 7.25E-02 (−−−) 1.38E-05

Consensus 1.19E-02 3.11E-02 1.38E-05 (−−−)

16 Top Ranked PD Genes in GAD (Top 5 %)

Limma ML ML-Limma Consensus

Limma (−−−) 6.06E-01 4.23E-01 3.02E-01

ML 6.06E-01 (−−−) 3.02E-01 1.95E-03

ML-Limma 4.23E-01 3.02E-01 (−−−) 4.33E-02

Consensus 3.02E-01 1.95E-03 4.33E-02 (−−−)
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Table 10 Literature evidence of the association with PD for the 50 genes prioritized with the consensus strategy

Official Gene
symbol

Direct
Evidence

Indirect
Evidence

Description

SLC18A2 1 0 Several studies reported the association between SLC18A2 and PD [117–121]. In humans, the involvement of
SLC18A2 in PD pathogenesis is supported by positron emission tomography studies showing significantly
lower SLC18A2 densities in the putamen, caudate, and SN of PD patients [122–125]. Its potential as PD
biomarker [118] or even as a PD pharmacological target [126] have also been suggested. A method of
diagnosing PD comprising a set of differentially expressed genes including SLC18A2 was patented [127].

AGTR1 1 0 AGTR1 have been significantly and consistently downregulated in several PD microarray studies
[46, 47, 53, 128, 129]. Additionally, the protective effects on dopaminergic neurons of AGTR1
inhibitors have been well documented [130–136] highlighting the role of AGTR1 as a potential
pharmacological target in PD.

GBE1 1 0 GBE1 has been found to be downregulated in gene expression profiling studies of human substantia
nigra pars compacta from PD patients employing high density microarrays [121, 137]. A method of
diagnosing PD comprising a set of differentially expressed genes including GBE1 was patented [127].

PDCD2 1 0 The isoform 1 of PDCD2 was found to be ubiquitinated by parkin and increased in the substantia nigra of
patients with both autosomal recessive and sporadic PD [138].

ALDH1A1 1 0 ALDH1A1 has been found to be significantly and consistently downregulated in several PD microarray
studies [46, 47, 53, 121, 128, 129, 137, 139] highlighting DA metabolism dysfunction resulting in oxidative
stress and most probably leading to neuronal cell death. Two methods of diagnosing PD comprising a set
of differentially expressed genes including ALDH1A1 were patented [127, 140].

CCNH 0 1 So far, cyclin H (CCNH) has not been directly linked to the pathogenesis of PD. However, the cyclin-
dependent kinase 5 (CDK5) was found to act as a mediator of dopaminergic neuron loss in a mouse
model of Parkinson’s disease [141], pointing the potential role of CCNH as a novel and unexplored PD
biomarker.

NRXN3 0 0 No association between NRXN3 and PD was found.

SLC6A3 1 0 A combined analysis of published case–control genetic associations between SLC6A3 and PD involving several
ethnicities provided evidences of the role of SLC6A3 as a modest but significant risk factor for PD [142].

DLK1 0 1 No direct associations between DLK1 and PD have been reported. However, through a combined gene
expression microarray study in NURR1(−/−) mice DLK1 was identified as novel NURR1 target gene in
meso-diencephalic DA neurons [143]. NURR1 (also known as NR4A2) encodes a member of the steroid-
thyroid hormone-retinoid receptor superfamily [144]. Mutations in this gene have been associated with
disorders related to dopaminergic dysfunction including PD [145–163].

GPR161 0 0 No association between GPR161 and PD was found.

SCN3B 0 0 No association between SCN3B and PD was found.

TH 1 0 TH has been largely associated with PD [164–167].

PCDH8 0 1 No direct association between PCDH8 and PD was found unless a network-based systems biology study
utilizing several PD-related microarray gene expression datasets and biomolecular networks [168].

ORC5 0 0 No association between ORC5 and PD was found.

HECA 0 0 No association between HECA and PD was found.

SLIT1 0 1 No direct association between SLIT1 and PD was found. However, the axonal growth inhibition of
fetal and embryonic stem cell-derived dopaminergic neurons reported for SLIT1 [169] suggest an
indirect association with PD.

BMI1 0 1 Although BMI1 has not been directly associated with PD a previous study demonstrated that it is required in
neurons to suppress apoptosis and the induction of a premature aging-like program characterized by reduced
antioxidant defenses [170]. These findings provide a molecular mechanism explaining how BMI1 regulates free
radical concentrations and reveal the biological impact of BMI1 deficiency on neuronal survival and aging. The
activity of BMI1 against mitochondrial ROS may be also relevant to age-associated neurodegenerative diseases
where cell death is apparently mediated by oxidative damage, such as in Parkinson disease [171].

