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Abstract

Uniform sampling from graphical realizations of a given degree sequence is a fundamental component in simulation-based
measurements of network observables, with applications ranging from epidemics, through social networks to Internet
modeling. Existing graph sampling methods are either link-swap based (Markov-Chain Monte Carlo algorithms) or stub-
matching based (the Configuration Model). Both types are ill-controlled, with typically unknown mixing times for link-swap
methods and uncontrolled rejections for the Configuration Model. Here we propose an efficient, polynomial time algorithm
that generates statistically independent graph samples with a given, arbitrary, degree sequence. The algorithm provides a
weight associated with each sample, allowing the observable to be measured either uniformly over the graph ensemble, or,
alternatively, with a desired distribution. Unlike other algorithms, this method always produces a sample, without back-
tracking or rejections. Using a central limit theorem-based reasoning, we argue, that for large N , and for degree sequences
admitting many realizations, the sample weights are expected to have a lognormal distribution. As examples, we apply our
algorithm to generate networks with degree sequences drawn from power-law distributions and from binomial
distributions.
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Introduction

Network representation has become an increasingly widespread

methodology of analysis to gain insight into the behavior of complex

systems, ranging from gene regulatory networks to human

infrastructures such as the Internet, power-grids and airline

transportation, through metabolism, epidemics and social sciences

[1–4]. These studies are primarily data driven, where connectivity

information is collected, and the structural properties of the

resulting graphs are analyzed for modeling purposes. However,

rather frequently, full connectivity data is unavailable, and the

modeling has to resort to considerations on the class of graphs that

obeys the available structural data. A rather typical situation is when

the only information available about the network is the degree

sequence of its nodes D~ d0,d1, . . . ,dN{1f g. For example, in

epidemiology studies of sexually transmitted diseases [5], anony-

mous surveys may only collect the number of sexual partners of a

person in a given period of time, not their identity. Epidemiologists

are then faced with constructing a typical contact graph having the

observed degree sequence, on which disease spread scenarios can be

tested. Another reason for studying classes or ensembles of graphs

obeying constraints comes from the fact that the network structure

of many large-scale real-world systems is not the result of a global

design, but of complex dynamical processes with many stochastic

elements. Accordingly, a statistical mechanics approach [1] can be

employed to characterize the collective properties of the system

emerging from its node level (microscopic) properties. In this

approach, statistical ensembles of graphs are defined [6,7],

representing ‘‘connectivity microstates’’ from which macroscopic

system level properties are inferred via averaging. Here we focus on

the degree as a node characteristic, which could represent, for

example, the number of friends of a person, the valence of an atom

in a chemical compound, the number of clients of a router, etc.

In spite of its practical importance, finding a method to construct

degree-based graphs in a way that allows the corresponding graph

ensemble to be properly sampled has been a long-standing open

problem in the network modeling community (references using

various approaches are given below). Here we present a solution to

this problem, using a biased sampling approach. We consider

degree-based graph ensembles on two levels: 1) sequence-level,

where a specific sequence of degrees is given, and 2) distribution

level, where the sequences are themselves drawn from a given

degree distribution P dð Þ. In the remainder we will focus on the

fundamental case of labeled, undirected simple graphs. In a simple

graph any link connects a single pair of distinct nodes and self loops

and multiple links between the same pair of nodes are not allowed.

Without loss of generality, consider a sequence of N positive integers

D~ d0,d1, . . . ,dN{1f g, arranged in non-increasing order:

d0§d1§ � � �§dN{1. If there is at least one simple graph G with

degree sequence D, the sequence D is called a graphical sequence and

we say that G realizes D. Note that not every sequence of positive

integers can be realized by simple graphs. For example, there is no
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simple graph with degree sequence 3,2,1f g or 5,4,3,2,1,1f g, while

the sequence 3,3,2,2,2f g can obviously be realized by a simple

graph. In general, if a sequence is graphical, then there can be

several graphs having the same degree sequence. Also note that

given a graphical sequence, the careless or random placing of links

between the nodes may not result in a simple graph.

