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Abstract— This paper addresses the problem of estimating
the state of a vehicle moving in 3D based on inertial mea-
surements and visual observations of lines. In particular, we
investigate the observability properties of the corresponding
vision-aided inertial navigation system (VINS) and prove that
it has five (four) unobservable degrees of freedom when one
(two or more) line(s) is (are) detected. Additionally, we leverage
this result to improve the consistency of the extended Kalman
filter (EKF) estimator introduced for efficiently processing line
observations over a sliding time-window at cost only linear in
the number of line features. Finally, we validate the proposed
algorithm experimentally using a miniature-size camera and
a micro-electromechanical systems (MEMS)-quality inertial
measurement unit (IMU).

I. INTRODUCTION AND RELATED WORK

The miniaturization, reduced cost, and increased accuracy

of cameras and inertial measurement units (IMUs) makes

them ideal sensors for determining the 3D position and

attitude of vehicles (e.g., automotive [1], aerial [2], space-

craft [3], etc.) navigating in GPS-denied areas. In particular,

fast and highly dynamic motions can be precisely estimated

over short periods of time by fusing rotational velocity and

linear acceleration measurements provided by the IMU’s gy-

roscopes and accelerometers, respectively. On the other hand,

errors caused due to the integration of the bias and noise in

the inertial measurements can be significantly reduced by

processing observations to point features detected in camera

images in what is known as a vision-aided inertial navigation

system (V-INS). Recent advances in VINS, have addressed

several issues, such as studying its observability [4], [5],

reducing its computational requirements [1], [6], dealing

with delayed and faulty observations [7], [8], increasing the

accuracy and robustness of feature initialization [4], [9], and

improving the estimator’s consistency [10], [11], [12].

Despite the significant progress in studying and fielding

VINS, most approaches have focused on processing visual

observations of point features. Although points are the sim-

plest form of geometric primitives and can be found in any

environment, tracking them can be especially challenging

when considering large changes in the viewing direction

and/or the lighting conditions. In contrast, edges and in

particular straight lines, which are omnipresent in structured

environments (e.g., indoors, urban areas, construction sites,

etc.), can be reliably extracted and tracked under a wide
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ported by the University of Minnesota through the Digital Technology
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range of conditions [13], [14]. Additionally, robust edge

descriptors [15] have been developed for gradient edges cor-

responding to the occluding boundaries of a scene (e.g., wall

corners, stairwell edges, etc.), areas where point-tracking

methods often fail to provide reliable matches.

Furthermore, the problem of motion estimation based

on line observations1 has been well-studied [16], [20]. In

particular, given observations of 13 lines across three views,

the motion of the camera, up to scale, can be determined

in closed form [21], [22], while the impact of noise can

be reduced by processing line observations in batch [23],

[24] or filter form [25], [14]. Resolving the scale ambiguity,

however, and dealing with highly dynamic motions requires

fusing line observations with inertial measurements.

Employing measurements to line features for improving

the accuracy of VINS has received limited attention to date.

In one of the earliest works [26], it was shown that all 6 d.o.f.

of a bias-free VINS are observable when measuring lines of

known position and direction, and a Luenberger observer was

proposed for fusing them. Later works, partially overcome

the restricting assumption of an a priori known map of

lines and consider measurements to lines of known direc-

tion. Specifically, in [27] measurements to a line of known

direction are used to extract a vanishing point for determining

the attitude of a static, bias-free, IMU-camera pair. Recently,

observations to lines of known direction (parallel to the

gravity) were proposed for improving the roll and pitch

estimates, in point feature-based VINS [6].

To the best of our knowledge, the problem of vision-

aided inertial navigation using observations, over multiple

time steps, of previously unknown 3D lines, has not been

investigated despite the potential gains in estimation accuracy

and robustness.

The work described in this paper, addresses this limitation

through the following three main contributions:

• We study the observability of a VINS that observes a

line and prove that it has five unobservable degrees of

freedom (dof): one corresponding to rotations about the

gravity vector, three concerning the global translation of

the IMU-camera and the line, and one corresponding to

motions of the camera parallel to the line. Furthermore,

we show that this last direction becomes observable

when more than one non-parallel lines are detected.

