
Efficient and Feature-Preserving Triangular Mesh
Decimation

Muhammad Hussain1,2 Yoshihiro Okada1,2 Koichi Niijima1

1Graduate School of Information Science and Electrical Engineering,
Kyushu University, 6-1, Kasuga Koen, Kasuga, Fukuoka, 816-8580, Japan.

2Intelligent Cooperation and Control, PRESTO, JST.
{mhussain, okada, niijima}@i.kyushu-u.ac.jp

ABSTRACT

Most of the existing algorithms for decimation of triangular meshes perform poorly at very low levels of detail.

We propose a new automatic method for the decimation of triangular meshes, which performs better as

compared to the notable existing algorithms at low levels of detail, preserves visually important parts of the

mesh and thus keeps the semantic or high level meaning of the model. The proposed algorithm is based on

greedy approach and exploites a new method of measuring geometric error employing a form of vertex visual

importance that helps to keep visually impotant vertices even at low levels of detail and causes to remove other

kinds of vertices, which do not profoundly influence the overall shape of the model. In addition, the proposed

method has less momory overhead as compared to most of the published algorithms and is faster in terms of

running times. The results of the algorithm have been compared numerically, visually, in terms of execution

times and memory consumption with the sate-of-the-art decimation methods to strengthen the efficiency and

quality of the algorithm.

Keywords

Mesh decimation, Multiresolution modeling, Level of detail, Edge collapse, Vertex visual importance.

1. INTRODUCTION
Various applications of interactive computer

graphics, like animation, scientific visualization, and

virtual reality, involve the manipulation of geometric

models that are commonly represented by triangular

meshes because of wide acceptance of triangle as a

basic primitive on rendering systems. The pursuit of

realism and high visual fidelity on one hand and the

latest advances on scanning devices and CAD

systems on the other hand has given rise to huge

triangular meshes whose complexity and size often

exceed the capacity of available graphics rendering

systems. The only way to deal with this problem and

to make such models available for real time

applications is to induce different levels of resolution

on a mesh so that an application can exploit an

appropriate level of detail based on the compromise

between visual fidelity, the limitations of rendering

system and the requirements of the application. A

number of solutions have been proposed for

geometric simplification of polygonal models during

the last decade addressing the different aspects of the

problem and keeping in view different objectives.

Mainly, there are three factors that determine the

quality of a simplification algorithm: computational

efficiency, memory overhead, and the quality of

generated models. Different published algorithms

have different strengths and weaknesses in terms of

the quality of approximations, running times and

memory overhead; some methods e.g. [Bro00, Ros93,

Sch92] are faster in running times but produce poor

approximations; some methods e.g. [Cia96, Hop96,

Pet98] generate good quality approximations but

perform poorly in running times; the algorithms e.g.

[Gar97] are fast and generate good quality

approximations but suffer from large memory

overhead. According to our information there does

not exist any algorithm that produces extremely low

level approximations while preserving the semantic

meaning of the model and, still is computationally

efficient and has low memory overhead.

We propose a new decimation algorithm that is not

only memory efficient and involves short running

times but also produces approximations at extremely

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.12, No.1-3., ISSN 1213-6972

WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.

Copyright UNION Agency – Science Press

evv

N
v

T
v

T
e

low levels of resolution while keeping the semantic

meaning of a model. Our algorithm is driven by

half-edge collapse operation and a memory efficient

global measure of geometric deviation that employs

vertex visual importance value to prevent the

decimation of visually important parts and high

frequency details of the model.

The rest of the paper has been organized as follows.

Section 2 gives an overview of some of the state-of-

the-art directly related decimation algorithms. The

essential ingredients of the algorithm have been

presented in detail in Section 3, and Section 4

outlines the algorithm. Section 5 discusses the

performance and quality of the algorithm by

performing comparison with some published

methods. Section 6 concludes the paper.

2. RELATED WORK
A lot of algorithms have been proposed addressing

the problem of decimation of polygonal models, an

interested reader is referred to consult [Hec97,

Cig98a, Lue97]. Here we would present an overview

of sate-of-the-art edge-collapsed based algorithms to

establish a ground for comparison. Progressive Mesh

of Hoppe [Hop96] is the first algorithm that

employed edge collapse operator; although this

algorithm produces good quality approximations but

it has large memory overhead and its performance in

terms of execution time is very poor. After this,

many edge collapse based algorithms have been

proposed.