Recently, a direct, swap-free method to systematically construct all

the simple graphs realizing a given graphical sequence D was

presented [8]. However, in general (for exceptions see Ref. [9]), the

number of elements of the set G Dð Þ of all graphs that realize

sequence D, increases very quickly with N: a simple upper bound is

provided by the number of all graphs with sequence D, allowing for

multiple links and loops: DG Dð ÞDƒPN{1
i~0 di!. Thus, typically,

systematically constructing all graphs with a given sequence D is

practical only for short sequences, such as when determining the

structural isomers of alkanes [8]. For larger sequences, and in

particular for modeling real-world complex networks, it becomes

necessary to sample G Dð Þ. Accordingly, several variants based on the

Markov Chain Monte Carlo (MCMC) method were developed.

They use link-swaps [10] (‘‘switches’’) to produce pseudo-random

samples from G Dð Þ. Unfortunately, most of them are based on

heuristics, and apart from some special sequences, little has been

rigorously shown about the methods’ mixing time, and accordingly

they are ill-controlled. The literature on such MCMC methods is

simply too extensive to be reviewed here, instead, we refer the

interested reader to Refs. [11–13] and the references therein. Finally,

we recall the main swap-free method producing uniform random

samples from G Dð Þ, namely the configuration model (CM) [14–17].

This method picks a pair of nodes uniformly at random and connects

them, until a rejection occurs due to a double link or a self-loop, in

which case it restarts from the very beginning. For this reason, the

CM can become very slow, as shown in the Discussion section. The

CM has inspired approximation methods as well [18] and methods

that construct random graphs with given expected degrees [19].

Here, by developing new results from the theorems in Ref. [8],

we present an efficient algorithm that solves this fundamental

graph sampling problem, and it is exact in the sense that it is not

based on any heuristics. Given a graphical sequence, the algorithm

always finishes with a simple graph realization in polynomial time,

and it is rejection free. While the samples obtained are not

uniformly generated, the algorithm also provides the exact weight

for each sample, which can then be used to produce averages of

arbitrary graph observables measured uniformly, or following any

given distribution over G Dð Þ.

Methods

Mathematical foundations
Before introducing the algorithm, we state some results that will

be useful later on. We begin with the Erdös-Gallai (EG) theorem

[20], which is a fundamental result that allows us to determine

whether a given sequence of non-negative integers, called ‘‘degree

sequence’’ hereafter, is graphical.

Theorem 1 (Erdö-Gallai). A non-increasing degree sequence

D~ d0,d1, . . . ,dN{1f g is graphical if and only if their sum is even and,

for all 0ƒkvN{1:

Xk

i~0

diƒk kz1ð Þz
XN{1

i~kz1

min kz1,dif g: ð1Þ

A necessary and sufficient condition for the graphicality of a degree

sequence, which is constrained from having links between some node

and a ‘‘forbidden set’’ of other nodes is given by the star-constrained

graphicality theorem [8]. In this case the forbidden links are all

incident on one node and thus form a ‘‘star’’. To state the theorem,

we first define the ‘‘leftmost adjacency set’’ of a node i with degree di

in a degree sequence D as the set consisting of the di nodes with the

largest degrees that are not in the forbidden set. IfD is non-increasing,

then the nodes in the leftmost adjacency set are the first di nodes in

the sequence that are not in the forbidden set. The forbidden set

could represent nodes that are either already connected to i, and thus

subsequent connections to them are forbidden, or just imposed

arbitrarily. Using this definition, the theorem is:

Theorem 2 (Star-constrained graphical sequences). Let

D~ d0,d1, . . . ,dN{1f g be a non-increasing graphical degree sequence.

