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Abstract

High-throughput sequencing of targeted genomic loci in large populations is an effective approach for evaluating the
contribution of rare variants to disease risk. We evaluated the feasibility of using in-solution hybridization-based target
capture on pooled DNA samples to enable cost-efficient population sequencing studies. For this, we performed pooled
sequencing of 100 HapMap samples across ,600 kb of DNA sequence using the Illumina GAIIx. Using our accurate variant
calling method for pooled sequence data, we were able to not only identify single nucleotide variants with a low false
discovery rate (,1%) but also accurately detect short insertion/deletion variants. In addition, with sufficient coverage per
individual in each pool (30-fold) we detected 97.2% of the total variants and 93.6% of variants below 5% in frequency.
Finally, allele frequencies for single nucleotide variants (SNVs) estimated from the pooled data and the HapMap genotype
data were tightly correlated (correlation coefficient . = 0.995).
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Introduction

Over the past few years, genome wide association studies

(GWAS) have uncovered hundreds of common variants associated

with various traits and common diseases[1]. The discovery of

these disease-associated variants has shed light on previously

unknown genes and disease mechanisms. However, for many

diseases, a large proportion of the genetic variation underlying

disease risk remains to be discovered. There is growing evidence

that some of this ‘missing heritability’ could be explained by the

influence of collections of rare variants (MAF ,0.05) which have

not been captured by current genotyping chips used in most

GWAS[2,3].

The contribution of rare variants to phenotypic variation can be

effectively surveyed through large-scale population re-sequencing

studies. Due to high costs, most re-sequencing studies have been

limited to sequencing the coding regions of a small number of

genes using Sanger sequencing[4]. The availability of high-

throughput target capture methods combined with the massive

throughput of next-generation sequencing platforms has made it

possible to interrogate thousands of genomic loci in a cost effective

manner[5,6]. In fact, the costs are so low that when one factors

only the price to run the sequencer and the production of raw base

reads, it is feasible to sequence megabases of DNA in thousands of

individuals using a small number of sequencing runs. The

budgetary bottleneck for such studies is not the sequencing cost

but the cost of sample preparation for each individual sample prior

to sequencing. Assuming that it costs ,250 dollars for target

capture and library preparation, the sample preparation cost for a

project with 1000 individuals would be $250,000. A simple

strategy to reduce the per-sample cost while utilizing the massive

capacity of current sequencers is to use DNA pooling prior to

target capture and sample preparation. DNA pooling was

previously proposed as a strategy for reducing the cost of large-

scale genotyping-based disease association studies[7]. However,

the difficulty in accurately measuring allele frequencies from

intensity data has limited the use of this strategy. Unlike pooled

genotyping, pooled DNA sequencing not only provides digital

allele counts for each variant but can also be used to detect novel

sequence variants. Several recent studies have demonstrated the

potential of pooled sequencing using next-generation sequencing

platforms for identifying disease associated rare mutations [8,9].

There are two main requirements for the successful utilization

of DNA pooling for large-scale resequencing studies. Prior to

sequencing, it is important to minimize various biases that cause

unequal representation of DNA from individuals in the pooled

sequencing library. Such pooling imbalances can result in

inaccurate estimates of allele frequencies as well as make it

difficult to identify rare variants. Post-sequencing, it is essential to

identify rare and common variants with low false positive and false

negative rates. Detection of rare variants from pooled sequencing

data represents a particularly challenging task since the signal for

rare variants can be difficult to distinguish from sequencing

errors[10].
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While careful quantification of genomic DNA samples prior to

pooling is necessary to reduce imbalances, biases introduced in the

target-capture step need to be minimized as well. In comparison to

PCR-based enrichment strategies which are sensitive to DNA

quality and can introduce biases[11], in-solution sequence

hybridization is less likely to introduce imbalances in the pooled

DNA sequencing library. In this study, we evaluated the feasibility

of in-solution sequence hybridization-based enrichment of geno-

mic loci applied to pooled genomic DNA. We sequenced ,600

kilobases of coding sequence across the human genome in 100

HapMap samples using 5 pools with 20 samples each. We used

Agilent in-solution enrichment for target enrichment and

sequenced the pooled libraries using the Illumina Genome

Analyzer. Using a statistical variant caller for pooled sequencing

data, CRISP[12], we were able to detect single nucleotide variants

with high sensitivity and specificity. Comparison of the pooled

allele frequency estimates to data from the HapMap and 1000

Genomes project demonstrated the ability to accurately estimate

allele frequencies from pooled sequencing. In addition, we were

also able to accurately identify short insertion/deletion variants

from the pooled data.

