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ABSTRACT 

Most of the existing algorithms for decimation of triangular meshes perform poorly at very low levels of detail. 

We propose a new automatic method for the decimation of triangular meshes, which performs better as 

compared to the notable existing algorithms at low levels of detail, preserves visually important parts of the 

mesh and thus keeps the semantic or high level meaning of the model. The proposed algorithm is based on 

greedy approach and exploites a new method of  measuring  geometric error employing a form of vertex visual 

importance that helps to keep visually impotant vertices even at low levels of detail and causes to remove other 

kinds of vertices, which do not profoundly influence the overall shape of the model.  In addition, the proposed 

method has less momory overhead as compared to most of the published algorithms and is faster in terms of 

running times. The results of the algorithm have been compared numerically, visually, in terms of  execution 

times and memory consumption with the sate-of-the-art decimation methods to strengthen the efficiency and 

quality of the algorithm.  
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1. INTRODUCTION 
Various applications of interactive computer 

graphics, like animation, scientific visualization, and 

virtual reality, involve the manipulation of  geometric 

models that are commonly represented by triangular 

meshes because of wide acceptance of triangle as a 

basic primitive on rendering systems. The pursuit of 

realism and high visual fidelity on one hand and the 

latest advances on scanning devices and CAD 

systems on the other hand has given rise to huge 

triangular meshes whose complexity and size often 

exceed the capacity of available graphics rendering 

systems. The only way to deal with this problem and 

to make such models available for real time 

applications is to induce different levels of resolution 

on a mesh so that an application can exploit an 

appropriate level of detail based on the compromise 

between visual fidelity, the limitations of rendering 

system and the requirements of the application. A 

number of solutions have been proposed for 

geometric simplification of polygonal models during 

the last decade addressing the different aspects of the 

problem and keeping in view different objectives. 

Mainly, there are three factors that determine the 

quality of a simplification algorithm: computational 

efficiency, memory overhead, and the quality of 

generated models. Different published algorithms 

have different strengths and weaknesses in terms of 

the quality of approximations, running times and 

memory overhead; some methods e.g. [Bro00, Ros93, 

Sch92] are faster in running times but produce poor 

approximations; some methods e.g. [Cia96, Hop96, 

Pet98] generate good quality approximations but 

perform poorly in running times; the algorithms e.g. 

[Gar97] are fast and generate good quality 

approximations but suffer from large memory 

overhead. According to our information there does 

not exist any algorithm that produces extremely low 

level approximations while preserving the semantic 

meaning of the model and, still is computationally 

efficient and has low memory overhead.  

We  propose a new decimation algorithm that is not 

only  memory efficient and involves short running 

times but also produces approximations at extremely 
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low levels of  resolution while keeping  the semantic 

meaning of a model.  Our algorithm is driven by 

half-edge collapse operation and a memory efficient 

global measure of geometric deviation that employs 

vertex visual importance value to prevent the 

decimation of visually important parts and high 

frequency details of the model. 

The rest of the paper has been organized as follows. 

Section 2 gives an overview of some of the state-of-

the-art directly related decimation algorithms. The 

essential ingredients of the algorithm have been 

presented in detail in Section 3, and Section 4 

outlines the algorithm. Section 5 discusses the 

performance and quality of the algorithm by 

performing comparison with some published 

methods.  Section 6 concludes the paper. 

2. RELATED WORK 
A lot of algorithms have been proposed addressing 

the problem of decimation of polygonal models, an 

interested reader is referred to consult [Hec97,  

Cig98a, Lue97]. Here we would present an overview 

of sate-of-the-art edge-collapsed based algorithms to 

establish a ground for comparison. Progressive Mesh 

of Hoppe [Hop96] is the first algorithm that 

employed edge collapse operator; although this 

algorithm produces good quality approximations but 

it has large memory overhead and its performance in 

terms of execution time is very poor.  After this, 

many edge collapse based algorithms have been 

proposed. 