Assume there is a set of forbidden links incident on a node i. Then a simple

graph avoiding the forbidden links can be constructed if and only if a simple

graph can be constructed where i is connected to all the nodes in its leftmost

adjacency set.

A direct consequence [8] of Theorem 2 for the case of an empty

forbidden set is the well-known Havel-Hakimi result [21,22],

which in turn implies:

Corollary 1. Let D~ d0,d1, . . . ,dN{1f g be a non-increasing

unconstrained graphical degree sequence. Then, given any node i, there is a

realization of D that includes a link between the first node and i.

Another result we exploit here is Lemma 3 of Ref. [8], extended

to star-constrained sequences:

Lemma 1. Let D be a graphical sequence, possibly with a star

constraint incident on node i. Let j and k be distinct nodes not in the

forbidden set and different from i, such that djwdk. Then

D’~ d0, . . . ,dj{1, . . . ,dkz1, . . . ,dN{1

� �
is also a graphical

sequence with the same star constraint.

Proof. LetX i denote the set of nodes forbidden to connect to node

i. Since D is star-constrained graphical there is a simple graph G
realizing the sequence with no connections between i and X i. Since

djwdk, there is a node m to which j is connected but k is not. Note

that m could be in X i| if g. Now cut the edge (m,j) of G creating a

stub at m and another at j. Remove the stub at j so that its degree

becomes dj{1, and add a stub at k so that its degree becoming

dkz1. Since there are no connections in G between m and k,

connect the two stubs at these nodes creating a simple graph G’ thus

realizingD’. Clearly there are still no connections between i and X i

in G’, and thus D’ is also star-constrained graphical.

Finally, using Lemma 1 and Theorem 2, we prove:

Theorem 3. Let D be a degree sequence, possibly with a star-

constraint incident on node i, and let y and z be two nodes with degrees such

that dy§dz that are not constrained from linking to node i. If the residual

degree sequence D0 obtained from D by reducing the degrees at i and y by unity

is not graphical, then the degree sequence D’’ obtained from D by reducing the

degrees at i and z by unity is also not graphical.

Proof. By definition, d ’l~dl for l [f0, . . . ,N{1g\ i,yf g and

d ’i~di{1, d ’y~dy{1; d ’’l~dl for l [f0, . . . ,N{1g\ i,zf g and

d ’’i~di{1, d ’’z~dz{1. We consider di§dy, however, the proof

is not affected by this assumption. By assumption, D’ is not

graphical. Using proof by contradiction, assume that

D’’~ . . . ,di{1, . . . ,dy, . . . ,dz{1, . . .
� �

is graphical. Clearly,

dywdz{1, and thus we can apply Lemma 1 on this sequence. As

a result, the sequence . . . ,di{1, . . . ,dy{1, . . . ,dz{1z1, . . .
� �

,

that is exactly D’ is graphical, a contradiction.

Note that if a sequence is non-graphical, then it is not star-

constrained graphical either, and thus Theorem 3 is in its strongest

form.

Biased sampling
The sampling algorithm described below is ergodic in the sense

that every possible simple graph with the given finite degree

Efficient Graph Sampling
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sequence is generated with non-zero probability. However, it does

not generate the samples with uniform probability; the sampling is

biased. Nevertheless, the algorithm can be used to compute

network observables that are unbiased, by appropriately weighing

the averages measured from the samples. According to a well

known principle of biased sampling [23,24], if the relative

probability of generating a particular sample si is rsi
, then an

unbiased estimator for an observable Q measured from a set of M

randomly generated samples s1,s2, . . . ,sM is the weighted average

SQT~

PM
i~1 wsi

Q sið ÞPM
i~1 wsi

, ð2Þ

where the weights are wsi
~r{1

si
, and the denominator is a norma-

lization factor. The key to this method is to find the appropriate

weight wsi
to associate with each sample. Note that in addition to

uniform sampling, it is in fact possible to sample with any arbitrary

distribution by choosing an appropriate set of sample weights.