1In this work, we make no assumptions about the direction or location
of lines. Methods for computing the attitude and/or position of a camera
using observations of known lines, are discussed in [16], [17], [18], [19]
and references therein.
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• We introduce an extended Kalman filter (EKF)-based

algorithm whose consistency is improved by ensuring

that no information is acquired along the unobservable

directions of its linearized system model. Moreover,

by concurrently processing line measurements across a

sliding window of camera poses [i.e,. by performing

visual-inertial odometry (VIO) instead of simultaneous

localization and mapping (SLAM)], the proposed esti-

mator’s computational complexity is only linear (instead

of quadratic) in the number of line features processed.

• We confirm the key findings of the observability analysis

and demonstrate the performance gains of the proposed

VIO algorithm experimentally.

The remainder of this paper is structured as follows. In

Sect. II, we present the system and measurement model based

on inertial and line measurements. In Sect. III, we study the

observability properties of VINS based on line observations.

The key findings of this analysis are leveraged in Sect. IV to

improve the consistency of the EKF-based estimator. Sect. V,

presents experiments that confirm the observability analysis

and demonstrate the performance improvement when using

lines within VIO. Finally, Sect. VI summarizes the presented

work and provides an outline of future research directions.

II. VINS STATE AND MEASUREMENT MODELS

In what follows, we first present the system model used

for state and covariance propagation based on inertial mea-

surements (Sect. II-A), and then describe the measurement

model for processing straight-line observations (Sect. II-B).

A. IMU State and Covariance Propagation Model

The 16×1 IMU state vector is:

xR =
[

I q̄T
G bT

g
GvT

I bT
a

GpT
I

]T
(1)

The first component of the IMU state is I q̄G(t) which is the

unit quaternion representing the orientation of the global

frame {G} in the IMU frame, {I}, at time t. The frame

{I} is attached to the IMU, while {G} is a local-vertical

reference frame whose origin coincides with the initial IMU

position. The IMU state also includes the position, GpI(t),
and velocity, GvI(t), of {I} in {G}, while bg(t) and ba(t)
denote the gyroscope and accelerometer biases, respectively.

The system model describing the time evolution of the
state is (see [28]):

I ˙̄qG(t) =
1
2 Ω(Iω(t))I q̄G(t),

GṗI(t) =
GvI(t),

Gv̇I(t) =
Ga(t)

ḃg(t) = nwg(t), ḃa(t) = nwa(t) (2)

where Iω and Ga are the rotational velocity and linear

acceleration, nwg and nwa(t) are the white-noise processes

driving the IMU biases, and

Ω(ω),

[
−⌊ω×⌋ ω
−ωT 0

]
, ⌊ω×⌋,

[
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

]
.

The gyroscope and accelerometer measurements are:

ωm(t) =
Iω(t)+bg(t)+ng(t) (3)

am(t) = C(I q̄G(t))(
Ga(t)− Gg)+ba(t)+na(t) (4)

where C(q̄) is the rotation matrix corresponding to the

quaternion q̄, Gg is the gravitational acceleration expressed

in {G}, and ng(t), na(t) are white-noise processes contami-

nating the corresponding measurements.

Linearizing at the current estimates and applying the

expectation operator on both sides of (2), we obtain the IMU

state propagation model:

I ˙̄̂qG(t) =
1

2
Ω(Iω̂(t))I ˆ̄qG(t),

G ˙̂pI(t) =
Gv̂I(t) (5)

G ˙̂vI(t) = CT (I ˆ̄qG(t)) â(t)+ Gg, ˙̂bg(t) = 03×1 ,
˙̂ba(t) = 03×1

where â(t), am(t)− b̂a(t), and Iω̂(t), ωm(t)− b̂g(t).
By defining the 15×1 error-state vector as:2

x̃R =
[

Iδθ T
G b̃T

g
GṽT

I b̃T
a

Gp̃T
I

]T
, (6)

the continuous-time IMU error-state equation becomes:

˙̃xR(t) = FR(t)x̃R(t)+GR(t)n(t) (7)

where FR(t) is the error-state transition matrix and GR(t) is

the input noise matrix, with

FR(t) =




−⌊ω̂(t)×⌋ −I3 03 03 03

03 03 03 03 03

−CT (I ˆ̄qG(t))⌊â(t)×⌋ 03 03 −CT (I ˆ̄qG(t)) 03

03 03 03 03 03

03 03 I3 03 03




GR(t) =




−I3 03 03 03

03 I3 03 03

03 03 −CT (I ˆ̄qG(t)) 03

03 03 03 I3

03 03 03 03




and n(t),
[
nT

g nT
wg nT

a nT
wa

]T
is the system noise with

autocorrelation E[n(t)nT (τ)] =QRδ (t−τ), where δ (.) is the

Dirac delta; QR depends on the IMU noise characteristics and

is computed offline.

