
Efficient and Effective Clustering Methods for Spatial

Data Mining

Raymond T. Ng
Department of Computer Science

University of British Columbia
Vancouver, B.C., V6T 124, Canada

rng@cs.ubc.ca

Abstract

Spatial data mining is the discovery of inter-
esting relationships and characteristics that
may exist implicitly in spatial databases. In
this paper, we explore whether clustering
methods have a role to play in spatial data
mining. To this end, we develop a new
clustering method called CLAHANS which is
based on randomized search. We also de-
velop two spatial data mining algorithms that
use CLAHANS. Our analysis and experiments
show that with the assistance of CLAHANS,
these two algorithms are very effective and
can lead to discoveries that are difficult to
find with current spatial data mining algo-
rithms. Furthermore, experiments conducted
to compare the performance of CLAHANS
with that of existing clustering methods show
that CLAHANS is the most efficient.

1 Introduction

Data mining in general is the search for hidden pat-
terns that may exist in large databases. Spatial data
mining in particular is the discovery of interesting
relationships and characteristics that may exist im-
plicitly in spatial databases. Because of the huge

Permission to copp without fee all or part of this material ia
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publieation and itr date appear, and notice is

given that copying ir by pemierion of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requirer a fee
and/or special permission from the Endowment.

Proceedings of the 20th VLDB Conference

Santiago, Chile, 1994

Jiawei Han
School of Computing Sciences

Simon Fraser University
Burnaby, B.C., V5A lS6, Canada

hanQcs.sfu.ca

amounts (usually, tersbytes) of spatial data that may
be obtained from satellite images, medical equipments,
video cameras, etc., it is costly and often unrealistic
for users to examine spatial data in detail. Spatial
data mining aims to automate such a knowledge dis-
covery process. Thus, it plays an important role in a)

extracting interesting spatial patterns and features; b)
capturing intrinsic relationships between spatial and
non-spatial data; c) presenting data regularity con-
cisely and at higher conceptual levels; and d) helping
to reorganize spatial databases to accommodate data
semantics, as well as to achieve better performance.

Many excellent studies on data mining have been
conducted, such as those reported in [l, 2, 4, 7, 11,
13, 161. [l] considers the problem of inferring classi-
fication functions from samples; [2] studies the prob-
lem of mining association rules between sets of data
items; [7’J proposes an attributeoriented approach to
knowledge discovery; [ll] develops a visual feedback
querying system to support data mining; and [16] in-
cludes many interesting studies on various issues in
knowledge discovery such as finding functional depen-
dencies between attributes. However, most of these
studies are concerned with knowledge discovery on
non-spatial data, and the study most relevant to our
focus here is [13] which studies spatial data min-
ing. More specifically, [13] proposes a spatial data-
dominant knowledgeextraction algorithm and a non-
spatial data-dominant one, both of which aim to ex-
tract high-level relationships between spatial and non-
spatial data. However, both algorithms suffer from
the following problems. First, the user or an expert
must provide the algorithms with spatial concept hi-
erarchies, which may not be available in many appli-
cations. Second, both algorithms conduct their spatial
exploration primarily by merging regions at a certain
level of the hierarchy to a larger region at a higher
level. Thus, the quality of the results produced by

144

both algorithms relies quite crucially on the appropri-
ateness of the hierarchy to the given data. The prob-
lem for most applications is that it is very difficult to
know a priori which hierarchy will be the most appro-
priate. Discovering this hierarchy may itself be one of
the reasons to apply spatial data mining.

To deal with these problems, we explore whether
cluster analysis techniques are applicable. Cluster
Analysis is a branch of statistics that in the past three
decades has been intensely studied and successfully ap
plied to many applications. To the spatial data mining
task at hand, the attractiveness of cluster analysis is its
ability to find structures or clusters directly from the
given data, without relying on any hierarchies. How-
ever, cluster analysis has been applied rather unsuc-
cessfully in the past to general data mining and ma-
chine learning. The complaints are that cluster anal-
ysis algorithms are ineffective and inefficient. Indeed,
for cluster analysis algorithms to work effectively, there
need to be a natural notion of similarities among the
“objects” to be clustered. And traditional cluster anal-
ysis algorithms are not designed for large data sets, say
more than 2000 objects.

For spatial data mining, our approach here is to ap
ply cluster analysis only to the spatial attributes, for
which natural notions of similarities exist (e.g. Eu-
clidean or Manhattan distances). As will be shown
in this paper, in thii way, cluster analysis techniques
are effective for spatial data mining. Aa for the e%l-
ciency concern, we develop our own cluster analysis al-
gorithm, called CLAHANS, which is designed for large
data sets. More specifically, we will report in this p&
per:

l the development of CLAHANS, which is based on
randomized search and is partly motivated by two
existing algorithms well-known in cluster analysis,
called PAM and CLARA; and

l the development of two spatial mining algorithms
SD(CLAHANS) and NSD(CLAHANS).

Given the nature of spatial data mining, and the fact
that CLAHANS is based on randomized search, the
methodology we have adopted here ia one baaed on
experimentation. In particular, we will preeent:

l experimental results showing that CLAHANS is
more efficient than the existing algorithms PAM
and CLARA; and

l experimental evidence and analysis demonstrat-
ing the effectiveness of SD(CLAHANS) and
NSD(CLAHANS) for spatial data mining.

The paper is organized as follows. Section 2 in-
troduces PAM and CLARA. Section 3 presents our

145

clustering algorithm CLAHANS, as well as experimen-
tal result8 comparing the performance of CLAHANS,
PAM and CLARA. Section 4 studies spatial data
mining and presents two spatial data mining algo-

rithms, SD(CLAH,ANS) and NSD(CLAHANS). Sec-
tion 5 gives an experimental evaluation on the ef-
fectiveness of SD(CLAHANS) and NSD(CLAHANS)
for spatial data mining. Section 0 discusaea how
SD(CLAHANS) and NSD(CLAHANS) can assist in
further spatial discoveries, and how they can con-
tribute towards the building of a general-purpose and
powerful spatial data mining package in the future.

