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Abstract—Coronavirus Disease 2019 (COVID-19) has
rapidly spread worldwide since first reported. Timely diag-
nosis of COVID-19 is crucial both for disease control and
patient care. Non-contrast thoracic computed tomography
(CT) has been identified as an effective tool for the diag-
nosis, yet the disease outbreak has placed tremendous
pressure on radiologists for reading the exams and may
potentially lead to fatigue-related mis-diagnosis. Reliable
automatic classification algorithms can be really helpful;
however, they usually require a considerable number of
COVID-19 cases for training, which is difficult to acquire
in a timely manner. Meanwhile, how to effectively utilize
the existing archive of non-COVID-19 data (the negative
samples) in the presence of severe class imbalance is an-
other challenge. In addition, the sudden disease outbreak
necessitates fast algorithm development. In this work, we
propose a novel approach for effective and efficient training
of COVID-19 classification networks using a small number
of COVID-19 CT exams and an archive of negative samples.
Concretely, a novel self-supervised learning method is pro-
posed to extract features from the COVID-19 and negative
samples. Then, two kinds of soft-labels (‘difficulty’ and ‘di-
versity’) are generated for the negative samples by comput-
ing the earth mover’s distances between the features of the
negative and COVID-19 samples, from which data ‘values’
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of the negative samples can be assessed. A pre-set number
of negative samples are selected accordingly and fed to
the neural network for training. Experimental results show
that our approach can achieve superior performance using
about half of the negative samples, substantially reducing
model training time.

Index Terms—Coronavirus disease 2019, Self-supervised
learning, efficient network training.

I. INTRODUCTION

C
ORONAVIRUS Disease 2019 (COVID-19) has rapidly

spread all over the world since first reported in December

2019. The disease is highly contagious and has infected over 14.4

million people worldwide to date (Jul 20th, 2020).1 On March

11th, 2020, the World Health Organization (WHO) declared

COVID-19 a pandemic. The reverse transcription polymerase

chain reaction (RT-PCR) assay of sputum or nasopharyngeal

swab is considered as the gold standard for confirmation of

COVID-19 cases. However, several studies have reported in-

sufficient sensitivities (i.e., high false negative rates) of RT-

PCR for effective early diagnosis and subsequent treatment of

presumptive patients [1]–[3]. Meanwhile, as most COVID-19

patients exhibit respiratory symptoms (mainly pneumonia) [4],

the non-contrast thoracic computed tomography (CT) becomes

an alternative solution to help diagnose COVID-19 positive

patients from suspected cohorts.

Several studies [2], [5] described typical chest CT findings

of COVID-19 as diffuse or focal ground-glass opacities, par-

ticularly bilateral and peripheral ground-glass, as well as con-

solidative pulmonary opacities. In addition, Bernheim et al. [5]

noted the progression of chest CT manifestations from early

to late stages, characterized by greater lung involvement, craz-

ing paving and reverse halo signs, etc. Moreover, both Xie

et al. [1] and Fang et al. [2] reported superior sensitivities

of non-contrast chest CT to RT-PCR. However, due to the

sudden outbreak of the COVID-19 pandemic, radiologists are

now facing great pressure in reading the tremendous quantity

of CT exams—a thin-slice CT sequence of 300 slices can take

5–15 minutes of a radiologist to make the diagnosis. Besides

being time-consuming and painstaking, the reading process can

become error- and omission-prone considering the extremely

1https://coronavirus.jhu.edu/map.html
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heavy workload. Also, identifying early signs of COVID-19 in

CT can be difficult for junior radiologists. Therefore, auto-

mated algorithms that are able to consistently identify COVID-

19 from CT exams are of great clinical value fighting the

pandemic.

In recent years, deep learning (DL) based methods have been

applied to various tasks in medical image analysis and achieved

outstanding performance [6], [7], including diagnosis of pe-

diatric pneumonia using chest X-ray images [8]. Nonetheless,

DL-based methods are known to be data-hungry. For example,

a recent work [9] showed that the DL method was able to distin-

guish COVID-19 from community acquired pneumonia (CAP)

and non-pneumonia on chest CT exams, using 4,356 3D chest

CT exams of 3,506 patients for development and validation of the

DL method, of which 1,296 (30%) were confirmed COVID-19.

Under most circumstances, however, it is difficult to collect a

well-balanced dataset to train DL-based models for an emerging

disease like COVID-19 for most medical centers, especially in

the early stage of the outbreak. On one hand, the number of

positive cases (e.g., COVID-19) is extremely low. On the other

hand, it is more likely that these medical centers house a consid-

erable archive of other cases such as CAP and non-pneumonia

CT exams. This results in two practical challenges to the fast

development of DL-based screening methods for rapid response

to disease screening and control: insufficient positive training

samples and seriously imbalanced classes.

In this work, we propose a novel solution to this dilemma, for

effective and efficient training of DL-based methods to aid the

COVID-19 diagnosis on chest CT exams—more specifically,

to distinguish CT exams of COVID-19 from others. We have

collected 305 CT exams for COVID-19 and 2,370 for CAP and

non-pneumonia, resulting in a 1:8 positive to negative ratio. The

common strategy for handling the imbalanced training data is

either to under-sample the majority class or over-sample the

minority class. However, the former may discard the potentially

useful information in the majority class, whereas the latter may

unnecessarily increase the computational overhead. Another line

of solutions is to resample [10] or reweight [11] the training

samples after forwarding them through the network, especially

for those in the majority class. Notwithstanding, these solutions

still require loss computation for all samples in each training

epoch.