QEM based algorithm of Garland and Heckbert

[Gar97] employs a more general form of edge

collapse and stores the geometric deviation as the

square of the distance of incident planes on a vertex

as 4×4 symmetric matrix, which is based on the idea

proposed in [Ron96] and uses this matrix to compute

the cost of an edge and the optimal position of the

constituent vertex. This algorithm is one of the most

efficient methods in terms of running times and

produces good quality approximations but it suffers

from large memory overhead, for each vertex it

consumes 40 bytes of memory just to store error

metric in the form of a 4×4 symmetric matrix. Also

it is at a loss to preserve essential features of a model

at a very low level of resolution. The idea of

measuring geometric fidelity proposed in [Pet98] is a

memory efficient form of QEM, but is not as

efficient as original QEM in terms of running times;

it takes about 5 times more execution time. The

decimation algorithm proposed by Broadsky and

Watson [Bro00] is based on refinement; it is even

faster than QEM algorithm but produces poor

approximations. The algorithm proposed by Kim

et al [Kim02] employs edge collapse operator and

exploits discrete curvature norm to measure

geometric deviation; this method seems to be good at

preserving visually important detail of a model at a

low level of detail. Although the authors did not

report the running times, but it seems because of the

computation of their proposed measure of discrete

curvature norm, this algorithm involves very long

running times. Algorithms proposed by Hussain et al

[Hus03a, Hus03b] are almost as fast as QEM

algorithm in execution time and produce comparable

results, and have low memory overhead, but they are

also unable to preserve semantic meaning of a model

at low levels of detail.

3. MEASURE OF VISUAL FIDELITY

Some definitions
Without lose of generality, we assume a triangular

mesh M because any polygon can be represented by

a set of triangles.

For the sake of clarity and compactness of

expression, we introduce the following definitions.

v : a vertex of M with its geometric counterpart as

a 3D vertex v. v is a flat vertex if vT is a co-

planner set.

eij : an edge of M connecting the set of vertices

{vi, vj}.

ije
v

 : a half edge of M represented by the ordered

pair (vi, vj). vi and vj are termed as origin

and head of ije
v

. Each edge eij = {vi, vj} is

equivalent to two half edges ije
v

, jie
v

.

t : a triangular face of M is a set of oriented

edges (ije
v

, jke
v

, kie
v

) or equivalently an

oriented set of vertices (vi, vj, vk).

vT : the set of triangles incident on vertex v (see

Figure 1). It is termed as star of v.

eT : the set of triangles incident on edge e (see

Figure 1).

Figure 1. Nv: one ring neighbors of v, Tv:

triangles incident on v, and Te: triangles

incident on edge e.

Nv : the set of vertices in the 1-ring neighborhood of

vertex v.

Topological Operator
We employ half-edge collapse to simplify the

topology of M because it is easy to implement and

does not create new geometry, so it makes the

progressive transmission more efficient and induces

nested hierarchies on unstructured meshes that can

facilitate further applications [Kob98].

Visual Importance of a Vertex
We associate with each vertex a value that represents

its visual importance and helps to determine the

sequence of edge collapses in such a way that even

extremely low level versions of a model keep the

semantic meaning of the model. We define the visual

importance of vertex v by :

 wv = 1 - ||kv||,

where kv=

∑
∑

∆

∆

i

i

i

iin
r

,

here in
r

 is unit normal to the triangle ti∈ vT , ªi is

its area and summation is over all triangles in vT .

||kv|| is Euclidean norm of kv. It is quite obvious

that

||kv|| = 1 or wv = 0 ⇔ v is a flat vertex,

and

||kv|| < 1 or 0 <wv < 1⇔ v is not a flat vertex.

It means that the visual importance of a vertex is zero

if it is a flat vertex, otherwise it is a real value in

the range of 0 and 1. A vertex would be removed

if its visual importance is 0 otherwise it would be

kept according to its importance value.

Geometric Error Measure
A half–edge collapse transformation, say ie0

v
: (v0,

vi)→ vi causes the triangles
ieT

0
to degenerate and

the remaining triangles
0vT -

ieT
0

to undergo a

transformation. Degenerate triangles
ieT

0
are

removed and the transformation of each of ti ∈
0vT -

ieT
0

can be interpreted to be a rotation about its edge

opposite to v0 followed by scaling and shearing, see

Figure 3; the rotation accounts for geometric error.

Consider a typical triangle t = (vo, v1, v2) shown in

Figure 3, its rotation about edge e = {v1, v2} causes

the vertex v0 to traverse an arc. Analogous to the arc

length of a circle, we define the following quantity to

account for the geometric error caused by triangular

face t:

ttt lQ θ.= ,

where lt = 0.5(tt ′∆+∆) with t∆ and t ′∆ to be the

areas of triangles t and t
’
 , and tθ is the angle

described by the unit normal to triangle t when it

performs rotation about edge e12 = {v1, v2}. The

computation of tθ is involved and would slow down

the simplification process, so in our implementation,

we replace tθ by tt n.n1 ′−
rr

where tn
r

and tn ′
r

 are

unit normals to the triangles t and t
’
; for our

purpose this approximation works quite well, and is

computed efficiently.