2 Clustering Algorithms based on Par-
titioning

2.1 PAM

In the past 30 years, cluster analysis has been widely
applied to many areas such as medicine (classification
of diseases), chemistry (grouping of compounds), so-
cial stud& (claseification of statistical findings), and
so on. Its main goal is to identify structures or clusfers
present in the data. While there is no general defini-
tion of a cluster, algorithms have been developed to
find several kinds of clusters: spherical, linear, drawn-
out, etc. See [lo, 181 for more detailed discussions and
analyses of these issues. Among all the existing clus-
tering algorithms, we have chosen the k-medoid meth-
ods as the basis of our algorithm for the following rea-
sons. First, unlike many other partitioning methods,
the k-medoid methods are very robust to the existence
of outliers (i.e. data points that are very far away from
the rest of the data points). Second, clusters found
by A-medoid methods do not depend on the order in
which the objects are examined. Furthermore, they
are invariant with respect to translations and orthogo-
nal transformations of data points. La& but not least,
experiments have shown that the k-medoid methods
described below can handle very large data sets quite
efficiently. See [lo] for a more detailed comparison
of k-medoid methods with other partitioning meth-
ods. In this section, we present the two beat-known
k-medoid methods on which our algorithm is based.

PAM (Partitioning Around Medoids) was developed
by Kaufman and Housseeuw [lo]. To find k clusters,
PAM’s approach is to determine a representative ob-
ject for each cluster. Thii representative object, called
a medoid, is meant to be the most centrally located ob-
ject within the cluster. Once the medoids have been
selected, each non-selected object ia grouped with the
medoid to which it is the most similar. More pre-
cisely, if Oi is a non-selected object, and Oi is a (ae-
lected) medoid, we say that Oj belongs to the C~US-
ter represented by Oi, if d(Oj, Oi) = mino,d(Oj, O,),
where the notation mine, denotes the minimum over

all medoids O,, and the notation d(O,,Ob) denotes
the dissimilarity or distance between objects 0, and
Ob. All the dissimilarity values are given as inputs
to PAM. Finally, the quality of a cludcring (i.e. the
combined quality of the chosen medoids) is measured
by the average dissimilarity between an object and the
medoid of its cluster.

To find the k medoids, PAM begins with an arbi-
trary selection of) objects. Then in each step, a swap
between a selected object Oi and a non-selected ob-
ject Oh is made, as long as such a swap would result
in an improvement of the quality of the clustering. In
particular, to calculate the effect of such a swap be-
tween Oi and Oh, PAM computes COSb Cjih for all
non-selected objects Oj . Depending on which of the
following csxs Oj is in, Cjih is defined by one of the
equations below.

First Case: suppose Oj currently belongs to the
cluster represented by Oi. Furthermore, let Oj be
more similar to Oj,a than Oh, i.e. d(Oj, Oh) 2
CyOj, Oj,z), where Oj,r is the second most similar
medoid to Oj. Thus, if Oi is replaced by Oh as a
medoid, Oj would belong to the cluster represented
by Oj,2. Hence, the cost ofthe swap ae far as Oj is
concerned is:

C.. j*h = d(Oj,Oj,a)-d(Oj,Oi). (1)

This equation always gives a non-negative Cjih, indi-
cating that there is a non-negative cost incurred in
replacing Oi with Oh.

Second Case: Oj currently belongs to the cluster
represented by Oi. But this time, Oj is less similar to
Oj,2 than Oh, i.e. d(Oj,Oh) < d(Oj,Oj,a). Then, if
Oi is replaced by Oh, Oj would belong to the cluster
represented by Oh. Thus, the cost for Oj is given by:

c*. ash = d(Oj 9 Oh) - d(Oj 9 Oi). (2)

Unlike in Equation (l), Cjih here can be positive or
negative, depending on whether 0, is more similar to
oi Or to oh.

Third Case: suppose that Oj currently belongs to a
cluster other than the one represented by Oi. Let Or,2
be the representative object of that cluster. Further-
more, let Oj be more similar to Oil2 than Oh. Then
even if Q is replaced by Oh, Oj would stay in the
cluster represented by Oj,2. Thus, the cost is:

Cjih = 0. (3)

Fourth Case: Oj currently belongs to the cluster
represented by Oj,2. But Oj is le~e similar to Oj,2
than Oh. Then replacing Oi with Oh would cause Oj
to jump to the cluster of Oh from that of Oj,2. Thus,
the cost is:

c., t*h = d(Oj 9 Oh) - d(Oj 9 Oj,2), (4)

and is always negative. Combining the four cases
above, the total cost of replacing Oi with Oh is given
by:

TCih = c Cjih

i

We now present Algorithm PAM.

Algorithm PAM

Select B representative objects arbitrarily.

lupus T&, for cdl pairs of objects Oi,Oh
where Oi is currently selected, and Oh is not.

Select the pair Oi, Oh which corresponds to
minoi,o, TCih. If the minimum TCih is nega-
tive, replace Oi with Oh, and go back to Step (2).

Otherwise, for each non-selected object, find the
most similar representative object. Halt. 0

Experimental results show that PAM works satisfac-
torily for small data sets (e.g. 100 objects in 5 clus-
ters [lo]). But it is not efficient in dealing with medium
and large data sets. Thii is not too surprising if we per-
form a complexity analysis on PAM. In Steps (2) and
(3), there are altogether k(n - h) pairs of Oi, Oh. For
each pair, computing TCih requires the examination
of (n - k) non-selected objects. Thus, Steps (2) and
(3) combined is of O(k(n - E)2). And this is the com-
plexity of only one iteration. Thus, it is obvious that
PAM becomes too costly for large values of n and h.
This analysis motivates the development of CLARA.

2.2 CLARA

Designed by Kaufman and Bousseeuw to handle large
data sets, CLARA (Clustering LARge Applications)
relies on sampling [lo]. Instead of finding represen-
tative objects for the entire data set, CLARA draws
a sample of the data set, applies PAM on the sam-
ple, and finds the medoids of the sample. The point
is that if the sample is drawn in a sufficiently random
way, the medoids of the sample would approximate the
medoids of the entire data set. To come up with bet-
ter approximations, CLARA draws multiple samples
and gives the best cl~tering as the output. Here, for
accuracy, the quality of a clustering is measured based
on the average dissimilarity of all objects in the entire
data set, and not only of those objects in the samples.
Experiments reported in [lo] indicate that 5 samples
of size 40 + 2L give satisfactory results.