The state transition matrix from time t1 to tk, Φk,1, is

computed in analytical form [29] as the solution to the matrix

differential equation Φ̇k,1 = FR(tk)Φk,1, Φ1,1 = I15:

Φk,1 =




Φ
(1,1)
k,1 Φ

(1,2)
k,1 03 03 03

03 I3 03 03 03

Φ
(3,1)
k,1 Φ

(3,2)
k,1 I3 Φ

(3,4)
k,1 03

03 03 03 I3 03

Φ
(5,1)
k,1 Φ

(5,2)
k,1 (tk− t1)I3 Φ

(5,4)
k,1 I3



. (8)

Finally, the discrete-time system noise covariance matrix

is computed as: Qk =
∫ tk+1

tk
Φk,τ GR(τ)QRGT

R(τ)Φ
T
k,τ dτ .

B. Measurement Model for Straight Lines

1) Minimal (4 dof) Representation of Straight Lines in

3D: Consider the line L in Fig. 1 and the coordinate frame

2For the IMU position, velocity, and biases, we use a standard additive
error model (i.e., x̃ = x− x̂ is the error in the estimate x̂ of a random
variable x). To ensure minimal representation for the covariance, we employ
a multiplicative attitude error model where the error between the quaternion
q̄ and its estimate ˆ̄q is the 3×1 angle-error vector, δθ , implicitly defined

by the error quaternion δ q̄ = q̄⊗ ˆ̄q−1 ≃
[

1
2

δθ T
1
]T

, where δ q̄ describes

the small rotation that causes the true and estimated attitude to coincide.
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Fig. 1: Geometric depiction of the line parameterization

(Gq̄T
LG

, dLG
) employed in our analysis.

{LG} whose origin pLG
is the point on the line at minimum

distance, dLG
, from {G}, its x-axis is aligned with the line’s

direction, L, and its z-axis points to the origin of {G}. Then,

the line L with respect to {G} can be represented by the

parameter vector:

xL =
[

Gq̄T
LG

dLG

]T
(9)

while its corresponding error vector is:

x̃L =
[

Gδθ T
LG

d̃LG

]T
. (10)

For simplicity, we consider the IMU frame of reference {I}
to coincide with the camera frame of reference3 and define

CL =C(Gq̄LG
) and dL = dLG

. The optical center of the camera

{I}, together with the 3D line L, define a plane π in space.

The image sensor observes the 2D line l, i.e., the intersection

of π with the image plane π ′. The line detection algorithm,

returns line l parameterized in polar form by (φ ,ρ), which

represent the orientation and magnitude of the line’s normal

vector OP in the 2D image plane (see Fig. 1). A point p

with homogeneous image coordinates pT =
[
u v 1

]
, lies

on the line l if it satisfies the equality:

pT
[
cosφ sinφ −ρ

]
= 0. (11)

Let O denote the principal point of the image plane, I the

optical center of the camera, and u =
[
sinφ −cosφ 0

]T

be a (free) unit vector along the line on the image

plane. From Fig. 1, the vectors u and IP = IO + OP =[
ρ cosφ ρ sinφ 1

]T
define the plane π . The vector n

perpendicular to the plane π , is:

n = IP×u =
[
cosφ sinφ −ρ

]T
. (12)

2) Geometric Constraints: We now derive two geometric

constraints relating the measurements of the lines on the

image plane with the robot’s attitude and position, in the

absence of noise. At time step tk, the sensor’s frame of

reference {I} is parameterized by Ik q̄G and GpIk
, and it

3In practice, we perform IMU-camera extrinsic calibration following
the approach of [30].

observes the line L, through its normal vector nk ,
Ik n. The

direction of line L expressed in frame {I}, lies on plane π ,

and hence satisfies the constraint:

nT
k C(Ik q̄G)CLe1 = 0 (13)

where e1 =
[
1 0 0

]T
. Similarly, for the point GpLG

=

−CLdL

[
0 0 1

]T
= −CLdLe3 expressed in the {I}, we

have:

nT
k C(Ik q̄G)(

GpLG
− GpIk

) = 0 =⇒

nT
k C(Ik q̄G)(−CLdLe3−

GpIk
) = 0. (14)

Stacking the two constraints, (13) and (14), we arrive at:

h(nk,xRk
,xL)2×1 =

[
nT

k
C(Ik q̄G)CLe1

nT
k

C(Ik q̄G)(−CLdLe3−
GpIk

)

]
= 02×1 (15)

where xRk
is the vector xR at time step tk. In the next

section, we describe the measurement model induced by

these geometric constraints in the presence of camera sensor

noise.