QEM based algorithm of Garland and Heckbert 

[Gar97] employs a more general form of edge 

collapse and stores the geometric deviation as the 

square of the distance of  incident planes on a vertex 

as 4×4 symmetric matrix, which is based on the idea 

proposed in [ Ron96] and uses this matrix to compute 

the cost of  an edge and the optimal position of the 

constituent vertex. This algorithm is one of the  most 

efficient methods in terms of running times and 

produces good quality approximations but  it suffers  

from large memory overhead, for each vertex it 

consumes 40 bytes of memory just to store error 

metric in the form of a 4×4  symmetric matrix. Also 

it is at a loss to preserve essential features of a model 

at a very low level of resolution. The idea of 

measuring geometric fidelity proposed in [Pet98] is a 

memory efficient form of QEM, but is not as 

efficient as original QEM in terms of running times; 

it takes about 5 times more execution time. The 

decimation algorithm proposed by Broadsky and 

Watson [Bro00] is based on refinement; it is even 

faster than QEM algorithm but produces poor 

approximations. The algorithm   proposed  by  Kim 

et al [Kim02]  employs   edge  collapse  operator and 

 

 

 

 

exploits discrete   curvature norm  to   measure    

geometric deviation; this method seems to be good at 

preserving  visually important detail of a model at a 

low level of detail. Although the authors did not 

report the running times, but it seems because of the 

computation of their proposed measure of discrete 

curvature norm, this algorithm involves very long 

running times. Algorithms proposed by Hussain et al 

[Hus03a, Hus03b] are almost as fast as QEM 

algorithm in execution time and produce comparable 

results, and have low memory overhead, but they are 

also unable to preserve semantic meaning of a model 

at low levels of detail. 

3. MEASURE OF VISUAL FIDELITY 

Some definitions 
Without lose of generality, we assume a triangular 

mesh M because any polygon can be represented by 

a set of  triangles.   

For the sake of clarity and compactness of 

expression, we introduce the following definitions. 

v  :  a vertex of  M with its geometric counterpart as 

a 3D vertex v. v is a flat vertex if vT  is a co-

planner set. 

eij  : an edge of   M   connecting the set of  vertices  

{vi, vj}. 

ije
v

  : a half edge of  M represented by the ordered 

pair (vi, vj). vi and  vj are termed as origin 

and head of ije
v

. Each edge eij = {vi, vj} is 

equivalent to two half edges ije
v

, jie
v

. 

t  : a triangular face  of  M  is a  set of oriented 

edges ( ije
v

, jke
v

, kie
v

) or equivalently an 

oriented set of vertices (vi, vj, vk). 

vT  : the set of  triangles incident on vertex v (see 

Figure 1). It is termed as star of v.  

eT  : the set of  triangles incident on edge e  (see  

Figure 1). 

 

Figure 1.  Nv: one ring neighbors of v, Tv: 

triangles incident on v, and Te: triangles 

incident on edge e. 



 

   

 

Nv : the set of vertices in the 1-ring neighborhood of 

vertex v. 

Topological Operator 
We employ half-edge collapse to simplify the 

topology of M because it is easy to implement and 

does not create new geometry, so it makes the 

progressive transmission more efficient and induces 

nested hierarchies on unstructured meshes that can 

facilitate further  applications [Kob98].  

Visual Importance of a Vertex  
We associate with each vertex a value that represents 

its visual importance and helps to determine the  

sequence of edge collapses in such a way that even 

extremely low level versions of a model keep the 

semantic meaning of the model. We define the visual 

importance of vertex v by : 

  wv = 1 - ||kv||, 

where          kv= 

∑
∑

∆

∆

i

i

i

iin
r

,                                                    

here in
r

 is unit normal to the triangle ti∈  vT , ªi  is 

its area and summation is over all triangles in vT .  

||kv|| is Euclidean norm of  kv. It is  quite obvious 

that 

||kv|| = 1 or wv = 0 ⇔  v is a flat vertex, 

and  

||kv|| < 1 or 0 <wv < 1⇔  v is not a flat vertex. 