Algorithm CLARA

1. Fori= 1 to 5, repeat the following steps:

146

2.

3.

4.

5.

Draw a sample of 40 + 2k objects randomly from
the entire data set l, and call Algorithm PAM to
find k medoids of the sample.

For each object Oj in the entire data set, deter-
mine which of the k medoids is the most similar
t0 Oj.

Calculate the average dissimilarity of the cluster-
ing obtained in the previous step. If this value is
less than the current minimum, use this value 8s
the current minimum, and retain the k medoids
found in Step (2) as the best set of medoids ob-
tained so far.

Return to Step (1) to start the next iteration. 0

Complementary to PAM, CLARA performs satisfac-
torily for large data sets (e.g. 1000 objects in 10 clus-
ters). Recall from Section 2.1 that each iteration of
PAM is of O(k(n - k)‘). But for CLARA, by ap-
plying PAM just to the samples, each iteration is of
O(k(40 + k)2 + k(n - k)). This explains why CLARA
is more efficient than PAM for large values of n.

3 A Clustering Algorithm based on
Randomized Search

In this section, we will present our clustering algo-
rithm - CLARANS (Clustering Large Applications
based on RANdomized Search). We will first introduce
CLARANS by giving a graph abstraction of it. Then

after describing the details of the algorithm, we will
present experimental results showing that CLARANS
outperforms CLARA and PAM in terms of both efll-
ciency and effectiveness. In the next section, we will
show how CLARANS can be used to provide effective
spatial data mining.

3.1 Motivation of CLARANS: a Graph Ab-
straction

Given n objects, the process described above of find-
ing k medoids can be viewed abstractly as search-
ing through a certain graph. In this graph, de
noted by &,r, a node is represented by a set
of k objects (O,, , . . . , O,,), intuitively indicat-
ing that O,, , . . . , O,, are the selected medoids.
The set of nodes in the graph is the set
{ {O,,, . . .,O,,) 1 O,,, . . .,O,,,,, are objects in the
data set).

1 [lo] reports a useful hemietic to draw samples. Apart from
the first sample, eubeequent samples include the beet set of
medoids found 80 far. In other words, apart from the ibxt itera-
tion, m&sequent iterations draw 40 + k objects to add on to the
best k medoids.

Two nodes are neighbors (i.e. connected by 8i1 arc)
if their sets differ by only one object. More for-
mally, two nodes Si = {O,,, . . . , O,,} and Sz =
wwl,“‘>owy) are neighbors if and only if the car-
dinality of the intersection of Sl and Sz is A - 1, i.e.
ISin&(=k-1. Itiseasytoseethateachnodehas
k(n-k) neighbors. Since a node represents a collection
of k medoids, each node corresponds to a clustering.
Thus, each node can be assigned a cost that is defined
to be the total dissimilarity between every object and
the medoid of its cluster. It is not difficult to see that
if objects Oi, Oh sre the differences between neighbors
Sl and S8 (i.e. Oi,Oh e Si n S8, but Oi E Si and
Oh E SZ), the cost differential between the two neigh-
bors is exactly given by n:‘h defined in Equation (5).

By now, it is obvious that PAM can be viewed ss a
search for a minimum on the graph f&k. At each step,
all the neighbors of the current node are examined.
The current node is then replaced by the neighbor with
the deepest descent in costs. And the search continues
until a minimum is obtained. For large values of n and
k (like n = 1000 and k = lo), examining all k(n - k)
neighbors of a node is time consuming. This accounts
for the inefficiency of PAM for large data sets.

On the other hand, CLARA tries to examine fewer
neighbors and restricts the search on subgraphs that
are much smaller in sise than the original graph Gn,k.
However, the problem is that the subgraphs examined
8re defined entirely by the objects in the samples. Let
Sa be the set of objects in a sample. The subgraph
GScl,k consists of all the nodes that are subsets (of car-
dim&ties k) of Sa. Even though CLARA thoroughly
examines Gs,,,k via PAM, the trouble is that the search
is fully confined within Gs,,,k. If M is the minimum
node in the original graph G,,,k, and if M is not in-
cluded in G&,,k, M will never be found in the search
of Gs,,,k, regardless of how thorough the search is. To
atone for this deficiency, many, many samples would
need to be collected and processed.

Like CLARA, our algorithm CLARANS does not
check every neighbor of a node. But unlike CLARA,
it does not restrict its search to a particular subgraph.
In fact, it searches the original graph G,,k. One key
difference between CLARANS and PAM is that the
former only checks a sample of the neighbors of a node.
But unlike CLARA, each sample is drawn dynamically
in the sense that no nodes corresponding to particular
objects are eliminated outright. In other words, while
CLARA draws a sample of nodes at the beginning of a
search, CLARANS draws a sample of neighbors in each
step of a search. This has the benefit of not confining
a search to a localiaed area. As will be shown later, a
search by CLARANS gives higher quality clusterings
than CLARA, and CLARANS ‘requires a very small
number of searches. We now present the details of

147

Algorithm CLARANS.

3.2 CLARANS

Algorithm CLARANS

1.

2.

3.

4.

5.

6.

7.

8.

Input parameters numlocal and maxneighbor.
Initialize i to 1, and mincost to a large number.

Set current to an arbitrary node in G,,k.

Set j to 1.

Consider a random neighbor S of current, and
based on Equation (5) calculate the cost differ-
ential of the two nodes.

If 5’ haa a lower cost, set current to S, and go to
Step (3).

Otherwise, increment j by 1. If j 5 maxneighbor,
go to Step (4).

Otherwise, when j > maxneighbor, compare the
cost of current with mincost. If the former is less
than mincoet, set mincost to the cost of current,
and set bestnode to current.

Increment i by 1. If i > numlocal, output
bestnode and halt. Otherwise, go to Step (2). 0

Steps (3) to (6) above search for nodes with progres-
sively lower costs. But if the current node has al-
ready been compared with the maximum number of
the neighbors of the node (specified by maxneighbor)
and is still of the lowest co&, the current node is de-
clared to be a “local” minimum. Then in Step (7), the
cost of this local minimum L compared with the lowest
coat obtained so far. The lower of the two coats above
is stored in mincost. Algorithm CLARANS then re-
peats to search for other local minima, until numiocul
of them have been found.