The cost of collapse of edge er is the sum of

geometric errors introduced by each of ti

∈
0vT -

ieT
0

. So

Cost(ie0

v
) = ∑

−∈
iev TTt

tQ

00

This measure of geometric error would associate

normally less cost with edges on the boundary, and

once the algorithm enters a local minima along the

boundary, it would be trapped over there and would

start to collapse boundary indiscriminately. To tackle

this problem, special heuristics are employed.

Boundary half-edges are categorized into two

main types: (1) the half-edges having either origin or

v
1

v
2

Figure 2. v1 is a flat vertex i.e.
1v

w = 0, and v2

has visual importance greater than zero. t
t’

n
t

n
t’

�
v

0

v
1

v
2

v
i

e
0i

Figure 3. Half –edge collapse operation.

e
12

e
21

v
1

v
0

v
i

v
2

v
3

e
i1

e
2i

�
12

�
21

 head on boundary e.g. 1ie
v

= (vi, v1) in Figure 4 and

(2) the half-edges having both origin and head on

boundary e.g. 12e
v

=(v1,v2) in Figure 4. Each is dealt

with separately.

 Because the half-edge collapse transformation ohe
v

:(vo, vh) → vh eliminates edge eoh = {vo, vh}by

merging vo to vh, so the collapse of a half-edge

having head on boundary needs not special

treatment; however if its origin is on boundary, then

the collapse would deform boundary severely, so the

collapse of such half-edges is restricted. The half-

edges of type 2 must be handled tactfully. One

possible treatment is to panelize the cost of such

edges with the length of the edge, but it would cause

to consume more and sliver triangles to preserve

boundary. Consider Figure 4, edge e12 ={v1, v2}

would be collapsed if either of the half-edges e12,

e21 collapses, but to achieve better results this edge

must be collapsed to v1. It is obvious that this

objective can be achieved if the costs of collapse of

the half edges 12e
v

 and 21e
v

are panelized with the

length of the edge weighted by 12φ and 21φ

respectively. So the cost of collapse of the half edge

12e
v

would be

Cost(12e
v

) = 2112 vv −λφ + ∑
−∈

121 ev TTt

tQ

where 232112 u.u1 −=φ with 21u and 23u being

the unit vectors along the edges 21e
v

 = (v2, v1) and

23e
v

= (v2, v3) respectively, as shown in Figure 4, and

λ is a user specified parameter used to control

the quality of boundary preservation; during our

experiments we found that feasible results can be

found using the value of λ in the range of 1 to 50,

λ=10 is the default value in our implementation.

Nearer the value of λ is to 50, tighter the boundary is

preserved.

4. ALGORITHM
 The algorithm is driven by half-edge collapse

Model
Model Size

(# faces)
MELOD QSlim

Fandisk 12,946 0.98 0.97

Bunny 69,451 4.65 3.67

Horse 96,966 6.39 5.28

Male 605,902 44.05 35.58

Table 1. Execution times (in seconds) of MELOD

and QSlim to decimate each model to one face.

transformation, visual importance associated with

each vertex and the geometric error measure

presented in Section 3; it is implemented in greedy

framework to obtain sub-optimal approximation of a

given geometric model at a certain level of detail.

The algorithm takes a triangular mesh as input and

yields the original model along with ordered list of

edge collapses and their associated cost values. This

progressive mesh (PM) [Hop96] representation

constitutes an entire continuum of LODs of the

model and an LOD approximation of desired

complexity can be extracted from this PM.

 The algorithm performs the following steps to

decimate a triangular mesh and to yield an entire

continuum of LODs.

• Compute the visual importance wv of each

vertex v of M.

• For each vertex vi of M, compute the cost

cij of each half-edge transformation ije
v

:

(vi, vj) → vj, vj∈
iv

N exploiting the

measure of geometric error proposed in

Section 3, select the one (optimal half-edge

associated with vi) with minimum cost i.e.

ci = min{cij vj∈
iv

N }, scale its cost with

visual importance of vi i.e.
iv

w and put it

in the priority queue.

• Take out of the priority queue the least cost

half-edge ije
v

`= (vi, vj) and collapse the

edge eij by substituting all occurrences of vi

with vj and removing the triangles
ijeT .