It means that the visual importance of a vertex is zero 

if it is a flat vertex, otherwise it is a real value   in   

the  range of 0 and 1. A   vertex   would  be removed 

if its visual importance is 0 otherwise it would be 

kept according to its importance value.  

Geometric Error Measure 
A half–edge collapse transformation, say ie0

v
: (v0, 

vi)→ vi causes  the  triangles 
ieT

0
to  degenerate and  

 

 

the    remaining     triangles  
0vT - 

ieT
0

to   undergo  a  

transformation. Degenerate triangles 
ieT

0
are 

removed and the transformation of each of ti ∈
0vT - 

ieT
0

can be interpreted to be a rotation about its edge  

opposite to v0 followed by scaling and shearing, see 

Figure 3; the rotation accounts for geometric error. 

Consider a typical triangle t = (vo, v1, v2) shown in 

Figure 3, its rotation about edge e = {v1, v2} causes 

the vertex v0 to traverse an arc. Analogous to the arc 

length of a circle, we define the following quantity to 

account for the geometric error caused by triangular 

face t: 

ttt lQ θ.= , 

where lt = 0.5( tt ′∆+∆ ) with t∆ and t ′∆ to be the 

areas of triangles t and  t
’
 , and tθ is the angle 

described by the unit normal to triangle t when it 

performs rotation about edge e12 = {v1, v2}.  The 

computation of tθ is involved and would slow down 

the simplification process, so in our implementation, 

we replace tθ by tt n.n1 ′−
rr

where tn
r

and tn ′
r

 are 

unit normals to the triangles t and  t
’
; for our 

purpose this approximation works quite well, and is 

computed efficiently.   

The cost of collapse of edge er is the sum of  

geometric   errors  introduced  by    each of  ti 

∈
0vT - 

ieT
0

.  So  

Cost( ie0

v
) = ∑

−∈
iev TTt

tQ

00

 

This measure of geometric error would associate 

normally less cost with edges on the boundary, and  

once the algorithm enters a local minima along the 

boundary, it would be trapped over there and would 

start to collapse boundary indiscriminately. To tackle 

this problem, special heuristics are employed. 

Boundary  half-edges  are  categorized  into two 

main types: (1)  the half-edges having either origin or 

v
1

v
2

Figure 2.  v1 is a flat vertex i.e. 
1v

w = 0, and v2 

has visual importance greater than zero. t
t’

n
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Figure 3. Half –edge collapse operation. 
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 head on boundary e.g. 1ie
v

= (vi, v1) in Figure 4 and 

(2) the half-edges having both origin and head on 

boundary e.g. 12e
v

=(v1,v2) in Figure  4.  Each is dealt 

with separately. 

    Because the half-edge collapse transformation ohe
v

 

:(vo, vh) →  vh eliminates edge eoh = {vo, vh}by 

merging vo to vh, so the collapse of a half-edge 

having head on boundary needs not special 

treatment; however if its origin is on boundary, then 

the collapse  would deform boundary severely, so the 

collapse of such half-edges is restricted.  The half-

edges of type 2 must be handled tactfully.  One 

possible treatment is to panelize the cost of such 

edges with the length of  the edge, but it would cause 

to consume more and sliver triangles to preserve 

boundary. Consider Figure 4, edge e12 ={v1, v2} 

would be collapsed if either of the half-edges e12, 

e21 collapses, but to achieve better results this edge  

must be collapsed to v1. It is obvious that this 

objective can be achieved if the costs of collapse of 

the half edges 12e
v

 and 21e
v

are panelized with the 

length of the edge weighted by 12φ and 21φ  

respectively.  So the cost of collapse of the half edge 

12e
v

would be 

Cost( 12e
v

) = 2112 vv −λφ + ∑
−∈

121 ev TTt

tQ  

where 232112 u.u1 −=φ  with 21u  and 23u  being 

the unit vectors along the edges 21e
v

 = (v2, v1) and 

23e
v

= (v2, v3) respectively, as shown in Figure 4, and 

λ   is   a  user   specified   parameter  used  to  control 

the quality of boundary preservation; during our 

experiments we found that feasible results can be 

found  using  the  value of  λ  in  the range of 1 to 50, 

λ=10 is the default value in our implementation. 