3) Measurement Model: In practice, the camera measures

zk =
[
φ ρ

]T
+ξk (16)

where ξk follows a zero-mean Gaussian distribution

N (02×1,Rφρ) and models the noise, induced by the camera

sensor and the line extraction algorithm. The effect of ξk on

h
(
nk,xRk

,xL

)
, denoted by wk can be approximated through

linearization as:

wk = A2×3B3×2ξk, A = ∇nk
h, B =

[
∇φ nk ∇ρ nk

]
.

Hence, wk can be approximated by a zero-mean Gaussian

distribution N (02×1,Zk) with Zk = ABRφρ BT AT .

Using this noise parameterization, we arrive at the follow-

ing measurement model, that couples the measurement of

line L at time step tk, nk, with the robot’s state vector, xRk
,

and the line parameters xL:

zk = h
(
nk,xRk

,xL

)
+wk. (17)

We now, linearize (17), with respect to the error state x̃Rk

and the line parameters error x̃L, which yields:

z̃k = ∇xRk
h|x⋆

Rk
,x⋆

L
x̃Rk

+∇xL
h|x⋆

Rk
,x⋆

L
x̃L +wk (18)

= HRk
|x⋆

Rk
,x⋆

L
x̃Rk

+HL|x⋆
Rk

,x⋆
L

x̃L +wk (19)

with the corresponding Jacobians given by:

HRk
|x⋆

Rk
,x⋆

L
=

[
nT

k
⌊C(Ik q̄G)CLe1×⌋ 01×9 01×3

nT
k
⌊C(Ik q̄G)(−CLdLe3−

G pIk
)×⌋ 01×9 −nT

k
C(Ik q̄G)

]

HL|x⋆
Rk

,x⋆
L
=

[
nT

k
C(Ik q̄G)⌊CLe1×⌋ 0

nT
k

C(Ik q̄G)⌊−CLdLe3×⌋ nT
k

C(Ik q̄G)(−CLe3)

]
.

Which, can be written in a compact form as:

HRk
|x⋆

Rk
,x⋆

L
=

[
Hq1k

01×9 01×3

Hq2k
01×9 Hp2k

]

HL|x⋆
Rk

,x⋆
L
=

[
Hl1k 0

Hl2k Hd2k

]
(20)

where x⋆Rk
and x⋆L denote the estimates at which the Jacobians

are computed.
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III. OBSERVABILITY ANALYSIS

In this section, we study the observability properties of

a VINS, that measures a single line L over m time steps,

denoted by t1, . . . tm. The system state consists of the vector

xR, that includes the IMU pose and linear velocity together

with the time-varying IMU biases (see Sec. II-A), as well as

the vector xL that describes the line parameters (see Sec. II-

B.1) with respect to frame {G}. The time evolution of the

linearized system error state between time steps tk and tk+1

is described by:

[
x̃Rk+1

x̃L

]
=

[
Φk+1,k|x⋆

Rk+1
,x⋆

Rk

015×4

04×15 I4

][
x̃Rk

x̃L

]
(21)

where Φk+1,k|x⋆
Rk+1

,x⋆
Rk

is the system Jacobian described in

Sec. II-A, evaluated at the points x⋆Rk
, x⋆Rk+1

. Note that the

line coordinates’ error does not change in time since we

observe a static scene. From eqs. (18)-(20), the linearized

measurement model is:

z̃k = HRk
|x⋆

Rk
,x⋆

L
x̃Rk

+HL|x⋆
Rk

,x⋆
L

x̃L. (22)

In the study of the system’s observability properties, we set

n(t) = 0 and wk = 0 in (7) and (18), respectively. Therefore,

(21) and (22) represent the system’s error dynamics in the

absence of noise. The k− th block row of the observability

matrix M, defined over a time period t1, . . . tk, is given by:

M(k,:)(x⋆Rk
,x⋆L) =

[
HRk
|x⋆

Rk
,x⋆

L
Φk,1|x⋆

Rk
,x⋆

R1

HL|x⋆
Rk

,x⋆
L

]
.