Aa shown above, CLABANS has two parame
tern: the maximum number of neighbors exam-
ined (maxneighbor), and the number of local min-
ima obtained (numlocal). The higher the value of
maxneighbor, the closer is CLABANS to PAM, and
the longer is each search of a local minima. But the
quality of such a local minimais higher, and fewer local
minima needs to be obtained. Like many applications
of randomized search [8, 91, we rely on experiments to
determine the appropriate value-s of these parameters.
All the performance results of CLARANS quoted in
the remainder of this paper are baaed on the version of
CLABANS that set numIoca1 to 2 and maxneighbor
to be the larger value between 1.25% of h(n - k) and
250. See [15] f or more information on how and why
these specific values are chosen.

40 60 80 100

number of objects

Figure 1: Efficiency: CLABANS vs PAM

3.3 Experimental Results: CLARANS vs
PAM

In the following we present experimental results com-
paring CLARANS with PAM. As discussed before,
for large and medium data sets, it is obvious that
CLABANS, while producing clusterings of very com-
parable quality, is much more efficient than PAM.
Thus, our focus here was to compare the two algo
rithma on small data sets. We applied both algorithms
to data sets with 40,60,80 and 100 points in 5 clusters.
Figure 1 shows the runtime taken by both algorithms.
Note that for all those data sets, the clusterings pro-
duced by both algorithms are of the same quality (i.e.
same average distance). Thus, the difference between
the two algorithms is determined by their efficiency.
It is evident from Figure 1 that even for small data
sets, CLABANS outperforms PAM significantly. As
expected, the performance gap between the two algo
rithms grows, as the data set increases in size.

3.4 Experimental Results: CLARANS vs

CLARA

In this series of experiments, we compared CLARANS
with CLARA. As discussed in Section 2.2, CLARA is
not designed for small data sets. Thus, we ran thii set
of experiments on data sets whose number of objects
exceeda 100. And the objects were organized in differ-
ent number of clusters, aa well as in different types of
clusters [15].

When we conducted this series of experiments run-

148

(10 CIW)

(5 clur)

clomns

zoo0 3ooo

number of objects

Figure 2: Relative Quality: Same Time for CLARANS
and CLARA

ning CLARA and CLARANS as presented earlier,
CLARANS is always able to find clusterings of bet-
ter quality than those found by CLARA. However,
in some cazes, CLARA may take much leas time
than CLARANS. Thus, we wondered whether CLARA
would produce clusterings of the same quality, if it
was given the same amount of time. This leads to
the next series of experiments in which we gave both
CLARANS and CLARA the same amount of time.
Figure 2 shows the quality of the clusterings produced
by CLARA, normalized by the corresponding value
produced by CLARANS.

Given the same amount of time, CLARANS clearly
outperforms CLARA in all cazes. The gap between
CLARANS and CLARA increases from 4% when k,
the number of clusters, is 5 to 20% when k is 20.
This widening of the gap as k increases can be best
explained by looking at the complexity analyses of
CLARA and CLARANS. Recall from Section 2.2 that
each iteration of CLARA is of O(ks + nk). On the
other hand, the cost of CLARANS is basically linearly
proportional to the number of objects a. Thus, an

2There is a random aspect and a non-random wect to the
execution of CLAFUNS. The non-random aspect corresponds
to the part that finds the cost differential between the curre-nt
node and its neighbor. This part, as defiued in Equation (5)
is linearly proportional to the number of objects in the data
set. On the other hand, the random aspect corresponds to the
part that searches for a local minimum. As the values to plot
the eaphs are average values of 10 runs, which have the &ect
of reducing the influence of the random aspect, the runtimes

increase in k imposes a much larger cost on CLARA
than on CLARANS.

The above complexity comparison also explains why
for a fixed number of clusters, the higher the number of
objects, the narrower the gap between CLAFfANS and
CLARA is. For example, when the number of objects
is 1000, the gap is as high as 30%. The gap drops
to around 20% as the number of object increases to
2000. Since each iteration of CLARA is of O(k3 + nk),

the first term k3 dominatea the second term. Thus,
for a fixed k, CLARA is relatively less sensitive to
au increase in n. On the other hand; since the co@ of
CLARANS is roughly linearly proportional to n, an in-
creaze in n imposes a larger cost on CLAB,ANS than on
CLARA. This explains why for a fixed k, the gap nar-
rows as the number of objects increases. Nonetheless,
the bottom-line shown in Figure 2 is that CLARANS
beats CLARA in all c88es.

In sum, we have presented experimental evidence
showing that CLARANS is more efficient than PAM
and CLARA for small and large data sets. Our ex-
perimental results for medium data sets (not included
here) lead to the same conclusion. In the next section,
we will present two spatial data mining algorithms
that use clustering methods. Later we will present
experimental evidence on the effectiveness of these al-
gorithms.

4

4.1

Spatial Data Mining based on Clus-
tering Algorithms

Spatial Dominant Approach:
SD(CLARANS)

There are different approaches to spatial data min-
ing. The kind of spatial data mining considered in
this paper assumes that a spatial database consists of
both spatial and non-spatial attributes, and that non-
spatial attributes are stored in relations [3, 12, 171.
The general approach here is to use clustering alge
rithms to deal with the spatial attributes, and use
other learning tools to take care of the non-spatial
counterparts.

DBLEARN is the tool we have chosen for min-

ing non-spatial attributes [7]. It takes as inputs re-
lational data, generalization hierarchies for attributes,
and a learning query specifying the focus of the min-
ing task to be carried out. From a barning re
quest, DBLEARN first extracts a set of relevant tu-
ples via SQL queries. Then based on the general-
ization hierarchies of attributes, it ,iteratively gener-
alizes the tuples. For example, suppose the tuples
relevant to a certain learning query have attributes

of CLARANS used in our graphs are largely dominated by the
non-random aspect of CLAFtANS.