Results

Study design and sequencing
We targeted 594 Kb of DNA sequence from the coding regions

of genes that were also sequenced in the 1000 Genomes exon pilot

project[12] by solution based hybridization capture (Table S2).

For sequencing, we selected 100 HapMap samples: 20 Utah

residents with ancestry from northern and western Europe (CEU),

20 Han Chinese in Beijing, China (CHB), 20 Tuscans in Italy

(TSI) and 40 Yoruba in Ibadan, Nigeria (YRI)[13] (Table S1). The

samples were pooled by population with each pool consisting of 20

individuals. We chose a moderate pool size of 20 so that the allele

frequency of a singleton variant (1/40) was well above the average

sequencing error rate of an Illumina GAIIx, which we observe to

be between 0.5–1%. Pooled samples were carried through the

library preparation process as well as the sequence enrichment

process following the normal protocol, as though they were from a

single genomic sample. The 5 pools were sequenced using DNA

barcodes on two lanes of the Illumina GAIIx using 55 bp paired-

end reads.

Accuracy of SNV detection and allele frequency estimates
Reads for each pool were aligned to the human genome

reference sequence.

(HG18) using the BWA aligner[14]. We generated an average

of 695 Mb of sequence data for each pool, ,55% of which

mapped directly on our 594 Kb of target sequence (Table 1). On

average each pool had 683-fold coverage across the targets,

translating to an average of 34-fold coverage per individual. For

calling variants, we utilized a statistical method, CRISP, that is

designed for variant detection using sequence data from multiple

DNA pools[15]. Within the targeted regions, we detected 2849

variants (2749 SNVs and 100 indels) using this method.

To assess the accuracy of the SNV calls and the allele frequency

estimates, we generated a merged set of variants and genotypes

using data on the same set of 100 samples from the HapMap and

the 1000 Genomes projects (HM+1KG dataset). Further, we

restricted the analysis to the 470 kb of sequence that overlapped

with the exon capture boundaries of the 1000 Genomes pilot

project. We compared the SNVs in each pool to the SNVs

reported in the HM+1KG dataset for the corresponding 20

samples in the pool. Summed across the 5 pools, we identified

4588 SNVs, 4327 of which matched the HM+1KG dataset

(Table 2). Across the 470 kb of sequence, we failed to detect 490

SNVs called in the HM+1KG dataset. Many of these missed

variants are likely due to inadequate sequencing depth in our data.

Indeed, false negative rates reduced to 6% (276 variants) and 2.8%

(82 variants) when considering bases with at least 10 and 30-fold

average coverage per sample respectively (Table 2). Not

surprisingly, the majority of these variants were of low frequency

with 266 of the variants at 10-fold coverage and 81 of the variants

at 30-fold coverage being at an allele frequency of 5% or lower.

This represents a sensitivity of detection of 86.3% at 10-fold and

93.4% at 30-fold coverage per individual for variants present on 2

or fewer chromosomes in the pool. Next, we assessed the false

discovery rate of our SNV calls. Because of missing data in the

1000 genomes dataset for three of the pools, we only used the TSI

pool and one of the YRI pools for this analysis. Taking into

account all bases in the two pools, we identified 112 SNVs not

reported in the HM+1KG dataset. Of these, 42 (37.5%) were

previously reported in dbSNP (v130) lending support for them to

be true variants. The majority (74.1%) of the false positives were of

low frequency (, = 5%). Of the variants estimated to be of 5%

frequency or lower in our data, 23 were present in dbSNP. For the

remaining 70 sites, we visually inspected aligned sequence reads

from the 1000 Genomes project to evaluate if they represented

potentially real variants. 49 of the 70 sites appeared to be true

polymorphisms, 8 sites had little or no coverage for one or more

samples. The remaining 13 sites were clearly false positives in our

dataset, 6 of the 13 sites had an estimated allele frequency of 5% or

lower. Assuming that half of the low coverage sites represent true

variants, we estimate a false discovery rate of 0.9% for our pooled

variant calls.