Neighborhood of each vertex in
iv

N has

changed, so re-evaluate the visual

importance and update the optimal half-

edge associated with each vj ∈
iv

N by

computing its cost cj, accumulate the cost

ci by taking cj = max{cj , ci} and scale cj

with .
jvw Update the priority queue

according to new costs of these half-edges.

• Repeat the previous two steps until there is

no half-edge in the priority queue.

Figure 4. Vertex vi is an interior vertex and

v0, v1, v2, and v3 are boundary vertices.

5. DISSCUSSION

We tested MELOD (Memory-efficient LOD

modelling), the implementation of our algorithm on a

wide range of public domain triangular meshes and

achieved good results. To evaluate our method, we

make comparison with the notable published

algorithms QSlim [Gar97] and MS (Memoryless

Simplification) [Pet98].

Execution times
Table 1 lists the running times of QSlim and

MELOD to decimate various models on 800MHz

Intel PentiumIII machine with 384 MB of main

memory. It is obvious that execution times of

MELOD are quite close to those of QSlim, but it is

faster than MS because according to the results

reported in [Pet98] (see table 1), MS is about 5 times

slower than QSlim.

Numerical Comparison
For thorough numerical comparison, we employ

maximum geometric error measure and compute it

using version 2.5 of well-known I.E.I-CNR Metro

tool [Cig98a] developed to compare triangular

meshes. Graphs shown in Figures 5 illustrate the

maximum geometric error between the original and

the simplified models created by QSlim, MS and

MELOD; MS is not available in public domain,

metro results are the courtesy of Peter Linstrom. It is

apparent that our algorithm performs better than

QSlim and MS in terms of maximum geometric

error.

Memory Consumption
MELOD is memory efficient just like MS; it needs

not to store any kind of geometric history. Global

evaluation of geometric error is accomplished by

accumulating the cost of collapse associated with

half-edges, as has been explained in Step 3 of the

algorithm; it does not consume extra memory unlike

the accumulation of error as proposed in [Baj96,

Cia96]. In addition to the storage for the mesh itself

and priority queue, QSlim needs memory for storing

10 floats per vertex, so it suffers from an additional

memory overhead of 40n bytes, where n is the

number of vertices in M.

Visual Comparison
MELOD can decimate a model to an extremely low

level of resolution while keeping its semantic

meaning. Here we perform visual comparison only

with QSlim (because it is available in public domain)

making use of different models of different

complexities. Figure 7 depicts the cow model,

original and decimated versions generated by

MELOD (middle) and QSlim (bottom); MELOD

keeps the overall appearance of the original model by

0.01

0.1

1

0 10000 20000 30000 40000 50000 60000 70000 80000

MELOD

MS

QSlim

Number of Faces

M
a
x
im

u
m

G
e
o
m

e
tr

ic
E

rr
o

r

preserving visually highly important parts like eye,

snort, hoofs and nipples, whereas QSlim blurs these

features of high level perceptual importance.

 Consider spider model shown in Figure 6, it is quite

clear that the parts of the model having high level

visual importance have been preserved by MELOD,

especially one can see palps (leg-like structures

attached to the front) and joints of legs are quite

visible; QSlim is devoid of the potential to keep these

parts. Although, MELOD scales off abdomen a little

bit but in spite of this overall appearance is very

close to the original model.

Close-up of head and front legs of horse model has

been shown in Figure 9; it is apparent that MELOD

keeps parts of high semantic meaning like ears,

nostrils and hoofs after drastic decimation of

98.35%. Also, note Figure 8, it can be seen that high

semantic importance features like eyes, nose, lips and

ears remain on male model decimated by MELOD

even after 99.71% reduction , whereas some of these

have been completely removed or blurred by QSlim.

Close examination of male model, and head and front

legs of horse model reveals that MELOD spends

small and more triangles to preserve high level

perceptually important portions of a model, which

usually are high curvature regions, and play

crucial rule in the semantic meaning of a model.

Buddha model shown in Figure 10 consists of more

than one million triangular faces; models in the

middle and to the left of the figure are decimated

versions simplified by MELOD and QSlim

respectively and each consists of 3266 triangular

faces. One can see the version generated by MELOD

gives the feel of a happy Buddha in spite of 99.69%

reduction in size.

Figure 5. Maximum geometric error for horse

model

6. CONCLUSIONS
We have presented a new method for generating

LODs of triangular meshes. Our algorithm is not

only faster than many existing algorithms in terms

of execution times and has low memory overhead

as compared to most of the notable decimation

algorithms but also preserves automatically the

essential parts of a mesh and its visually important

features, and keeps its semantic meaning.