QPCT 0 0 No association between QPCT and PD was found.

DLD 0 1 No direct association between DLD and PD was found. However, mice that are deficient in DLD [172]
exhibited an increased vulnerability to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) [173], which
have been proposed for use in models of PD [174]. DLD is a critical subunit of key mitochondrial enzyme
complexes such as the ketoglutarate dehydrogenase complex (KGDHC) and the pyruvate dehydrogenase
complex (PDHC) [175]. Altered energy metabolism, including reductions in KGDHC and PDHC are
characteristic of many neurodegenerative disorders including PD [176, 177].

HIST1H2BD 1 0 HIST1H2BD was found to be significantly and differentially expressed in 20 out of the 21 brain regions
studied in a multiregional gene expression analysis in postmortem brain coming from 23 control and 22
PD cases [178]. A method of diagnosing PD comprising a set of differentially expressed genes including
HIST1H2BD was patented [179].

Cruz-Monteagudo et al. BMC Medical Genomics  (2016) 9:12 Page 15 of 25



Table 10 Literature evidence of the association with PD for the 50 genes prioritized with the consensus strategy (Continued)

PBX1 0 1 No direct association between PBX1 and PD was found. However, the expression of PBX1 in dopaminergic
neurons make it an important player in defining the axonal guidance of the midbrain dopaminergic neurons,
with possible implications for the normal physiology of the nigro-striatal system as well as processes related
to the degeneration of neurons during the course of PD [180].

SRP72 0 0 No association between SRP72 and PD was found.

DRD2 1 0 DRD2 has been largely associated with PD [181–194].

EN1 1 0 Several studies have reported significant associations between EN1 and PD [195–197].

TRIM36 1 0 TRIM36 has been found to be downregulated in a gene expression profiling study of human substantia
nigra pars compacta from PD patients employing high density microarrays [137]. A method of diagnosing
PD comprising a set of differentially expressed genes including TRIM36 was patented [127].

INSM1 0 1 Although INSM1 has not been directly associated with PD a previous study demonstrated that it
is involved on the interrelation of odor and motor changes probably caused by a Mn-induced
dopaminergic dysregulation affecting both functions [198]. In this study was found that the
rs2871776 G allele, which was associated with the worst effect of Mn on motor coordination, was
linked to alteration of a binding site for the transcription factor INSM1. This gene plays an important role in the
developing CNS, and especially of olfactory progenitors, as shown in mouse [199] and human [200]
embryos. Olfactory impairment is a highly recurrent non-motor dysfunction in PD and is considered
an early predictive sign of neurodegeneration [201–203].

MDH2 0 0 No association between MDH2 and PD was found.

CIRBP 0 0 No association between CIRBP and PD was found.

FABP7 1 0 A recent study reported that FABP7 levels were elevated in serum of 35 % of the patients with PD and
only in 2 % of the healthy controls, suggesting the role of FABP7 as a potential biomarker for PD [204].
FABP7 was also identified as a promising candidate in a previous quantitative trait loci (QTL) study
conducted to identify genes that mediate PPI in mice [205]. This finding was confirmed in a further
experiment where FABP7-deficient mice showed decreased PPI. PPI deficiencies is considered a characteristic
indicator of schizophrenia [82], but is also deficient in PD patients [206, 207].

PTPRN2 1 0 PTPRN2 has been found to be downregulated in a gene expression profiling study of human substantia
nigra pars compacta from PD patients employing high density microarrays [137]. A method of diagnosing
PD comprising a set of differentially expressed genes including PTPRN2 was patented [127].

PSMG1 0 0 No association between PSMG1 and PD was found.

VWA5A 1 0 VWA5A was associated with PD through a genome-wide genotyping study in PD and neurologically nor-
mal controls [208].

ITPR1 1 0 Kitamura et al. [209] reported since 1989 that ITPR1 binding sites were reduced by about 50 % in several
brain regions of PD patients (caudate nucleus, putamen, and pallidum) as compared to findings in the
age-matched controls, suggesting a probable implication of ITPR1 in PD.

BAI3 0 0 No association between BAI3 and PD was found.

CPT1B 0 0 No association between CPT1B and PD was found.