149

(major, ethnicgroup). Further assume that the gen-
eralization hierarchy for ethnicgroup has Indian and
Chinese generalized to Asians. Then a generalization
operation on the attribute ethnicgroup causes all tu-
ples of the form (m, Indian) and (m, Chinese) to be

.
merged to the tuple (m, Asians). Thii mergmg has
the effect of reducing the number of remaining (gen-
eralized) tuples. As described in [q, each tuple has
a system-defined attribute called count which keeps
track of the number of original tuples (as stored in
the relational database) that are represented by the
current (generalized) tuple. Thii attribute enables
DBLEARN to output such statistical statements as
8% of all students majoring in Sociology are Asians.
In general, a generalization hierarchy may have mul-
tiple levels (e.g. Asians further generalized to non-
Canadians), and a learning query may require more
than one generalization operation before the final num-
ber of generalized tuples drops below a certain thresh-
old 3. At the end, statements such as 90% of all Arts
students are Canadians may be returned as the find-
ings of the learning query.

Having outlined what DBLEARN does, the specific
issue we address here is how to extend DBLEARN
to deal with spatial attributes. In particular, we
will present two ways to combine clustering al-
gorithms with DBLEARN. The algorithm below,
called SD(CLARANS), combines CLARANS and
DBLEARN in a spatial dominant fashion. That is,
spatial clustering is performed first, followed by non-
spatial generalization of every cluster.

Algorithm SD(CLARANS)

Given a learning request, find the initial set of
relevant tuples by the appropriate SQL queries.

Apply CLARANS to the spatial attributes and
find the most natural number knelt of clusters.

For each of the k,,,,t clusters obtained above,

(a) collect the non-spatial components of the tu-
ples included in the current cluster, and

(b) apply DBLEARN to this collection of the
non-spatial components. cl

Similarly, Algorithms SD(PAM) and SD(CLARA) can
be obtained. But as shown in the last section that
CLARANS is more efficient than PAM and CLARA,
the experimental evaluation to be reported in Section 5
only considers SD(CLAR.ANS).

3Apart from generaliestion operations (also known as hier-
archy ascension operations), DBLEABN, in its full form, may
sometimes choose to drop an attribute, if generalizing such an
attribute would produce wintereating resulta (e.g. generali5h~~
names of students).

4.2 Determining knot for CLARANS

Step (2) of Algorithm SD(CLARANS) tries to find
knat clusters, where knot is the most natural number
of clusters for the given data set. However, recall that
CLARANS and all partitioning algorithms require the
number k of clusters to be given as input. Thus, an
immediate question to ask is whether SD(CLARANS)
knows beforehand what Anot is and can then simply
pass the value of k,,* to CLARANS. The unfortunate
answer is no. In fact, determining knot is one of the
most difficult problems in cluster analysis, for which no
unique solution exists. For SD(CLARANS), we adopt
the heuristics of computing the silhouette coeflcients,
first developed by Kaufman and Rousseeuw [lo]. (For
a survey of alternative criteria, see [14].) For space
considerations, we do not include the formulas for com-
puting silhouettes, and will only concentrate on how
we use silhouettes in our algorithms.

Intuitively, the silhouette of an object Oj , a dimen-
sionless quantity varying between -1 and 1, indicates
how much Oi truly belongs to the cluster to which Oj
is classified. The closer the value is to 1, the higher the
degree Oj belongs to its cluster. The silhouette width
of a cluster is the average silhouette of all objects in
the cluster. Based on extensive experimentation, [lo]
proposes the following interpretation of the silhouette
width of a cluster:

For a given number k 2 2 of clusters, the silhouette
coefficient for A ia the average silhouette widths of the
k clusters. Notice that the silhouette coefficient does
not necessarily decrease monotonically as k increases 4.
If the value k is too small, some distinct clusters are
incorrectly grouped together, leading to a small silhou-
ette width. On the other hand, if k is too large, some
natural clusters may be artificially split, again leading
to a small silhouette width. Thus, the most natural k
is the one whose silhouette coefficient is the highest.
However, our experiments on spatial data mining show
that just using the highest silhouette coefficient may
not lead to intuitive results. For example, some clus-
ters may not have reasonable structures, i.e. widths
5 0.5. Thus, we use the following heuristics to deter-
mine the value k,,,$ for SD(CLARANS).

‘However, this is not the case for the average disshnikity
of an object from its medoid. The larger the w&e of k, the
snmller the weage didmihity b. Thin explaiM why average

. .
dwshmkity is only suitable as a measumm ent criterion for fixed

k, but ie otherwise not e&able to be umed to compare the quality
of clwtehga produced by different k values.

150

Heuristics for Determining knat

Find the value k with the highest silhouette coef-
ficient .

If all the k clusters have silhouette widths 2 0.51,
k nat = k, and halt..

Otherwise, remove the objects in those clusters
whose silhouette widths are below 0.5, provided
that the total number of objects removed so far is
less than a threshold (e.g. 25% of the total num-
ber of objects). The objects removed are consid-
ered to be outliers or noises. Go back to Step (1)
for the new data set without the outliers.

If in Step (3), the number of outliers to ,be re-
moved exceeds the threshold, simply set knot = 1,
indicating in effect that no clustering is reason-
able. 0

In Section 5, we will see the usefulness of the heuristics.
Having described SD(CLARANS), we are now in

a position to compare SD(CLARANS) with an ear-
lier approach reported in [13] .whose goal is to enhance
DBLEARN with spatial learning capabilities. One of
the two proposed approaches there is to first perform
spatial generalizations, and then to use DBLEARN to
conduct non-spatial generalizations. The fundamen-
tal difference between SD(CLARANS) and that algo
rithm in [13] is that a user of the latter must give
a priori as input generalization hierarchies for spatial
attributes. The problem is that without prior analy-
sis, it is almost impossible to guarantee that the given
hierarchies are suitable for the given data set. (This
may in fact be one of the discoveries to be found out
by the spatial data mining task!) For example, sup
pose a spatial data mining request is to be performed
on all the expensive houses in Greater Vancouver. A
default spatial hierarchy to use may be the one that
generalizes streets to communities and then to cities.
However, if some of the expensive houses are spatially
located along something (such ss a river, the bottom
of a range of mountains, etc.) that runs through many
communities and cities, then the default spatial hierar-
chy would be very ineffective, generating such general
statements as that the expensive houses are more or
less scattered in all the cities in Greater Vancouver.