Any vector belonging to the right nullspace of M, does

not affect our measurements and hence it corresponds to an

unobservable direction for any consistent estimator.

A. True Linearized System

Hereafter, we investigate the directions that span the right

nullspace of the observability matrix M under an “ideal”

linearization around the true state (i.e., x⋆Rk
= x̄Rk

, x⋆L =
x̄L, nk = n̄k), so as to determine the analytical form of the

system’s unobservable directions. For simplicity, let us eval-

uate four rows of M, corresponding to two measurements,

at time steps t1 and tk, respectively. The two rows, of the

observability matrix, for t1 are:

M(x̄R1
, x̄L)

(1,:) =
[
HR1
|x̄R1

,x̄L
HL|x̄R1

,x̄L

]
(23)

while for tk, are given by:

M(x̄Rk
, x̄L)

(k,:) =
[

M(k,1) M(k,2) M(k,3) M(k,4) M(k,5) M(k,6:7)
]

Fig. 3: Unobservable directions N1 and N5, corresponding

to a rotation around the gravity vector and changes of the

sensor platform’s velocity, along the direction of the line.

where:

M(k,1) =

[
n̄T

k
⌊C(Ik q̄G)CLe1×⌋Φ

(1,1)
k,1

n̄T
k
⌊C(Ik q̄G)(−CLdLe3−

GpIk
)×⌋Φ

(1,1)
k,1
− n̄T

k
C(Ik q̄G)Φ

(5,1)
k,1

]

Φ
(1,1)
k,1

= C(Ik q̄I1
), M(k,3) =

[
01×3

−n̄T
k

C(Ik q̄G)(tk− t1)

]

M(k,5) =

[
01×3

−n̄T
k

C(Ik q̄G)(tk− t1)

]

M(k,6:7) =

[
n̄T

k
C(Ik q̄G)⌊CLe1×⌋ 0

n̄T
k

C(Ik q̄G)⌊−CLdLe3×⌋ n̄T
k

C(Ik q̄G)(−CLe3)

]

Φ
(5,1)
k,1

= ⌊GpI1
+ GvI1

(tk− t1)−
1

2
Gg(tk− t1)

2− GpIk
×⌋C(Gq̄I1

).

For brevity, we omit the expressions for the time-varying

block matrices M(k,2)
, M(k,4), since they don’t affect the

following analysis.

It can be verified, that at least the following five directions

lie in the unobservable subspace of the system, meaning that

rank(M)≤ 14 (since the dimension of M is 2m×19).

N1 =




C(I1 q̄G)g
03×1

−⌊GvI1
×⌋g

03×1

−⌊GpI1
×⌋g

−g

0




=




N1q

03×1

N1v

03×1

N1p

N1l

0




N2 =




03×1

03×1

03×1

03×1

CLe1

03×1

0




=




03×1

03×1

03×1

03×1

N2p

03×1

0




, N3 =




03×1

03×1

03×1

03×1

−CLe3

03×1

1




=




03×1

03×1

03×1

03×1

N3p

03×1

1




N4 =




03×1

03×1

03×1

03×1

CLdLe2

−CLe1

0




=




03×1

03×1

03×1

03×1

N4p

N4l

0




, N5 =




03×1

03×1

CLe1

03×1

03×1

03×1

0




. (24)

Direction N1 corresponds to the rotation of the sensor

platform and the line around the gravity vector. N2...4 span
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Fig. 2: Unobservable directions N2, N3, and N4. The combinations of these directions represent any translation of the sensor

platform together with the line.

the space of all possible translations of the sensor platform

together with the line. The fifth direction N5 corresponds to

a change of the sensors’ velocity, in the direction of line L

(see Figs. 2 and 3).

Consider now, the joint observability matrix for the case

of measurements of two non-parallel lines L1, L2, which is

M′ =

[
ML1

ML2

]
. As we prove in [31], neither N5L1

nor N5L2

lies in the nullspace of M′, since L1 and L2 are non-parallel.