CACNB3 1 0 The calcium channel subunit b3 (CACNB3), the ATPase type 13A2 (PARK9), and several subunits of Ca2+

transporting ATPases (ATP2A3, ATP2B2, and ATP2C1) were downregulated in PD further substantiating the
involvement of a deficit in organelle function and of Ca2+ sequestering.

ACP2 0 0 No association between ACP2 and PD was found.

CHORDC1 1 0 CHORDC1 was found to be significantly and differentially expressed in 19 out of the 21 brain regions
studied in a multiregional gene expression analysis in postmortem brain coming from 23 control and 22
PD cases [178]. A method of diagnosing PD comprising a set of differentially expressed genes including
CHORDC1 was patented [179].

SHOC2 0 0 No association between SHOC2 and PD was found.

VBP1 0 0 No association between VBP1 and PD was found.

PPM1B 0 0 No association between PPM1B and PD was found.

YME1L1 0 0 No association between YME1L1 and PD was found.

NDUFA9 1 0 NDUFA9 is included in the KEGG Parkinson’s Disease Pathway (http://www.genome.jp/dbget-bin/
www_bget?pathway+hsa05012).

TRAPPC2L 0 0 No association between TRAPPC2L and PD was found.

HIST1H2AC 0 0 No association between HIST1H2AC and PD was found.

RGS4 1 0 RGS4 was found to be significantly and differentially expressed in several brain areas of postmortem samples
coming from PD patients in comparison to control samples [53]. On the other hand, experiments in mice with
reserpine-induced acute DA depletion suggest that RGS4-dependent attenuation of interneuronal autoreceptor
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labeled in order to differentiate those genes in the 50

genes prioritized with the consensus strategy from the

100 additional interacting genes added with STRING.

The resultant network representation in provided in the

supplementary information (see Additional file 5).

This network includes ubiquitin C (UBC), which ap-

pears as a central gene connecting most of the genes in-

cluded in the network. Although the role of UBC and

related genes/proteins in PD through biological process

such as protein synthesis, folding and degradation has

Fig. 4 Functional interaction network of the final set of 50 genes prioritized with the consensus strategy and 100 additional interacting genes.

Each gene node was labeled in order to differentiate those genes in the 50 genes prioritized with the consensus strategy from the 100 additional

interacting genes (labeled in gray). Genes with direct, indirect and no literature evidences of association with PD among the 50 genes prioritized

with the consensus strategy were labeled in red, yellow and blue, respectively. Those genes among the 100 additional interacting genes included

in the KEGG PD pathway were labeled in green

Table 10 Literature evidence of the association with PD for the 50 genes prioritized with the consensus strategy (Continued)

signaling is a major factor in the elevation of striatal acetylcholine release in PD [210]. Lerner and Kreitzer [211] also
identified RGS4 as a key link between DA 2/adenosine 2A signaling and endocannabinoid mobilization pathways.
In addition, in contrast to wild-type mice, RGS4 deficient mice exhibited normal endocannabinoid-dependent
long-term depression after DA depletion and were significantly less impaired in the 6-OHDA model of PD. Taken
together, these results suggest that inhibition of RGS4 may be an effective nondopaminergic strategy for treating
Parkinson’s disease. Finally, RGS4 was recently found to be involved in the generation of abnormal involuntary
movements in the unilateral 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD [212].

CRYZL1 0 0 No association between CRYZL1 and PD was found.

RCN2 0 0 No association between RCN2 and PD was found.

SNRNP70 1 0 SNRNP70 was associated with woman affected by PD in an association study of four common
polymorphisms in the DJ1 gene and PD involving 416 PD probands and their unaffected siblings
matched by gender and closest age [213].

VPS4B 0 0 No association between VPS4B and PD was found.
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long been established [52, 101, 102], their hub nature in

our network could induce a connectivity bias at the time

to perform further visual interaction or biological pro-

cesses enrichment analysis. So UBC was removed from

the network previous to conduct the mentioned analysis.

Details on the biological processes enrichment analysis

are provided in the supplementary information. The

functional interaction network after removing UBC is

provided in Fig. 4.