We then compared the allele frequencies calculated using the

read counts in the pools to the actual allele frequencies determined

from the HM+1KG genotypes for each pool. The correlation

between the HM+1KG allele frequencies and the pooled estimates

was excellent with an r2 correlation coefficient ranging from

0.995–0.997 across the five pools and very few outliers (Figure 1).

In addition, our estimated allele frequencies for the vast majority

of variants closely matched those from the HM+1KG with 80% of

the variants within 1/40th and 94% within 1/20th of the actual

frequency (Figure 2).

Detection of indel variants
The ability to detect short insertion/deletion variants from

pooled sequence data is useful, especially in coding regions of the

genome. Detection of short indels from next-generation sequenc-

ing data is challenging due to the difficulty in accurately aligning

Table 1. Capture Efficiency.

Total On Target Mean % of Bases

Pool Sequence Sequence Coverage
Between 1/5 and
5x

Mean Coverage

CEU 722 Mb 401.8 Mb (55.7%) 676 95.7%

CHB 709.6 Mb 388.7 Mb (54.8%) 654 94%

TSI 694.7 Mb 376.8 Mb (54.2%) 634 94.1%

YRI 1 606.4 Mb 327.8 Mb (54.1%) 552 92.6%

YRI 2 744.6 Mb 415.2 Mb (55.8%) 699 94.6%

doi:10.1371/journal.pone.0018353.t001
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short reads with gaps and the lack of an indel error model for short

reads. The statistical model underlying our variant caller, CRISP,

uses allele counts across multiple pools to differentiate variants

from sequencing errors and is also applicable to indels. CRISP

identified 100 indels (1–18 bp) in the 5 pools across the 570 kb of

target sequence. Only 19 indels were called in the 1000 genomes

exon project and of these 5 overlapped our target sequence. 4 of

these 5 indels matched indels called in our pooled data. An

additional 55 indels were identical to indels reported in dbSNP

(v130) or in the 1000 Genomes whole-genome low coverage

variant calls[13]. To validate the remaining indels, most of which

were low frequency variants, we visually examined the aligned

sequence reads for the 100 samples sequenced in the 1000

Genomes Project (see Materials and Methods) and found clear

evidence for 28 indels. Overall, 87 of the 100 pooled indel calls

were validated.

Cost Efficiency and power of Pooled Sequencing
We sought to compare the costs of a resequencing project

between pooled and individual sequencing using in-solution

hybridization. We evaluated two scenarios, a small and large

capture consisting of 750 kb and 3 Mb of total targeted regions

respectively on a small (400), modest (4,000) and large (20,000)

cohort of samples. The cost savings afforded by fewer library preps

represented an 11.8-fold decrease with the 750 kb capture and a

5.7 fold decrease for the 3 Mb capture when sequencing to 20x

coverage per sample (Table 3). The tight correlation between the

pooled allele frequency estimates and the individual-based allele

frequencies in our study shows that the increase in the variance of

the allele frequency due to the pooling noise is small. The ability to

sequence more samples can offset this slight increase in the

variance of the allele frequencies and substantially enhance the

power to detect associations across a range of minor allele

frequencies and effect sizes [16,17].

Discussion

Our results demonstrate that in-solution hybridization capture

of pooled DNA samples when combined with our variant calling

algorithm is a viable and cost-effective approach for performing

large-scale resequencing studies using high-throughput sequencing

technologies. Using pooled sequence data from 100 HapMap

samples we have shown that this approach minimizes false

positives, while being sensitive enough to detect even low

frequency alleles, a problem that has plagued previous pooling

and sequencing strategies. The ability to accurately detect rare

variants including indels from pooled sequence data can enable

large-scale sequencing studies of GWAS-associated genes or loci

for a particular disease to assess the collective contribution of low-

frequency functional variants.

