
Efficient and Elegant Subword-Tree Construction

M.T. Chen and J.1. Seiferas

Computer Science Department

The University of Rochester

Rochester, NY 14627

TR129

December, 1983

Abstract

A clean version of Weiner's linear-time compact-subword-tree construclion
simultaneously constructs the smallest deterministic finite automaton recognizing the reverse
subwords.

Part of this work was done while the first author visited the University of Rochester. The
work of the second author was supported in part by the National Science Foundation under
grant MCS·8110430. Authors' addresses: M.T. Chen, Department of Computer Science,
University of Nanjing, People's Republic of China; J.1. Seiferas, Department of the Computer
Science, University of Rochester, Rochester, NY 14627.

2

Introduction

Any finite set S of words which is prefix-closed (i.e., xy E S => xES) has a prefix tree

with node set S, ancestor relation "is a prefix of", and father relation "is obtained by

dropping the last letter ot." The set S of all subwords of a text sIring is a prefix-closed set

whose prefix tree, the text's subword tree, is particularly useful. For example, it lets us test

arbitrary words for membership in S in time proportional to their own lenglhs, regardless of

how long the entire text is. Even more useful is the subword tree for ¢w$, where ¢ and $ are

delimiting symbols not occurring in w. This, for example, lets us test easily whether a word is

a suffix of w. In one appropriate walk through the tree, we can easily augment each node

with such information as the count of its leaf descendents. Then it becomes convenient to

tell how many times a word appears, where a word first or last appears, what is the longest

repeated subword, and more. As an example, the subword tree for ¢aabab$ is shown in

Figure 1.

The number of distinct subwords of a text string of large length n can be very large

(proportional to n 2 for anl'lbnl'l , for example), so subword trees can have prohibitively many

nodes. Fortunately, however, there are compact but functionally equivalent data structures

which can even be built in time proportional to just n. Weiner [11], McCreight [3], Prall

[4,5,6], and Slisenko [10, Section 2] have described such data structures and algorithms.

(See also [1, Section 9.5], [2].) Each of their algorithms is complicated by the maintenance of

additional auxiliary structure along with the developing compact subword tree. (In Slisenko's

case, more ambitious applications account for an extra measure of addilional structure [7·

10].) In this report, we describe a version with auxiliary structure which is unusually clean

and clearly desirable in its own right.

£

¢aab aaba abab babS

taaba aabab abab$

eaabeb aababS

tllNbS

Figure 1: Node-labeled subword tree for ¢aabab$

3

Compact Representations

The most obvious way to represent a subword tree compactly is to omit interior nodes of

degree 1, replacing them by through edges. The string corresponding to each remaining

node can be represented by a (not necessarily unique) pair of pointers into the text string;

or, alternatively, the incremental substring corresponding to each edge can be represented

by such a pair. Resulting representations for ¢aabab$ are shown in Figure 2. Either way, no

information is lost, and the degree of each remaining node continues to be bounded by the

alphabet size. The slee of this representation is thus proportional to the number of nodes.

And the number of nodes is proportional to the length of the text, because the number of

leaves is so bounded (one for each suffix of the text) and because the number of interior

nodes is bounded by the number of leaves in a tree without interior nodes of degree 1.

[1,0J

[7,7J

Figure 2: Compacted subword tree for ¢aabab$, node-labeled and edge·labeled

We obtain a quite different compact representation by identifying (edge·)isomorphic

subtrees. (The edge labels to be preserved by each such isomorphism are the strings, not

the indices used to represent them.) The edge·labeled version of the subword tree for

¢aabab$ (shown in Figure 3), for example, has isomorphic subtrees below the subwords b

and ab. The result of making all such identifications is shown in Figure 4. (For expositional

clarity in our figures, we revert 10 explicit edge labels. For later reference, however,

parenthesized capital letters have been arbitrarily assigned as names for the nodes in Figure

4.) Except for omission of the one nonaccepting state, which is "dead," this directed acvcnc

graph is just the smallest deterministic fini1e aU10maton recognizing the set of subwords of

the text. We will see that the size of this representation is again only proportional to the

length of the text, and tor essentially the same reason.

b a b

a b s

b S

s

Figure 3: Edge·labeled version of Figure 1

start (A)

(J__ $

Figure 4: Smallest lubword DFA for habab$

Approaches to Construction

The main objective of Weiner's algorithm is to build the first compact representation of

the subword tree. To do this, it maintains auxiliary information which happens to include

explicitly some (but not all) of the son links from the uncompacted, reverse subword tree.