Far extending the capability of the algorithm in [13],
SD(CLARANS) finds the cl~ters dire&y from the
given data. To a certain extent, the clustering al-
gorithm, CLARANS in this case, can be viewed as
computing the spatial generalization hierarchy dynam-
ically. The result of such computation, combined with
the above heuristica to find k,,,,f, precisely finds the
clusters (if indeed exist in the data set) in terms of the
x- and y coordinates of the points, and not confined

by any hierarchies specified a priori. For the expen-
sive houses example discussed above, SD(CLARANS)
could directly identify clusters along the river or the
bottom of the mountain range, and could lead to such
statements as 80% of all mansions have either a moun-
tain or a river view. In Section 5, we will see how well
our spatial data minii algorithms can handle a data
set arguably more complex than the example discussed
here.

4.3 Non-Spatial Dominant Approach:
NSD(CLARANS)

To a large extent, spatial dominant algorithms, such
as SD(CLARANS), can be viewed as focusing asym-
metrically on discovering non-spatial characterizations
of spatial clusters. Non-spatial dominant algorithms,
on the other hand, focus on discovering spatial clus-
ters existing in groups of non-spatial data items. For
example, these algorithms may find interesting diicov-
eries based on the spatial clustering or diitribution
of a certain type of houses. More specifically, unlike
spatial dominant algorithms, non-spatial dominant al-
gorithms first apply non-spatial generalizations, fol-
lowed by spatial clustering. The following algorithm,
NSD(CLARANS), uses DBLEARN and CLARANS to
perform data mining on non-spatial and spatial at-
tributes respectively.

Algorithm NSD(CLARANS)

4.

Given a learning request, find the initial set of
relevant tuples by the appropriate SQL queries.

Apply DBLEARN to the non-spatial attributes,
until the final number of generalized tuples fall
below a certain threshold (cf. Section 4.1).

For each generalized tuple obtained above,

(4

O-9

collect the spatial components of the tuples
represented by the current generalized tuple,
and

apply CLARANS and the heuristics pre-
sented above to find the most natural num-
ber knot of clusters.

For all the clusters obtained above, check if there
are clusters that intersect or overlap. If exist, such
clusters can be merged. Thii in turn causes the
corresponding generalized tuplea to be combined.

cl

Recall from the previous section on clustering algo
rithms that for a given da;ta set, clusters do not over-
lap or intersect. This is why SD(CLARANS) does not
include .a step analogous to Step (4) above. However,
for NSD(CLARANS) (and other non-spatial dominant

151

algorithms such as NSD(PAM)), clusters obtained for
different generalized tuples can overlap or intersect.
In that csse, opportunities arise for further gener-
alization of spatial and non-spatial data. This is
the purpose of Step (4) above. In the following, we
present experimental results evaluating the effective-
ness of NSD(CLARANS), as well as SD(CLARANS).

5 Evaluation of SD(CLARANS) and
NSD(CLARANS)

5.1 A Real Estate Data Set

One way to evaluate the effectiveness of a data mining
algorithm is to apply it to a real data set and see what
it finds. But sometimes it may be difficult to judge the
quality of the findings, without knowing a priori what
the algorithm is supposed to find. Thus, to evaluate
our algorithms, we generated a data set that honors
several rules applicable to the 2500 expensive housing
units in Vancouver. These rules, very close to reality
to the best of our knowledge, are as follows:

A. house type, price and size:

1. If the house type is mansion, the price falls
within the range [1500K,3500K], and the size
within the range [6000,10000] square feet.

2. If the house type is single-house, the
price and size ranges are [800K,1500K] and
[3000,7000].

3. If the house type is condo(minium), the
price and size ranges are [300K,800K] and
[1000,2500]. For simplicity, we assumed uni-
form distributions within all the ranges.

B. distribution:

1. There are 1200 condos uniformly distributed
in the Vancouver downtown area - the rect-
angular region at the top of Figure 3. From
now on, this region will be referred to as Area
Bl.

2. Along Marine Drive, there are about 320
mansions and about 80 single-houses - the
stripe at the bottom left-hand corner of Fig-
ure 3. This area will be referred to as Area
B2.

3. Around Queen Elizabeth Park, there are 800
singlr+houses -the polygonal area at the bot-
tom right-hand corner of Figure 3. This area
will be referred to as Area B3.

4. Finally, to complicate the situation, there
are 100 singkhouses uniformly distributed
in the rest of Vancouver.

600 600 ltiOO 1200 1400

x-coordinates

Figure 3: Spatial Distribution of the 2500 Housing
Units

5.2 Effectiveness of SD(CLARANS)

Based on the heuristics presented in Section 4.2, Step
(2) of SD(CLARANS) appropriately sets the value of
k,,of to 3. The silhouette coefficient for knot = 3 is
0.7, indicating that all 3 clusters are quite strong.
Thus, Steps (3) and (4) of the heuristics are not
needed in this case. After computing knal, it takes
CLARANS about 25 seconds to identify the 3 clue-
ters (in a time-sharing SPARC-LX workstation en-
vironment). The first cluster contains 832 units all
single-houses, 800 of which are those in Area B3 de-
fined in Section 5.1. For this cluster, DBLEABN in
Step (3) of SD(CLARANS) correctly finds the price
and size ranges to be [800K,1500K] and [3000,7000].
It also reveals that the prices and sizes are more or
less uniformly distributed.

The second cluster contains 1235 units, 1200 of
which are condos, and the remainders single-houses.
It contains all the units in Area Bl introduced in
Section 5.1. For this cluster, DBLEARN finds the
condo prices and sizes uniformly distributed within
the ranges [300K,8OOK] and [1000,2500] respectively.
It also discovers that the single-house prices and sizes
fall within [800K, 15OOK] and [3000,7000].

The third cluster contains 431 units, 320 of which
are mansions, and the remainders single-houses. This
cluster includes all the units along the stripe Area
B2. For this cluster, DBLEARN llnds the man-
sion prices and sizes uniformly distributed within the

152

iz I
. . .

600 600 1000
x-coordinates

1200

Figure 4: Clusters for the First Generalized Tuple for
Mansions

ranges [1500K,3500K] and [6000,10000]. As for the
singlehouses in the cluster, DBLEARN again finds the
right ranges.