Comparison of the pooled allele frequency estimates with actual

allele frequencies derived from HapMap or 1000 Genomes data

shows that the pooled allele frequencies are highly accurate. This

was clear proof that in-solution target capture introduced virtually

no biases in the pooled sequencing library. The ability to

accurately estimate allele frequencies from pooled sequencing

data is important since it can allow tests for association to be

performed directly from the pooled sequencing data without

additional genotyping. Furthermore, the ability to sequence a large

number of samples via pooling can substantially increase the

power to detect common and rare allele associations while still

providing a significant reduction in cost compared to individual

sequencing. An added benefit of the pooling approach is that only

150 ng of DNA per individual is required which can be important

for studies with a limited supply of genomic DNA.

In conclusion, the solution we have presented should prove to

be a cost-effective and easy to use approach for researchers looking

to perform large targeted re-sequencing studies examining both

common and rare variants.

Materials and Methods

Sample Preparation and Sequencing
We selected 100 samples (Table S1), 60 of which were from the

HapMap phase I+II (CEU, CHB, YRI 1) and the remaining 40

were genotyped as part of HapMap phase II (TSI, YRI 2). All 100

samples were slated for exome capture and sequencing as part of the

1000 Genome Project. DNA was obtained from the Coriell Institute

(Coriell Institute); all samples were quantified in quadruplicate using

picogreen (Life Technologies). Samples were pooled in equal molar

concentrations in pools of twenty samples each. The pools were then

carried through the standard Illumina library preparation process

Table 2. Variant Detection Statistics for Pooled Sequencing.

Coverage . = 101 Coverage . = 301

Total
Variants Detected Detected False Positives2 Detected False Positives2

Pool HM & 1KG Variants Variants in dbSNP 130 False Negative3 Variants in dbSNP 130 False Negative3

at Targets in Pool in Pool Absent Included Absent Included

CEU 826 (283) 744 (213) 702 (213) 22 (15) 11 (6) 47 (45) 6.4% (19.2%) 479 (158) 16 (12) 10 (6) 17 (17) 3.4% (9.7%)

CHB 731 (268) 645 (194) 599 (191) 34 (29) 9 (7) 56 (56) 8.7% (24.7%) 410 (150) 25 (22) 8 (6) 22 (22) 5% (12.4%)

TSI 850 (377) 748 (287) 700 (280) 37 (33) 26 (15) 54 (53) 7.1% (16.2%) 460 (198) 29 (26) 24 (13) 10 (10) 1.9% (4.2%)

YRI 1 1194 (419) 1084 (338) 995 (324) 56 (50) 13 (6) 54 (50) 5.1% (13.2%) 551 (192) 31 (29) 11 (5) 17 (16) 2.9% (7.1%)

YRI 2 1216 (573) 1106 (482) 1041 (470) 33 (27) 15 (8) 65 (62) 6% (12.3%) 712 (332) 23 (19) 15 (8) 16 (16) 2.1% (4.5%)

Sum 4817 (1920) 4327 (1514) 4037 (1478) 182 (154) 74 (42) 276 (266) 6% (13.7%) 2612 (1030) 124 (108) 68 (38) 82 (81) 2.8% (6.4%)

The number in parentheses represents only variants at 5% or lower frequency in the dataset.
1- Statistics for variant sites which were sequenced to a depth of 10 or 30 fold per individual in the pooled dataset.
2- Variants called in the pooled dataset not present in either HapMap or the 1000 Genome Project. Variants were further classified as being included or absent in dbSNP v130.
3- Variants called in the HapMap or 1000 Genome Project that were not called in our pooled dataset.
doi:10.1371/journal.pone.0018353.t002
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using Adaptive Focused Acoustics for shearing (Covaris), end-

repair, A-tailing and ligation (New England Biolabs). SureSelect in-

solution hybridization was performed on the pooled samples using

the recommended protocol for a single genomic DNA sample.

Captured DNA was then sequenced using 55 bp PE multiplexed

read protocol on an Illumina GAIIx.