(Such terminology is unambiguous, because the tree of reverse subwords of the text is

identical to the tree of ordinary subwords of the reverse text.) Similarly, McCreight's

algorithm happens to maintain father links from the uncompacted reverse subword tree.

5

Pratt's and Slisenko's algorithms are essentially the same as Weiner's algorithm, but with

a different viewpoint. The main objective is to build that portion of the uncompacted subword

tree whose nodes are the text's "longest repetitions." With a few additional patches, this

turns out to be as useful as the entire subword tree.

The concept of a "longest repetition" is a dynamic or historical one, based on

successive consideration of longer and longer text prefixes. In each prefix, the longest suffix

which also occurs elsewhere in the prefix is a "longest repetition." Fortunately, a simple

static definition is easily seen to be equivalent: A string x is a longest repetition if and only if

there are distinct letters a and b for which both ax and bx occur as subwords. From this

redefinition, it is clear that the longest repetitions correspond precisely to the inlerlor nodes

of degree greater than 2 in the reverse subword tree. The auxiliary structure from Weiner's

algorithm turns out to include enough of the uncompacted reverse subword tree so that Pratt

and Slisenko can simply run that algorithm on the reverse of their texts, regarding Weiner's

bathwater as their baby (and his baby as their bathwater).

Our new observation is that there is a much more natural choice of the "few additional

patches" maintained above. Instead of information of some new kind, we can add additional

edges (but no additional nodes) to the fragment of the uncompacted reverse subword tree to

get a directed acyclic graph which, for the reverse subword tree, is the second compact

representation described above. To see how, note that, whenever one subword y is a suffix

of another subword xy and occurs only in that context, the subtrees below the two strings

must be isomorphic; i.e., for every z, yz is a subword if and only if xyz is. This is the reason

for the isomorphism below band ab in Figure 3, for example; and it is clearly the only

possible reason for subtree isomorphism in a subword tree. In the reverse subword tree,

similarly, the subtrees below the reverses of two text subwords are isomorphic if and only if

one of the subwords is a prefix of the other and occurs only in that context. This occurs if

and only if all the nodes from the shorter subword through its longer extension have degree

1 in the ordinary subword tree. Thus the nodes of the first comapct representation of the

subword tree correspond to a set of distinct representatives of the isomorphism classes of

the strings in the uncompacted reverse subword tree, and we will have the second compact

representation for the latter is the a-edqe from each such node x is directed to the shortest

extension axy of ax which is also such a node. The compact representation of the subword

tree for ¢aabab$ shown in Figure 4 was obtained from the subword tree for $babaa¢ (Figure

5) by just this rule. The named nodes in Figure 5 correspond to the similarly named nodes in

Figure 4.

c (Bi

So

Sba aaC aba
(D)

Sbab abaa baaC (E) baba

Sbaba abaac (F) babaa

Sbabaa babaaC (G)

Sbabaac (H)

Figure 5: Node-labeled subword tree for $babaa¢

Our Algorithm

Before we spell out our varianl of the algorithm, let us summarize the specifications'.for

the cleaned up data structure the algorithm is supposed to construct. The lex! w is a

character string, and $ is a right endmarker not occurring in w. There is a node for each

suffix of w$ and a node for each subword x occurring in two distinct immediate right

contexts (i.e., with distinct lellers Cj and b for which both xa and xb are subwords of w$).

From each node x, for each letter a, there is an a-extension link to the shortest node (if any)

with prefix xa and an e-snoncut link to the shortest node (if any) with prefix ax. From each

node, there is a prefix link to its longest proper prefix node (if any). (Noting that prefix links

are just the reverses of extension links. we will leave selling them implicit whenever we

create or change extension links.) Finally, for each node, there is a pair of indices into w$ to

identify (one instance of) the coresponding subword. (We will also leave implicit the selling

of these indices. Each new node added will be a prefiX of the entire text so far considered; it

will be either that entire text or a prefix 1 longer than the known length of some older node.)

As our terminology suggests, we will describe the algorithm from Weiner's viewpoint:

The main objective is to build the extension and prefix links, and the other links provide time

saving "shortcuts." Even so, the algorithm works from right to leh in the text, with no need

to look "ahead" (to the left), provided we index the leiters of w$ from right to left.

The structure for w$ co $ is trivial (two nodes) and can obviously be built in constant

initial time. To bUild the structure for aW$, we assume inductively thai we have the structure

for w$ and that we have pointers to the root node and to the node w$, where we finished the

previous step. The new subwords will be the "sufficiently long" prenxes of aw$; we will have

to install aw$ as a new extension from the longest prefix y of aw$ which is already a

7

subword of w$. If the root (corresponding to the null subword) does not yet have an a·

extension, then it serves as y. If the root does already have an a-extension, we could still

find y by "following aw$ along extension links" down from the root until continuation would

leave the tree; but for a string like an$, this would accumulate to time proportional to n2.