Nearer the value of λ is to 50, tighter the boundary is 

preserved.  

4. ALGORITHM 
    The    algorithm  is  driven  by half-edge collapse  

Model 
Model Size 

(# faces) 
MELOD QSlim 

Fandisk 12,946 0.98  0.97 

Bunny 69,451 4.65 3.67 

Horse 96,966 6.39 5.28 

Male 605,902 44.05 35.58 
 

Table 1.  Execution times (in seconds) of MELOD 

and QSlim to decimate each model to one face. 

 

transformation, visual importance associated with 

each vertex and the geometric error measure 

presented in Section 3; it is implemented in greedy 

framework to obtain sub-optimal approximation of a 

given geometric model at a certain level of detail. 

The algorithm takes a triangular mesh as input and 

yields the original model along with ordered list of 

edge collapses and their associated cost values. This 

progressive mesh (PM) [Hop96] representation 

constitutes an entire continuum of LODs of the 

model and an LOD approximation of desired 

complexity can be extracted from this PM. 

    The algorithm performs the following steps to 

decimate a triangular mesh and to yield an entire 

continuum of LODs. 

• Compute the visual importance wv of each 

vertex v of M.  

• For each vertex vi of M, compute the cost 

cij of each half-edge transformation ije
v

: 

(vi, vj ) → vj, vj∈
iv

N  exploiting the 

measure of geometric error proposed in 

Section 3, select the one (optimal half-edge 

associated with vi) with minimum cost i.e. 

ci = min{cij vj∈
iv

N }, scale its cost with  

visual importance of vi i.e. 
iv

w  and put it 

in the priority queue.  

• Take out of the priority queue the least cost 

half-edge ije
v

`= (vi, vj) and collapse the 

edge eij by substituting all occurrences of vi 

with vj and removing the triangles
ijeT . 

Neighborhood of each vertex in 
iv

N  has 

changed, so re-evaluate the visual 

importance and update the optimal half-

edge associated with each vj ∈
iv

N  by 

computing its cost cj, accumulate the cost 

ci by taking  cj = max{cj , ci} and scale cj 

with .
jvw Update the priority queue 

according to new  costs of these half-edges. 

• Repeat  the  previous two steps until there is  

no half-edge in the priority queue.           

Figure 4.  Vertex vi is an interior vertex and 

v0, v1, v2, and v3 are boundary vertices. 



5. DISSCUSSION 

We tested MELOD (Memory-efficient LOD 

modelling), the implementation of our algorithm on a  

wide range of public domain triangular meshes and 

achieved good results. To evaluate our method, we 

make comparison with the notable published 

algorithms QSlim [Gar97] and MS (Memoryless 

Simplification)  [Pet98]. 

Execution times 
Table 1 lists the running times of QSlim and 

MELOD to decimate various models on 800MHz 

Intel PentiumIII machine with 384 MB of main 

memory. It is obvious that execution times of 

MELOD are quite close to those of QSlim, but it is 

faster than MS because according to the results 

reported in [Pet98]  (see table 1), MS is about 5 times 

slower than QSlim.  

Numerical Comparison 
For thorough numerical comparison, we employ 

maximum geometric error measure and compute it 

using version  2.5 of well-known I.E.I-CNR Metro 

tool [Cig98a] developed to compare triangular 

meshes.  Graphs shown in Figures 5 illustrate the 

maximum geometric error between the original and 

the simplified models created by QSlim, MS and 

MELOD; MS is not available in public domain, 

metro results are the courtesy of Peter Linstrom. It is 

apparent that our algorithm performs better than 

QSlim and MS in terms of maximum geometric 

error.  