Different from these methods, we propose a dual-track rank-

ing approach to explicitly measure the ‘value’ of negative sam-

ples for network training in an offline manner. The proposed

approach ranks the negative samples in both terms of ‘diffi-

culty’ and ‘diversity’. A novel self-supervised learning method

(i.e., Rubik’s cube Pro) is proposed to extract features from

the COVID-19 and negative CT volumes. Then, two kinds of

soft-labels (i.e., ‘difficulty’ and ‘diversity’) are generated for

each negative sample by calculating the earth mover’s distance

(EMD) between its features and those of COVID-19 volumes.

Using these generated soft-labels, the data ‘value’ of negative

samples can be quantitatively evaluated. A pre-set number of

negative samples are selected based on the joint ranking of

‘difficulty’ and ‘diversity,’ and fed to the neural network for

training together with the COVID-19 volumes (Fig. 1).

In summary, our contributions in this work are three folds:

Fig. 1. Imbalanced distribution of positive (red) and negative (cyan)
samples. The proposed approach is encouraged to select a subset of
samples (cyan stars), which are representative of the entire negative
pool (cyan stars plus cyan circles). Therefore, we can maintain the
performance of classifier and shorten the training period.

� We propose a novel self-supervised learning approach,

namely Rubik’s cube Pro, which is an extension of the

approach proposed in our previous conference paper [12].

Compared to the common Rubik’s cube [12], a random

masking operation is added to the pretext task to improve

self-supervised feature representation, which is more ro-

bust to deal with the multi-centre CT volumes used in this

study.
� A dual-track offline data selection approach is proposed to

mine the informative negative samples for neural network

training, which measures the data ‘value’ in two terms—

‘difficulty’ and ‘diversity’. Compared to the online data se-

lection and oversampling approaches, our offline method

can significantly decrease the training period of deep

learning models, which is crucial for the development of

computer aided diagnosis system at the early stage of the

COVID-19 outbreak.
� We conduct extensive experiments to validate the ef-

ficiency and effectiveness of the proposed offline data

selection approach. The experimental results show that,

compared to the vanilla network training scheme using

all available negative samples, our approach can achieve

superior performance using only about half of the negative

samples for training the COVID-19 classification network,

substantially reducing model training time.

II. RELATED WORK

In this section, we provide a systematic review of the lit-

erature related to our work. First, we review existing works

on imaging-based diagnosis of pneumonia, including several

concurrent works on COVID-19 diagnosis. Second, we review

several topics closely related to our novel approach, including

common strategies for imbalanced data, deep metric learning,

and self-supervised training.

A. Imaging-Based Diagnosis of Pneumonia

A large body of literature focused on pneumonia diagnosis

on chest X-ray images (e.g., [8], [13]–[16], to name a few).
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Notably, both Kermany et al. [8] and Rajarama et al. [14]

applied DL methods to the diagnosis between bacterial and viral

pneumonia in pediatric chest X-rays, which is similar to our goal

of identifying COVID-19 (a type of viral pneumonia, indeed)

from pneumonia of other etiologies (CAP) and non-pneumonia.

For a cost-efficient solution, Zheng et al. [17] proposed a DL

method for pneumonia diagnosis based on clinical lung ultra-

sound images, using CT as the gold standard. However, both

X-ray and ultrasound images are insufficient for early diagnosis

of COVID-19 because they may easily miss the subtle signs

such as small regions of ground-glass opacities. Prior works on

machine-learning driven imaging-based diagnosis of pneumonia

are rare [18], until recently several concurrent works [9], [19],

[20] appeared for the diagnosis of COVID-19. However, none

of these works considered the problem of seriously imbalanced

COVID-19 and archived chest CT data that may be encountered

in practice when developing DL methods in the early stage of

the outbreak.

B. Strategies for Imbalanced Data

Class imbalance is a problem with a long history in learning-

based medical image analysis, and various solutions have been

proposed to deal with it. Arguably, under-sampling the majority

class and/or up-sampling the minority class to roughly equili-

brate their instance numbers are the most straightforward and

frequently used approaches. However, under-sampling with a

simple random selection strategy may discard the samples poten-

tially informative for training the DL model. Meanwhile, simply

over-sampling the minority class may not increase the amount

of effective information while substantially increasing the com-

putational overhead. In other words, neither under-sampling

nor over-sampling utilizes the inherent characteristics of the

available training samples. Re-weighting class losses in inverse

proportion to the numbers of class instances [21] is conceptually

similar to the under- and over-sampling approaches, in that it

only considers the instance numbers but not the properties of the

data. Both the online hard example mining (OHEM) [10] and

focal loss [11] tackled the class imbalance problem by estimating

the difficulty levels of the training samples, thus requiring all the

training samples to be processed by the current model in each

training epoch. In contrast, our approach first picks the most

informative negative samples from the big archive, and only uses

the selected subset for more efficient training while achieving

comparable performance. The sample selection is driven by

sample difficulty and diversity, both of which are estimated by

a model trained via metric learning.