From the literature search 22 genes (NRXN3, GPR161,

SCN3B, ORC5, HECA, QPCT, SRP72, MDH2, CIRBP,

PSMG1, BAI3, CPT1B, ACP2, SHOC2, VBP1, PPM1B,

YME1L1, TRAPPC2L, HIST1H2AC, CRYZL1, RCN2,

VPS4B) were no associated with PD which challenges

the prioritization quality. However; as can be noted in

the functional interaction network (see Fig. 5), many of

these genes (represented as blue nodes) have a func-

tional connection with important biological processes or

genes directly related with PD (represented as red or

green nodes). It has to be mentioned that 10 out of these

22 genes (ACP2, BAI3, CRYZL1, GPR161, HECA,

NRXN3, QPCT, SCN3B, TRAPPC2L, VPS4B) has no

interactions in this space and therefore are not included

in this network and that all disconnected clusters and/or

nodes in this network are actually connected through

UBC gene as can be confirmed in the full network pro-

vided in the supplementary information.

An important finding in this network is that even when

PPARGC1A was not identified in our study, several genes

were found to be direct interactors, and biological process

directly related with this gene are clearly present in our

prioritized genes. Specifically, can be confirmed that

PPARGC1A is connected through short paths with several

of the final 50 genes with reported associations with PD

(such as TH, AGTR1 and FABP7) or other without

current associations with the disease such as PPM1B or

CPT1B. On the other hand, the GO enrichment analysis

based on this functional interaction network includes sev-

eral biological process related with the PPARGC1A func-

tion. See details in the supplementary information.

The GO enrichment analysis was conducted (based on

DAVID) in order to access to significant biological

process encoded by the set of genes in this functional

interaction network. Contrary to what was expected due

Fig. 5 Functional interaction network comprising gene sets prioritized by Limma and ML, respectively. The genes prioritized by ML/Limma only

are represented by yellow/green nodes, while those genes prioritized by both approaches (ML and Limma) are represented by blue nodes. Genes

in the KEGG Dopaminergic Synapse Pathway/KEGG Parkinson’s Disease Pathway are represented by olive/red nodes, while those genes included

in both pathways (Dopaminergic Synapse and Parkinson’s Disease) are represented by orange nodes
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to the risk of the “dopamine bias”, from this analysis is

clear the highly significant role of RNA splicing [103]

(through several mechanisms) and energy metabolism

[46–49, 53] compared with the dopamine metabolism

process. This last, although statistically significant was

placed well below the two former biological process

which on the other hand, have been well associated to

PD and unrelated to dopamine metabolism. Again, this

suggests that the consensus strategy proposed in this

work is not affected by the dopamine bias.

Dopamine Bias. As declared from the beginning, the

dopamine bias was considered in the discussion of every

prioritization method applied. A last experiment was ex-

pressly conducted to evaluate this important issue. For

this, a functional interaction network was constructed

with the aid of STRING from the set of 246 unique

genes coming from the union of ML and Limma priori-

tizations (see Fig. 5).

If we look for those genes in the KEGG Dopaminergic

Synapse Pathway (129 genes in the DA Pathway) and in

the KEGG Parkinson’s Disease Pathway (142 genes in

the PD Pathway) comprised in the set of 246 unique

genes coming from the union of ML and Limma priori-

tizations, it is possible to note that only 4.47 % (11 DA

genes out of 246) of this set corresponds to the DA

pathway, which indicates an insignificant risk of “dopa-

mine bias” for this set. If we also consider that four out

of this eleven DA genes are involved in the PD pathway

such risk becomes really insignificant. More importantly,

the set of 56 genes shared by ML and Limma prioritiza-

tions only involves five (DRD2, TH, SLC6A3 and

SLC18A2) out of the 129 genes in the KEGG DA path-

way. Only one (ITPR1) of these five genes was exclusive

of the DA pathway, the other four genes were also in-

cluded in the KEGG PD pathway. This is a clear indica-

tor of the benefits provided by the integration of

conceptually different approaches regarding to avoid the

“dopamine bias”. All this information can be visually

confirmed in the interaction network of genes coming

from ML and Limma prioritizations provided in Fig. 4.

As can be observed in this figure, the ML prioritization

is less prone to be affected by the “dopamine bias” which

suggest a key role of this approach in reducing such risk.

Finally, only six genes were excluded from the 56

genes from the ML-Limma prioritization (CLK1,

DDX17, LRP2, NDRG1, SESN1 and SYT17) by concur-

rently considering the significant PD modules identified

in the WGCN analysis (PD_02 and PD_07). Only five

out of the 50 prioritized genes were present in the

KEGG DA pathway and four out this five dopamine-

related genes were included in the KEEG PD pathway.

So, from this analysis we can conclude that the consen-

sus strategy proposed in this work is not affected by the

“dopamine bias”. See details in Table 11.