Memory Consumption 
MELOD is memory efficient just like MS; it needs 

not to store any kind of geometric history. Global 

evaluation of geometric error is accomplished by 

accumulating the cost of collapse associated with 

half-edges, as has been explained in Step 3 of the 

algorithm; it does not consume extra memory unlike  

the accumulation of error as proposed in [Baj96, 

Cia96]. In  addition to the storage for the mesh  itself 

and priority queue,  QSlim needs memory for storing 

10 floats per vertex, so it suffers from an additional 

memory   overhead  of  40n  bytes,  where  n  is  the 

number of vertices in M.  

Visual Comparison 
MELOD can decimate a model to an extremely low 

level of resolution while keeping its semantic 

meaning. Here we perform visual comparison only 

with QSlim (because it is available in public domain) 

making use of different models of different 

complexities. Figure 7 depicts the cow model,  

original and decimated versions generated by 

MELOD (middle) and QSlim (bottom); MELOD 

keeps the overall appearance of the original model by  
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preserving visually highly important parts like eye, 

snort, hoofs and nipples, whereas QSlim blurs these 

features of high level perceptual importance. 

 Consider spider model shown in Figure 6, it is quite 

clear that  the parts of the model  having high level 

visual importance have been preserved by MELOD, 

especially one can see palps (leg-like structures 

attached to the front) and joints of legs are quite 

visible; QSlim is devoid of the potential to keep these 

parts. Although, MELOD scales off abdomen a little 

bit but in spite of this overall appearance is very 

close to the original model. 

Close-up of head and front legs of horse model has 

been shown in Figure 9; it is apparent that MELOD 

keeps parts of high semantic meaning like ears,  

nostrils and hoofs after drastic decimation of 

98.35%. Also, note Figure 8, it can be seen that  high 

semantic importance features like eyes, nose, lips and 

ears remain on male model decimated by MELOD 

even after 99.71% reduction , whereas some of these 

have been completely removed or blurred by QSlim. 

Close examination of male model, and head and front 

legs of  horse model reveals  that MELOD spends 

small and more triangles to preserve high level 

perceptually important portions of a model, which 

usually  are  high  curvature  regions, and play 

crucial rule in the semantic meaning of a model. 

Buddha model shown in Figure 10 consists of more 

than one million triangular faces; models in the 

middle and to the left of the figure are decimated 

versions simplified by MELOD and QSlim 

respectively and each consists of  3266 triangular 

faces. One can see the version generated by MELOD  

gives the feel of a happy Buddha in spite of  99.69% 

reduction in size.    

 

Figure 5.  Maximum geometric error for horse 

model 



 

 

 

6. CONCLUSIONS 
We have presented a new method for generating 

LODs of triangular meshes. Our algorithm is not  

only faster than many existing algorithms in terms 

of execution  times  and  has low memory overhead  

as  compared  to  most  of   the  notable  decimation  

 

 

 

 

algorithms but also preserves automatically the 

essential parts of a mesh and its visually important 

features, and keeps its semantic meaning. 

Numerically the simplification results of MELOD 

are comparable with those of QSlim and  MS. This 

can be employed for applications which require 

visual fidelity and the semantic meaning of the 

model to be preserved at very low levels of 

resolution, not tight error bound, and the set of 

vertices of the simplified version to be a proper 

subset of original vertices.  The relation of the 

proposed measure of geometric error with distance 

metric is not clear; it is not obvious that how this 

can be extended to include surface attributes.  

These are future directions for investigation. 

ACKNOWLWGEMENTS 
We are thankful to Peter Lindstrom for providing 

the metro results for different LODs of horse model 

generated      by      his   Memoryless Simplification  

Figure 6.  Spider model:  original (top) #faces: 

9286,  decimated by MELOD( middle) and 

QSlim(bottom): #faces: 1144 (each). 

Figure 7.  Cow model:  original (top) #faces: 

5804,  decimated by MELOD( middle) and 

QSlim(bottom): #faces: 1198 (each). 