C. Deep Metric Learning

Metric learning has been adopted in wide computer vision

applications (see [22] for a survey). Recently, this concept has

been revitalized in the realm of DL and became one of the

central topics in few-shot learning [23]–[25]. In the general

concept of metric learning, a learnable embedding function

projects the input into an embedding space, where the projected

samples of the same class should be closer to each other than

those from different classes. To learn the embedding function,

a distance metric (most often the squared Euclidean [23] or

cosine distances [25]) is employed to measure the intra- and

inter-class distances, and loss functions are defined accordingly

(e.g., the triplet loss [26]) to encourage small intra-class and large

inter-class distances. Unlike the typical deep metric learning, we

learn the embedding using only a single class (the COVID-19)

through a proxy task for self-supervised training. In addition,

we employ the earth mover’s distance [27] rather than the usual

cosine or squared Euclidean distance due to the fact that EMD

is considerably more robust especially in the task of comparing

two histogram-based feature descriptors.

Specifically, the earth mover’s distance is a distance measure

between two sets of weighted objects or distributions, which is

built upon the basic distance between individual objects. It has

the form of the well-studied transportation problem from linear

programming. Suppose that a set of suppliers are required to

transport goods to a set of demanders. The goal of EMD is to

find a least-expensive flow of goods from the suppliers to the

demanders. In this study, EMD is adopted to measure the sim-

ilarity between two histogram-based features. The calculation

process is presented in Section IV C.

D. Self-Supervised Training

To deal with the deficiency of annotated data, researchers

attempted to exploit useful information from the unlabeled data

with unsupervised approaches [28], [29]. More recently, the

self-supervised learning, as a new paradigm of unsupervised

learning, attracts increasing attentions from the community.

The pipeline consists of two steps: 1) pre-train a convolutional

neural network (CNN) on a proxy task with a large unannotated

dataset; 2) fine-tune the pre-trained network for the specific

target task with a small set of annotated data. The proxy task

enforces neural networks to deeply mine useful information

from the unlabeled raw data, which can boost the accuracy of the

subsequent target task with limited training data. Various proxy

tasks had been proposed, which include grayscale image col-

orization [30], jigsaw puzzle [31], image inpainting [32], spatial

position prediction [33], and object motion estimation [34].

For the applications with medical data, researchers took some

prior-knowledge into account when formulating the proxy task.

Zhang et al. [29] defined a proxy task that sorted the 2D slices

extracted from the conventional 3D CT and magnetic resonance

imaging (MRI) volumes, to pre-train the neural networks for

the fine-grained body part recognition (the target task). Spitzer

et al. [28] proposed to pre-train neural networks on a self-

supervised learning task, i.e., predicting the 3D distance between

two patches sampled from the same brain, for the better segmen-

tation of brain areas (the target task). Zhuang et al. [12] proposed

to pre-train 3D networks by playing a Rubik’s cube game, which

can be seen as an extension of 2D jigsaw puzzles [35]. Zhou

et al. [36] formulated a content restoration pretext task for

3D medical volumes, which achieved impressive improvements

on multiple medical image processing tasks. In this study, we

extend the Rubik’s cube approach by adding a random masking

operation, which improves the robustness of the self-supervised

feature representation.
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TABLE I
IMAGING PROTOCOLS OF THE CT EXAMS

aThe CT volumes are not of a uniform size, which makes the No. slices vary in a range.
bIsotropic pixel sizes.
cAutomatic tube current was used.

III. MATERIALS

A. Study Cohorts

This retrospective study was approved by the Institutional

Review Boards of the participating hospitals, and informed

consent was waived due to the retrospective nature of the study.

It included 2,675 3D volumetric non-contrast thoracic CT exams

from 2,595 patients acquired at over 10 medical centers between

Nov. 11th, 2010 and Feb. 9th, 2020. The inclusion criteria

included: (i) complete CT scans covering the whole lung, and

(ii) acceptable image quality not affecting analysis. For CT

exams with multiple reconstruction kernels at the same imaging

session, we manually picked the one that was visually sharper.

CT exams of the same subject acquired at different time points

were all included. The dataset comprised 305 COVID-19 (11%),

872 CAP (33%), and 1,498 non-pneumonia (56%) exams. The

data were anonymized before analysis.

All the COVID-19 data were confirmed RT-PCR positive

cases, and further verified by experienced radiologists to confirm

radiographical lung infections. The 305 COVID-19 CT exams

were acquired on 251 patients from Jan. 18th, 2020 to Feb. 9th,

2020, using 18 scanner models made by four manufacturers

(GE Medical Systems, MinFound Medical Systems, Philips, and

Siemens). The CAP data comprised 872 CT exams acquired

on 869 patients from Nov. 14th, 2010 to Nov. 4th, 2019, using

nine scanner models made by four manufacturers (GE Medical

Systems, Philips, Siemens, and Toshiba). Among them, 497 of

the CAP exams were acquired at the same hospital as 80 of the

COVID-19 exams. The non-pneumonia data comprised 1,498

CT exams acquired on 1,475 subjects between Nov. 11th, 2010

and Jul. 2nd, 2019, using 18 scanner models made by four manu-

facturers (GE Medical Systems, Philips, Siemens, and Toshiba).

The non-pneumonia cohort included subjects without any lung

disease or with lung nodules (with and without complications).

B. Imaging Protocol

The CT examinations were performed using various scanners

made by different manufacturers, presenting considerable vari-

ation in the imaging protocol (details presented in Table I). The

exams were performed with the subjects instructed to hold the

breath at full inspiration.