Results

The algorithm
Let D be a non-increasing graphical sequence. We wish to

sample the set G Dð Þ of graphs that realize this sequence. The

graphs can be systematically constructed by forming all the links

involving each node. To do so, begin by choosing the first node in

the sequence as the ‘‘hub’’ node and then build the set of the

‘‘allowed nodes’’ A~ a1,a2, . . . ,akf g that can be connected to it.

A contains all the nodes that can be connected to the hub such

that if a link is placed between the hub and a node from A, then a

simple graph can still be constructed, thus preserving graphicality.

Choose uniformly at random a node a [A, and place a link

between a and the hub. If a still has ‘‘stubs’’, i.e. remaining links to

be placed, then add it to the set of ‘‘forbidden nodes’’ X that

contains all the nodes which can’t be linked anymore to the hub

node and which initially contains only the hub; otherwise, if a has

no more stubs to connect, then remove it from further

consideration. Repeat the construction of A and link the hub

with one of its randomly chosen elements until the stubs of the hub

are exhausted. Then remove the hub from further consideration,

and repeat the whole procedure until all the links are made and

the sample construction is complete. Each time the procedure is

repeated, the degree sequence D considered is the ‘‘residual degree

sequence’’, that is the original degree sequence reduced by the

links that have previously been made, and with any zero residual

degree node removed from the sequence. Then, choose a new

hub, empty the set of forbidden nodes X and add the new hub to

it. It is convenient, but not necessary, to choose the new hub to be

a node with maximum degree in the residual degree sequence.

The sample weights needed to obtain unbiased estimates using

Eq. 2 are the inverse relative probabilities of generating the

particular samples. If in the course of the construction of the

sample m different nodes i~1,2, . . . ,m are chosen as the hub and

they have di residual degrees when they are chosen, then this

sample weight can be computed by first taking the product of the

sizes kij of the allowed sets A constructed, then dividing this

quantity by a combinatorial factor which is the product of the

factorials of the residual degrees of each hub:

w~ P
m

i~1

1

di!
P
di

j~1
kij
: ð3Þ

The weight accounts for the fact that at each step the hub node has

kij
nodes it can be linked to, which is the size of the allowed set at

that point, and that the number of equivalent ways to connect the

residual stubs of a new hub is di!. Note that it is always true that

w§1, with w~1 occurring for sequences for which there is only

one possible graph.

Building the allowed set. The most difficult step in the

sampling algorithm is to construct the set of allowed nodes A. In

order to do so first note that Theorem 3 implies that if a non-

forbidden node, that is a node not in X , can be added to A, then

all non-forbidden nodes with equal or higher degree can also be

added to A. Conversely, if it is determined that a non-forbidden

node cannot be added to A, then all nodes with equal or smaller

degree also cannot be added to A. Therefore, referring to the

degrees of nodes that cannot be added to A as ‘‘fail-degrees’’, the

key to efficiently construct A is to determine the maximum fail-

degree, if fail-degrees exist.

The first time A is constructed for a new hub, according to

Corollary 1, there is no fail-degree and A consists of all the other

nodes. However, constructing A becomes more difficult once links

have been placed from the hub to other nodes. In this case, to find

the maximum fail-degree note that at any step during the

construction of a sample the residual sequence being used is

graphical. Then, since according to Theorem 2 any connection to

the leftmost adjacency set of the hub preserves graphicality, it

follows from Theorem 3 that any fail-degree has to be strictly less

than the degree of any node in the leftmost adjacency set of the

hub.

If there are non-forbidden nodes in the residual degree sequence

that have degree less than any in its leftmost adjacency set, then

the maximum fail-degree can be found with a procedure that

exploits Theorem 2. In particular, if the hub is connected to a

node with a fail-degree, then, by Theorem 2, even if all the

remaining links from the hub were connected to the remaining

nodes in the leftmost adjacency set, the residual sequence will not

be graphical. Our method to find fail-degrees, given below, is

based on this argument.