 

 

 

 

 

 

 

algorithm.  We also acknowledge the valuable 

comments of the anonymous reviewers for the 

improvement of the paper. 

 

7. REFERENCES 

[Baj96] Bajaj, C. L and Schikore, D. R. Error 

bounded reduction of triangle meshes with 

multivariate data. SPIE, 2656:34-45, 1996. 

[Bro00] Brodsky, D., and  Watson, B., Model 

simplification through refinement. In Proc. 

Graphics Interface’00, pages 221-228, 2000. 

[Cia96] Ciampalini, A., Cignoni, P., Montani, C.,  

and  Scopigno, R. Multiresolution decimation 

based on global error. The Visual Computer, 

13:228-246, 1997. 

Figure 9. Cose-up of head and front feet of 

horse model original (top) # faces: 96,966; 

versions decimated by MELOD (middle) and 

QSlim (bottom) #faces: 1596 (each). 

Figure 8. Male model original (top) # faces: 

605,902; versions decimated by MELOD 

(middle) and QSlim (bottom) #faces: 1709 

(each). 



[Cig98a] Cignoni, P., Rocchini, C., and Scopigno, 

R. Metro: Measuring error on simplified 

surfaces. Computer Graphics Forum, 

17(2):167-174, June 1998. 

[Cig98b] Cignoni, P., Montani, C., and Scopigno, 

R. A comparison of mesh simplification 

algorithms. Computer & Graphics, 22(1):37-

54, 1998. 

 [Gar97] Garland, M., and Heckbert, P.S. Surface 

simplification using quadric error metric. In 

Proc. SIGGRAPH'97, pages 209-216, August 

1997. 

 [Hec97] Heckbert, P. S., and Garland, M. Survey 

of surface simplification algorithms. Technical 

report, Carnegie Mellon University-Dept. of 

Computer Science, 1997. 

[Hop96] Hoppe, H. Progressive meshes. In Proc. 

SIGGRAPH'96, pages 99-108, August 1996. 

[Hus03a] Hussain, M., Okada, Y. and Niijima, K.  

Fast, simple, feature-preserving and memory 

efficient simplification of triangle meshes. 

International Journal of Image and Graphics, 

3(4):1-18, 2003. 

[Hus03b] Hussain, M., Okada, Y. and Niijima, K. 

LOD modeling of polygonal models based on 

multiple choice optimization. In proc. MMM04, 

to appear. 

[Kim02] Kim, S. J., Kim, C. H., and Levin, D. 

Surface simplification using a discrete 

curvature norm. Computers and Graphics, 

26:657-663, 2002. 

[Kob98] Kobbelt, L., Campagna, S., and Seidel, 

H.P. A general framework for mesh 

decimation. In Proc. Graphics Interface'98, 

pages 311-318, October 1998. 

[Lue97] Luebke, D. A survey of polygonal 

simplification algorithms, Technical Report 

TR97-045, Department of Computer Science, 

University of North Carolina, 1997. 

[Pet98] Lindstrom, P., and Turk, G. Fast and 

memory efficient polygonal Simplification. In 

Proc. IEEE Visualization'98, pages 279-286, 

544 Oct. 1998. 

[Ron96] Ronfard, R., and Rossignac, J. Full range 

approximation of triangular polyhedra. 

Computer Graphics Forum (Proc. 

Eurographics'96), 15(3), 1996. 

[Ros93] Rossignac, J., and Borrel, P. Multi-

resolution 3D approximation for rendering 

complex scenes. In Geometric Modeling  in 

Computer Graphics,  pages 455-465, Springer 

Verlag, 1993. 

[Sch92] Schroeder, J., Jonathan A. Zarge, and 

William E. Lorenson. Decimation of triangle 

meshes. Computer Graphics (Proc. 

SIGGRAPH'92), 26(2):65-70, July 1992. 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 10. Buddha model original (left) # faces:1085, 634; versions decimated by MELOD (middle) 

and QSlim (right) #faces: 3266. 