IV. METHOD

A. Problem Formulation

There are two main challenges we encountered while devel-

oping the computer aided diagnosis system for COVID-19 using

CT scans: 1) the quantity of COVID-19 CT volumes is deficient,

compared to the available negative samples (i.e., non-pneumonia

and CAP), suffering from the problem of class imbalance; and

2) due to the outbreak of COVID-19, there is limited time for the

training and tuning of neural networks. Specifically, assuming

we have N COVID-19 and M negative CT volumes, where

M ≫ N , the neural network trained with such an imbalanced

dataset may yield biased prediction. To alleviate the problem,

many approaches have been proposed such as focal loss [11] and

OHEM [10]. However, those online data selection approaches

are extremely time-consuming, since they take the entire sample

set (M +N ) as the training set. Witnessed the fast outbreak

of COVID-19, the tremendous time consumption caused by

the online data selection approaches is unacceptable for the

development of computer aided diagnosis systems.

To simultaneously address these two problems, we propose

a dual-track ranking approach to explicitly measure the ‘value’

of negative samples for network training in an offline manner.

As shown in Fig. 2, the proposed approach ranks the negative

samples in both terms of ‘difficulty’ and ‘diversity’ by three

steps. First, the proposed approach extracts features from the

COVID-19 and negative CT volumes using a self-supervised

learning method (i.e., Rubik’s cube Pro). Then, a soft-label is

generated for each negative sample by calculating the earth

mover’s distance (EMD) between the positive and negative

features. Using these generated soft-labels, the data ‘value’ of

negative samples can be assessed in two tracks (i.e., ‘difficulty’

and ‘diversity’). A pre-set number (S ≪ M ) of negative samples

are selected based on the joint ranking of two-tracks and fed

to the neural network for training together with the positive

volumes.

B. Feature Extraction via Self-Supervised Learning

An improved version of the recently proposed self-supervised

approach, namely Rubik’s cube Pro, is adopted to extract dis-

criminative features from CT volumes. Similar to [12], the 3D

medical volume (original state) is seen as a 2× 2× 2 Rubik’s

cube and accordingly partitioned into eight cubes. The cubes

are then processed by a series of operations (i.e., rearrangement

and rotation), which formulates a disarranged state of Rubik’s

cube. The aim of the Rubik’s cube pretext task is to recover

the original state of medical volume from the disarranged stage.

To complete the pretext task, the 3D neural network is required

to deeply mine the 3D anatomical information from the raw

volume. In addition to the cube rearrangement and reorientation

proposed in [12], our Rubik’s cube Pro randomly masks the

content of cube to increase the difficulty of the pretext task,
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Fig. 2. The pipeline of our dual-track ranking approach. The approach involves three steps: self-supervised feature learning, soft-label generation,
and difficulty and diversity evaluation. The soft-labels are presented with polar histograms, where 0

◦ is the first element.

which encourages the neural network to learn a more robust

feature representation. The proposed Rubik’s cube Pro involves

three operations—cube permutation, cube rotation, and cube

masking, which are introduced in details in the following.

1) Cube Permutation: Taking a pocket cube, i.e., 2×
2× 2 Rubik’s cube, as an example, we first select K =
100 permutations from the permutation pool (P), i.e., P =
(P1,P2, . . .,Pn, n = 8!), by maximizing the Hamming dis-

tance between each pair of permutations. Then, for each time of

Rubik’s cube recovery, the eight cubes are rearranged according

to one of the K permutations. To properly reorder the cubes,

the network is trained to identify the selected permutation from

the K options, which can be seen as a classification task with

K categories. Assuming the 1×K network prediction as z and

the one-hot ground-truth as l, the permutation loss (LP ) in this

step can be defined as:

LP = −
K
∑

j=1

lj log zj . (1)

2) Cube Rotation: Additionally, the Rubik’s cube Pro pretext

task adopts the random cube rotation to encourage the network

to extract rotation-invariant features. To reduce the complexity

of the task, we limit the directions for cube rotation, i.e., only

allowing 180◦ horizontal and vertical rotations. To orientate the

cubes, the network is required to recognize whether each of the

input cubes has been rotated. It can be seen as a multi-label

classification task using the 1× C (C is the number of cubes)

ground truth (g) with 1 on the positions of rotated cubes and

0 vice versa. Hence, the predictions of this task are two 1× C

vectors (h and v) indicating the possibilities of horizontal (hor)

and vertical (ver) rotations for each cube. The rotation loss (LR)

can be written as:

LR = −

C
∑

i=1

(ghori log hi + gveri log vi). (2)

3) Cube Masking: Inspired by the observation that learning

from a harder task often leads to a more robust feature rep-

resentation [37], [38], apart from the cube permutation and

rotation proposed in [12], an additional operation, i.e., cube

masking, is adopted in our Rubik’s cube Pro to increase the

difficulty of Rubik’s cube recovery. Such a strategy can be seen

as adding noise to the training data to avoid network overfitting.

Many researches [39], [40] have proven the effectiveness of

this strategy, but few of them integrate it into a self-supervised

learning framework.

The process of random masking strategy can be summa-

rized as following. First, a random possibility (pos ∈ [0, 1])
is generated for each cube to determine whether it should be

masked or not. If the cube is to be masked (i.e., pos ≥ 0.5),

we generate a 3D matrix R of the same shape of a cube to

randomly block the content. The value of each voxel of R is

a probability (prob) randomly captured from a uniform dis-

tribution [0, 1]. To obtain the mask, a thresholding operation

(thR = 0.5) is performed to R, which leads the voxel value

of (x, y, z) to be 1 for prob(x, y, z) ≥ thR and 0 vice versa,

where (x, y, z) is the 3D coordinate of a voxel. Assuming a

cube after rearrangement and rotation as Qo, its masking state

(Qm) can be generated by multiplying the Qo and mask R

in pixel-wise manner: Qm(x, y, z) = Qo(x, y, z) ·R(x, y, z).
Since the objective of our Rubik’s cube Pro is the same to [12]

(i.e., LP + LR), the neural networks recovering such partially

masked Rubik’s cubes can learn feature representations with

robustness against disturbance of multi-centre data, compared

to the original Rubik’s cube.