Conclusions

A hydrid gene prioritization approach was applied to PD.

Specifically, the set of 50 genes prioritized with the pro-

posed consensus strategy was statistically significant, bio-

logically relevant, highly enriched with know PD related

genes and exhibited an excelent early recognition ability. In

addition to 20 know PD related genes, eight potentially

novel PD biomarkers or therapeutic targets (CCNH, DLK1,

PCDH8, SLIT1, DLD, PBX1, INSM1, and BMI1) were

identified. Additionally, a statistically rigorous approach of

standard use in chemoinformatics was proposed to evaluate

the early recognition ability of gene prioritization tools. We

also demonstrated that the proper combination of several

sources of information is a suitable strategy for module

prioritization in co-expression networks analysis. Finally, it

is possible to assert that the proposed consensus strategy

represents an efficient and biologically relevant approach

for gene prioritization tasks, providing a valuable decision-

making tool for the study of PD pathogenesis and the de-

velopment of disease-modifying PD therapeutics.

Additional files

Additional file 1: 1) Figure S1. Functional interaction network of the

final set of 50 genes prioritized with the consensus strategy and 100

additional interacting genes including UBC. 2) Table S1. Samples

distribution used for ML analysis. 3) Table S2. Sets of PD relevant genes

identified by the thirteen ML classification algorithms. 4) Table S3.

Details on the 50 genes prioritized by means of the proposed consensus

strategy. 5) Attribute evaluators used in the consensus ranking analysis. 6)

Hypergeometric probability test details. 7) PD related terms in GAD used

to identify the set of 513 PD related genes. 8) Composition of the sorted

genes lists corresponding to the four prioritization strategies (Limma, ML,

ML-Limma, and Consensus). (DOCX 2196 kb)

Additional file 2: Normalized expression values of the 8477 common

genes for each of the 102 samples, sample and study identifiers, disease

factor (PD or HC), as well as the distribution of training and test samples.

(TXT 10084 kb)

Additional file 3: Details of the reduced gene set by using the mRMR

software. (TXT 54 kb)

Table 11 Number of genes in the KEGG DA Pathway, KEGG PD

Pathway, and both KEGG DA and PD Pathways in the respective

prioritized gene sets

PrioritizationApproach N n(%) %

DA PD DA-PD DA-PD/DA

ML ∪ Limma 246 11(4.47) 6(2.44) 4(1.63) 36.36

ML 168 7(4.17) 5(2.98) 4(2.38) 57.14

Limma 134 9(6.72) 6(4.48) 4(2.99) 44.44

ML ∩ Limma 56 5(8.93) 5(8.93) 4(7.14) 80.00

Only-ML 112 2(1.79) 0(0.00) 0(0.00) 0.00

Only-Limma 78 4(5.13) 1(1.28) 0(0.00) 0.00

Consensus 50 5(10.00) 5(10.00) 4(8.00) 80.00

N: Number of genes prioritized; n: number; %: percentage; DA: genes in the

KEGG Dopaminergic Synapse Pathway; PD: genes in the KEGG Parkinson’s

Disease Pathway; DA-PD: genes in the KEGG Dopaminergic Synapse Pathway

and the KEGG Parkinson’s Disease Pathway
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Additional file 4: Details on the genes sets prioritized by the respective

approaches. (TXT 23 kb)

Additional file 5: 1) Results of the Limma prioritization for the top 1016

genes with uncorrected p-values < 0.05. 2) Results of the gene ontology

(biological process) enrichment analysis for the top 134 genes prioritized

with Limma with FDR corrected p-values < 0.05. 3) Results of the gene

ontology (biological process) enrichment analysis for the top 1016 genes

prioritized with Limma with uncorrected p-values < 0.05. 4) List of the 168

genes prioritized with machine learning. 5) Results of the gene ontology

(biological process) enrichment analysis for the 168 genes prioritized with

machine learning. 6) Results of the gene ontology (biological process)

enrichment analysis for the 1437 genes included in the co-expression

module PD_02. 7) Results of the gene ontology (biological process)

enrichment analysis for the 494 genes included in the co-expression

module PD_07. 8) Results of the ToppCluster combined enrichment

analysis for the co-expression modules PD_02 and PD_07. 9) Results of

the gene ontology (biological process) enrichment analysis for the 50

genes prioritized with the consensus strategy and 100 additional interacting

genes included in the STRING functional interaction network. (XLSX 493 kb)
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