In sum, SD(CLARANS) is very effective. This is
due primarily to the clusters found by CLARANS,
even in the presence of outliers (cf. B.4 of Sec-
tion 5.1). Once the appropriate clusters are found,
DBLEARN easily identifies the non-spatial patterns.
Thus, CLARANS and DBLEARN together enable
SD(CLAB,ANS) t o successfully discover all the rules
described in Section 5.1 that it is supposed to find.

5.3 Effectiveness of NSD(CLARANS)

In Step (2) of NSD(CLAR.ANS), DBLEARN finds 12
general&d tuples, 4 for each type of housing units.
Let us first consider the 4 generalised tuples for man-
sions. The 4 tuples represent respectively mansions in
the following categories: a) price in [1500K,26OOK],
size in [6000,8500]; b) price in [1500K,2600K], sise
in [8500,10000]; c) price in [2600K,3500K], sire in
[6000,8500]; and d) price in [2600K,3500K], sise in
[8500,10000]. The graph in Figure 4 shows the spa
tial distributions of the mansions in the first category.
When CLARANS is applied to the points shown in the
graph, 2 clusters are found (points in the two clusters
represented by either dots or +). The graphs for the
other catergories b), c) and d) are very similar, and
again two clusters are found in each case. Now when
Step (4) of NSD(CLARANS) is executed, overlapping
clusters are merged, which in turn causes the 4 gen-

eralized tuples to be combined as well. As a result,
NSD(CLARANS) finds out that all mansions are lo-
cated in the stripe area, and have prices and sizes in
the ranges [1500K,3500K] and [6000,10000].

The 4 tuples for condos correspond respectively
to the following categories: a) price in [300K,600K],
size in [1000,1800]; b) price in [300K,600K], size
in [1800,2500]; c) price in [600K,800K], size in
[1000,1800]; and d) price in [SOOK,SOOK], size in
[1800,2500]. Th e p recessing of these tuples is very
similar to the processing of those for mansions above.
The only difference is that for all 4 tuples, no
cluster is found 5, i.e. knot set to 1 in Step (4)
of the heuristics in Section 4.2. Thus, in the fi-
nal step of NSD(CLARANS), all 4 regions/clusters,
which overlap, are merged into an area that coin-
cides precisely with Area Bl Figure 3. Consequently,
NSD(CLARANS) discovers that all (expensive) con-
dos are located in the Vancouver downtown area, and
have prices and sises in the ranges [300K,800K] and
[1000,2500].

The processing of singlehouses is the most com-
plicated. The 4 tuples correspond to the categories:
a) price in [1200K,1500K], size in [3000,5500]; b)
price in [12OOK,1500Kj, size in [5500,7000]; c) price
in [800K,1200K], sise in (3000,5500]; and d) price in
[8OOK,1200K], size in [5500,7000]. When CLARANS
is applied to the houses in the category a), the high-
est silhouette coefficient is found when the number of
clusters is 4. However, even though the silhouette coef-
ficient is above 0.5, the silhouette widths of two of the
clusters are below 0.5. Thus, Step (3) of the heuristics
in Section 4.2 is invoked. As a result, 15 out of the orig-
inal 253 points are removed. For this new collection,
two clusters are identified: i) along the stripe Area
B2 in Figure 3, and ii) around Area B3 in Figure 3.
The clusterings for categories b), c) and d) of single
houses are very similar to the ones described above.
Again, outliers need to be removed. At the end, af-
ter merging has taken place in Step (4), 2 regions are
found, which are identical to the ones listed i) and ii)
above. hrthermore, NSD(CLARANS) correctly iden-
tifies the price and size ranges for singl~houses to be
[800K,1500K] and [3000,7000].

5.4 summary

With respect to the rules listed in Section 5.1, both
SD(CLARANS) and NSD(CLARANS) find most of
what they are supposed to find. In terms of per-
formance and effectiveness, SD(CLARANS) has the
edge. As discussed earlier, this is due to CLARANS’
success in identifying the clusters right away. On

525% ia the threshold used in Step (3) of the heuristics in

Section 4.2.

153

the other hand, in NSD(CLARANS), performing non-
spatial generalizations divides the entire set of points
into different groups/tuples. This may have the ef-
fect of breaking down the tightness of some clusters.
Outliers removal may then be needed to extract rea-
sonable clusters from each group. This procedure, as
we have seen, may weaken the eventual findings and
takes more time. Finally, merging overlapping and in-
tersecting clusters can also be costly.

However, to be fair with NSD(CLARANS), the
rules described in Section 5.1 are more favorable to
SD(CLARANS). There is a strong emphasis on find-
ing out non-spatial characterizations of spatial clus-
ters, which is the focus of spatial dominant algorithms.
In contrast, a non-spatial dominant algorithm focuses
more on finding spatial clusters within groups of data
items that have been generalized non-spatially. For
example, if the spatial distribution of singlehouses is
primarily determined by their price and size categories,
then NSD(CLARANS) could be more effective than
SD(CLARANS).

6 Discussions

6.1 Exploring Spatial Relationships

Thus far, we have shown that clustering algorithms,
such as CLARANS, are very promising and effective
for spatial data mining. But we believe that there is
an extra dimension a clustering algorithm can provide.
As discussed in Section 4.2, a clustering algorithm does
not require any spatial generalization hierarchy to be
given, and directly discovers the groups/clusters that
are the most appropriate to the given data. In other
words, clustering can provide very tight spatial charac-
terizations of the groups. The tightness and specificity
of the characterizations provide opportunities for ex-
ploring spatial relationships that may exist between
the clusters and other interesting objects.

Consider again the real estate example discussed
in the previous section. SD(CLARANS) finds 3 clus-
ters of expensive housing units (cf. Figure 3). Those 3
clusters can then be overlaid with Vancouver maps of
various kinds (e.g. parks, highways, lakes, etc.) The
following findings can be obtained:

l About 96% of the houses in the first cluster (as
described in Section 5.2) are within 0.6km from
Queen Elizabeth Park.

l About 97% of the housing units in the second clus-
ter are located in the Vancouver downtown area
which is adjacent to Stanley Park 6

gDming the summit meeting between Russia and the US
in 1993, Clinton dined in Queen Elizabeth Park and jogged in

Stanley Park!

l About 92% of houses in the third cluster are
within 0.4km from the western coast line of Van-
couver .