C. Soft-Label Generation

After self-supervised learning, the pre-trained 3D neural net-

work is then applied to extract features from both COVID-19 and

negative samples (i.e., the features from the last convolutional

layer of 3D ResNet-18). (Note that, to measure the distance

from negative samples to the positive pool, only COVID-19

CT volumes are employed to pre-train the neural network for

feature extraction.) We calculate the EMD between the features

of each pair of positive and negative samples to construct an

N -dimensional soft-label for each sample in the negative pool.

The EMD is an actively used cross-bin distance metric due to

its robustness, especially in the task of comparison between
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two histogram-based descriptors, such as the extracted fea-

tures in our application. Denote the features of COVID-19 and

negative CT samples as FCOV
i (i ∈ {1, . . . , D}) and FNEG

j

(j ∈ {1, . . . , D}), respectively, where D is the number of ele-

ments contained in the extracted feature (D = 512 of the last

convolutional layer of ResNet-18). Referring to Section II C,

the features of COVID-19 and negative CT samples can be seen

as the sets of suppliers and demanders. The EMD between these

two features can be defined as:

EMD(FCOV , FNEG) = min
{fij}

∑

ij fijdij
∑

ij fij
(3)

subjected to the constraints:

D
∑

j

fij ≤ FCOV
i ,

D
∑

i

fij ≤ FNEG
j ,

∑

i,j

fij = min

⎛

⎝

∑

i

FCOV
i ,

∑

j

FNEG
j

⎞

⎠ , fij ≥ 0 (4)

where fij represents the amount of flow transported from el-

ement i to j, and dij represents its ground distance. The cost

for transporting the unit amount from one element to another

is determined by its ground distance. The EMD is obtained by

measuring the minimum total cost to transform one feature into

the other. Please refer to [41] for more details.

D. Difficulty and Diversity Evaluation

Using the generated soft-labels, we can explicitly evaluate the

negative samples in terms of ‘difficulty’ and ‘diversity’ to the

neural network.

1) Difficulty: Since the soft-label represents the distance from

the negative sample to the COVID-19 feature pool, the sample

with a smaller distance is perceptually more similar to the

COVID-19. Hence, the average of EMD soft-label (L) can be

seen as a metric measuring the difficulty (Rdif ) of each negative

sample for the neural network to process, which can be defined

as:

Rdif
x = fave(Lx) (5)

where fave(.) is the average function and Lx is the N -

dimensional soft-label for sample x.

2) Diversity: The diversity of training set directly influences

the robustness of neural network—a more diverse training set

may lead to more robust model performance. Therefore, beyond

the ‘difficulty,’ we further measure the ‘diversity’ of negative

samples using the generated soft-labels. For a sample x, we first

calculate the EMD between Lx and Lm, ∀m ∈ [1,M ] where

m 	= x, which forms anM − 1dimensional EMD histogram. As

the smaller EMD means the higher similarity of two features, the

average of the obtained M − 1 EMD histograms can represent

the overall dissimilarity of the negative sample to the other

negative samples—the larger the averaged EMD, the higher

diversity value of the negative sample. Therefore, the ‘diversity’

(Rdiv) of sample x can be written as:

Rdiv
x = fave(EMD(Lx, Lm)), ∀m ∈ [1,M ] and m 	= x

(6)

where M is the number of negative samples.

3) Joint Ranking: To comprehensively assess the data

‘value,’ we reorder the ranking of negative samples by taking

both Rdif and Rdiv into account. Let find(.) represent the rank

indexing function (taking an integer value starting from 1), the

joint ranking (Rjnt) can be defined as:

Rjnt
x = αfind(↓ Rdif

x ) + βfind(↑ Rdiv
x ) (7)

where α and β are the weights for the two tracks (empirically

set to 0.5 in our experiments); and ↓ and ↑ express the operation

of ascending and descending ordering. The smaller Rdif means

higher difficulty, which is vice verse for Rdiv; therefore, the two

tracks are ordering in different directions.

E. Sample Selection

The obtained joint ranking (Rjnt) simultaneously measures

the ‘difficulty’ and ‘diversity’ of negative samples, which can

be used as guideline for negative sample selection for neural

network training. There are many strategies for sample selection,

such as hard example mining—assigning higher weights for the

difficult samples. In our experiments, to involve a variety of

negative samples for the robust feature representation learning,

we apply a ‘long-tail’ distribution sampling [42] to the ↓ Rjnt,

where a high-frequency sampling is performed to the top-ranked

population, followed by a ‘tails off’ asymptotically sampling for

the rest.

F. Implementation Details

All the experiments are conducted with the PyTorch package

in Python 3.6.4 environment, using one Tesla V100 GPU.

1) Rubik’s Cube Pro: Our Rubik’s cube Pro is trained with

a mini-batch size of 8. The initial learning rate is set to 0.001.

The Adam solver [43] is used for network optimization. In our

experiments, the 3D ResNet-18 [44] is adopted as the backbone.

To reduce the time consumption of pretext task training, our Ru-

bik’s cube Pro is pre-trained with COVID-19 volumes only. The

whole procedure of pre-training consumes about 20 minutes.