B. Linearized System in Practice

We now examine the observability matrix corresponding

to the linearized system, when the linearization points are

not ideal (i.e., they do not correspond to the true quanti-

ties n̄k, x̄Rk
, x̄L). Interestingly, when we linearize around

the current state estimate, the directions N1, N2, and N5

erroneously become observable. This is easy to verify, for

example, for N2. In the absence of noise, and with lineariza-

tion performed around the true states, the vector CLe1 is

always perpendicular to C(Ik q̄G)
T n̄k, hence it always lies in

the right nullspace of the ideal observability matrix M. In

practice, however, no vector CLe1 exists that is perpendicular

to every element of the set of vectors {C(Ik ˆ̄qG)
T nk}, due to

(i) the errors in the different estimates of Ik ˆ̄qG at different

time steps, and the fact that (ii) we do not measure the true

nk, but a perturbed version of it (see (16)). Moreover, if for

two different time steps, corresponding to two different block

rows of the observability matrix M, we linearize around

different estimates of the line parameters x̂L, the directions

N3,N4 also become observable. This leads to the conclusion

that any filter, applied to this problem, which employs

linearization around the current state estimate, violates the

observability properties of the underlying system and results

in injection of spurious information. We conjecture that this

causes the EKF estimator to become inconsistent (i.e., being

over-confident for the accuracy of its estimates) and propose

a formal, yet simple, approach for addressing this issue in

the following section.

IV. APPLICATION TO VISION-AIDED INERTIAL

ODOMETRY: DESCRIPTION OF THE ALGORITHM

We employ the results of the observability analysis to

improve the consistency of the MSC-KF algorithm [1]

when modified for processing line observations. The main

advantage of the MSC-KF is that it processes all geomet-

ric constraints induced by camera measurements over a

finite window of image frames, with linear computational

complexity in the number of observed features. This is

accomplished by not including a map of the environment

in the state vector, but rather using all provided information

for localization purposes.

A. State Vector

At a given time step k, the filter tracks the 16×1 evolving

state, x̂R (see (1)). In order to process measurements over a

time window of the last M images, we employ stochastic

cloning [32] and keep in our state the cloned sensor poses

{x̂C =
[

Ik−M+i q̄T
G

GpT
Ik−M+i

]T
}, i= 0 . . .(M−1). Correspond-

ingly, the covariance consists of the 15× 15 block of the

evolving state, PRR, the 6M×6M block corresponding to the

cloned robot poses, PCC, and their cross-correlations, PRC.

Hence, the covariance of the augmented state vector has the

following structure:

P =

[
PRR PRC

PRC
T PCC

]
(25)

Moreover, in order to enforce the correct observability prop-

erties to the linearized system, we maintain a copy of the

evolving part of the nullspace directions, which corresponds

to rotations around gravity, N1. Hence, we construct the set

SN = {N1(k−M+i)}i=0...(M−1), as part of the state cloning and

propagation procedure.

B. State Cloning

Upon the acquisition of a new image, we clone the

portions of the current state estimate and covariance, cor-

responding to the robot pose:

xC←




xC
I q̄G
GpI


 , P←

[
P P(:,[1:3,13:15])

P(:,[1:3,13:15])T
P([1:3,13:15],[1:3,13:15])

]

and compute the nullspace direction N1, evaluated at the

current state estimate, (i.e., N1(k−M) for t = tk−M) using

eq. (24), and add it to the set SN:

SN←{SN, N1(k−M)}. (26)
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C. State, Covariance and Nullspace Propagation

Between time steps tk−M and tk−M+1, we propagate the

evolving state estimate to x̂Rk−M+1
(see Sec. II-A), using

the IMU measurements. We evaluate now the new nullspace

direction, N1(k−M+1), by substituting the new state estimate

x̂Rk−M+1
in (24). Using the analytical expressions [29] for the

state transition matrix, we evaluate Φ̂k−M+1,k−M . We now

seek a modified Φ
⋆

k−M+1,k−M , that adheres to the correct

observability properties of the system [11]. Since, only the

first 15 rows of N1 evolve through time, we set u=N1
(1:15,:)
(k−M)

,

w = N1
(1:15,:)
(k−M+1)

, A⋆ = Φ
⋆

k−M+1,k−M , A = Φk−M+1,k−M and

solve the following optimization problem:

min
A⋆
||A⋆−A||2F (27)

s.t. A⋆u = w

where || · ||F denotes the Frobenius matrix norm and the

optimal solution is A⋆ = A− (Au−w)(uT u)−1uT . Finally,

we employ the modified transition matrix, for covariance

propagation.