The point here is that while SD(CLARANS) or
NSD(CLARANS) d o not directly find the above fea-
tures (which is the job of another package that can
provide such spatial operations as map overlays), they
do produce structures or clusters that can lead to fur-
ther discoveries.

6.2 Towards Building a More General and Ef-
ficient Spatial Data Mining Framework

A natural extension to SD(CLARANS) and
NSD(CLARANS) will be the integration of the two al-
gorithms by performing neither spatial dominant nor
non-spatial dominant generalizations, but interleaved
or balanced generalizations between spatial and non-
spatial components. At each step, the data mining
algorithm may select either a spatial or a non-spatial
component to generalize. For example, if a clustering
method can detect some high quality clusters, cluster-
ing may be performed first. These clusters may trigger
generalization on non-spatial components in the next
step if such a generalization may group objects into
interesting groups. It is an interesting research issue
to study how to compare the quality of spatial and
non-spatial generalizations.

A spatial database may be associated with several
thematic maps, each of which may represent one kind
of spatial data. For example, in a city geographic
database, one thematic map may represent the lay-
out of streets and highways, another may outline the
emergency service network, and the third one may de-
scribe the distribution of educational and recreational
services. To many applications, it will be very use-
ful if data mining on multiple thematic maps can be
conducted simultaneously. This would involve not
only clustering, but also other spatial operations such
as spatial region growing, overlays and spatial joins.
Thus, it is an interesting research issue to study how
to provide an effective framework that integrates all
these operations together for simultaneous mining of
multiple maps.

There are many kinds of spatial data types, such as
regions, points and lines, in spatial databases. Cluster-
ing methods, as presented here, are most suitable for
points or small regions scattered in a relatively large
background. However, it remains an open question as
to how they can be effectively applied to deal with line-
typed spatial data, such as to examine how highways
are located in cities.

Furthermore, due to the nature of spatial data,
noise or irrelevant information is prevalent in spatial
databases. The development of a general framework

154

for removing noises and filtering out irrelevant data is
important to the effectiveness of spatial data mining.
It is also interesting to find out what roles approxima-
tion and aggregation can play in the framework.

7 Conclusions

In this paper, we have presented a clustering aIgo
rithm called CLARANS which is based on randomized
search. We have also developed two spatial data min-
ing aIgorithmsSD(CLARANS) and NSD(CLARANS).
Experimental results and analysis indicate that both
algorithms are effective, and can lead to discoveries
that are difficult to obtain with existing spatial data
mining algorithms. Finally, we have presented exper-
imental results showing that CLABANS itself is more
efficient than existing clustering methods. Hence,
CLARANS has established itself as a very promising
tool for efficient and effective spatial data mining.

Acknowledgements

Research partially sponsored by NSERC Grants
OGP0138055, OGP03723 and STR0134419, IRIS2
Grants HMI-5, IC-2, X-5, and the Centre for Systems
Science of Simon Fraser University.

References

PI

PI

[31

PI

151

PI

i71

R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer,
and A. Swami. (1992) An Interval Classifier
for Database Mining Applications, Proc. 18th
VLDB, pp 560-573.

R. AgrawaI, T. Imielinski, and A. Swami. (1993)
Mining Association Rules between Sets of Items
in Large Databases, Proc. 1993 SIGMOD, pp
207-216.

W. G. Aref and H. Samet. (1991) Optimization

Strategies for Spatial Query Processing, Proc.

17th VLDB, pp. 81-90.

A. Borgida and R. J. Brachman. (1993) Load-
ing Data into Description Reasoners, Proc. 1993
SIGMOD, pp 217-226.

T. Brinkhoff and H.-P. Kriegel and B. Seeger.
(1993) Eficient Processing of Spatial Joins Us-

ing R-trees, Proc. 1993 SIGMOD, pp 237-246.

0. Giinther. (1993) Efficient Computation of

Spatial Joins, Proc. 9th Data Engineering, pp
50-60.

J. Han, Y. Cai and N. Cercone. (1992) Knowl-
edge Discovery in Databases: an Attribute-

Oriented Approach, Proc. 18th VLDB, pp. 547-
559.

PI

PI

WI

WI

PI

P31

WI

PI

PI

1171

M

Y. Ioannidis and Y. Kang. (1990) Randomized

Algorithms for Optimizing Large Join Queries,

Proc. 1990 SIGMOD, pp. 312-321.

Y. Ioannidis and E. Wong. (1987) Query Op-
timization by Simulated Annealing, Proc. 1987
SIGMOD, pp. 9-22.

L. Kaufman and P.J. Rousueeuw. (1990) Find-
ing Groups in Data: an Introduction to Cluster
Analysis, John Wiley & Sons.

D. Keim and H. Kriegel and T. Seidl. (1994)
Supporting Data Mining of Large Databases by
Visual Feedbach Queries, Proc. 10th Data Engi-
neering, pp 302-313.

R. Laurini and D. Thompson. (1992) Fundamen-
tals of Spatial Information Systems, Academic
Press.

W. Lu, J. Han and B. C. Ooi. (1993) Discovery of
General Knowledge in Large Spatial Databases,
Proc. Far East Workshop on Geographic Infor-
mation Systems, Singapore, pp. 275289.

G. Milligan and M. Cooper. (1985) An Ezamina-

tion of Procedures for Determining the Number

of Clusters in a Data Set, Psychometrika, 50,
pp. 159-179.

R. Ng and J. Han. (1994) Effective and Eflec-
tive Clustering Methods for Spatial Data Mining,
Technical Report 9413, University of British
Columbia.

G. Piatetsky-Shapiro and W. J. Frawley. (1991)
Knowledge Discove y in Databases, AAAI/MIT
Press.

H. Samet. (1990) The Design and Analysis of
Spatial Data Structures, Addison-Wesley.

H. Spath. (1985) Cluster Dissection and Anal-
ysis: Theory, FORTRAN programs, Examples,
Ellis Horwood Ltd.

155