2) COVID-19 Classification Network: Straightforward data

preprocessing is employed. First, we use an inhouse developed,

DL-based algorithm to segment the lung masks for the 3D

non-contrast CT volumes. The algorithm is robust and able to

yield consistently high-quality lung masks even in the presence

of severe pathological changes of the lungs. Next, we resample

the CT volumes to have the unified voxel size of 1×1×5 mm3.

(We have conducted primitive experiments with thin-slice re-

sampling of 1 mm thickness, which was exponentially slower

but yielded similar performance.) Then, the CT volumes are

cropped according to the lung masks, adding the buffers of

9 mm, 9 mm, and 5 mm in the x, y, and z directions both

pre- and post the lung masks. The lung window setting with

the window level set to −600 Hounsfield unit (HU) and window

width set to 1500 HU is applied to the cropped CT volumes,
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Fig. 3. Exemplar samples of different levels of difficulty (the first row) and diversity (the second row) selected from the dataset. The COVID-19
sample is presented in the first row for comparison. The difficulty of the samples measured by our Rdif gradually increases from the easy case
to the hard case. The appearances of the hard samples are visually close to the COVID-19. The second row presents the negative samples with
diverse appearances, which demonstrate the necessity of taking Rdiv into consideration.

whose voxel intensity values are subsequently rescaled to the

range [0,1] linearly. Lastly, regions outside the lung masks are

set to 0 value to eliminate interference from non-lung regions.

For input to the network, a center crop of 256× 192× 56
voxels is taken from the preprocessed CT volume; a constant

padding is performed around the volume for smaller lungs when

needed. The input size is determined according to the mean

size of the preprocessed CT volumes. To efficiently exploit the

limited training data, two online data augmentation operations

are performed during the training process, which acts as the

regularization for our models: random intensity-jittering with

the scale range in [0.9, 1.1] and random flipping. No data

augmentation is performed for model testing.

The COVID-19 classification network adopts the same back-

bone and training protocol as Rubik’s cube Pro. However, since

the Rubik’s cube Pro only uses the COVID-19 volumes for

pre-training, which results in a biased network initialization,

the COVID-19 classification network randomly initializes its

weights, instead of using the Rubik’s cube Pro pre-trained

weights, at the beginning of network training. We notice that

pre-training Rubik’s cube Pro with all samples may boost the

COVID-19 classification. However, the time consumption of

pre-training increases to more than three hours, due to much

more training samples (above 2,000 vs. 246). In consideration

of development speed, the random initialization is preferred at

the early stage of the development of computer aided diagnosis

system.

V. EXPERIMENTS

Due to the rapid outbreak of COVID-19, the main concerns

of this study fall into two folds—the classification accuracy and

training duration of the deep learning network. In this section,

we conduct extensive experiments to validate the effective-

ness of our offline negative sample mining approach in both

terms.

TABLE II
DETAILED INFORMATION OF DATA SPLIT (THE NUMBER OF CT VOLUMES)

A. Data Split

Examples of COVID-19, CAP (the hard sample) and non-

pneumonia (the easy sample) from our dataset are presented

in Fig. 3, respectively. According to patient IDs, the dataset is

separated to training, validation, and test sets with the ratio of

75:5:20. The number of CT volumes contained in each set is

listed in Table II.

B. Evaluation Criterion

The F1 score, precision (PRE.), and recall (REC.) are adopted

as the metric to evaluate the classification performance, which

can be written as:

F1 = 2 ·
Precision ·Recall

Precision+Recall
, (8)

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, (9)

where TP , FP , and FN represent the numbers of true positive,

false positive, and false negative, respectively.

C. Difficulty and Diversity Samples Visualization

To visually compare the difficulty and diversity of different

negative samples, we visualize samples of different levels of

difficulty and diversity selected by our approach in Fig. 3. It

can be observed that the hard cases (high difficulty) on the first

row are visually close to the COVID-19 sample. Oppositely, the

lung texture of the easy cases (low difficulty) is clear, which
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TABLE III
ABLATION STUDY OF OUR TWO-TRACK DATA SELECTION APPROACH. NO ONLINE DATA SELECTION APPROACH IS ADOPTED. (PRE.–PRECISION,

REC.–RECALL (%)) *THE TRAINING PERIOD USING OFFLINE DATA SELECTION APPROACH INCLUDES THE TIME CONSUMPTION OF

SELF-SUPERVISED LEARNING (0.3 HOUR)

are easy for the classifier to identify. The samples with diverse

appearances are presented in the second row of Fig. 3. To handle

such a diverse dataset,Rdiv is a useful criterion to tune the overall

diversity of the set of selected samples.

D. Ablation Study

An ablation study is conducted to evaluate the contribution

made by each ranking track of our approach. The evaluation

result is presented in Table III. Compared to the random selection

(i.e., the first row of Table III), the neural network trained with

Rdif or Rdif -based selection approache achieves consistent

improvements on F1 scores with different ratio of negative sam-

ples. The approach using the joint ranking (Rdif +Rdif ) boosts

the classification accuracy with the largest margin, which are

+2.9%, +2.8%, and +2.8% higher than the random selection

with 14%, 28%, and 56% negative samples, respectively.

1) Quantity of Negative Samples: We investigate the trade-

off between training period and classification accuracy by train-

ing the backbone network with different quantities of negative

samples, which are 14%, 28%, and 56%. The corresponding

training periods are also presented in Table III. Note that we use

a Tesla V100 GPU in the experiments; therefore, the training

period will be much longer under the same setting with some

lower-speed GPUs such as Tesla P40.