Begin by constructing a new residual sequence D0 by

temporarily assuming that links exist between the hub and all

the nodes in its leftmost adjacency set except for the last one, which has

the lowest degree in the set. The nodes temporarily linked to the

hub should also be temporarily added to the set of forbidden nodes

X . The nodes in D’ should be ordered so that it is non-increasing,

that forbidden nodes appear before non-forbidden nodes of the

same degree, and that the hub, which now has residual degree 1, is

last.

At this point, in principle one could find the maximum fail

degree by systematically connecting the last link of the hub with

non-forbidden nodes of decreasing degree, and testing each time

for graphicality using Theorem 1. If it is not graphical then the

degree of the last node connected to the hub is a fail-degree, and

the node with the largest degree for which this is true will have the

maximum fail-degree. However, this procedure is inefficient

because each time a new node is linked with the hub the residual

sequence changes and every new sequence must be tested for

graphicality.

A more efficient procedure to find the maximum fail-degree

instead involves only testing the sequence D’. To see how this can

be done, note that D’ is a graphical sequence, by Theorem 2.

Thus, by Theorem 1, for all relevant values of k, the left hand side

of Inequality 1, Lk, and the right hand side of it, Rk, satisfy

LkƒRk. Furthermore, for the purposes of finding fail-degrees it is

sufficient to consider linking the final stub of the hub with only the

last non-forbidden node of a given degree, if any exists. After any

Efficient Graph Sampling
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such link is made, the resulting degree-sequence D’’ will be non-

increasing, and thus Theorem 1 can be applied to test it for

graphicality. Therefore, if the degree of the node connected with

the last stub of the hub is a fail-degree, then Inequality 1 for D’’
must fail for some k. For each k, the possible differences in Lk and

Rk between D’ and D’’ are as follows. Rk is always reduced by 1

because the residual degree of the hub is reduced from 1 to 0. Rk

may be reduced by an another factor of 1 if the last node

connected to the hub, having index x and degree dx, is such that

xwk and dxvkz2. Lk is reduced by 1 if xƒk, otherwise it is

unchanged.

Considering these conditions that can cause Inequality 1 to fail

for D’’, the set of allowed nodes A can be constructed with the

following algorithm that requires only testing D’. Starting with

k~0, compute the values of Lk and Rk for D’. There are three

possible cases: (1) Lk~Rk, (2) Lk~Rk{1, and (3) LkƒRk{2. In

case (1) fail-degrees occur whenever Lk is unchanged by making

the final link to the hub. Thus, the degree of the first non-

forbidden node whose index is greater than k is the largest fail-

degree found with this value of k. In case (2) fail-degrees occur

whenever Lk is unchanged and Rk is reduced by 2 by making the

final link to the hub. Thus, the degree of the first non-forbidden

node whose index is greater than k and whose degree is less than

kz2 is the largest fail-degree found with this value of k. In case (3)

no fail-degree can be found with this value of k. Repeat this

process sequentially increasing k, until all the relevant k values

have been considered, then retain the maximum fail-degree. It can

be shown that the algorithm can be stopped either after a case (1)

occurs, or after k~r where r is the lowest index of any node in D’
with degree d ’rvr. Once the maximum fail-degree is found,

remove the nodes that were temporarily added to X and construct

A by including all non-forbidden nodes of D with a higher degree.

If no fail-degree is ever found, then all non-forbidden nodes of D
are included in A. A will always include the leftmost adjacency set

of the hub and any non-forbidden nodes of equal degree.

Note that after a link is placed in the sample construction

process, the residual degree sequence D changes, and therefore, A
has to be determined every time.

Implementing the Erdös-Gallai test. Finally, Lk and Rk

should be calculated efficiently. Calculating the sums that

comprise them for each new value of k can be computationally

intensive, especially for long sequences. Even computing them

only for as many distinct terms as there are in the sequence, as

suggested in Ref. [25], can still become slow if the degree

distribution is not quickly decreasing. Instead, it is much more

efficient to use recurrence relations to calculate them.