PRR←Φ
⋆

k−M+1,k−MPRRΦ
⋆

k−M+1,k−M
T +Qk (28)

PRC←Φ
⋆

k−M+1,k−MPRC (29)

D. Processing Line Measurements

We now describe the update step for processing N tracks

of straight lines that initiate from image k−M+1 and reach

at most, image k. From (18), the linearized measurement

model for line j, j = 1 . . .N, acquired at time step i, i =
(k−M+1) . . .k, is:

z̃
j
i = H

j
Ci

x̃Ci
+H

j
Li

x̃L j
+w

j
i (30)

since, our measurements relate only to the cloned robot

poses, H
j
Ci

=
[
H

j([1:2],[1:3])
Ri

H
j([1:2],[13:15])
Ri

]
(see (20)). For

the evaluation of the Jacobians we need the parameters of the

line L j, an estimate of which we compute through triangu-

lation. So as to reduce the computational complexity, we ap-

proximate the covariance matrices of all z
j
i , that we are about

to process by max{λmax({Z
j
i }i=(k−M+1)...k, j=1...N)}I2 =

σ ′2I2. The process of retrieving σ ′2 has complexity at most

O(NM).

1) Observability Constrained Measurement Jacobians:

The measurement Jacobians that adhere to the correct ob-

servability properties should satisfy:

[
H

j
Ci

H
j
Li

]
Θ N1i = 0,

[
H

j
Ci

H
j
Li

]
Θ N

j
2...5 = 0 (31)

where Θ =

[
I3 03×9 03×7

07×3 07×9 I7

]
, N1i is the i− th element

of the set SN, and by N
j
2...5 we denote any of the directions

N2 . . .N5 evaluated at the parameters of line j. To acquire

the modified H
j
Ci

and H
j
Li

, we re-arrange (31), to bring it in

the form of the optimization problem (27), and arrive at the

following expressions (see also (20)):

H
j⋆
p2i = H

j
p2i−H

j⋆
p2iN

j
2p
(N jT

2p
N

j
2p
)−1N

jT
2p

H
j⋆
d2i =−H

j⋆
p2iN

j
3p

H
j⋆
l1i = H

j
l1i−H

j
l1iN

j
4l
(N jT

4l
N

j
4l
)−1N

jT
4l

H
j⋆
l2i = H

j
l2i− (H j

l2iN
j
4l
+H

j
p2iN

j
4p
)(N jT

4l
N

j
4l
)−1N

jT
4l

H
j⋆
q1i = H

j
q1i− (H j

q1iN1q i
+H

j⋆
l1iN1l i

)(N1q

T

i
N1q i

)−1N1q

T

i

H
j⋆
q2i = H

j
q2i− (H j

q2iα−β )(αT α)−1αT

α = N1q i
, β =−H

j⋆
p2iN1pi

+H
j⋆
l2i

Gg

2) Linearized Constraint among all Camera Poses: By

stacking the measurements of line j over the time window

i = (k−M+1) . . .k, we arrive at:

z̃ j = H
j⋆
C x̃C +H

j⋆
L x̃L j

+w j (32)

The matrix H
j⋆
L , has dimensions 2M × 4, and for M ≥ 3

it is full column rank. Hence, its left nullspace U j, is of

dimensions 2M−4. By premultiplying (32) by UT
j , we arrive

at a measurement model, independent of the line parameters’

error:

UT
j z̃ j = UT

j H
j⋆
C x̃C +UT

j w j =⇒ z̃
′ j = H

′ j
Cx̃C +w

′ j
. (33)

This key step in MSC-KF [1], defines a linearized constraint,

independent of the feature parameters, among all the camera

poses, from which the line j was observed. By employing

this methodology on the line-based VINS framework, we

exploit all the geometric information induced by a line,

without the requirement of augmenting our state vector,

with its parameters. Furthermore the computation of z̃
′ j, of

dimensions 2M−4×1, and H
′ j
C can be performed efficiently

using Givens rotations. Notice also, that the resulting noise

term UT
j w j has covariance σ ′2I2M−4.