As shown in Table III, fewer negative samples lead to the

faster training iteration and network convergence, which short-

ens the period of training. However, the classification accuracy is

observed to degrade in such a situation. Since our two-track data

selection approach can comprehensively measure data ‘value,’

the neural network trained with the selected valuable negative

samples achieves comparable classification accuracy to the one

using the whole dataset (i.e., all 1,785 negative volumes). Fur-

thermore, the neural network trained with 56% selected negative

samples is observed to slightly outperform the one using all

negative samples on precision and F1 score, which demonstrates

that our approach can accurately measure the data ‘value’ for

neural network and accordingly shorten the training period (i.e.,

a reduction of 52% of training time compared to the one using

all samples).

2) Benefit for Shortening Development Period: We notice

that the time reduction for training 3D ResNet-18 with 56%

TABLE IV
COVID-19 CLASSIFICATION ACCURACY OF 3D RESNET-50 TRAINED WITH

DIFFERENT QUANTITIES OF TRAINING SAMPLES SELECTED BY 3D
RESNET-18. (PRE.–PRECISION, REC.–RECALL (%);

T. P.: TRAINING PERIOD)

negative samples is about 10 hours compared to using all

samples, which may not be significant compared to the other

steps of computer aided diagnosis system development, such

as backend (and possibly frontend) development. However, it

is worthwhile to mention that the development of computer

aided diagnosis system usually requires numerous experiments

on testing different network architectures for the backbone se-

lection, which are extremely time-consuming. In this regard, to

demonstrate the generalization of the samples selected using

the 3D ResNet-18, we adopt the selected samples to train a 3D

ResNet-50 and evaluate its performances on the test set. The

experimental results are presented in Table IV.

As shown in Table IV, the training period of 3D ResNet-50

(23.5 hours) is longer than 3D ResNet-18 (19.5 hours), due to the

larger quantity of network parameters. It can be observed that the

ResNet-50 trained with 56% negative selected samples achieves

a consistently better F1 score (85.4%) than the one using all

samples (84.8%), which demonstrates the generalization and

effectiveness of the selected samples. To this end, as the number

of testing network architectures increases during the process

of backbone selection, the benefit of shortening development

period provided by our offline data selection approach gradually

becomes more significant.

3) Usage of Rubik’s Cube Pro Pre-Trained Weights: Com-

mon self-supervised learning approaches use the pre-trained

weights as the network initialization for the subsequent target

task. To this end, we train a 3D ResNet-18 initialized with the

Rubik’s cube Pro pre-trained weights and present its result on test

set for comparison. To save the time of self-supervised learning,

only the COVID-19 volumes are involved for the Rubik’s cube
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TABLE V
ACCURACY OF COVID-19 CLASSIFICATION NETWORK WITH DIFFERENT TRAINING STRATEGIES. (PRE.–PRECISION, REC.–RECALL (%))

Pro pretext task, which may lead to biased predictions. The ex-

perimental results presented in Table III verify our intuition—the

precision of COVID-19 classification networks using Rubik’s

cube Pro pre-trained weights is much lower than the random

initialized ones.

E. Choice of Sampling Strategy

In Section IV E, we employed the long-tail distribution for

negative sample selection from the pool after Rjnt ranking.

Here, we further compare three sampling strategies (i.e., normal

distribution, top-Rjnt, and long-tail distribution). The subsets

of negative samples selected according to different distributions

lead to varied improvements (deteriorations in some cases) in

COVID-19 classification, as presented in Table V. Compared

to the normal distribution sampling, the 1,000 negative samples

selected by long-tail sampling contain more difficult and diverse

cases, which benefit the accurate classification of COVID-19.

However, when selecting smaller subsets (i.e., 246 and 500)

of negative samples, the models trained with top-Rjnt selected

samples yield extremely low classification performances. This

may be because the neural network had difficulty in learning

consistent information from only those samples which are most

difficult and diverse. Different from that, the subsets sampled

according to the long-tail distribution contain negative samples

of varying ‘difficulty’ and ‘diversity,’ and outperform the others

under most settings of negative sample quantity, validating the

effectiveness of our choice of the sampling distribution.

1) Pre-Training Rubik’s Cube Pro With All Samples: To fur-

ther exploit the benefit of self-supervised learning, we pre-train

the backbone network on our Rubik’s cube Pro pretext task with

all training samples (1785 negative and 246 positive), and then

finetune with the selected ones for the COVID-19 classification.

The evaluation results are listed in the last row of Table V. It

can be observed that the Rubik’s cube Pro pre-trained weights

consistently boost the accuracy of COVID-19 classification.

However, it is worthwhile to mention that although pre-training

on all samples can tackle the problem of biased predictions in the

positive-sample-only Rubik’s cube Pro, the time consumption of

pre-training increases from 0.3 hour to more than three hours,

due to the substantial increase in training samples.

In our practical application, the proposed offline data selec-

tion approach is adopted for extremely rapid response to the

need for fast complete development cycle of computer aided

diagnosis system, including tuning network architectures, data

augmentation, and learning rate, etc, even within a day. After

fulling the initial need and fixing the network architecture and

hyper-parameters, the model can later adopts our Rubik’s cube

Pro pre-training pipeline for a better COVID-19 classification

accuracy.