Instead, noting that y's least-proper suffix x(y = ax) must already be a node in the structure

for w$ and that it must be a prefix of w$, we can trace up along prefix links from w$,

watching for the node x; it will be the first node with an e-shortcut. Following that shortcut

will lead to ax = y if it is already a node, or to its shortest extension axz which is a node

otherwise. In the latter case, we will have to install y as a new node between exz and its

prefix parent, initially with the same shortcut links exz has. The shortcuts to the new node

will be directed from the nodes lying on the prefix path from x up through the last node x·

nol already having an a-shortcut link to a proper prefix of ax.

With Y found and properly installed, we can install aw$ as an extension below it as

required, initially without any extension or shortcut links. Shortcut links should be directed to
this new node from the nodes lying on the prefix path from w$ up through the last node not

already having an a-shortcut link. Both these and the shortcut links redirected to y in the

case that y had to be installed can be set in a traversal of the prefix path from w$ up

through x': so the time to obtain the structure for aw$ from the one for w$ is proportional to

some constant plus the number of nodes on the prefix path from w$ to x',

To see that this time bound accumulates only to linear time, we look at the node depth

of each successive text suffix in the extension tree. The key observation is that, except for

some small additive constant, the depth of aw$ within its structure is reduced from the depth

of w$ within its structure at least enough to compensate for the time- indicative number of

nodes on the prefix path from w$ to x' above. (See Figure 6.) To see this, first note that the

depth of x' is certainly so reduced. Then note that, if ax" is any node on the prefix path

above y, x" must be a node on the prefix path above x', The consequence of the observation

is that to spend more than linear total time would require more than linear total depth

reduction, which is impossible since the greatest possible increase in depth is constant for

each iteration.

Conclusion

A clean version of Weiner's algorithm provides natural but very different indices of the

subwords and the reverse subwords of a text. It is remarkable that such functional symmetry

is efficiently achieved by such an integrated asymmetric construction.

8

... as here

--- --

... ..
'0 awS

-=- (null)

Figu re 6: How depth reduction compensates for time

References

1. A.V.	 Aho, J.E. Hopcroft, and J.D. Ullman, The Design and AnalysIs of Computer
Algorithms, Addison·Wesley, Reading Massachsuells, 1974.

2. M.E. Majster	 and A. Reiser, "Efficient on-nne construction and correction of position
trees," SIAM Journal on Computing, 9, 4 (November 1980), 785·807.

3. E.M. McCreight, "A	 space-eccnomicet suffix tree construction algorithm," Journal of the
Association for Computing Machinery, 23, 2 (April 1976), 262·272.

4.	 V.A. Prall, "Improvements and applications for the Weiner repetition finder," unpublished
manuscript (May 1973, OCtober 1973, and March 1975).

5.	 M. Rodeh, V.A. Prall, and S. Even; "A linear algorithm for finding repetitions and its
applications in data compression," Technical report no. 72, Depl. of Computer SCience,
Technion . Israel lnstltute of Technology, Haifa, Israel (April 1976).

6. M.	 Rodeh, V.A. Prall, and S. Even, "Linear algorithm for data compression via string
matching," Journal of the Association for Computing Machinery, 28, 1 (January 1981),
16·24.

7.	 A.a. Slisenko, "String·matching in real lime," Preprint p·7·n, The Steklov Institute of
Malhematics, Leningrad Branch (September 1977) (Russian).

8.	 A.a. Slisenko, "String·matching in real lime: Some properues of the data structure."
Mathematical Foundations of Computer Science 1978 (Proceedings, 7th Symposium,

9

Zakopane, Poland, 1978) (Lecture Notes in Computer Science 64), Spring·Verlag, Berlin,
1978, 493·496.

9.	 A.a. Slisenko, "Determination in real time of all the periodicities in a word," Soviet
Mathematics . Doklady, 21, 2 (March·April 1980). 392·395.

10.	 A.a. Slisenko, "Detection of periodicities and string·matching in real time," Journal of
Soviet Mathematics, 22, 3 (June 11, 1983). 1316·1387; translated from Zapiski
Nauchnykh Seminarov Leninqradskoqo Otdeleniya Matematicheskogo Instituta im. VA
Steklova AN SSSR, 105 (1980), 62·173.

11. P. Weiner,	 "Linear pattern matching algorithms," 14th Annual Symposium on Switching
& Automata Theory (Iowa City, Iowa). IEEE Computer Society, 1973, 1·11.