3) Linear Complexity EKF Update: By collecting all z̃
′ j,

over all observed lines, j = 1 . . .N, we acquire:

z̃
′

N(2M−4)×1 = H
′

Cx̃C +w′ (34)

where the matrix H
′

C has dimensions N(2M−4)×6M and

is, in general, tall, since the number of line observations

typically exceeds the number of robot-pose states. As it is

described in [1] and [3] for the case of point features, we

factorize H
′

C as:

H
′

C =
[
Q1 Q2

][
Rupper

0

]
(35)

Where Rupper can have at most 6(M−1)−1 non-zero rows.

By performing Givens rotations on z̃
′

N(2M−4)×1
and H

′

C (see

[33], pg. 227), we form, our final measurement model:

r̃ = Rupperx̃C +w′′ (36)

Note that the process of projecting on
[
Q1 Q2

]T
, has

computational cost at most, O(NM3) [33], while the resulting

residual r̃ has dimension smaller or equal to 6(M− 1)− 1,

and w
′′

follows N (0,σ ′2I6(M−1)−1). After constructing (36)

we perform a regular EKF update using the new measure-

ment Jacobian matrix Rupper.
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V. EXPERIMENTAL RESULTS

Our experimental testbed consists of a Point Grey

monochrome monocular camera4 with resolution 640×480

pixels and an InterSense NavChip IMU5. IMU signals were

sampled at a frequency of 100 Hz while camera images were

acquired at 7.5 Hz.

The trajectory (Fig. 5) has total length ∼22m and covers

one loop in an indoor office area, dominated by lines, after

which the testbed was returned to its starting location, so

as to provide a quantitative characterization of the achieved

accuracy.

Point and line features were tracked over a sliding win-

dow of 10 images. Edges were extracted using the Canny

edge detector [13] and straight line features are detected

using OpenCV’s probabilistic Hough transform [34]. For the

purpose of tracking lines between images, we employ the

methodology described in [35].

We compared the performance of the following Visual-

Inertial Odometry algorithms:

• The Multi-state constraint Kalman filter (MSC-KF)

of [1] using only observations of points (referred to as

Std-VINS w/o Lines in Table I).

• The MSC-KF modified to also process tracked straight

line edges (referred to as Std-VINS w/ Lines in Table I),

where visual measurements to lines features over mul-

tiple images, are processed as described earlier.

• The proposed OC-MSC-KF, where observations of point

and line features are used (referred to as OC-VINS w/

Lines in Table I). The main difference with the OC-

MSC-KF of [11] is that measurements to both point

and line features are processed, while the Jacobians are

appropriately modified (as explained earlier) to ensure

that no spurious information is injected during line-

measurement updates.

Our, experimental results validate our conjecture that the

Std-VINS, erroneously injects information along the un-

observable directions (see Fig. 4), which makes it overly

confident. In contrast, the OC-VINS adheres to the correct

observability properties of the system, which is evident when

considering its yaw and position uncertainty (see Fig. 4).

Furthermore, the reduced final position errors (see Table I)

when processing both line and point features validate the

potential gains to VINS, when employing line observations,

over multiple time steps.

Visual-Inertial Odometry Framework Final Position Error (cm)

Std-VINS w/o Lines 20

Std-VINS w/ Lines 19

OC-VINS w/ Lines 18

TABLE I: Final position error comparison

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied the observability properties

of a vision-aided inertial navigation system (VINS) that

4http://www.ptgrey.com
5http://www.intersense.com

Fig. 5: Top: The 3D trajectory of the IMU-camera pair during

the experiment. The Std-VINS erroneously treats rotations

around gravity as observable, which results to a rotated

trajectory. Bottom: Representative camera image from the

experimental dataset with the extracted straight line edges

superimposed (best viewed in color).

employs measurements of straight lines over multiple time

steps. We proved that for the case of a single line, the

system has five unobservable directions and presented their

analytical form, as well as a discussion on their physical

interpretation. Additionally, we introduced an EKF-based

algorithm that fuses efficiently line-feature image tracks

with inertial measurements, and improved its consistency by

ensuring that no information is injected along the system’s

unobservable directions. Furthermore, by performing visual-

inertial odometry (VIO), instead of SLAM, the proposed

algorithm has computational complexity only linear in the

number of lines. Finally, we confirmed the key findings of

the line-based VINS observability analysis and demonstrated

the performance of the proposed algorithm experimentally

using a MEMS-quality IMU and a miniature-size camera. As

part of our future work, we plan to extend our approach to

also include information about lines corresponding to known

directions and study the impact on the filter’s consistency and

accuracy.
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