F. Combining Online Data Selection Strategies

Although the quantity of negative samples decreases from

1,785 to 1,000 using our offline data selection approach, the

positive/negative ratio is still around 1:5. To further boost the

accuracy of COVID-19 classification network, we combine the

widely-used online data selection, such as OHEM [10] and

focal loss [11], and over-sampling approaches to deal with

the imbalanced positive/negative ratio. The accuracy of the

hybrid methods is presented in Table VI, where the COVID-19

classification network trained with all samples is included for

comparison.

It can be observed from Table VI that the online data selection

approaches produce consistent improvements in the accuracy of

the COVID-19 classification network. The OHEM yields the

highest improvement in F1 score, i.e., around +3% compared

to no online strategy. Although the oversampling approach

achieves similar F1 score to OHEM, it enlarges the training set by

oversampling the positive samples, which results in an expensive

time cost for network training. Furthermore, it is worthwhile to

mention that the COVID-19 classification network trained with

our 1,000 selected negative samples yields higher accuracy to

the one using all 1,758 negative samples, which demonstrate the

effectiveness of our offline data selection approach.

VI. DISCUSSIONS AND CONCLUSION

In this work, we proposed an effective (in terms of better

performance) and efficient (in terms of lower time cost) training

strategy for COVID-19 classification networks using a relatively

small number of COVID-19 CT exams and an archive of negative

samples, empowered by self-supervised learning and informa-

tive data mining. Concretely, a novel self-supervised learning

method (i.e., Rubik’s cube Pro) was proposed to extract features

from the COVID-19 and negative samples. Then, two kinds of

soft-labels (i.e., ‘difficulty’ and ‘diversity’) were generated for

the negative samples by computing the earth mover’s distances

between the features of the negative and COVID-19 samples.

Using these soft-labels, data ‘values’ of the negative samples

were comprehensively assessed. A pre-set number of negative
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TABLE VI
COMPARISON OF CLASSIFICATION PERFORMANCE YIELDED BY NETWORKS TRAINED WITH DIFFERENT ONLINE STRATEGIES AGAINST IMBALANCED DATA.

(ABBRAVIATIONS: PRE.: PRECISION, REC.: RECALL (%); NEG.: NEGATIVE, AND POS.: POSITIVE; T. P.: TRAINING PERIOD)

samples were selected offline based on the joint ranking of diffi-

culty and diversity, and fed to the neural network for training to-

gether with the COVID-19 samples. Experimental results show

that, compared to the typical training scheme using all available

negative samples, our approach achieved superior classification

performance using only 56% of the negative samples for training

the COVID-19 classification network, reducing model training

time from 19.6 hours to 9.5 hours (a 52% reduction) for a rapid

response to the disease outbreak.

1) EMD-Driven Difficulty and Diversity Based Offline

Sampling: We propose to select the most informative negative

samples for COVID-19 classification according to the EMD-

derived difficulty (Rdif ) and diversity (Rdiv). Table III showed a

comparison of the performances using either or both ofRdif and

Rdiv, from which we noticed several interesting patterns. When

using either Rdif or Rdiv separately, Rdif consistently yielded

superior recall to Rdiv, whereas Rdiv consistently yielded supe-

rior precision to Rdif . As expected, simultaneously using both

of them produced more balanced results rendering the best F1

scores. We believe this property of our proposed offline sampling

strategy can be utilized for desired adjustments to precision,

recall, or F1 scores of the model.

2) Combining Online Sampling for Optimal Performance:

After mining of the most informative negative samples offline,

we further combined our proposed offline sampling strategy with

several widely used online sampling strategies for imbalanced

data for optimal performance. As shown in Table VI, the online

sampling strategies all achieved varying improvements, but at

vastly different time cost. Notably, OHEM achieved the best

F1 scores while at the same time incurred the lowest time cost,

which was optimal in terms of both effectiveness and efficiency.

Therefore, our final joint sampling strategy incorporated OHEM.

3) Comparison of Different Pre-Training Weights: To

demonstrate the effectiveness of our Rubik’s cube Pro, we

compare its performance with the conventional Rubik’s

cube [12]. To alleviate the influence caused by different

selections of training samples, we pre-train and finetune the

3D ResNet-18 with the whole training set. The evaluation

results are presented in Table VII. The self-supervised learning

approaches yield consistent improvements to the COVID-19

classification accuracy, compared to the train-from-scratch. As

the masking operation encourages the neural network to learn

more robust feature representation, the Rubik’s cube Pro is

TABLE VII
ACCURACY (%) OF COVID-19 CLASSIFICATION NETWORK WITH DIFFERENT

SELF-SUPERVISED WEIGHTS

observed to outperform the conventional Rubik’s cube with an

improvement of +1.8% for F1 score.

4) Future Work: Our main contributions in this work focus

on enabling rapid development of computer aided diagnosis

systems for COVID-19 screening, given limited COVID-19

samples at the early stage of the outbreak, while maintaining

a high classification performance. Therefore, we adopted a rel-

atively small network (the ResNet-18) as our backbone. As the

pandemic evolves, the focus shifts from development speed to

classification accuracy. Accordingly, we will experiment with

more complex backbones in the future with more COVID-19

data collected. Besides, there is a margin of improvement for

the diversity criterion. To further ensure the diversity of selected

samples, one of the options is to sequentially select samples,

forcing the next sample to be different from the eralier se-

lected ones. However, the sequential selection may cause an

expensive computation as the number of selection increases. It

is worthwhile to explore an advanced criterion balancing the

diversity of selected samples and the computational cost in the

future. Last but not least, the proposed offline data selection

approach is currently only evaluated on the binary classification

task (COVID-19 vs. negative). We will make our effort to extend

the method to the multi-class classification problem in the future.
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