A recurrence relation for Lk is simply

Lk~Lk{1zdk, ð4Þ

with L0~d0.

For non-increasing degree sequences, define the ‘‘crossing-

index’’ xk for each k as the index of first node that has degree less

than kz1, that is for which divkz1 for all i§xk. If no such

index exists, such as for k~0 since the minimum degree of any

node in the sequence is 1, then set xk~N. Then, a recurrence

relation for Rk is

Rk~Rk{1zxk{1{(xk{1{2kzdk) H(kz1{xk) ð5Þ

where H is a discrete equivalent of the Heaviside function, defined

to be 1 on positive integers and 0 otherwise, and R0~N{1. Or,

since the crossing-index can not increase with k, that is xkƒxk{1

for all k, a value k� will exist for which xkvkz1 for all k§k�,
and so Eq. 5 can be written

Rk~
Rk{1zxk{1 for kvk�

Rk{1z2k{dk for k§k�

�
ð6Þ

Thus, there is no need to find xk for kwk�.
Using Eqs. 4 and 6, the mechanism of the calculation of Lk and

Rk at sequential values of k is shifted from a slow repeated

calculation of sums of many terms to the much less computation-

ally intensive task of calculating the recurrence relations. In order

to perform the test efficiently, a table of the values of crossing-

index xk for each relevant k can be created as D0 is constructed.

It should be noted that the usefulness of this method for

calculating Lk and Rk is broader than its use for calculating fail-

degrees in our sampling algorithm. In particular, it can be used in

an Erdös-Gallai test to efficiently determine whether a degree-

sequence is graphical.

Sample weights
As previously stated, the weight w associated with a particular

sample, given by Eq. 3, is the product of the sizes kij of all the sets

of allowed nodes that have been built for each hub node i divided

by the product of the factorials of the initial residual degrees of

each hub node. The logarithm of this weight is

log w~
Xm

i~1

Xdi

j~1

log kij

0
@

1
A{ log di!

� �2
4

3
5: ð7Þ

Generally, degree sequences with N&1 admit many graphical

realizations. When this is true, each of the m terms in square

brackets in Eq. 7 are effectively random and independent, and, by

virtue of the central limit theorem, their sum will be normally

distributed. That is, the weight w of graph samples generated from

a given degree sequence with large N is typically log-normally

distributed. However, degree sequences with N&1 that have only

a small number of realizations do exist, and w is not expected to be

log-normally distributed for those sequences.

Furthermore, one can consider not just samples of a particular

graphical sequence, but of an ensemble of sequences. By a similar

argument to that given above for individual sequences, the weight

w of graph samples generated from an ensemble of sequences will

also typically be log-normally distributed in the limit of large N.

For example, consider an ensemble of sequences of randomly

chosen power-law distributed degrees, that is, sequences of

random integers chosen from a probability distribution

P(d)*d{c. Hereafter, we refer to such sequences as ‘‘power-law

sequences.’’ Figure 1 shows the probability distribution of the

logarithm of weights for realizations of power-law sequences with

exponent c~3 and N~100. Note that this distribution is well

approximated by a Gaussian fit.

We have also studied the behavior of the mean and the standard

deviation of the probability distribution of the logarithm of the

weights of such power-law sequences as a function of N . As shown

in Fig. 2, they scale as a power-law. We have found qualitatively

similar results, including power-law scaling of the growth of the

mean and variance of the distribution of log w, for binomially

distributed degree sequences that correspond to those of Erdös-

Renyi random graphs with node connection probability p such

that pN~4, and for uniformly distributed degree sequences, that

is power-law sequences with c~0, with an upper limit, or cutoff, offfiffiffiffiffi
N
p

for the degree of a node. However, for uniformly distributed
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degree sequences without an imposed upper limit on node degrees,

we find that the sample weights are not log-normally distributed.