Numerically the simplification results of MELOD

are comparable with those of QSlim and MS. This

can be employed for applications which require

visual fidelity and the semantic meaning of the

model to be preserved at very low levels of

resolution, not tight error bound, and the set of

vertices of the simplified version to be a proper

subset of original vertices. The relation of the

proposed measure of geometric error with distance

metric is not clear; it is not obvious that how this

can be extended to include surface attributes.

These are future directions for investigation.

ACKNOWLWGEMENTS
We are thankful to Peter Lindstrom for providing

the metro results for different LODs of horse model

generated by his Memoryless Simplification

Figure 6. Spider model: original (top) #faces:

9286, decimated by MELOD(middle) and

QSlim(bottom): #faces: 1144 (each).

Figure 7. Cow model: original (top) #faces:

5804, decimated by MELOD(middle) and

QSlim(bottom): #faces: 1198 (each).

algorithm. We also acknowledge the valuable

comments of the anonymous reviewers for the

improvement of the paper.

7. REFERENCES

[Baj96] Bajaj, C. L and Schikore, D. R. Error

bounded reduction of triangle meshes with

multivariate data. SPIE, 2656:34-45, 1996.

[Bro00] Brodsky, D., and Watson, B., Model

simplification through refinement. In Proc.

Graphics Interface’00, pages 221-228, 2000.

[Cia96] Ciampalini, A., Cignoni, P., Montani, C.,

and Scopigno, R. Multiresolution decimation

based on global error. The Visual Computer,

13:228-246, 1997.

Figure 9. Cose-up of head and front feet of

horse model original (top) # faces: 96,966;

versions decimated by MELOD (middle) and

QSlim (bottom) #faces: 1596 (each).

Figure 8. Male model original (top) # faces:

605,902; versions decimated by MELOD

(middle) and QSlim (bottom) #faces: 1709

(each).

[Cig98a] Cignoni, P., Rocchini, C., and Scopigno,

R. Metro: Measuring error on simplified

surfaces. Computer Graphics Forum,

17(2):167-174, June 1998.

[Cig98b] Cignoni, P., Montani, C., and Scopigno,

R. A comparison of mesh simplification

algorithms. Computer & Graphics, 22(1):37-

54, 1998.

 [Gar97] Garland, M., and Heckbert, P.S. Surface

simplification using quadric error metric. In

Proc. SIGGRAPH'97, pages 209-216, August

1997.

 [Hec97] Heckbert, P. S., and Garland, M. Survey

of surface simplification algorithms. Technical

report, Carnegie Mellon University-Dept. of

Computer Science, 1997.

[Hop96] Hoppe, H. Progressive meshes. In Proc.

SIGGRAPH'96, pages 99-108, August 1996.

[Hus03a] Hussain, M., Okada, Y. and Niijima, K.

Fast, simple, feature-preserving and memory

efficient simplification of triangle meshes.

International Journal of Image and Graphics,

3(4):1-18, 2003.

[Hus03b] Hussain, M., Okada, Y. and Niijima, K.

LOD modeling of polygonal models based on

multiple choice optimization. In proc. MMM04,

to appear.

[Kim02] Kim, S. J., Kim, C. H., and Levin, D.

Surface simplification using a discrete

curvature norm. Computers and Graphics,

26:657-663, 2002.

[Kob98] Kobbelt, L., Campagna, S., and Seidel,

H.P. A general framework for mesh

decimation. In Proc. Graphics Interface'98,

pages 311-318, October 1998.

[Lue97] Luebke, D. A survey of polygonal

simplification algorithms, Technical Report

TR97-045, Department of Computer Science,

University of North Carolina, 1997.

[Pet98] Lindstrom, P., and Turk, G. Fast and

memory efficient polygonal Simplification. In

Proc. IEEE Visualization'98, pages 279-286,

544 Oct. 1998.

[Ron96] Ronfard, R., and Rossignac, J. Full range

approximation of triangular polyhedra.

Computer Graphics Forum (Proc.

Eurographics'96), 15(3), 1996.

[Ros93] Rossignac, J., and Borrel, P. Multi-

resolution 3D approximation for rendering

complex scenes. In Geometric Modeling in

Computer Graphics, pages 455-465, Springer

Verlag, 1993.

[Sch92] Schroeder, J., Jonathan A. Zarge, and

William E. Lorenson. Decimation of triangle

meshes. Computer Graphics (Proc.

SIGGRAPH'92), 26(2):65-70, July 1992.

 Figure 10. Buddha model original (left) # faces:1085, 634; versions decimated by MELOD (middle)

and QSlim (right) #faces: 3266.