Figure 1. Comparison of pooled allele frequency estimates with actual allele frequencies. Scatter plots for each of the 5 pools (CEU, TSI,
CHB, YRI 1, YRI 2) of the estimated allele frequency as calculated by read counts from the sequence data plotted against the actual allele frequency
from either the HapMap or 1000 Genome project. Only sites that contained genotype information for all 20 individuals in that particular pool are
included. The insert displays the area of the graph representing 1–3 copies of the alternate allele as a jitter plot. In both graphs, the points are shaded
to represent overall read coverage in our sequencing data at that site.
doi:10.1371/journal.pone.0018353.g001
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Mapping & Variant Calling
We used the BWA aligner[14] (v 0.5.7) to align the sequencing

reads for each pool to the NCBI reference human genome

sequence (ncbi36). Short read aligners such as BWA align each

read independently to the reference genome and are unable to

properly align reads that contain an insertion/deletion event close

to the start or end of the sequenced reads. Such misaligned reads

can result in false SNVs calls[18], make it difficult to call indels

and can be especially problematic for pooled sequencing data. To

rectify this problem, we utilized a simple realignment approach in

which the reads were aligned (without gaps) to an ‘indel-sensitive’

reference sequence generated from consensus sequences of indels

identified from the original BWA alignments. Alignments for reads

for which the new alignment, if any, was better than the original

BWA alignment were changed. This realignment procedure

changed the alignments of a small fraction of reads. The realigned

SAM files were used for variant calling using a recently developed

statistical algorithm called CRISP that uses information from

aligned sequence reads within each pool as well as across all

pools. For variant calling using CRISP, reads with low mapping

quality (,20) and base calls with a low quality score (,10) were

discarded. Variants (SNVs and indels) were identified using

CRISP on the aligned sequence reads for the 5 pools using the

default thresholds. To call a variant, CRISP required at least 4 reads

supporting the non-reference allele in one or more pools. The raw

and aligned Illumina reads and the set of variants identified in this

Figure 2. Error in the pooled allele frequency estimate for each variant. Histogram of the estimated error in measurement of allele
frequency from the pooled sequencing data. For each variant, the absolute difference between the pooled allele frequency estimate and the actual
allele frequency derived from the 1000 Genomes or HapMap data was computed.
doi:10.1371/journal.pone.0018353.g002

Table 3. Cost Estimates for Pooled Sequencing Projects.

750 Kb Capture Project 3 Mb Capture Project

Library Prep Total Project Total Project

Cost ($1000) Sequencing Cost ($1000) Cost Sequencing Cost ($1000) Cost

Number of Cost ($1000) Difference Cost ($1000) Difference

Samples Single Plex Pooled Single Plex Pooled Single Plex Pooled

400 110 5.5 2.7 112.7 8.2 10.7 120.7 16.2

4000 1100 55 26.8 1126.8 81.8 13.8 107 1207 162 7.5

10000 2750 137.5 66.9 2816.9 204.4 267.6 3017.6 405.1

Cost estimates based on a 100 bp HiSeq paired-end run with Illumina’s published reagent costs ($11,150 per flowcell) and an average throughput of 200 Gb per run.
Sample preparation includes $75 per samples for library prep and $200 per sample for solution based capture. All calculations for pooled sequencing assume 20
individuals per pool.
doi:10.1371/journal.pone.0018353.t003
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study can be downloaded from the following website: http://

polymorphism.scripps.edu/datasets/PooledSequencing.

Variant Comparisons
For evaluating variant calls and allele frequencies, we use variant

calls and genotypes from the July 2010 release of the 1000 Genome

Project’s exon sequencing pilot project as well as indel calls from the

whole-genome low-pass pilot project[12]. To fill in missing

genotypes for some samples, we utilized genotypes from the

HapMap public release #28 (Phase I, II+III). Allele frequency

comparisons were limited to sites at which there was complete data

available for all 20 samples in the corresponding pool. We

downloaded aligned sequence reads generated using the Illumina

platform for the 100 samples sequenced in our study from the 1000

Genomes ftp website (ftp://ftp-trace.ncbi.nih.gov/1000genomes/

ftp/pilot_data/).

For each sample, we generated pileup files and used them for

visual confirmation of novel variant calls. All calculations and

figures were produced using a combination of Perl, Python and R.

Supporting Information

Table S1 A list of the 100 HapMap samples sequenced
in this study.
(XLS)

Table S2 An Excel file with the list of genomic regions
targeted in this study.
(XLS)
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