Complexity
In this section we discuss the algorithm’s computational

complexity. We first provide an upper bound on the worst case

complexity, given a degree sequence D. Then, using extreme value

arguments, we conservatively estimate the average case complexity

for degree sequences of random integers chosen from a

distribution P(d). The latter is useful for realistically estimating

the computational costs for sampling graphs from ensembles of

long sequences.

To determine an upper bound on the worst case complexity for

constructing a sample from a given degree sequence D, recall that

the algorithm connects all the stubs of the current hub node before

it moves on to the hub node of the new residual sequence. For

every stub from the hub one must construct the allowed set A. The

algorithm for constructing A, which includes constructing D’,
performing the Lk vs Rk comparisons, and determining the

maximum fail-degree, can be completed in O½N{j� steps, where

N{j is the maximum possible number of nodes in the residual

sequence after eliminating j hubs from the process. Therefore, an

upper bound on the worst case complexity Cw of the algorithm

given a sequence D is:

CwƒO(
X

j

(N{j)dj)ƒO N
X

j

dj

 !
ð8Þ

where the sum involves at most O(N) terms. Equivalently,

CwƒO(NNl), with Nl being the number of links in the graph.

For simple graphs, the maximum possible number of links is

O(N2), and the minimum possible number is O(N). If Nl~O(N),

then CwƒO(N2), and if Nl~O(N2), then CwƒO(N3), which is

an upper bound, independent of the sequence.

From Eq. 8, the expected complexity for the algorithm to

construct a sample for a degree sequence of random integers

chosen from a distribution P(d), normalized to unity, can be

conservatively estimated as

C*O
XN{2

j~0

(N{j)d̂dj

 !
: ð9Þ

Here d̂dj is the expectation value for the degree of the node with

index j, which is the largest degree for which the expected number

of nodes with equal or larger degree is at least jz1. That is,

d̂dj~ max d� :N
Xdmax

d~d�
P(d)§jz1

( )
: ð10Þ

Notice that the sum in the above equation runs to the maximum

allowed degree in the network dmax, which is nominally N{1, but

a different value can be imposed. For example, in the case of

power-law sequences, the so-called structural cutoff of dmaxƒ
ffiffiffiffiffi
N
p

is necessary if degree correlations are to be avoided [19,26,27].

However, such a cutoff needs to be imposed only for cv3, because

the expected maximum degree d̂d0 in a power-law network grows

like N
1

c{1. Thus, for c§3, d̂d0 grows no faster than
ffiffiffiffiffi
N
p

and no

degree correlations exist for large N [28].

Given a particular form of distribution P(d), Eq. 9 can be

computed for different values of N. Subsequent fits of the results to

a power-law function allow the order of the complexity of the

algorithm to be estimated. Figure 3 shows the results of such

calculations for power-law sequences with and without the

structural cutoff of dmax~
ffiffiffiffiffi
N
p

as a function of exponent c. Note

that, in the absence of cutoff, the results indicate that the order of

the complexity goes to a value of 3 for c?0, that is, in the limit of a

uniform degree distribution. However, if the structural cutoff is

imposed the order of the complexity is only 2:5 in this limit. Both

these results are easily verified analytically.

Figure 1. Probability distribution p of the logarithm of weights
for an ensemble of power-law sequences with N~~100 and ª~~3.
The ensemble contained 2|104 graphical sequences, and for each
sequence 106 graph samples were produced. Thus, the total number of
samples produced was 2|1010. The simulation data is given by the
solid black line and a Gaussian fit of the data is shown by the dashed
red line that nearly obscures the black line.
doi:10.1371/journal.pone.0010012.g001

Figure 2. Mean m and standard deviation s of the distributions
of the logarithm of the weights vs. number of nodes N of
samples from an ensemble of power-law sequences with ª~~3.
The black circles correspond to m, the red squares correspond to s. The
error bars are smaller than the symbols. The solid black line and the
dashed red line show the outcomes of fits on the data. The linearity
of the data on a logarithmic scale indicates that the m and s follow
power-law scaling relations with N : m*Na and s*Nb. The slopes of
the fit lines are an estimate of the value of the exponents:
a~1:22042+0:00007 and b~0:8599+0:0018.
doi:10.1371/journal.pone.0010012.g002
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We have tested the estimates shown in Fig. 3 with our

implementation of the sampling algorithm for power-law sequenc-

es with and without the structural cutoff for certain values of c,

including 0, 2, and 3. This was done by measuring the actual

execution times for generating samples for different N and fitting

the results to a power-law function. In every case, the actual order

of the complexity of our implementation of the sampling algorithm

was equal to or slightly less than its estimated value shown in Fig. 3.

Discussion

We have solved the long standing problem of how to efficiently

and accurately sample the possible graphs of any graphical degree

sequence, and of any ensemble of degree sequences. The

algorithm we present for this purpose is ergodic and is guaranteed

to produce an independent sample in, at most, O(N3) steps.

Although the algorithm generates samples non-uniformly, and,

thus, it is biased, the relative probability of generating each sample

can be calculated explicitly permitting unbiased measurements to

be made. Furthermore, because the sample weights are known

explicitly, the algorithm makes it possible to sample with any

arbitrary distribution by appropriate re-weighting.

It is important to note that the sampling algorithm is guaranteed

to successfully and systematically proceed in constructing a graph.

This behavior contrasts with that of other algorithms, such as the

configuration model (CM), which can run into dead ends that

require back-tracking or restarting, leading to considerable losses

of time and potentially introducing an uncontrollable bias into the

results. While there are classes of sequences for which it is perhaps

preferable to use the CM instead of our algorithm, in other cases

its performance relative to ours can be remarkably poor. For

example, a configuration model code failed to produce even a

single sample of a uniformly distributed graphical sequence,

P(d)~const:, with N~100, after running for more than

24 hours, while our algorithm produced 104 samples of the very

same sequence in 30 seconds. Furthermore, each sample gener-

ated by our algorithm is independent. This behavior contrasts with

that of algorithms based on MCMC methods. Because our

algorithm works for any graphical sequence and for any ensemble

of random sequences, it allows arbitrary classes of graphs to be

studied.

One of the features of our algorithm that makes it efficient is a

method of calculating the left and right sides of the inequality in

the Erdös-Gallai theorem using recursion relations. Testing a

sequence for graphicality can thus be accomplished without

requiring repeated computations of long sums, and the method is

efficient even when the sequence is nearly non-degenerate. The

usefulness of this method is not limited to the algorithm presented

for graph sampling, but can be used anytime a fast test of the

graphicality of a sequence of integers is needed.

There are now over 6000 publications focusing on complex

networks. In many of these publications various processes, such as

network growth, flow on networks, epidemics, etc., are studied on

toy network models used as ‘‘graph representatives’’ simply

because they have become customary to study processes on.

These include the Erdös-Rényi random graph model, the

Barabási-Albert preferential attachment model, the Watts-Strogatz

small-world network model, random geometric graphs, etc.

However, these toy models are based on specific processes that

constrain their structure beyond their degree-distribution, which in

turn might not actually correspond to the processes that have led

to the structure of the networks investigated with them, thus

potentially introducing dangerous biases in the conclusions of

these studies. The algorithm presented here provides a way to

study classes of simple graphs constrained solely by their degree

sequence, and nothing else. However, additional constraints, such

as connectedness, or any functional of the adjacency matrix of the

graph being constructed, can in principle be added to the

algorithm to further restrict the graph class built.

After this paper was accepted for publication, we became aware

of an unpublished work by J. Blitzstein and P. Diaconis that

provides another direct construction method for sampling graphs

with given degree sequences.
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